
GPCR signaling: Role in mediating the effects of early adversity 

Praachi Tiwari1, Sashaina E. Fanibunda1,2, Darshana Kapri1, Shweta Vasaya1, Sthitapranjya 

Pati1, Vidita A. Vaidya1* 

  

1Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, 

India, 2Medical Research Centre, Kasturba Health Society, Mumbai 400056, India.  

  

Address correspondence to: 

*Dr. Vidita A. Vaidya 

Department of Biological Sciences, 

Tata Institute of Fundamental Research, 

Homi Bhabha Road, Mumbai 400005, India 

Telephone Number: +91 22 22782608 

Fax Number: + 91-22 22804610 

E-mail: vvaidya@tifr.res.in 

 

 Running Title: GPCRs and early adversity 

 

  



Abbreviations: 

5-HT    : serotonin 

5HIAA : 5-hydroxyindoleacetic acid (5-HIAA) 

BDNF : Brain Derived Neurotrophic factor 

cAMP : cyclic AMP 

CB : Cannabinoid 

CREB :cAMP response element-binding 

CRF :Corticotropin release factor 

DA/D :Dopamine 

DOI :1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane 

DRN   :Dorsal Raphe Nuclei 

EPSC :excitatory postsynaptic potential 

GABA :Gamma  aminobutyric acid 

Glu : Glutamate 

GPCR : G-protein coupled receptors 

GS : Gestational stress 

IP3 : inositol 1,4,5-trisphosphate 

LGABN : Licking grooming and arch back nursing 

LBN : Limited  Bedding and Nesting 

M1 : Muscarinic receptor 1 

mGluR  : metabotropic Glutamate receptor 

MIA : Maternal immune activation 

mPFC : Medial Prefrontal cortex 

mRNA : messenger Ribonucleic acid 

MS : Maternal Separation 

MSUS: Maternal Stress combined with Unpredictable Stress to the dam 

NE: Norepinephrine 

PFC: Prefrontal Cortex 

PKA: Protein Kinase A 

PNFlx: Postnatal Fluoxetine 

SSRI: Selective Serotonin reuptake inhibitor 

 

 



Keywords: serotonin, 5-HT2A receptor, 5-HT1A receptor, monoamine, early stress, maternal 

separation, anxiety, depression 

 

Conflict of interest: Authors have no conflict of interest to declare 

 

Abstract:  

Early adversity is a key risk factor for the development of several psychiatric disorders, 

including anxiety and depression. During early life, neurocircuits that regulate emotionality 

undergo substantial structural remodelling and functional maturation, and are thus particularly 

susceptible to modification by environmental experience. Preclinical evidence indicates that 

early stress enhances adult anxio-depressive behaviors. A commonality noted across diverse 

early stress models, is life-long alterations in neuroendocrine stress responses and 

monoaminergic neurotransmission in key limbic circuits. Dysregulation of G-protein coupled 

receptor (GPCR) signaling is noted across multiple early stress models, and is hypothesized to 

be an important player in the programming of aberrant emotionality. This raises the possibility 

that disruption of GPCR signaling in key limbic regions during critical temporal windows could 

establish a substrate for enhanced risk for adult psychopathology. Here we review literature, 

predominantly from preclinical models, which supports the building hypothesis that a 

disruption of GPCR signaling could play a central role in programming persistent molecular, 

cellular, functional and behavioral changes as a consequence of early adversity. 

 

  

  



 

Introduction: 

Early adversity is a common risk factor for psychopathology in adulthood, contributing 

substantially to global disease burden [1,2]. Clinical evidence indicates that individuals with a 

history of early stress exhibit enhanced vulnerability for multiple psychiatric disorders, 

including but not restricted to anxiety, depression, schizophrenia and bipolar disorder [3,4]. 

The early life window is a sensitive temporal epoch, wherein neurocircuitry that regulates 

emotional behavior and is laid down using genetic blueprints, is fine-tuned and modified by 

experience thus setting up the neurocircuitry that drives emotionality later in life [5,6]. 

Neurocircuits undergo significant structural and functional maturation in response to 

environmental stimuli during these critical periods [7–11]. Fine-tuning of developing 

neurocircuitry, based on incorporating cues from early environmental experience, contributes 

to the establishment of mature circuit function in adulthood, so as to achieve optimally adapted 

behavioral responses [12,13]. The brain in this critical window is thus particularly malleable 

and responsive to modification by experience. Depending on the nature of early stress (trauma 

/abuse /poverty /neglect /poor parental care), the time of onset, the duration and number of 

traumatic events, these varied experiences of early adversity drive structural and functional 

changes in key neurocircuits thus programming enhanced risk for psychiatric disorders [3,13–

15]. Several preclinical models of early adversity have attempted to delineate the persistent 

behavioral changes of early stress, and to mechanistically decipher the underlying molecular, 

cellular and functional changes that may contribute to life-long alterations in mood behavior 

[5,6,16]. 

Pathways implicated as central mediators of the persistent effects of early stress, include 

a disrupted hormonal stress response pathway involving perturbed glucocorticoid signaling 

[17–19] as well as altered monoaminergic neurotransmission  through a large family of G-

protein coupled receptors (GPCRs), as key mediators of establishing circuit dysfunction that 

could program enhanced risk for adult psychopathology. Early adversity also impinges on 

signaling through other neurotransmitter receptors including the excitatory and inhibitory 

neurotransmitters, glutamate (Glu) and 𝛾-aminobutyric acid (GABA) [9,20], endocannabinoids 

[21] and neuropeptides [22–24] several of which signal via GPCRs. This has raised the 

intriguing hypothesis that perturbed GPCR signaling could serve as a convergent target across 

diverse models of early adversity, and mechanistically mediate specific consequences of early 



trauma. The primary focus of our review is to provide a perspective on the evidence relevant 

to the hypothesis that perturbed GPCR signaling in key neurocircuits may play a major role in 

mediating some of the lasting molecular, cellular, functional and behavioral consequences of 

early stress. Our review will be primarily restricted to a discussion of evidence based on 

preclinical studies using rodent animal models. 

 

Animal models of early stress: Behavioral consequences 

 The quantity and quality of nurture received by pups in the early postnatal window of 

life can exert a profound influence on shaping of the pup’s stress response pathways, and the 

programming of mood-related behavior in adulthood [5,25] (Figure 1). Rodent studies using 

naturalistic models based on variation in maternal care, indicate that pups that receive poor 

quality of maternal care, associated with perturbed licking, grooming and arched back nursing 

behavior (LGABN) from the dam, exhibit enhanced anxiety- and despair-like behavior as well 

as cognitive impairments in adulthood, and an accelerated trajectory for aging-associated 

dysfunction [26–28]. These alterations in mood-related behaviors noted in low LGABN 

animals are hypothesized to involve epigenetic modifications that drive sustained changes in 

gene expression within key limbic neurocircuits [29], thus contributing to structural and 

functional changes in brain regions such as the hippocampus, prefrontal cortex (PFC) and 

amygdala, and a disruption of monoaminergic neurotransmission [27,30,31]. 

Several preclinical models of early stress are based on perturbations that disrupt dam-

pup relationships, fragmenting the nature and quality of maternal care. The classical model of 

maternal separation (MS), involves separation of the pups from their dam for 180 minutes daily 

commencing from postnatal day 2 to 14 [32,33]. Animals with a history of MS exhibit 

enhanced anxiety- and despair-like behavior, altered cognition, perturbed stress responses, an 

accelerated aging profile, and altered structural and functional changes in multiple limbic 

neurocircuits [34]. The limited bedding and nesting  (LBN) model [35,36], as well as the 

maternal separation model combined with additional restraint stress to the dam (MSUS) [37], 

also evoke fragmented maternal care. Common across all three models (MS, MSUS, LBN) are 

enhanced anxio-depressive behaviors noted in adulthood, however these models differ both in 

the nature and magnitude of effect noted on cognition, fear conditioning and social avoidance 

behavior. It is important to note that prenatal perturbations, including gestational stress (GS) 

and maternal immune activation (MIA) that serve as models for schizo-affective and 



neurodevelopmental disorders [38,39] also exhibit many similar long-lasting anxio-depressive 

behavioral phenotypes as noted in models of postnatal perturbations like MS,  MSUS and LBN 

[40–42]. In common across the gamut of early stress models is enhanced “trait anxiety” which 

refers to the increased anxiety-like behavior across diverse behavioral tests observed across the 

life-span, and noted often in the absence of overt anxiogenic stimuli [43]. 

The striking commonalities noted in behavioral and physiological deficits across these 

early stress models (Figure 1), despite key differences in the nature, timing and severity of 

perturbation, argue for shared neurobiological mechanisms for the manner in which early 

adversity programs persistent anxio-depressive behavioral changes. Although there are several 

working hypotheses for the specific behavioral outcomes of early stress, amongst the relevant 

integrative signatures noted across these diverse models is the disruption of neurotransmitter 

coupled, GPCR signaling pathways implicated in mediating the effects of early trauma. Direct 

pharmacological perturbation of monoaminergic neurotransmission has led to an 

understanding of distinct developmental epochs wherein monoaminergic signaling disruption 

can program changes in affective behavioral states [44,45]. The role of disrupted serotonergic 

neurotransmission within postnatal windows has been best studied, wherein administration of 

the selective serotonin reuptake inhibitor (SSRI) fluoxetine during postnatal day 2-21 (PNFlx) 

results in the establishment of life-long increases in anxiety and despair-like behavior, 

phenocopying the behavioral alterations noted in early stress models [46,47]. These 

paradoxical anxiogenic and pro-depressive effects of postnatal SSRI treatment are 

hypothesized to involve a role for elevated serotonin in the developmental programming, 

modulation and fine-tuning of plasticity in key brain regions, including but not restricted to the 

prefrontal cortex (PFC) and the dorsal raphe nucleus (DRN) [48,49]. This early developmental 

window is characterized by the transient expression of the serotonin transporter (SERT), the 

molecular target of SSRI drugs, in non-serotonergic neurons of the neocortex, including DRN-

projecting PFC neurons [48,49]. The DRN is a key source of serotonergic input to the PFC, 

which in turn provides top-down control of DRN neurons through glutamatergic excitatory 

feedback projections [50]. The PFC-DRN pathway has been implicated in evoking 

antidepressant-like behavioral effects and a percept of “controllability” in stress responses [50–

52]. Given that the PFC has a prolonged period of circuit maturation and expresses SERT 

during a critical developmental epoch [53], it is hypothesized that one of the mechanisms via 

which postnatal SSRI administration may result in life-long altered emotionality is via 

impinging on the maturation of this key PFC-DRN circuit. Further, the autoreceptor feedback 



control of the DRN, as well as the fine-tuning of excitatory and inhibitory inputs onto DRN 

neurons, matures during the early postnatal time window [54]. It has been speculated that the 

development of differential sensitivity of serotonergic neurons to feedback inhibition, and 

altered excitability of the DRN could contribute to the paradoxical pro-depressive and 

anxiogenic effects of postnatal SSRI administration. This opens up a central idea that common 

across models of early stress may be changes in monoamine neurotransmitter signaling, in 

particular serotonergic pathways, which are known to recruit GPCR signaling cascades. 

 

Early stress and the regulation of G-protein coupled receptors 

Monoaminergic neurotransmission plays a central role in the fine-tuning and sculpting 

of key limbic circuits that program adult mood-related behaviors [55]. Monoaminergic 

receptors predominantly coupled to G-protein linked signaling cascades, are often functionally 

coupled and expressed at the earliest stages of embryonic brain development. The perinatal 

window is also a period in which monoaminergic receptor composition, density, and functional 

coupling undergoes major dynamic changes in the rodent brain prior to the establishment of 

adult-like expression levels and function attained usually by the third to the sixth postnatal 

week [55]. Serotonin (5-HT), dopamine (DA) and norepinephrine (NE), the three major 

monoaminergic neurotransmitters, contribute substantially in distinct perinatal temporal 

windows to the shaping of circuits that modulate emotionality, thus providing a neural substrate 

through which environmental perturbations such as early trauma can disrupt the programming 

of mood-related behaviors [56–58]. Although our review is focussed predominantly on 

monoaminergic receptors, in particular 5-HT receptors, it is of importance to note that other G-

protein signaling coupled neurotransmitter and neuropeptide receptors, including the 

metabotropic glutamate receptors (mGluRs) [38,59,60], GABA-B receptors [61], muscarinic 

acetylcholine receptors [62], cannabinoid  receptors (CB) [21,63] and the corticotropin 

releasing factor (CRF) receptors [47,64,65] have also been implicated in contributing to the 

effects of early stress on establishing perturbed emotionality (Figure 2).  

Across diverse early life models of adversity, is noted altered functionality and in 

specific cases increased receptor expression and binding, for specific Gq-coupled receptors, in 

particular within the neocortex. Animals with a life-history of MS, MIA or GS exhibit 

enhanced Gq-coupled serotonin2A receptor (5-HT2AR) functionality, with enhanced receptor 



function revealed via potentiated 5-HT2AR mediated head twitch responses, increased EPSCs 

and augmented cortical immediate-early gene regulation evoked by 2,5-dimethoxy-4-

iodoamphetamine (DOI), a 5-HT2AR agonist [38,66–69]. MS animals differ from those with 

an MIA or GS life-history in the nature of influence of early stress on 5-HT2AR binding and 

expression. While MS animals exhibit a transient, small increase in prefrontal 5-HT2AR binding 

[67], MIA and GS are associated with robust increases in cortical 5-HT2AR binding, 

accompanied by significant increases in 5-HT2AR gene expression noted in adulthood[38].  Our 

unpublished results indicate that PNFlx treatment also evokes a transient increase in 5-HT2AR 

mediated head twitch responses during the juvenile period suggestive of increased 5-HT2AR 

function. Collectively, this suggests that the normal process of developmental progression for 

5-HT2AR responses within key cortical brain regions, including the PFC, is disrupted in 

multiple models of early perturbation (MS, MIA, GS, PNFlx). 5-HT2AR mediated excitatory 

responses within cortical pyramidal neurons are thought to peak in the first two weeks and 

attenuate significantly by adulthood[70]. MS disrupts this ontogenic process and results in 

heightened Gq-coupled 5-HT2AR mediated excitatory drive of prefrontal pyramidal neurons 

noted well into adulthood, associated with robust increases in spontaneous network 

activity[49,67,71]. Interestingly, GS is also associated with enhanced EPSC frequency and 

amplitude of local field potentials in the PFC [72]. Further, MS animals also exhibit sustained 

alterations in prefrontal gene expression of several Gαq-protein coupled and phospholipase C-

associated genes, such as calcium-calmodulin kinase 1, guanine nucleotide binding proteins, a 

network of proteins that interact with the IP3 receptor, calpain, and calcineurin in MS animals 

[68]. The notion that early stress may disrupt Gq-coupled signaling cascades is further 

supported by evidence of perturbed signaling via the Gq-coupled M1 acetylcholine receptor 

noted in the PFC in adult animals with a history of MS [62]. Early stress results in a disruption 

of the developmental ontogeny of muscarinic signaling, resulting in the continued expression 

of a more adolescent-like state for downstream calcium signaling linked to the Gq-coupled M1 

acetylcholine receptor in the PFC [62]. This would have important implications for PFC 

regulation of executive function, and top-down control of anxio-depressive behavior states by 

the PFC. Taken together, the evidence thus far suggests perturbed Gq-coupled signaling 

downstream of the 5-HT2AR and the M1 acetylcholine receptor within the PFC following early 

adversity, suggestive of enhanced Gq-coupled receptor driven responses and an adolescent-

like functional phenotype possibly linked to a delayed maturation of key prefrontal circuits.  



In addition to the building evidence that specific receptors coupled to Gq-mediated 

signaling pathways are altered in functional responses as a consequence of early stress, there 

are also several reports of early stress-evoked disruption of Gi-coupled receptor signaling 

pathways. In particular, the Gi-coupled serotonin1A receptor (5-HT1AR) mediated currents are 

known to be transiently enhanced in the PFC of animals undergoing MS during postnatal life 

[73]. Strikingly, when adult-onset stress is overlaid on a history of MS, it results in a steep 

decline in 5-HT1AR driven currents within the PFC [73]. This is suggestive of the fact that a 

combination of early trauma and the second-hit of adult stress can create a potent disruption of 

signaling via the Gi-coupled 5-HT1AR in the neocortex. Adult animals with a history of MS 

and MSUS also show altered 5-HT1AR mRNA levels in several limbic neurocircuits that 

modulate emotional and fear-related responses, as well as in the dorsal raphe nucleus (DRN) 

[74–78]. Changes in 5-HT1AR levels in the DRN are of particular importance given that the 5-

HT1AR acts as an autoreceptor regulating 5-HT release via a feedback mechanism [79]. 

Reduced levels of 5-HT1AR in the DRN hint towards a dysregulation of serotonergic 

neurotransmission, altering the levels of 5-HT release and firing patterns of serotonergic 

neurons, thereby influencing affective behaviors. This is corroborated by the observation of 

altered 5-HT turnover, measured via 5-HIAA to 5-HT ratio, in the brainstem and multiple target 

brain regions of MS animals [80–82]. GS and MIA animals also show reduced expression of 

5-HT1AR in the DRN and in the GABAergic neurons of the PFC, and the 5-HT1AR binding was 

also reduced in the ventral hippocampus of male animals [83,84], which points towards a 

serotonergic pathway dysregulation in limbic circuits directly involved in the programming of 

mood-related behaviors in adulthood. 

Early stress also modulates expression and function of the Gi-coupled group II and 

group III mGlu receptors both at the level of receptor binding and gene expression. The Gi-

coupled mGlu4 receptor expression is significantly decreased in the hippocampi of animals 

with a history of MS [85], and prenatal stress of GS and MIA decreases mGlu2R expression in 

the frontal cortex [38]. Given that the group II and group III mGluRs are involved in regulating 

glutamate release via a negative feedback mechanism, a reduction in levels and function of 

these receptors could cause enhanced glutamatergic tone, skewing the excitation-inhibition 

balance towards increased excitability in these limbic regions, which is suggested to be one of 

the possible underlying mechanisms programming psychopathology of mood-related 

disorders. This is also validated by studies that report deficits in GABAergic signaling in 

prenatal stress models, which are known to program schizoaffective behavioral states possibly 



via Glu/GABA dysfunction [86–88]. The heteromerization of Gi-coupled mGlu2 receptors and 

Gq-coupled 5-HT2AR is implicated in modulating psychosis-like states, and a disrupted 

mGlu2R signaling could perturb biased agonism via 5-HT2AR [38,39,89–91]. This is also 

corroborated by clinical studies from post-mortem human brains of schizophrenic patients 

showing increased levels of 5-HT2AR but reduced levels of mGlu2/3 receptors in the frontal 

cortex [90,92,93]. The Gi-coupled CB1 receptor also functionally interacts with the Gq-coupled 

5-HT2AR to modulate hallucinogenic responses and cognitive processing [94,95], and perinatal 

stress causes reduced CB1 receptor binding in multiple limbic regions, including the PFC, the 

hippocampus and the amygdala [63,96,97]. Collectively, emerging evidence points towards a 

perturbed expression of several Gi-coupled receptors in limbic brain regions, with the 

preponderance of literature suggestive of decreased signaling via specific Gi-signaling coupled 

receptors, namely the 5-HT1A, mGlu2/3/4 and CB1 receptors. 

 Gs-coupled neurotransmitter and neurohormone receptor pathways have also been the 

focus of study, both in regards to their regulation by early stress, as well as their mechanistic 

contribution to the effects of early stress. In particular, there is extensive literature detailing the 

regulation of the Gs-coupled receptors for the stress-associated neurohormone, corticotrophin 

releasing factor (CRF), CRFR1 and CRFR2, as well as their role in mediating the persistent 

effects of early stress. The role of CRF receptors in the effects of early stress has been the focus 

of several recent reviews [98,99], and hence we have restricted ourselves to describing the 

literature focused on the effects of early stress on Gs-coupled neurotransmitter receptors. A 

recent report indicates that in GS animals the modulatory effects of the Gs-coupled 5-HT7 

receptors on the frequency of sEPSC/sIPSCs in DRN projection neurons appears to be lost 

[100]. This raises the intriguing possibility that the disruption of excitatory and inhibitory input 

onto DRN projection neurons could directly modulate 5-HT release in key target brain regions, 

and thus impinge on stress-response neurocircuitry and affective behavioral states. Animals 

with a history of MS also exhibit reduced mRNA levels of Gs-coupled D1/5 receptors in many 

brain regions, and also result in reduced D1/5 agonist dependent grooming behavior [101]. 

Dopaminergic signaling is known to impact phosphorylation of CREB via the D1/5 receptors 

coupled through the recruitment of a cyclic AMP- protein kinase A (cAMP-PKA) signaling 

cascade [102]. CREB is known to impinge on the regulation of BDNF signaling, which exerts 

a highly circuit-specific influence on mood-related behaviors [103,104]. Both CREB and 

BDNF expression are known to be altered by early stress, and the directionality of change and 

spatio-temporal pattern of regulation are reported to vary across models in a circuit-specific 



manner[105]. The findings thus far motivate a detailed study of the role of Gs-coupled 

receptors that recruit a PKA-CREB-BDNF pathway, in the programming of altered mood 

behavior that arise due to early adversity. It is noteworthy that the Gs-coupled receptors for the 

stress-associated neuropeptide CRF, CRFR1 and CRFR2, have been extensively studied in the 

context of early stress, and their function and expression is altered in multiple limbic brain 

regions, including but not restricted to the PFC, hippocampus and amygdala [64]. 

The existent literature indicates that early stress may serve to bias signaling response in 

favour of excitatory Gq-coupled signaling with a concomitant reduction in inhibitory Gi-

coupled tone within neocortical circuits, suggestive of a dysregulation in the excitation-

inhibition balance within these early critical windows. The data so far support the notion of 

enhanced Gq-coupled 5-HT2AR mediated drive in multiple limbic circuits in particular the PFC, 

thought to contribute mechanistically to the programming of anxio-depressive behavioral 

states. This is accompanied by a reduction in inhibitory Gi-coupled 5-HT1AR signaling in 

animals that have adult-onset stress overlaid on a history of early adversity. This suggests a 

tipping in balance towards enhanced Gq-coupled excitation within key limbic circuits, and is 

indeed supported by enhanced network activity in the neocortex of MS animals. However, one 

caveat to keep in mind is that the increased 5-HT2AR mediated functional and 

electrophysiological responses are noted in layer V PFC neurons in MS animals [67], whereas 

the reduced Gi-coupled 5-HT1AR IPSCs are observed in layer II/III of the PFC [73]. There is a 

paucity of data directly addressing the impact of early stress on the balance of Gq- versus Gi-

coupled serotonergic receptor signaling in specific neuronal subtypes in key limbic 

circuitry.  There remains an urgent need for detailed study of the impact of early stress on 

GPCR coupled signaling pathways in specific neuronal populations. Nevertheless, the evidence 

thus far raises an intriguing hypothesis that early stress via regulation of the fine balance 

between the Gq- and Gi-coupled signaling pathways in key brain regions such as the PFC could 

regulate the emergence of appropriate excitation-inhibition balance, and serve to program 

alterations in mood-related behavior.  

Early stress could impinge on GPCR signaling cascades at multiple levels, 

programming persistent changes in GPCR mRNA and protein expression levels, ligand 

affinity, functional coupling to G proteins (Gq/Gi/Gs), receptor internalization, recycling 

dynamics, perturbations in downstream signaling cascades and second messenger pathways, as 

well as biased agonism with preferential recruitment of specific signaling pathways. While 



modulation at several of these levels could contribute to an early stress-evoked disruption of 

GPCR signaling, the preponderance of the literature has reported effects of early stress on 

GPCR mRNA and protein expression, and on downstream signaling pathways. The underlying 

mechanisms that mediate the effects of early stress in disrupting GPCR signaling pathways 

remain poorly understood. The overlap of early stress with developmental time windows 

wherein ontogenic changes in receptor expression and function take place, raises the intriguing 

possibility that stressful experience disrupts normal ontogeny and establishes persistent 

disruption of multiple GPCR pathways. This could arise through an influence of early stress 

on neurotransmitters and neurohormones, trophic factor signaling pathways, and a modulation 

of plasticity-associated mechanisms which may further impinge upon GPCR signaling 

cascades.  

  

Contribution of G-protein coupled receptors to the effects of early stress 

 In this section of our review we focus on the evidence that addresses the contribution 

of specific GPCR-linked pathways to the molecular, cellular, functional and behavioral 

consequences of early stress. Our focus is primarily on the Gq-coupled 5-HT2AR and Gi-

coupled 5-HT1AR pathways, and we will only briefly discuss the contributions of Gs-coupled 

CRFR1 and CRFR2 receptors which have been the focus of other reviews. Early stress causes 

alterations at multiple levels of organization spanning from molecular changes that include 

altered gene expression sustained via epigenetic modifications [30,37,106], cellular changes 

spanning from altered spine density to global dendritic architecture [46], functional and 

network level alterations measured predominantly via electrophysiological studies [67,73,100], 

and behavioral changes that are noted across a gamut of anxio-depressive behaviors [35,107–

109], fear conditioning responses [35,110–112], hallucinogen-mediated head twitch response 

(HTR) [67,113,114], sensorimotor gating [38,59,60], social approach-avoidance behavior 

[35,115,116] and cognitive performance [35,65,73] (Figure 2).  

Several studies have attempted to rescue the effects of early stress by modulating GPCR 

signaling in the early postnatal window, thus attempting to address causal contributions of 

specific GPCR receptors in programming the persistent consequences of early adversity. 

Substantial evidence over the past decade demonstrates enhanced Gq-coupled 5-HT2AR 

function as a common alteration across diverse models of early stress including MS, PNFlx 

and MIA [38,66,67,117]. Pharmacological blockade of 5-HT2A receptors during the postnatal 

window overlapping with the MS paradigm prevents the emergence of anxiety behavior, 



ameliorates the adult stress-induced dysregulated immediate early gene expression pattern, and 

normalizes the transcriptional dysregulation of specific G-protein signaling associated 

pathways [68]. These findings implicate perturbed postnatal 5-HT2AR function and signaling 

in programming the long-lasting affective dysfunction in MS animals. Further, tactile 

stimulation during the postnatal window, which represents an important component of maternal 

care, has been suggested to directed modulate the transcriptional regulation of the stress-

responsive glucocorticoid receptor within the hippocampus via the Gq-coupled 5-HT2AR [26]. 

In this regard, it is interesting to note that altered serotonergic dysfunction in the early postnatal 

window has itself been implicated in setting up altered anxio-depressive behaviors in 

adulthood. Pharmacological elevation of serotonin in the postnatal window (PNFlx) leads to 

enhanced anxiety and despair-like behavior in adulthood [3,46,117]. Intriguingly, postnatal 5-

HT2AR blockade overlapping with the administration of fluoxetine prevents the emergence of 

anxiety and despair-like behavior in adulthood, while conversely 5-HT2AR activation in the 

early postnatal window mimics the anxiogenic effects of PNFlx and MS [117]. Collectively, 

these observations indicate that systemic pharmacological activation of the 5-HT2AR in the 

early postnatal developmental window, is sufficient to program enhanced anxiety-like 

behavior, whereas blocking of the 5-HT2AR overlapping with either MS or PNFlx can prevent 

the emergence of adult anxio-depressive behavioral states [68,117]. Interestingly, 

pharmacological blockade of the 5-HT2AR also reverses a component of the gene dysregulation 

noted in the MS and PNFlx-associated transcriptome in the PFC [68,117], and unpublished 

data from our lab indicates that it can also prevent the changes noted in hippocampal 

neurogenesis in MS animals. In the MIA model enhanced placental serotonin, thought to arise 

due to heightened inflammation, results in enhanced 5-HT exposure in the fetal forebrain which 

in turn impacts axon outgrowth of the fetal serotonergic pathways, that could contribute to the 

anxio-depressive outcomes in MIA pups [118]. MIA animals also exhibit upregulated 5-HT2AR 

expression and function in the frontal cortex, concomitant with schizo-affective behaviors that 

emerge in adulthood [38]. It will be interesting to delineate the contribution of Gq-coupled 5-

HT2AR which are expressed in multiple limbic forebrain regions, at relatively early embryonic 

temporal windows, in programming the behavioral consequences of the effects of MIA. Further 

evidence for a critical role of the 5-HT2AR in contributing to the modulation of anxio-

depressive states, following early life perturbations, comes from genetic loss of function studies 

which indicate that the forebrain Gq-coupled 5-HT2AR is essential to the establishment of trait 

anxiety behavior [119]. 5-HT2AR knock-outs exhibit a significant reduction in anxiety-like 

behavior, which is mediated via the cortical 5-HT2AR and can be restored via genetic rescue 



experiments that reinstate forebrain 5-HT2AR expression. Collectively, this evidence suggests 

that enhanced signaling via the Gq-coupled 5-HT2AR could play a critical role in mediating a 

component of the enhanced anxio-depressive and schizo-affective behaviors noted in 

adulthood following early stress.  

In context of specific Gi-coupled receptors, the contribution of the 5-HT1AR has been 

extensively studied with regards to the programming of anxio-depressive behavioral states. 

Systemic pharmacological blockade of 5-HT1AR in the postnatal window is sufficient to induce 

enhanced anxiety-like behavior in adulthood [107]. It is also interesting to note that adult acute 

administration of a 5-HT1AR agonist can attenuate the social interaction deficits that are noted 

to arise in a transgenerational manner in offspring of MSUS animals [37,115]. Genetic loss of 

function of the 5-HT1AR also results in significant increases in anxiety-like behavior in 

adulthood [120,121]. This raises the possibility that signaling via the Gi-coupled 5-HT1AR 

serves to reduce trait anxiety behavior. Genetic rescue strategies indicate that postsynaptic 5-

HT1AR in the forebrain during the early postnatal window may play a key role in the 

programming of trait anxiety behavior [121]. However, it is important to note that additional 

studies also implicate the presynaptic 5-HT1A autoreceptor in contributing to the establishment 

of anxiety-like behavioral states [122,123]. Currently, the precise contribution of pre versus 

postsynaptic 5-HT1AR in programming anxiety-like behavior during the postnatal critical 

period window is unclear and requires detailed future study. The evidence thus far raises the 

possibility that a balance between the Gi-coupled 5-HT1AR and the Gq-coupled 5-HT2AR in 

key forebrain circuitry plays an important role in the establishment of trait anxiety states. This 

motivates further investigation into whether early stress experience, which could enhance 

forebrain serotonin levels, may shift the balance in signaling from the high affinity Gi-coupled 

5-HT1AR to the low-affinity Gq-coupled 5-HT2AR [124] thus increasing the predisposition for 

stress-evoked disruption of anxio-depressive behaviors. The notion that a disruption of the 

balance between Gi-coupled 5-HT1AR and Gq-coupled 5-HT2AR signaling impacts anxiety-

like behavior is supported by studies wherein the anxiogenic effects of systemic chronic 

pharmacological blockade of the 5-HT1AR in postnatal life can be attenuated by a 

concomitant blockade of the 5-HT2AR [117]. This provides support for the idea that a fine-

tuned balance between Gq and Gi-coupled signaling pathways within key forebrain circuits 

during postnatal developmental windows could contribute to the shaping of trait anxiety. This 

hypothesis will require detailed and careful experimentation to parse out the contribution of 

specific GPCRs, the time-window and specific neuronal populations that may shape trait 



anxiety behavior, and could be targeted by early stress to program increased anxiety-like 

behavioral states that persist across the life-span.   

Thus far, few studies have addressed the contribution of Gs-protein coupled serotonin 

receptors, in the developmental influence of 5-HT on anxiety-like behavior and in mediating 

the effects of early stress. The Gs-coupled 5-HT7R has been shown to play a role in modulating 

specific behavioral consequences of PNFlx treatment. Early life blockade of 5-HT7R, as well 

as 5-HT7R knockout mice, do not exhibit the enhanced anxiety and despair-like behavior 

induced by PNFlx administration [125,126]. Pharmacological blockade of the 5-HT7R in 

adulthood could remediate the GS-evoked disruption of sEPSC/sIPSC frequency in the DRN 

[100]. Conversely, overexpression of 5-HT7R in early life results in altered development of the 

PFC, resulting in increased despair like behavior[125]. Given that the 5-HT7R expresses 

transiently in the serotonergic positive neurons in the DRN during development, the maturation 

of circuits involved in mood-related behavior programming, especially the PFC to DRN circuit, 

is highly influenced by 5-HT7R-mediated signaling[125]. These findings suggest an important 

role for 5-HT7R in mediating the effects of ES, and motivate future experiments to delineate 

the role of the Gs-coupled 5-HT7R.  While the focus of our review has been to predominantly 

discuss the influence of specific serotonergic receptors, it is important to draw attention to the 

large body of literature that addresses the contribution of Gs-coupled CRFR1 and CRFR2 

receptors in mediating the effects of early stress. Forebrain CRFR1 is strongly implicated in 

mediating the effects of early stress on both anxio-depressive behavior states, as well as on 

cognitive behavior [65]. Forebrain-specific CRFR1 knockout mice do not exhibit the robust 

effects of unstable maternal care on anxiety-like behavior and memory deficits [65]. Maternal 

deprivation evokes perturbed excitation-inhibition balance within the lateral habenula (LHb) 

and enhances LHb excitability, an effect thought to involve a key role for CRF-CRFR1-PKA 

signaling [127]. While beyond the scope of the present review, it is critical to emphasize that 

when discussing GPCR signaling pathways there is a central role for Gs-coupled CRF receptors 

in programming altered emotionality arising from early adversity [47,128,129].  

The emerging consensus suggests that a critical balance between forebrain Gq-coupled 

5-HT2AR and Gi-coupled 5-HT1AR driven signaling in the postnatal window could contribute 

to the establishment of trait anxiety. Diverse models of early adversity may serve to disrupt 

this fine balance, and thus tip the scales towards enhanced Gq-coupled 5-HT2AR drive in key 

forebrain circuits such as the PFC, thus setting up a neural substrate for increased risk for adult 



psychopathology. While systemic pharmacological perturbations and genetic knockout studies 

provide support for this hypothesis, they fail to delineate the role of specific neuronal 

populations within discrete forebrain neurocircuits wherein the disruption of a Gq- versus Gi-

signaling balance may be critical to programming altered affective behaviors.  

When considering the contribution of GPCR pathways to the effects of early stress, it 

is also of interest to take into account possible roles of orphan GPCRs, which have recently 

been implicated in the modulation of affective dysfunction. Several studies, including genetic 

loss of function studies, indicate a role for orphan GPCRs, namely, ADGRB2 (BAI2) [130], 

GPR3 [131], GPR26 [132], GPR37 [133,134] and GPR158 [135] in the regulation of emotional 

behavior. The contribution of orphan GPCRs to the modulation of mood behavior has been 

extensively reviewed recently [136]. However, the influence of early stress on orphan GPCR 

expression and function, as well as the role of orphan GPCRs in mechanistically programming 

persistent alterations in emotionality that arise following early stress remains poorly 

understood.  

 

DREADD-based approaches to address the role of GPCRS in the effects of early stress  

Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) are 

genetically engineered human muscarinic receptors that bind synthetic ligands and can 

facilitate chemogenetic stimulation of Gq (hM3Dq), Gi (hM4Di) or Gs-coupled downstream 

signaling cascades [137]. DREADD-based chemogenetic approaches using both transgenic and 

viral strategies, allows for spatio-temporal regulation of select G-protein coupled signaling 

cascades in discrete neuronal populations [138]. It is only relatively recently that DREADD-

mediated chemogenetic strategies have been exploited to address the contribution of Gq and 

Gi-mediated signaling pathways in mediating the effects of early stress in programming 

persistent changes in anxio-depressive behavioral states [48,139,140].  

Firstly, DREADD based modulation of G-protein coupled signaling cascades during 

early life can be used to manipulate specific neural circuits for chronic periods of time. This 

has distinct advantages over optogenetic strategies as it does not involve chronic heating-

related damage to the brain [141]. and the ligand can be orally administered reducing the 

requirement for repeated injections of DREADD ligands which could be stressful in this early 

life window. In this regard, a few studies have utilized chronic DREADD-mediated 



perturbations during postnatal life in a cell type/circuit-specific manner to shed light on the role 

of GPCR-signaling mediated neuronal activation or inhibition in contributing to the long-

lasting behavioral effects of early stress (Figure 3). Chronic inhibition of the PFC from 

postnatal day 2-14 using the Gi-coupled inhibitory DREADD hM4Di driven via a pan-neuronal 

hSyn promoter, which would drive expression in both excitatory and inhibitory neurons, 

mimics the effects of MS [139]. Further, a reduction of PFC activity during the first two 

postnatal weeks using hM4Di DREADD also results in a premature differentiation of 

oligodendrocytes, a cellular phenotype reported to be observed with MS [139]. In contrast, the 

Gq-coupled hM3Dq-based DREADD activation of PFC neurons with a pan-neuronal hSyn 

promoter in pups subjected to the MS paradigm can prevent the emergence of MS-evoked 

short-term memory impairments and enhanced despair-like behavior [139]. Work from our lab 

has recently demonstrated that chronic chemogenetic activation of Gq signaling in CaMKIIα 

positive forebrain excitatory neurons during the early postnatal window (P2-14) is sufficient to 

program a persistent increase in anxiety and despair-like behavior, accompanied by 

sensorimotor gating deficits [140]. Adult animals with a history of hM3Dq-based DREADD 

activation  of excitatory forebrain neurons display an altered excitatory/ inhibitory balance in 

cortical circuits as revealed through metabolomic and electrophysiological signatures, 

phenocopying some of the functional changes associated with pre-clinical models of 

psychiatric disorders [140]. The differences noted across the studies described above could 

arise as a consequence of the specific population of neurons targeted and the neurocircuit that 

is being regulated (Figure 3). In the first study, the genetic driver would target hM3Dq to both 

inhibitory and excitatory neurons in the PFC, with hM3Dq DREADD activation reported to 

ameliorate the consequences of MS. In contrast, the second study targets hM3Dq expression to 

CamKIIɑ-positive excitatory neurons across the entire forebrain, and results in behavioral 

phenotypes that mimic the effects of early stress. These studies highlight the critical importance 

of parcellating the role of specific neuronal subpopulations within key limbic brain regions, 

and motivates further studies of this nature to gain a deeper mechanistic insight into the role of 

G-protein coupled signaling cascades in programming mood-related behavior. These studies 

also give rise to several key open questions: (1) What are the differences in role of GPCR 

signaling pathways across circuits (mesoscale) and cell types (microscale) in mediating 

persistent behavioral changes during the perinatal window? (2) What are the downstream 

molecular, cellular, and network events that lead to dysfunction in specific neural circuits in 

adulthood, contributing to aberrant mood behavior? (3) Is it possible to have specific early or 

late interventions (environmental/ pharmacological) that remediate or reverse the long-lasting 



effects of early stress? The current tools designed to measure and manipulate neuronal activity 

are designed keeping adult rodent models in mind, thus can be challenging to use in rodent pup 

studies. These questions call for both a creative use of existing tools and building newer tools 

that can be equally useful in pups as well. 

Secondly, DREADD-mediated activation of GPCR coupled pathways in adult animals 

with a history of early stress can be used to address approaches to ameliorate the effects of 

early trauma, thus uncovering approaches to normalize function in dysregulated neural circuits 

and identify possible therapeutic interventions. In this regard, acutely activating the Gq-

coupled hM3Dq signaling in the mPFC of adult animals with a history of PNFlx administration 

attenuated the pro-depressive phenotypes associated with PNFlx [48]. Conversely, Gi-coupled 

hM4Di-mediated inhibition in adult animals with PNFlx history further aggravated the adverse 

behavioral phenotypes evoked by early fluoxetine administration [48] (Figure 3). In summary, 

these chemogenetic studies provide key insights into the contribution of GPCR signaling 

pathways in specific forebrain neurocircuits that may play a central role in the modulation of 

mood-related behavior in critical postnatal developmental windows, and that could serve as 

key targets for early stress.  

 

Concluding remarks 

The current literature in the field leads to an intriguing hypothesis that there may be a 

balance between the Gq-coupled and Gi-coupled pathways, especially within the serotonergic 

system between the Gq-coupled 5-HT2AR and Gi-coupled 5-HT1AR, within forebrain circuits 

that drive specific behavioral consequences of early stress. While there is compelling evidence 

that suggests that this hypothesis merits further investigation, there is still a substantial dearth 

of information on whether specific GPCRs downstream of monoamines are involved in the 

disruption caused by early adversity, or whether multiple distinct receptors spanning the 

spectrum from glutamatergic, GABAergic and neuropeptide receptors may contribute to 

mediating the effects of early stress. Further, it is important to parcellate the role of GPCR 

pathways in distinct neuronal subpopulations within discrete neurocircuits, that may serve as 

important targets to program the consequences of early stress. In conclusion, the goal of 

our review has been to summarise the important contributions of specific GPCRs in the 

behavioral changes evoked by early stress, and to motivate future experiments that directly 



address the mechanistic role of specific Gq-, Gi- and Gs-coupled receptors in stress-mediated 

sequelae. 
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Figure Legends 

Figure 1. The figure summarizes the influence of various preclinical models of early 

adversity on mood and cognition-related behaviors in adulthood, as well as highlights the 

specific GPCRs that are reported to be dysregulated in these models of early stress. Shown in 

the panels are diverse models of early adversity, namely  A. Low Maternal Care as denoted 

by low Licking Grooming Arched back Nursing (LGABN) behavior;  B. Maternal 

Separation;  C. Maternal Separation + Unpredictable stress to the dam during the period of 

separation from the pups; D. Limited Bedding and Nesting which fragments maternal care; E. 

Postnatal administration of Selective Serotonin Reuptake Inhibitor (SSRI) Fluoxetine; F. 

Maternal Immune Activation; and G. Gestational Stress. These diverse models impinge upon 

a wide array of anxiety [35,48,84,107–109,112,120,125,142–149] and despair-like behaviors 

[35,48,61,108,109,125,143,146,148,150–152] and also impact cognition 

[22,35,65,73,149,152–154], fear conditioning [35,110–112,152,155], social interaction 

[35,61,115,116,156–158], sensorimotor gating [38,59,60,91,93] and hallucinogen evoked 5-

HT2AR mediated head twitch response (HTR) [67,113,114]. Amongst the G-Protein Coupled 

Receptors (GPCRs) reported to be dysregulated in these models of early adversity are the Gq-

, Gi- and Gs-coupled receptors involved in the signaling downstream of monoamines 

like serotonin (5-HT1AR, 5-HT2AR, 5-HT7R) [26,38,49,67,73–

78,83,84,100,107,109,110,113–115,117,120,125,146,147,149,150,159,160], dopamine (D1R, 

D2R, D3R, D4R, D5R) [31,101,161–164] and norepinephrine (α2AR, β3AR) [117,155] 

glutamate (mGluR2, mGluR4) [38,59,60,85,91,93,113,117,151,161,165–

168] endocannabinoids (CB1R) [21,63,162,169], and Acetylcholine (M1) [62], corticotropin-

releasing factor (CRFR1, CRFR2) [22,37,64,84,112,142,145,154,158,170–175]. 

Figure 2.  In this figure, we summarise the specific GPCRs that have been implicated in 

mediating the effects of early stress at multiple levels of organizations modulating the 

molecular, cellular, functional-network, and behavioral consequences. Distinct groups of Gq-, 

Gi- and Gs-coupled receptors have been suggested to contribute to specific effects of early 

stress at the molecular level [59,66,68,87,97,102,176], modulating the epigenome, 

transcriptome and translatome, at the cellular level [175,177,178] influencing neuronal 

architecture, spine density and dendritic arborisation, at the functional and network level 

[62,67,72,73,127,150,168] by impacting the electroencephalogram (EEG) pattern, excitation-

inhibition balance and electrophysiological responses, and at the behavioral level [38,39,60–



62,65,66,68,94,117,119,125,179], impacting anxiety and despair-like behavior, cognition, 

attention, reward and social behaviors. 

Figure 3. DREADD-based chemogenetic strategies to address the contribution of specific G-

protein signaling pathways in mediating or mimicking the behavioral effects of early stress. 

Shown in panel A is a summary of the behavioral effects of hM3Dq-DREADD activation of 

CaMKIIα forebrain excitatory neurons in the postnatal window (P2-14), which results in 

enhanced anxiety and despair-like behaviors, and reduced sensorimotor gating responses 

revealed via prepulse inhibition deficits noted in adulthood, phenocopying the behavioral 

changes evoke by early stress. Panel B shows that hM4Di DREADD-mediated inhibition, 

driven via a hSyn promoter in excitatory and inhibitory neurons of the PFC in postnatal life, 

promotes increased anxiety and despair-like behaviors in adulthood, accompanied by a 

reduction in object recognition memory mimicking the effects of early stress. Whereas, 

hM3Dq DREADD-mediated activation, virally expressed downstream of a hSyn promoter in 

excitatory and inhibitory neurons of the PFC in postnatal life, overlapping with the maternal 

separation (MS) paradigm results in the attenuation of enhanced despair-like behavior and 

reduced object recognition memory associated with MS.  Panel C depicts the hM4Di 

inhibition or hM3Dq DREADD-activation of CaMKIIα-positive excitatory neurons or 

Serotonin Transporter (SERT+) expressing neurons in the PFC in animals subjected 

to postnatal fluoxetine (PNFlx) administration.  hM4Di DREADD inhibition of CaMKIIα-

positive excitatory neurons or SERT+-positive neurons in the PFC in the background 

of PNFlx treatment exacerbates the anxiogenic and despair-like behavioral effects of PNFlx. 

hM3Dq DREADD activation of CaMKIIα-positive excitatory neurons or SERT+-positive 

neurons in the PFC in the background of PNFlx treatment attenuates the anxiogenic and 

despair-like behavioral effects of PNFlx. 
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