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Abstract—The scattering analysis with the Electric-Field Integral 
Equation  by the Method of Moments of perfectly conducting 
plates is normally carried out through the thin-plate 
approximation, which models the closed surface as an open surface 
and discards the influence of the plate rim. The resulting accuracy 
is accepted in many practical applications as long as the thickness 
of the plate is small enough. However, in the scattering analysis of 
plates with grazing incidences, the thin-plate approximation gives 
rise to severe inaccuracies. In this paper, we present a new 
numerical approach, which we name thick-plate formulation, for 
the accurate computation of the current and the RCS for a plate 
with nonzero thickness. Our scheme provides similar accuracy as 
the solution obtained with the full modelling of the plate and with 
less computational time.  

I. INTRODUCTION 
The electromagnetic scattering analysis of perfectly 

conducting (PEC) plates with very small thickness is normally 
undertaken through the thin-plate approximation [1], which 
stems from the application of the surface equivalence principle 
as the plate thickness tends to zero. In the limit, the Electric-
Field and the Magnetic-Field equations, EFIE and MFIE, 
degenerate into problems where the unknowns involve, 
respectively, the sum or the subtraction of the currents over the 
top and bottom faces of the plate [2]. The plate is then modelled 
as an open surface and the scattering effect of the rims is 
neglected. In practice, the thin-plate approximated EFIE is 
adopted for such cases because the scattered fields depend on 
the addition of the top and bottom currents of the plate. The 
thin-plate approximation becomes very advantageous because 
of the drastic reduction of unknowns with respect to the full 
modelling of the plate as a closed surface. Although some 
accuracy is sacrificed, the thin-plate approximation has been 
traditionally implemented in many practical applications. 
However, in cases where the effect of the plate rim on the 
scattering pattern becomes critical, such as the scattering 
analysis of plates with grazing incidences, the thin-plate 
approximation becomes inaccurate. In this paper, we present a 
new efficient formulation for the accurate scattering analysis of 
plates with nonzero thickness under an arbitrary incidence. 

II. THICK-PLATE FORMULATION 
Consider a free-standing square plate with side length L 

and nonzero thickness δ under an impinging plane wave. The 
analysis by the method of moments (MoM) and the EFIE 
requires the rectangular meshing of the surface S around the 
plate and the expansion of the current with the rooftop basis 
functions, { }nt , [3]. The approximated scattered electric field

s
E  then becomes 
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where nQ  represents the duplet of rectangular facets sharing the 

n-th edge and { }nc stands for the set of NE unknowns (NE 
stands for the number of mesh edges). The parameters k and η 
denote the wavenumber and the free-space impedance, whereas 
G represents the free-space Green’s function. The resulting 
matrix system arises from the rooftop testing over the 
rectangular tessellation over S of the following electric-field 
condition  
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where incE denotes the incident electric field. 

Our thick-plate formulation applies the tangential-electric 
condition in (2) only over the NR pairs of rectangles sharing 
mesh edges that lie inside the plate rim or that match the outer 
boundary line of  the rim (see Fig. 1-(a)). Accordingly, we 
establish { }1,..., RNt t  ( { }1,..., EN⊂ t t ) as the subset of rooftop 

functions required for testing purposes over the rim mesh. We 
do not apply the field condition (2) as such over rectangular 
subdomains associated with mesh edges inside the top or 
bottom faces of the plate. Instead, we apply two electric-field 
conditions over the mid-surface SM, located inside the plate and 
equidistant from the top and bottom faces (see Fig. 1 –(a)); 
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where the variable z evolves normally with respect to SM (z=0).  

Our thick-plate implementation relies on a rectangular 
tessellation over SM. This mesh is actually a translated copy of 
the top-face or bottom-face meshes, assumed identical. The 
field conditions in (3) and (4) are then tested with a set of 
rooftop basis functions { }1 ...

M

M M
Nt t  associated with the NM 

interior edges of the mesh at SM. In view of (2), (3) and (4), the 
resulting MoM-system yields 
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where M
mQ  represents the duplet of rectangular facets that share 

the m-th edge inside the mesh at SM. 

 
 (a)                                                 (b) 

Figure 1.  Thick-plate implementation for a full mesh of 96 
edges (Ns = 16; NRB=16; NR=48; NM=24).   

Our meshes are defined symmetric with respect to SM. In 
the current expansion, hence, each rooftop at the upper half of 
the plate has a mirror rooftop at the lower half. We sort out the 
set of rooftop functions over the faces and over the rim, into two 
subsets of top (τ) and bottom (β) functions, respectively, 

{ }, / , /
1 ,..,

M

f f
N

τ β τ βt t  and { }, / , /
1 ,..,

B

r r
N

τ β τ βt t , so that each 

function is listed in the same order as its z-symmetric peer (see 

Fig-1-(b)). Inside the meshed rim a group of NS rooftops { }snt  

is defined along the z-symmetry plane. These may be z- or xy-
oriented, depending on the mesh, and have no z-symmetric 

peer.  The z-symmetric rooftops can be rearranged into two sets 

{ }n
Σb   and { }n

∆b , so that 
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For a mesh with an xy-oriented subset { }snt , as in Fig. 1, the 

disjoint union of this set with { }n
Σb  in the scattered-field 

expansion in (1) together with the field boundary condition (6),  
the field condition derived from adding the outcomes of  (5) for 
the top- and bottom-rim subsets and the condition (5) 

particularized for { }snt leads to a system with a unique 

solution. The set { }n
∆b   along with the field condition (7) and 

the outcome of subtracting (5) when particularized for the top- 
and bottom-rim subsets also provides a uniquely solvable 
system. Therefore, an original problem with dimension Ne = 
2NM + 2 NB + NS is converted into two uncoupled matrix systems 
with dimensions NM + NB + NS, if the former, and NM + NB , if 
the latter. This is computationally more efficient, especially for 
a big amount of unknowns, and can be easily parallelized.  

III. RESULTS AND DISCUSSION 
 In Fig. 2, we show the computed RCS for a 1λx1λ plate 

with 0.1λ thickness. Whereas the thin-plate approach turns out 
very inaccurate, the full MoM-solution and our thick-plate 
formulation exhibit very similar accuracy. 

 
Figure 2.  Computed RCS for a 1λx1λ PEC-plate under an 

oblique transversal-magnetic incidence (λ=1m). NE=640; 
NS=40; NB+NM=300   
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