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Abstract—Counters are the fundamental building block of
many data sketching schemes, which hash items to a small
number of counters and account for collisions to provide good
approximations for frequencies and other measures. Most exist-
ing methods rely on fixed-size counters, which may be wasteful
in terms of space, as counters must be large enough to eliminate
any risk of overflow. Instead, some solutions use small, fixed-size
counters that may overflow into secondary structures.

This paper takes a different approach. We propose a sim-
ple and general method called SALSA for dynamic re-sizing
of counters, and show its effectiveness. SALSA starts with
small counters, and overflowing counters simply merge with
their neighbors. SALSA can thereby allow more counters
for a given space, expanding them as necessary to represent
large numbers. Our evaluation demonstrates that, at the cost
of a small overhead for its merging logic, SALSA signifi-
cantly improves the accuracy of popular schemes (such as
Count-Min Sketch and Count Sketch) over a variety of tasks.
Our code is released as open source [1].

I. INTRODUCTION

Analysis of large data streams is essential in many domains,
including natural language processing [2], load balancing [3],
and forensic analysis [4]. Typically, the data volume renders
exact analysis algorithms too expensive. However, often it
is sufficient to estimate measurements such as per-item fre-
quency [5], item distribution entropy [6], or top-k/heavy hit-
ters [7] by using approximation algorithms often referred to as
sketches. Sketching schemes reduce the space requirements by
sharing counters that keep frequency counts of the (potentially
multiple) associated items [8], [9].

That is, rather than use a counter for each item, which may
be space-prohibitive, sketches bound the effect of collisions to
guarantee good approximations.

A common approach for sketch design is to consider coun-
ters as the basic building block. Namely, the goal is to optimize
the accuracy for a given number of counters (e.g., [7], [10]).
However, these works do not discuss how many bits each
counter should have, a quantity whose optimal value depends
on the workload and optimization metric.

For fixed-size counters, if they are too large, space is wasted.
Conversely, if they are too small, there are risks of overflow.
Instead, some solutions use small fixed-size counters that may
overflow into secondary structures (e.g., [11], [12]).

Our Contributions: We present Self-Adjusting Lean
Streaming Analytics (SALSA), a simple and general frame-
work for dynamic re-sizing of counters. In a nutshell, SALSA
starts with small (e.g., 8-bit) counters and merges overflowing
ones with their neighbors to represent larger numbers. This
way, more counters fit in a given space without limiting the

counting range. To do so efficiently, we employ novel methods
for representing merges with low memory and computa-
tion overheads. These methods also respects byte boundaries
making them readily implementable in software and some
hardware platforms.

SALSA integrates with popular sketches and probabilis-
tic counter-compression techniques to improve their preci-
sion to memory tradeoff. We prove that SALSA stochas-
tically improves the accuracy of standard schemes, includ-
ing the Count Min Sketch [10], the Conservative Update
Sketch [13], and the Count Sketch [14]. Using different work-
loads, metrics, and tasks, we also show significant accu-
racy improvements for the above schemes as well as for
state of the art solutions like Univmon [15], Cold Fil-
ter [9], and AEE [16]. We also compare against Pyramid
Sketch [12] and ABC [17], recent variable-counter-size so-
lutions, and show that SALSA is more accurate than both.
Finally, we release our code as open source [1].

II. RELATED WORK

The term sketch here informally describes an algorithm
that uses shared counters, such that each item is associated
with a subset of the counters via hash functions [10], [13]–
[15]. Sketches offer tradeoffs between update speed, ac-
curacy, and space, where each of these parameters is im-
portant in some scenarios. For example, in software-based
network measurement, we are primarily concerned about up-
date speed [18]. Conversely, in hardware-based measurements,
space is often the bottleneck [19], [20].

Some sketches optimize the update speed at the expense
of space. For example, Randomized Counter Sharing [21]
uses multiple hash functions but only updates a random
one. NitroSketch [18] extends this idea and only performs
updates for sampled packets using a novel sampling technique
that asymptotically improves over uniform sampling. Other
solutions aim to maximize the accuracy for a given space
allocation. For example, Counter Tree [22] aims to fit into
the fast static RAM (SRAM) while optimizing the precision.
Such solutions estimate element sizes using complex offline
procedures that, while being highly accurate, may be too slow
for online applications.

Most relevant to our setting are ABC [17] and Pyramid
Sketch [12], which vary the size of counters on the fly. In
ABC, an overflowing counter is allowed to “borrow” bits from
the next counter. If there are not enough bits to represent
both values, the counters “combine” to create a larger counter.
However, the encoding of ABC is cumbersome. It requires



three bits to mark combined counters (e.g., when starting with
8-bits, combined counters can count to 213 − 1) and slows
the sketch down significantly (see Section VI). Moreover, it
does not allow counters to combine more than once. Pyramid
Sketch [12] has several layers for extending overflowing
counters. An overflowing counter increases a counter at the
next layer. Each pair of same-layer counters are associated
with a single counter at the next layer. If both overflow, they
will share their most significant bits in that counter while
keeping the least significant bits separately. Critically, the
counters of all layers are pre-allocated regardless of the access
patterns. This results in inferior memory utilization since many
of the upper layers’ counters may never be used. Further, when
reading a counter, Pyramid may make multiple non-sequential
memory accesses, thus slowing the processing down. SALSA
improves over these solutions due to its efficient encoding and
the fact that its counting range is not limited by the initial
configuration (e.g., counter size).

An orthogonal line of works reduces the size of counters by
using probabilistic estimators that only increment their value
with a certain probability on an update [16], [23]–[25]. Such
an approach saves space as estimators can represent large
numbers with fewer bits, at the cost of a higher error.

III. PRELIMINARIES

We consider a data stream S consisting of updates in
the form of 〈x, v〉, where x ∈ U is an element (or item)
and v ∈ Z is a value. Here, U , {1, . . . , u} is the
universe and u is the universe size. For x ∈ {1, . . . , u},
fx ,

∑
〈x,v〉∈S v denotes the frequency of x. Additionally,

f , 〈f1, . . . , fu〉 is the frequency vector of S. We denote by
N ,

∑
x∈U |fx| the volume of the stream. The above is called

the Turnstile model. Other models include the Strict Turnstile
model, where frequencies are non-negative at all times, and
the Cash Register model, where updates are strictly positive.

The p’th moment of the frequency vector is defined as
Fp ,

∑
x∈U |fi|p (e.g., F1 = N ) and the p’th norm

(defined for p ≥ 1) is Lp , p
√
F p. We say that an

algorithm estimates frequencies with an (ε, δ) Lp guarantee
if for any element x ∈ U it produces an estimate f̂x
that satisfies Pr

[
|f̂x − fx| ≤ εLp

]
≥ 1− δ. Throughout the

paper, we assume the standard RAM model and that each
counter value fits into O(1) machine words.

We survey several popular sketches that SALSA extends.
Count Min Sketch (CMS) [10]: CMS is arguably the
simplest and most popular sketch. It provides an L1 guar-
antee in the Strict Turnstile model. The sketch consists of a
d × w matrix C of counters and d random hash functions
h1, . . . , hd : U → [w] that map elements into counters.
Each element x is associated with one counter in each
row: C[1, h1(x)], . . . , C[d, hd(x)]. When processing the up-
date 〈x, v〉, CMS adds v to all of x’s counters. Since CMS
operates in the Strict Turnstile model where all frequencies are
non-negative, each of x’s counters provides an over-estimation
for its true frequency (i.e., ∀i ∈ [d] : C[i, hi(x)] ≥ fx).

Therefore, CMS uses the minimum of x’s counters to estimate
fx. That is, f̂x , mini∈[d] C[i, hi(x)].

For its analysis, denote by Ei , C[i, hi(x)] − fx ≥ 0 the
estimation error of the i’th counter of x.

Notice that E[Ei] = N−fx
w ≤ N

w , and according to Markov’s
inequality we have that

∀c > 0, i ∈ [d] : Pr[Ei ≥ N · c/w] ≤ 1/c. (1)

We note that CMS, like all the algorithms below, pro-
vides a curve of guarantees, in that setting δ determines
the ε value for which we have an (ε, δ) guarantee with the
d × w configuration. Setting ε = δ−1/d/w and c = δ−1/d,
equation (1) gives that Pr[Ei ≥ Nε] ≤ δ1/d, and as
the d rows are independent we get that Pr[∀i : Ei ≥
Nε] = (Pr[Ei ≥ Nε])d ≤ δ. For fixed (ε, δ) values, setting
w = e/ε and d = ln δ−1 minimizes the space required
by the sketch, but CMS is often configured with a smaller
number of rows d since its update and query time are O(d).

Conservative Update Sketch (CUS) [13]: CUS improves
the accuracy of CMS but is restricted to the Cash Register
model. Intuitively, when all the update values are positive,
we may not need to increase all the counters of the cur-
rent element. For example, assume that C[1, h1(x)] = 7
and C[2, h2(x)] = 4, and the update 〈x, 2〉 arrives. In
such a scenario, we know that fx ≤ 4 before the up-
date, and thus should not increase C[1, h1(x)]. In general,
given an update 〈x, v〉, CUS sets each counter C[i, hi(x)] to
max

{
C[i, hi(x)], v + f̂x

}
, where f̂x = mini∈[d] C[i, hi(x)]

is the estimate for x before the update. While CUS improves
the accuracy of CMS, its updates are slower due to the need to
compute f̂x before increasing the counters. Since an estimate
of CUS is always bounded by CMS’s estimates from above
(and by fx from below), the analysis of CMS holds for CUS
as well. We refer the reader to [26] for a refined analysis.

Count Sketch (CS) [14]: CS works in the more general
Turnstile model and provides the stronger L2 guarantee. As
with CMS and CUS, each element x is associated with a set
of counters {C[i, hi(x)]}i∈[d]. However, the update process
is slightly different. Each row i ∈ [d] in CS has another
pairwise independent hash function gi : U → {+1,−1}
that associates each element with a sign. When processing
an update 〈x, v〉, CS increases each counter C[i, hi(x)] by
v · gi(x). Intuitively, this “unbiases” the noise from all other
elements as they increase or decrease the counters with
equal probabilities. As a result, each counter now gives an
unbiased estimate and therefore CS estimates the size as
f̂x , median {C[i, hi(x)] · gi(x)}i∈[d].

Assuming without loss of generality that gi(x) = 1,
the standard CS analysis bounds the error of the i’th row,
Ei , C[i, hi(x)] − fx, by showing that Var[Ei] ≤ F2/w.
Therefore, using Chebyshev’s inequality we get that Pr[|Ei| ≥
c
√

Var[Ei]] ≤ Pr[|Ei| ≥ cL2/
√
w] ≤ 1/c2. By setting

w = Θ(ε−2), we can get Pr[|Ei| ≥ L2 · ε] ≤ 1/2 − Ω(1),
and then use a Chernoff bound to show that d = O(log δ−1)
rows are enough for an (ε, δ) guarantee.
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Universal Sketch (UnivMon) [15], [27]: UnivMon sum-
marizes the data once and supports many functions of the
frequency vectors (e.g., its entropy or number of non-zero
entries) in the Cash Register model. Importantly, when using
UnivMon, we provide a function G : Z→ R as an input, and
estimate the G-sum, given by

∑
x∈U G(fx). Not all functions

of the frequency vector can be computed in poly-log space in
a one-pass streaming setting (a class called Stream-PolyLog).
The surprising result of [27] is that any function G in Stream-
PolyLog is supported by UnivMon.

UnivMon leverages O(log u) sketches with an L2 guarantee
(e.g., Count Sketch), which are applied to different subsets of
the universe. We refer the reader to [15], [27] for details.

Cold Filter [9]: A recent framework for fast and accurate
stream processing. It consists of two stages, where the first
stage is designed to filter cold items and the second measures
heavy hitters accurately. To accelerate the computation, it
uses an aggregation buffer and employs SIMD parallelism.

Finding Heavy Hitters: Often, we care about finding
the most significant elements in a data stream, which has
applications for load balancing [3], accounting, and security.
That is, in addition to estimating the frequency of elements,
we wish to track the most frequent elements without needing
to query each x ∈ U . For p ≥ 1, the Lp-heavy hitter problem
asks to return all elements with frequency larger than θLp and
no element smaller than (θ − ε)Lp, where θ ∈ [0, 1] is given
at query time. In the Cash Register model, we can store a
min-heap with the 1/ε elements with the highest estimates.
Whenever an update arrives, we query the item and update
the heap if necessary. As a result, we can find the L1 heavy
hitters using CMS and CUS, or the L2 heavy hitters using CS.

Counting Distinct Items: Estimating the number of dis-
tinct items in a data stream (defined as F0 ≡ ‖f‖0) is a
fundamental primitive for applications such as discovering
denial of service attacks [28]. While UnivMon can natively
support such a function, we can also estimate it from CMS
and CUS. By observing the fraction of zero-valued counters
in a sketch’s row p, we can estimate the number of distinct
elements (as additional occurrences of the same element would
not change this quantity). Specifically, a common approach
(e.g., [29]) is use the Linear Counting algorithm [30] that
estimates the distinct count as log p

log(1−1/w) ≈ −w log p. Such

an estimate has a standard error of

√
w·(e

F0
w −F0

w −1)
F0

[30] that
improves when w grows.

IV. TECHNIQUES

The description of the above sketches does not address
the fundamental question of sizing the counters. A common
practice is to assume some upper bound on the maximal
frequency (e.g., N ) and allocate each counter with n =
O(logN) bits. For performance, this upper bound is often
rounded up to be a multiple of the word size. For example,
practitioners often allocate 32-bit counters when estimating
the unit-count of elements, and 64-bit counters for measuring
their weighted-frequency (e.g., [31], [32]). When space is

tight, estimators are sometimes integrated into sketches to
allow smaller (e.g., 16-bit) per-counter overhead at the cost
of additional error [16]. However, these solutions miss the
potential of allowing counters’ bit sizes to vary and adjust
dynamically. Intuitively, the largest counter value is often
considerably larger than the average value, especially in highly
skewed workloads where many counter values remain small
as most of the volume belongs to a small set of heavy hitters.

Alternatively, one can use address-calculation coding (e.g.,
see [33], [34]) to encode a variable length counter array
in near-optimal space (compared to the information theo-
retic lower bound). Such schemes require an upper bound
Nmax on the volume, and use w log2(1 +Nmax/w) +O(w).
However, the update time of such encoding is Ω(log2Nmax)
which may be prohibitive for high-performance applications.

To the best of our knowledge, no implementation that
combines such encoding with sketches has been proposed.
In comparison, SALSA allows for dynamic counter sizing
by merging overflowing counters with their neighbors, and
optimizes for performance by respecting word alignments.

A simple SALSA encoding requires one bit per counter,
and an optimized encoding requires less than 0.6 bits per
counter while still allowing for constant-time read and update
operations. Importantly, SALSA resolves overflows without
dynamic memory allocations (e.g., [35]), without relying on
additional data structures (as in [20]), and without requiring
global rescaling operations for all the counters (e.g., [16]).

The SALSA encoding: SALSA starts with all counters hav-
ing s bits (e.g., s = 8), where s may be significantly smaller
than the intended counting range (e.g., N = 232). Here, we
describe an encoding that requires one bit of overhead per
counter (e.g., 12.5% for s = 8 bit counters); we later explain
how to reduce it to less than 0.6 bits (7.5% for s = 8).

Each counter i is associated with a merge bit mi. Once
a counter needs to represent a value of 2s, we say that the
counter overflows. In principle, an overflowing counter can
merge with its left-neighbor or right-neighbor. In SALSA,
we select the merge direction to maximize byte and word
alignment, which improves performance. We also make coun-
ters grow in powers of two (e.g., from s bits to 2s, then
to 4s, etc.). In Section IV, we explore a slower but more
fine-grained approach. Specifically, when an s-bit counter i
overflows, it merges with i+(1−2·(i mod 2)). For example,
if counter 6 overflows, it merges with 7, while if counter 7
overflows, it merges with 6. More generally, when an s · 2`-
bit counter with indices

〈
i · 2`, i · 2` + 1 . . . (i+ 1) · 2` − 1

〉
overflows, it merges with the counter-set at indices〈
j · 2`, j · 2` + 1 . . . (j + 1) · 2` − 1

〉
, for j = (1 − 2 · (i

mod 2)). As an example, if we started from s = 8 bit counters
and counter 6 overflows, it right-merges with 7 to create a
16 bit counter with indices 〈6, 7〉. If this counter overflows,
it left-merges into a 32 bit counter with indices 〈4, 5, 6, 7〉,
and if this overflows, it left-merges into a 64 bit counter
with indices 〈0, . . . , 7〉.

To encode that
〈
i · 2`, i · 2` + 1, . . . , (i+ 1) · 2` − 1

〉
are merged into a single s · 2`-bit counter, SALSA

3



Indices

Values

Merges

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

7 0 3 0 21773 0 97 813 0 20 4833

0 0 0 0 1 1 1 0 0 0 1 0 0 0 1 0

Fig. 1: SALSA encoding for an array with a basic counter size of
s = 8 bits, notice that large counters consume more indices than
small counters due to merge operations.

sets mi·2`+2`−1−1 = 1. For example, to encode that
〈6, 7〉 are merged, we have (i = 3, ` = 1) and thus set
m3·21+21−1−1 = m6 = 1; when 〈4, 5, 6, 7〉 are merged, we
have (i = 1, ` = 2) and thus we set m1·22+22−1−1 = m5 = 1;
and when 〈0, . . . , 7〉 are merged we have (i = 0, ` = 3)
and thus we set m0·23+23−1−1 = m3 = 1. We can
compute the counter size by testing the ` relevant
bits. We demonstrate this encoding in Figure 1. All the
computations involved in determining the counter size and
offset can be efficiently implemented using bit operations,
especially if s is a power of two.

Reducing the Encoding Overhead: The encoding we used
in SALSA so far is efficient as well as amenable for simple
implementation. The cost of this encoding is a single merge bit
per counter. This is, in fact, within a factor of 2 of the optimal
encoding, as we show in Appendix A. That is, we prove that
any encoding for SALSA must use at least log2 1.5 ≈ 0.585
overhead bits per counter and show a somewhat more complex
O(1)-time encoding with at most 0.594 overhead bits per
counter. For a given memory allocation, this encoding provides
improved accuracy as the lower overhead allows fitting more
counters, but may be somewhat slower.

Fine-grained Counter Merges: The SALSA encoding we
presented in Section IV doubles the counter size upon an
overflow, which may be wasteful when the overflowing counter
could benefit from a smaller increase in size. Thus, we suggest
the more refined Tango algorithms to explore the benefits of
a more fine-grained merging strategy. In Tango, counters can
be merged into sizes that are arbitrary multiples of s. For
example, if we start from s = 8 bit counters, Tango can
merge a 16 bit counter into a 24 bit counter while SALSA
would merge from 16 bits to 32. The encoding of Tango is
simple: each counter j is associated with a merge bit mj that
denotes whether the counter is merged with its right-neighbor.
To compute the counter size and offset in Tango of j = h(x),
we scan the number of set bits to the left and right of mj

until we hit a zero at both sides. For example, if j = 5
and m4 = m5 = m6 = m7 = 1 while m3 = m8 = 0
then the counter consists of s · 5 bits, spanning 〈4, 5, 6, 7, 8〉.
In general, one can use complex logic to decide whether to
merge with the left or right neighbor once a counter overflows.
However, we design Tango to evaluate the potential benefits
of fine-grained merging and therefore enforce a merging logic
that mimics SALSA. Specifically, Tango always tries to be
aligned to the smallest possible power of two. For example,
if counter 9 overflows, it merges with 8 to be aligned with
the 2-block 〈8, 9〉. If it overflows again, it merges with 10

0 255 3 0 65533 95 11

0 1 2 3 4 5 6 7

258 3 0 65533 95 11

⟨𝑦, 5⟩ arrives, ℎ 𝑦 = 5

258 3 0 65664

⟨𝑥, 3⟩ arrives, ℎ 𝑥 = 1
0 0 0 0 1 0 0 0

1 0 0 0 1 0 0 0

1 0 0 0 1 1 1 0

(a) Sum merging of counters

0 255 3 0 65533 95 11

0 1 2 3 4 5 6 7

258 3 0 65533 95 11

⟨𝑦, 5⟩ arrives, ℎ 𝑦 = 5

258 3 0 65538

⟨𝑥, 3⟩ arrives, ℎ 𝑥 = 1
0 0 0 0 1 0 0 0

1 0 0 0 1 0 0 0

1 0 0 0 1 1 1 0

(b) Max merging of counters

Fig. 2: Sum and Max merge in SALSA CMS with s = 8.

(creating a s · 3 bits sized counter) and then with 11. If more
bits are needed it will merge with 12 then with 13, 14 and
15 (being aligned to the 8-block 〈8, . . . , 15〉). Then it merges
with 7, 6, . . ., etc. Notice that at every point in time, the Tango
counters are contained in the corresponding SALSA counters.
In particular, this allows us to produce an estimate that is
at least as accurate as SALSA. We note that Tango poses a
tradeoff – while it allows more accurate sketches (e.g., as a
counter may not exceed 224− 1 and thus it could be wasteful
to merge it into 32 bits), it also has slower decoding time and
cannot use the efficient encoding of the previous section.

V. SALSA-FYING SKETCHES

We now describe how SALSA integrates with existing
sketches, and specifically how to set the value of merged
counters in each sketch. We also state and prove accuracy
guarantees for the resulting SALSA sketches. We employ hash
functions hi : U → [w] similarly to the original sketches.
Given a merged counter with indices 〈L,L+ 1, . . . , R〉, we
consider all elements x with L ≤ hi(x) ≤ R to be mapped
into it. Hereafter, we often refer to the underlying sketch
as following: If the largest merged counter size is s · 2`,
the underlying sketch is a vanilla (fixed counter size) sketch
where each counter is of size s · 2` and its hashes are{
h̃i(x) ,

⌊
hi(x)/2`

⌋
| i ∈ [d]

}
.

Count Min Sketch (CMS): SALSA CMS and Tango CMS
are identical to CMS as long as no counter overflows. We have
already defined the merge operation with regard to encoding
(Section IV), and with regard to hash mapping in the previous
section. However, we still need to define how we determine the
value of a merged counter, which provides a degree of freedom
we leverage to increase measurement accuracy according to
the specific model requirements. A natural merging operation
is to sum the merged counter values (illustrated in Figure 2a).
We formalize the correctness of this approach for the Strict
Turnstile model via the following theorem.

Theorem V.1. Assume that SALSA and Tango use sum merge
to unify counters. Let 2` · s be the maximal bit-size of any
counter in SALSA CMS, and ∀i ∈ [d] let h̃i(x) =

⌊
hi(x)/2`

⌋
be hash functions that map items into a standard CMS with
(2` · s)-sized counters. Then for any x ∈ U : fx ≤
f̂Tango
x ≤ f̂ SALSA

x ≤ f̂CMS
x , where f̂Tango

x , f̂ SALSA
x and f̂CMS

x are
the estimates of Tango, SALSA, and the underlying CMS (with
functions h̃i(x)).
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Proof. The sum merge maintains an invariant where the value
of each merged counter is the total frequency of all elements
mapped to it. In the worst case, a merge results in a counter
of size equal to that of the corresponding counter in the
underlying CMS. In this case, the values of the counters are
identical. Otherwise, the value of a Tango counter is upper
bounded by a SALSA counter which, in turn, is upper bounded
by the corresponding value in the underlying CMS.

For Cash Register streams (with only positive updates),
rather than sum the counters when merging, we can take the
maximum value of the merged counters to gain more accuracy
(exemplified in Figure 2b) while maintaining guarantees, as
formalized in the following theorem.

Theorem V.2. Assume that SALSA and Tango use max merge
to unify counters. Let 2` · s be the maximal bit-size of any
counter in SALSA CMS, and ∀i ∈ [d] let h̃i(x) =

⌊
hi(x)/2`

⌋
be hash functions that map items into a standard CMS with
(2` · s)-sized counters. Then for any x ∈ U : fx ≤
f̂Tango
x ≤ f̂ SALSA

x ≤ f̂CMS
x , where f̂Tango

x , f̂ SALSA
x and f̂CMS

x are
the estimates of Tango, SALSA, and the underlying CMS (with
functions h̃i(x)).

Proof. After each merge, the counter value upper bounds the
frequency of any element mapped to the hash range of the
merged counter. In addition, the value of SALSA and Tango
counters when using the max merge are upper bounded by
the corresponding value of SALSA and Tango counters when
using the sum merge.

Theorems V.1 and V.2 show that SALSA CMS and Tango
CMS are at least as accurate as the underlying CMS for
both merge operations. Intuitively, by sum-merging every
consecutive n bits, we obtain estimates that are identical to a
CMS sketch that uses n bit counters. Therefore, sum-merging
SALSA’s estimates are upper bounded by the CMS estimates.
In Cash Register streams, max-merging estimates are upper
bounded by the sum-merging ones. Finally, for any given
element, the estimates of SALSA CMS and Tango CMS are
lower bounded by its true frequency, which implies that our
approach provides the same error guarantee as the underlying
sketch.

SALSA CMS also improves the performance of count
distinct queries for Linear Counting [36] using CMS. Recall
Linear Counting estimates the number of distinct queries using
the fraction p of zero counters. We consider running Linear
Counting using SALSA CMS staring with s = 8 bit counters,
compared to a standard CMS implementation using 32-bit
counters. Unlike standard CMS, SALSA may be unable to
determine the exact number of (s-bit) counters that remain
zero, as some are merged into other counters. Instead, we
compute the fraction f of s-bit counters that remained zero
from the overall number of counters that did not merge. For
every counter that is the result of one or more merges, we
know that at least one of its sub-counters is not zero; we
optimistically assume that a fraction f of its remaining sub-

counters are zero. So, for example, our estimate of the number
of counters that are 0 is the number of s-bit counters that
remained zero, plus f times the number of 2s-bit counters,
plus 3f times the number of 4s-bit counters, and so on if there
are larger counters. Note that this approach is heuristic and its
accuracy guarantees are left as future work.

Conservative Update Sketch (CUS): SALSA CUS is sim-
ilar to the standard CUS – whenever an update 〈x, v〉 arrives,
each counter C[i, hi(x)] is set to max

{
C[i, hi(x)], v + f̂x

}
with f̂x = mini∈[d] C[i, hi(x)] being the previous frequency
estimate for x. Unlike the CMS variant, the correctness of
SALSA CUS is not immediate as not all counters are increased
for each packet. Theorem V.3 shows that SALSA CUS is
correct in the Cash Register model when working with the
max-merge method.

Theorem V.3. Let 2` · s be the maximal bit-size of any
counter in max-merge SALSA CUS, and ∀i ∈ [d] let h̃i(x) =⌊
hi(x)/2`

⌋
be hash functions that map items into a standard

CUS with (2` · s)-sized counters. Then for any x ∈ U : fx ≤
f̂ SALSA
x ≤ f̂CUS

x , where f̂ SALSA
x and f̂CUS

x are the estimates of
SALSA and the underlying CUS (with functions h̃i(x)).

Proof. It is sufficient to consider only updates with v = 1
since each 〈x, v〉 update is identical to v consecutive 〈x, 1〉
updates. The proof is by induction on the number of updates.
Specifically, we show that after each update it holds that

∀x, i ∈ [d] : CSALSA[i, hi(x)] ≤ CCUS [i, h̃i(x)] , (2)

where we denote by CSALSA and CCUS the counters of
SALSA and the underlying CUS, respectively.

As a base case, initially CSALSA[i, hi(x)] =
CCUS [i, h̃i(x)] = 0 ∀i ∈ [d]. We show that if Equation
(2) holds, it continues to hold after an additional update.

Case 1: CSALSA[i, hi(x)] = CCUS [i, h̃i(x)]. In this case,
on update 〈x, 1〉, CCUS [i, h̃i(x)] is increased by CUS. There-
fore the claim trivially holds if there is no overflow in SALSA.
If there is an overflow, the claim holds by the virtue of the
max-merge. That is, the value of the merged counter grows
by exactly 1. This also means that the inequality holds for
all counters involved in this merge since they are all upper
bounded by CCUS [i, hi(x)] prior to the update.

Case 2: CSALSA[i, hi(x)] < CCUS [i, h̃i(x)]. In this case,
on update 〈x, 1〉, the claim trivially holds if there is no
overflow in SALSA. If there is an overflow, by the virtue of the
max-merge, the value of the merged counter still only grows
by 1. This also means that the inequality holds for all counters
involved in this merge since they are all upper bounded by
CCUS [i, hi(x)] prior to the update, and therefore are upper
bounded by CCUS [i, h̃i(x)] after it.

Count Sketch (CS): SALSA can also extend the CS, with
a minor modification. Unlike most existing implementations,
which use the standard Two’s Complement encoding, SALSA
CS uses a sign-magnitude representation of counters (as
counters can be negative), with the most significant bit for

5



the sign and the rest as magnitude. While Two’s Comple-
ment represents values in the range

{
−2s−1, . . . , 2s−1 − 1

}
,

sign-magnitude does not allow a representation of −2s−1.
However, our use of sign-magnitude is critical for us to ensure
that the overflow event is sign-symmetric, which allow us to
prove that our sketch is unbiased. When an s · 2` bits counter
exceeds an absolute value of 2s·2

`−1− 1, we merge to double
its size. When merging counters in SALSA CS, we use sum-
merge; note max-merge may not be correct as counters may
have opposite signs. We prove the correctness of SALSA CS.
For simplicity, we focus on the main variant. That is, a counter
merges at most twice, starting from s = 8 bits and assuming
that no counter reaches an absolute value of 231, which is the
common implementation assumption.

A B

AB

C D

CD

ABCD

Let x ∈ U be an element mapped to counter
A, which may be merged with counter B to create
〈A,B〉, which in turn may later merge with 〈C,D〉
to make the 4s-bit counter 〈A,B,C,D〉. This
setting is illustrated to the right:

We wish to show that the estimates of each row
in SALSA CS are unbiased, and further that each estimate
has variance with SALSA CS that is no larger than the cor-
responding variance with CS. As mentioned, here give a full
analysis for starting with s bit counters and allowing counters
to grow to 4s bits, as this is the focus in our implementation,
but the approach generalizes readily to additional levels. we
now introduce some notation to analyze SALSA CS.

We use OAB to denote the event that A and B have
been merged at query time (either into 〈A,B,C,D〉 or just
as 〈A,B〉) and OABCD for the event that A,B,C, and D
have been merged into 〈A,B,C,D〉. We also denote the
value of A by (the random variable) XA, the value of
〈A,B〉 by XAB , and similarly for XB , XCD, and XABCD.
We emphasize that XS represents the value of the count
mapped to S, regardless of whether the counter overflows (e.g.,
XA ,

∑
y∈U :h(y)=A fyg(y) even if XA ≥ 2s). Without loss

of generality, we also assume that the sign of x is g(x) = 1
(and thus E[XA] = E[XAB ] = E[XABCD] = fx). This allows
us to express the estimate given in a row for SALSA CS as:
f̂x = XA(1−OAB) +XAB ·OAB · (1−OABCD) +XABCD ·
OABCD = XA(1 − OAB) + XAB · OAB − XAB · OAB ·
OABCD + XABCD · OABCD. Observe that OABCD ⊆ OAB
and thus OAB · OABCD = OABCD. This implies that (since
XAB −XA = XB and XABCD −XAB = XCD):

f̂x = XA +XB ·OAB +XCD ·OABCD. (3)

We continue by proving that the estimate is unbiased.

Lemma V.4. SALSA is unbiased, i.e., E[f̂x] = fx.

Proof. Due to the sign-symmetry of the sign function g,
we have that1 E[XB |OAB ] = 0 and E[XCD|OABCD] = 0
(as ∀i : Pr[XB = i|OAB ] = Pr[XB = −i|OAB ] and
Pr[XCD = i|OABCD] = Pr[XCD = −i|OABCD]). Thus,
according to (3):

E[f̂x] = E [XA +XBOAB +XCDOABCD] = E [XA]

+E [XB |OAB ] Pr[OAB ] +E [XCD|OABCD] Pr[OABCD] = fx.

We show that SALSA reduces the variance in each row.

Lemma V.5. Var[f̂x] ≤ Var[CS], where Var[CS] ,
Var[XABCD] is the variance of the underlying Count Sketch.

Proof. Let us prove that Var[CS]−Var[f̂x] ≥ 0. Observe that
since CS and SALSA CS are unbiased, we have that:

Var[CS]−Var[f̂x]

= E
[
(XABCD − fx)

2
]
− E

[(
f̂x − fx

)2]
= E

[
X2
ABCD − f̂x

2 − 2fxXABCD + 2fxf̂x

]
= E

[
X2
ABCD

]
− E

[
f̂x

2
]

+ 2fxE
[
f̂x −XABCD

]
.

Due to unbiasedness, E
[
f̂x

]
= E [XABCD] = fx and thus

Var[CS]−Var[f̂x] = E
[
X2
ABCD

]
− E

[
f̂x

2
]
. (4)

We continue by simplifying the expression for E
[
f̂x

2
]
:

E
[
f̂x

2
]
= E

[
(XA +XBOAB +XCDOABCD)2

]
= E

[
X2

A

]
+ E

[
X2

BOAB

]
+ E

[
X2

CDOABCD

]
+ 2
(
E [XAXBOAB ] + E [XAXCDOABCD]

+ E [XBXCDOABCD]
)

= E
[
X2

A

]
+ E

[
X2

B |OAB

]
Pr[OAB ]

+ E
[
X2

CD|OABCD

]
Pr[OABCD] + 2

(
E [XAXB |OAB ] Pr[OAB ]

+ E [XAXCD|OABCD] Pr[OABCD]

+ E [XBXCD|OABCD] Pr[OABCD]
)
.

Since x is mapped to A, we can use the sign-symmetry of XB

and XCD to get1 E [XAXB |OAB ] = E [XAXCD|OABCD] =
E [XBXCD|OABCD] = 0, which gives

E
[
f̂x

2
]
= E

[
X2

A

]
+ E

[
X2

B |OAB

]
Pr[OAB ]

+E
[
X2

CD|OABCD

]
Pr[OABCD] = E

[
X2

A

]
+E

[
X2

B

]
+E

[
X2

CD

]
−
(
E
[
X2

B |¬OAB

]
Pr[¬OAB ] + E

[
X2

CD|¬OABCD

]
Pr[¬OABCD]

)
≤ E

[
X2

A

]
+ E

[
X2

B

]
+ E

[
X2

CD

]
. (5)

Now, notice that X2
ABCD = (XA +XB +XCD)

2
= X2

A +
X2
B +X2

CD + 2(XAXB +XAXCD +XBXCD). Due to the
sign-symmetry of g, we have E [XAXB ] = E [XAXCD] =
E [XBXCD] = 0 and thus: E

[
X2
ABCD

]
= E

[
X2
A

]
+

E
[
X2
B

]
+ E

[
X2
CD

]
≥ E

[
f̂x

2
]
, where the inequality follows

from (5). Together with (4), this concludes the proof.

Because the theorem shows the error variance is no larger
for each row, following the same analysis as for CS (using
Chebyshev’s inequality to bound the error of the row and
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then Chernoff’s inequality to bound the error of the median)
yields the same error bounds for SALSA CS. Indeed, we
expect better estimates using SALSA as the inequality from
the proof of the theorem (Var[CS] ≥ Var[f̂x]) is usually a
strict inequality. In our experimental evaluation, we show that
SALSA CS obtains better estimates than CS.

Theorem V.6. Let 2` · s be the maximal bit-size of
any counter in sum-merge SALSA CS, and ∀i ∈ [d] let
h̃i(x) =

⌊
hi(x)/2`

⌋
be hash functions that map items

into a standard CS with (2` · s)-sized counters. Then
for any x ∈ U, i ≤ d : E [CSALSA[i, hi(x)] · gi(x)] =
fx and Var [CSALSA[i, hi(x)] · gi(x)− fx] ≤
Var

[
CCS [i, h̃i(x)] · gi(x)− fx

]
, where CSALSA[i, hi(x)]

and CCS [i, h̃i(x)] are the counters of SALSA and the
underlying CS (with functions h̃i(x)).

We note that SALSA CS can also provide other de-
rived results, similarly to CS. For example, by using a
heap, we can find the L2-heavy hitters in Cash Register
streams similarly to the original version.

Universal Sketch (UnivMon): The universal monitoring
sketch (UnivMon) uses several L2 sketches that are applied on
different subsets of the universe. By improving the accuracy
of CS, we can also improve the performance of UnivMon. We
note that since SALSA CS provides an accuracy guarantee that
is at least as good as the underlying sketch, SALSA Univmon
provides the same accuracy guarantee as the vanilla Univmon.

Merging and Subtracting SALSA Sketches: Given
streams A,B and their sketches s(A), s(B), we may then
wish to derive statistics on A ∪ B (for example, we can
parallelize the sketching of A and B and then merge them),
or on A \ B (for example, to detect changes in our network
traffic compared to the previous epoch). By A \ B, we refer
to computing the frequency difference; e.g., if x appeared
twice in A and three times in B, its frequency in A \ B is
-1. Most standard sketches are linear, and can be naturally
summed/subtracted counter-wise to obtain a sketches s(A ∪
B) ≡ s(A) + s(B) and s(A \B) ≡ s(A)− s(B) if they share
the same hash functions, and work in the Turnstile model.

SALSA can also merge and subtract sketches. For merging
s(A) and s(B), SALSA traverses the counters and merges
them according sum-merging. Specifically, each counter in
the merged sketches has a size at least as large as its size
in s(A) and its size in s(B). Additionally, when summing
or subtracting counters an overflow may occur, triggering
another merge to make sure we have enough bits to encode
the resulting values. CS, as a Turnstile sketch, also supports
general subtracting that is done similarly to merging, while
CMS (which works in the Strict Turnstile model) can compute
s(A \B) given a guarantee that B ⊆ A. These operations are
illustrated in Figure 3.

Integrating Estimators into SALSA: Thus far, we have
described a single strategy to handle overflows: when a counter
reaches a value that can not be represented with the current
number of bits, it merges with a neighbor. However, there

0 1 2 3 4 5 6 7

-48 110 3 0 25646

10986 29731 5173 0 -17

0 1 2 3 4 5 6 7

104 0 399 0 -2 24380

10490 27223 7312 0 0

𝑠(𝐴) 𝑠(𝐵)

0 1 2 3 4 5 6 7

56 110 402 50024

78430 12485 0 -17

0 1 2 3 4 5 6 7

-42 -396 1268

496 2508 -2319 0 -17

𝑠(𝐴 ∪ 𝐵) 𝑠(𝐴\𝐵)

Fig. 3: An example of s = 8 bit SALSA CS merging and subtracting
Turnstile sketches s(A) and s(B).

are alternatives that allow one to increase the counting range.
Specifically, estimators can represent large numbers using a
smaller number of bits, at the cost of introducing an error.

The state of the art Additive Error Estimators (AEE) [16]
offer a simple and efficient technique to increase the counting
range. For simplicity, we describe the technique for CMS and
unit-weight streams (where all updates are of the form 〈x, 1〉),
although AEE can support weighted updates and other L1
sketches as well. Throughout the execution, incoming updates
are sampled with probability p. If an update is sampled, it
increases the sketch, and otherwise, it is ignored. Whenever
a counter overflows, a downsampling event happens. When
downsampling, p is halved and any counter C[i, j] is replaced
by either Bin(C[i, j], 1/2) (called probabilistic downsam-
pling) or by bC[i, j]/2c (deterministic downsampling). Since
the counter values are reduced as a result of the downsampling,
new updates can be processed, and no additional counter bits
are needed. For any δest > 0, we have an implied estima-

tion error for AEE given by εest ,
√

2p−1 ln(2/δest)
N , such

that Pr
[∣∣∣Ĉ[i, j]− C[i, j]

∣∣∣ ≥ Nεest] = Pr
[
|Ĉ[i, j] − C[i, j]| ≥√

2Np−1 ln(2/δest)
]
≤ δest. Another motivation for AEE

comes from the processing speed. Since the sampling prob-
ability is independent of the value of the current counter,
one can compute the hash functions hi(x) only if a packet
is sampled. Since hash functions are a major bottleneck
for sketches [18], AEE is faster than the baseline sketches.
Another version of the estimator, called AEE MaxSpeed, aims
to maximize the processing speed while bounding the error.
Therefore, instead of waiting for a counter to overflow, it
downsamples all counters once enough updates have been
processed. In comparison with the original variant (called AEE
MaxAccuracy), MaxSpeed is faster but less accurate [16].

Intuitively, downsampling and merging increase the error
in different ways. While downsampling increases the inherent
error of a counter, merging adds noise from other elements
that previously have not collided with the counter. SALSA
selects how to handle overflows in a way that minimizes the
theoretical error increase by either downsampling or merging.
Specifically, as our accuracy theorems suggest, the sketch
error in SALSA depends on the size of the largest counter.
Therefore, unless a largest counter overflows, SALSA opts
for merging as its overflow strategy. When a largest counter
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overflows, SALSA computes the estimator error difference
∆est =

√
2 · εest, which is the increase in error if we

downsample. Similarly, if the currently largest counter is of
size s·2`, SALSA computes εCMS , δ−1/d·2`/w, which is the
current accuracy guarantee (see Theorem V.1 and Section III)
and ∆CMS = εCMS is then the difference in error guarantee
that results from merging. We pick δest = δ/d to allow all
counters of the current element to be estimated within εest
with probability 1 − δ. Finally, SALSA chooses to merge if
∆CMS ≤ ∆est , and otherwise it downsamples. As a result,
SALSA estimates element sizes to within N · (εest + εCMS)
with a probability of at least 1− 2δ.

As an optimization, when downsampling, SALSA may be
able to split counters if the resulting values can be represented
using fewer bits. For example, if s = 8 and a value of
300 was represented in the 16-bit counter 〈4, 5〉, and if it
is then downsampled to a value of 150, we can split the
counter and set both counter 4 and counter 5 to 150. We
note that this only works for max-merging, where the accuracy
guarantees seamlessly follow.

VI. EVALUATION

In this section, we extensively evaluate SALSA’s perfor-
mance on real and synthetic datasets and compare it to that of
the underlying sketches. We first document the methodology.

Sketch Configuration Parameters: Unless specified oth-
erwise, all CMS and CUS sketches are configured with d = 4
rows, as is used e.g., in the Caffeine caching library [37].
Since CS requires taking median over the rows, all CS
experiments are configured with d = 5 rows as done, e.g.,
in [38]. We configure UnivMon with 16 CS instances, each
configured with d = 5 and a heap of size 100, following
the implementation of [15]. Such settings are standard for
applications that aim for speed rather than being memory-
optimal. For the ABC [17] and Pyramid [12] sketches, as well
as the Cold Filter [9] framework, we use the configurations
recommended by the authors. We pick s = 8 bit counters as
the default configuration of SALSA, motivated by the synthetic
results. We use the simple encoding (1 bit of overhead per
counter) of Section IV, which uses slightly more space but
is faster. The Baseline implementations use 32-bit counters,
a choice we justify later in Figure 6, and that is also com-
mon in existing implementations [18], [32]. Nonetheless, our
SALSA implementation allows counters to grow further, up
to 64 bits. For implementation efficiency, all row widths w
are powers of two. When we give figures where an x-axis
is allocated memory, we include the encoding overheads. For
the integration with AEE, we configure SALSA AEE with
δ = 4 · δest = 0.001 (see Section V).

Datasets: We evaluate our algorithms using four real
datasets and several synthetic ones. In particular, we use three
network packet traces: two from major backbone routers in the
US, denoted NY18 [39] and CH16 [40], and a data center net-
work trace denoted Univ2 [41]. In these traces, we define items
using the “5-tuples” of the packets (srcip, dstip, srcport, dst-
port, proto). Additionally, we use a YouTube video trace [42,

US category]. As the video data does not have a recorded order
(just view-count), we use a random order where each item is
a video independently sampled according to the view-count
distribution. Finally, we use random order Zipfian traces. All
traces have 98M elements for consistency with the shortest real
dataset. In our evaluation, we use unit-weight Cash Register
streams (i.e., all updates are of the form 〈x, 1〉). We also
experiment with the task of evaluating change detection, which
requires a SALSA sketch under the Turnstile model.

Metrics: For frequency estimates, we use the On-arrival
model that asks for an estimate of the size of each ar-
riving element (e.g., [5], [7], [16], [43]). Intuitively, this
model is motivated by the need to take per-packet actions
in networking, e.g., to restrict the allowed bandwidth to
prevent denial of service attacks. Given a stream with n
updates, we obtain errors e1, e2, . . . , en; the Mean Square
Error is defined as MSE , n−1 · ∑i e

2
i , the Root

Mean Square Error is then RMSE ,
√
MSE, while

the Normalized RMSE is NRMSE , n−1 · RMSE. Sim-
ilar metrics are used, e.g., in [5], [7], [16], [43]. Notice
that NRMSE is a unitless quantity in the interval [0, 1]. For
fairness, we also evaluate using the error metrics used in
Pyramid and ABC: Average Absolute Error (AAE) and Av-
erage Relative Error (ARE). AAE averages the error over
all the elements with non-zero frequency i.e., AAE ,

1
|U>0|

∑
x∈U>0

|f̂x − fx|, where U>0 , {x ∈ U : fx > 0}.
Similarly, ARE is defined as 1

|U>0|
∑
x∈U>0

|f̂x−fx|
fx

.
For tasks such as Count Distinct, Entropy, and Frequency

Moments estimation, we use the Average Relative Error (ARE)
metric that averages over the relative error of the ten runs.2 For
turnstile evaluation, we evaluate the capability of SALSA to
improve sketches for the Change Detection task (e.g., see [15],
[44]) in which we partition the workload into two equal-length
parts A and B, sketch each, and test the NRMSE of the
estimates of the frequency changes between A and B. Each
data point is the result of ten trials; we report the mean and
95% confidence intervals according to Student’s t-test [45].

Implementation: We leverage existing CMS and CUS
implementations from [16] and extend them to implement
SALSA. We also extend these to create a Baseline and
SALSA implementation of CS. We also used the authors’
code for the Pyramid [12], ABC [17], and Cold Filter [9]
algorithms. Particularly, for error measurements, we used the
code as-is, while for speed measurements, we applied our
optimizations for a fair comparison. All sketches use the same
hash functions (BobHash) and index computation methods.
When evaluating against the AEE estimators [16], we use
the provided open-source code. Similarly, we obtained the
UnivMon code from [38] and replaced its CS sketches with
SALSA CS to create ’SALSA UnivMon’.

All speed measurements were performed using a single core
on a PC with an Intel Core i7-7700 CPU @3.60GHz (256KB

2This is different from the ARE used for frequency estimation where the
averaging is done over all elements with positive frequency.
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Fig. 4: Speed and accuracy of SALSA CMS and SALSA CS for the
synthetic datasets. The Baseline uses w = 217 counters in each row
for a total of 2MB of space in CMS and 2.5MB in CS. Here, SALSAs
is using w = (217 · 32/s) sized rows for a total of 2(1 + 1/s)MB
space for CMS and 2.5(1 + 1/s)MB for CS.
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Fig. 5: Accuracy of SALSA CMS with Sum merge vs. Max merge.

L1 cache, 1MB L2 cache, and 8MB L3 cache) and 32GB
DDR3 2133MHz RAM.

How to Configure SALSA? We perform preliminary ex-
periments to determine the default SALSA configuration.

How Large Should Counters Be? We first determine the
most effective minimal counter size (s) for SALSA. Intuitively,
for a fixed row width w, smaller s results in lower error but
also in larger encoding overheads. With this tradeoff, it may
not be profitable to reduce s. In this experiment, we fixed the
memory of the counters and deliberately ignored the encoding
overheads for SALSA. The goal is to quantify the attainable
improvement from using smaller counters. We used synthetic
Zipfian trace with skews varying from 0.6 to 1.4.

As shown in Figure 4, most of the improvement comes from
reducing the counter sizes from 32 bits to 8 bits. These results
were consistent across different memory footprints. This is not
surprising as almost all counters merge up to at least 8 bits,
but then many do not overflow further. We also observe that
SALSA offers more gains for low-skew traces and that CS is
better suited for lower skews, while CMS offers comparable
accuracy with less space for high skew. Hereafter, we use s =
8 bits as the default SALSA configuration. While SALSA with
s = 4 bits is slightly more accurate for low-skew workloads
and high memory footprints, its encoding overhead of about
25% of the sketch size (compared to 12.5% for s = 8) is too
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Fig. 6: SALSA CMS vs. CMS with small counters (2MB).
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Fig. 7: Accuracy of SALSA CMS (with s = 8 bits) vs. Tango CMS.
In (b), Tangos is allocated with 2(1+1/s)MB of space while SALSA
uses 2(1 + 1/8) = 2.25MB.

large to justify the benefits.
Which Merging Should We Use? As mentioned above,

SALSA CS must use sum-merging, and so does SALSA
CMS for Strict Turnstile streams. Similarly, in SALSA CUS,
we need to use max-merging. This leaves only the choice
for SALSA CMS in Cash Register streams, where we can
use either sum-merging or max-merging. We quantify the
difference in accuracy in Figure 5. As shown, max-merging
is slightly more accurate, especially for low-skew work-
loads. We conclude that if one only targets Cash Register
streams, it is better to use max-merging, but the accuracy of
sum-merging is not far behind.

Is Fine-grained Merging Worth It? To understand the
accuracy improvement attainable by fine-grained merging (as
opposed to SALSA’s approach of doubling the counter size at
each overflow), we compare SALSA with Tango. As the re-
sults in Figure 7 indicate, Tango also offers the best accuracy-
space tradeoff when starting with s = 8 bits (Tango16 is
equivalent to SALSA16 and is omitted). However, while it is
slightly more accurate, the gains seem marginal considering
the computationally expensive operations of determining the
counter’s size and offset. Further, Tango has an overhead of
1 bit per counter and does not obviously allow an efficient
encoding like SALSA does (Section IV).

Can one simply use small counters? In our evaluation,
SALSA starts from s = 8 bit counters. We now compare
SALSA with a baseline sketch that uses 8-bit or 16-bit
counters (as proposed, e.g., in [46]). In such a sketch, the
counter is only incremented if it does not overflow (i.e., its
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Fig. 8: Comparing the performance of the SALSA, Pyramid [12], ABC [17], and Baseline versions of CMS.

(a) NY18 (b) CH16

Baseline Pyramid ABC SALSA

Fig. 9: The error distribution of the algorithms (2MB).

value is bounded by 2b − 1 for b-bit counters). We show that
such solutions cannot capture the sizes of the heavy hitters
– elements whose frequency is at least a φ fraction – which
are often considered the most important elements [47]. First,
we show (Figure 6a) that when estimating heavy hitters, even
with a loose definition of φ = 10−4, it is best to use 32-bit
counters for CMS. Similarly, as shown in Figure 6b, when
the measurement is longer than 10M elements, the 16-bit
variant becomes less accurate. Figure 6 is depicted for Zipfian
trace with skew=1, and we observed similar behavior for other
traces, thresholds, and memory footprints.

Comparison with Pyramid Sketch and ABC: We
used the authors’ original implementations for both Pyra-
mid Sketch and ABC. We present results for CMS on the
NY18 and CH16 datasets; similar results are obtained for
additional sketches and workloads.

As shown in Figure 8a, and Figure 8b, Pyramid Sketch and
SALSA are about 20% slower than the baseline, while ABC
is about 75% slower. Intuitively, the slowdown is expected, as
all these algorithms bring additional complexity to the base-
line. ABC is significantly slower due is additional encoding
overheads as its bit-borrowing technique does not allow byte-
alignment for counters, forcing it to make additional bitwise
operations for reading and updating counters.

In terms of the NRMSE metric (8c and 8d), SALSA
achieves the best results. Next is the baseline following by

Pyramid Sketch, and ABC. The on-arrival NRMSE metric
gives more weight to the frequent elements, and is more
sensitive to larger errors than AAE and ARE. Our results
indicate that SALSA is also more accurate than Pyramid
Sketch and the baseline in terms of AAE and ARE for the
entire memory range. Note that Pyramid Sketch is better than
the baseline in the memory range 0.5MB-2MB, which is the
range it is optimized for according to the paper. ABC is
slightly more accurate than SALSA for small memory sizes
but less accurate than SALSA for large memory sizes, and is
comparable in between. Our conclusion is that SALSA is the
best in the NRMSE metric and is competitive in the AEE, and
ARE, and speed metrics.

Understanding the differences: Our first observation, is
that the AAE and ARE metrics are not suitable when estimat-
ing the size of the heavy hitters, which are often considered
the most important elements [47]. This is because both metrics
give equal weight to all items, making impact of the error of
the largest ones vanish due to averaging. This is evident from
Figure 6, in which the leftmost point (φ = 10−8) corresponds
to the AAE and ARE metrics (as all items are accounted for).
As shown, in such a case, using 8-bit counters yields lower
error rates. Nevertheless, such a solution cannot count beyond
the value of 255, which results in excessive error for the heavy
hitters (e.g., φ = 10−3). In fact, as we show in Appendix B,
for CMS, and this dataset, it is better to estimate all sizes
as 0 without performing any measurement. To illustrate the
differences that make Pyramid Sketch and ABC competitive
in the AAE/ARE metrics, but not in NRMSE, we visualize
the errors of estimating individual element frequencies. We
sampled one random element from each possible frequency to
reduce clutter. The results, showing in Figure 9, demonstrate
the differences between the algorithms. SALSA has a low
error-variance and is consistently more accurate than the
Baseline. In contrast, Pyramid Sketch (as shown in region
A) has much higher variance, as elements whose counters
overflow share the most significant bits with other elements.
ABC, as evident in region B, has a high error on heavy
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Fig. 10: Speed and accuracy of SALSA CMS and SALSA CUS for the real datasets. Notice the log-scale of the error plots.
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Fig. 11: Accuracy of SALSA CS for the real datasets.

hitters as its counters can at most double in size by combining
with their neighbors. We configured ABC to start with 8-bit
counters as suggested by the authors, limiting its estimation
to at most 213 − 1 (as three bits are spent on overhead).
While one could use larger counters, it would decrease their
number and diminish the benefit over the baseline sketch. To
conclude, both ABC and Pyramid Sketch have elements with
high estimations errors, making them less attractive for (Mean
Square Error)-like metrics.

L1 Sketches: We proceed by testing the impact that SALSA
(with s = 8 bit counters) has on the accuracy and speed of
L1 sketches, such as CMS and CUS. The results, depicted
in Figure 10, show that SALSA CMS is substantially more
accurate (roughly requiring half the space for the same error)
than the Baseline for the NY18, CH16, and YouTube datasets.
For Univ2, SALSA’s improvement is less noticeable, and due
to its encoding overheads, the tradeoff is not statistically
significant. SALSA CUS is better than the Baseline on all

traces, and often requires half the space for a given error.
SALSA’s accuracy comes at the cost of additional oper-

ations that are required to maintain the counter layout. We
measured SALSA to be 17%-23% slower than the corre-
sponding Baseline variants, but can nonetheless handle 10-
17.5 million elements per second on a single core, which is
sufficient to support the high link rate forwarding at modern
large-scale clusters, such as Google, which is estimated at 9M
packets per second (see [48, Sec. 3.2]) . We note that by
combining SALSA with estimators (Section VI), we can make
faster counter sketches. We conclude that SALSA offers an
appealing accuracy to space tradeoff.

Count Sketch: Next, we evaluate SALSA for Count Sketch,
whose L2 guarantee is important for low-skew workloads and
more complex algorithms such as UnivMon. As shown in
Figure 11, SALSA offers statistically significant improvement
for the NY18, CH16, and YouTube datasets. For Univ2, the
accuracy improvement is offset by the encoding overhead, and
it is not clear which variant is better.

UnivMon: We use SALSA CS to extend the Universal
Monitoring (UnivMon) sketch that supports estimating a wide
variety of functions of the frequency vector. Our experiment
includes estimating the element size entropy and Fp moments,
for 0 ≤ p ≤ 2. The result in Figure 12 indicates that SALSA
improves the accuracy of both tasks. Interestingly, for entropy
estimation, we observe that SALSA’s accuracy (and variance)
improve when using smaller (s = 2 or s = 4 bit) counters.
When using a large amount of memory, SALSA has roughly
the same accuracy as the baseline, as both hit a bottleneck
in the size of the sketches’ heaps (set to 100 elements, as in
the implementation of [18]).

For estimating Fp moments, we measure similar accuracy
for small values of p while SALSA improves the accuracy for
large p values. To explain this, notice that the element size
estimates mainly affect the Fp for large p, while for p ≈ 0,
the value is determined primarily by the cardinality.

Cold Filter: We extend Cold Filter by replacing the
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Fig. 12: Accuracy of SALSA UnivMon for the NY18 dataset.
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Fig. 13: Accuracy of SALSA Cold Filter for the NY18 dataset.

second-stage CUS (denoted CM-CU in the original paper) al-
gorithm with our SALSA variant. The results in Figure 13 use
the AAE and ARE metrics suggested by its authors [9]. The
results show that SALSA saves up to 50% of the space for a
similar error. However, the improvement is more evident when
the allocated memory is small, as in these cases the second
stage algorithm plays a significant role. When the memory
size is large (compared to the measurement length), the first-
stage algorithm handles most of the flows, and improving
the second-stage CUS algorithm yields marginal benefits. We
observed negligible differences in the processing speed, which
is expected as many elements only touch the first stage and
do not reach the second. We also tested Cold Filter versus
its SALSA variant using the NRMSE metric; there, SALSA
yields even larger accuracy gains. However, Cold Filter’s
aggregation buffer needs to be drained upon query, which
negates its speedup potential in the on-arrival model.

Count Distinct and Heavy Hitters using Count Min:
We evaluate the performance of SALSA CMS on additional
applications such as counting distinct elements and estimat-
ing the size of the heavy hitters. As shown in the count,
distinct results (Figures 14(a)-(c)), neither SALSA CMS nor
the Baseline are effective with low memory footprints. This
is because no counters remain zero-valued, and the Linear
Counting estimator fails. Nevertheless, SALSA CMS can
work with less memory (4.5MB for NY18 and 1.125MB for
CH16) and reduce the estimation error when the Baseline
does produce estimates. Intuitively, Linear Counting with w
buckets can count up to w lnw elements, so the number of
elements in the datasets (6.5M for NY18 and 2.5M for CH16)
imposes a lower bound on the amount of space needed. We
evaluate the accuracy for estimating the heavy hitters (ele-
ments with frequency of at least φ · N ) frequencies, while
varying φ between 10−4 and 10−2 as in [47]. SALSA CMS
is more accurate, especially for small values of φ. The lower
improvement for large φ values can be explained as φ·N ≥ 216
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Fig. 14: Accuracy of SALSA CMS on ((a)-(c)) counting distinct
elements and ((d)-(f)) estimating the size of heavy hitters with 2MB.
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Fig. 15: Accuracy of SALSA CS for the Top-k ((a) and (b)) and
Change Detection ((c) and (d)) tasks.

for φ ≥ 216

98·106 ≈ 7 · 10−4, which means that all such
heavy hitters cause their counters to merge to 32 bits (the
same as the Baseline). The plot of Figure 14d stops around
φ ≈ 3.16 · 10−4 as no element in the NY18 dataset has
frequency larger than 5.62 · 10−4 ·N ≈ 551K packets.

Top-k and Change Detection using Count Sketch: We
also examine SALSA’s effect on other uses of CS such as Top-
k and Change Detection (which requires Turnstile support).
For Top-k, our experiments indicate that using sufficient mem-
ory (e.g., 2MB), the Baseline CS detects the largest elements
accurately for reasonable k values. Therefore, we focus on a
constrained memory setting (640KB). As shown in Figure 15
(a) and (b), SALSA detects the top-k accurately, especially for
large values of k and low-skew workloads.

We also evaluate SALSA CS on a Change Detection task.
Here, we split the input into two equal-length intervals A
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Fig. 16: Comparison with Estimator Algorithms (CM sketch).

and B, the algorithm needs to estimate the change in the
frequency of an element x between the first and second
halves. To that end, we create sketches s(A) and s(B) and
the difference sketch s(A \ B) as described in Section V.
Intuitively, the frequency difference can be small compared
with the frequencies of each interval, and thus directly sub-
tracting the estimates of s(A) and s(B) could yield a poor
result compared to taking the difference sketch (as the desired
error is a fraction of the L2 norm of the frequency difference).
In Figure 15 (c) and (d), we compute the NRMSE error3 over
the set of elements that appear in either A or B. As shown,
SALSA provides a statistically significant accuracy improve-
ment in all tested memory allocations and dataset skews.

Estimators: We now experiment with integrating estima-
tors, specifically AEE [16], into SALSA CMS. Under certain
conditions, AEE increases the accuracy and processing speed
of the sketch. Intuitively, the accuracy can be increased as the
sketch can use more estimators than it would use counters,
and the speed is increased because some packets are ignored
without updating the estimators. Our estimator-integrated so-
lution SALSA AEE (from Section V) optimizes the accuracy
by interleaving estimator downsampling and estimator merges.
Roughly speaking, SALSA AEE aims to be at least as accurate
as the best of SALSA CMS and AEE MaxAccuracy by
choosing the best method to cope with each overflow. Similarly
to AEE MaxSpeed, we create a speed-optimized variant called
SALSA AEEd that downsamples on the first d overflows
(and selects whether to merge or downsamples afterward
according to the logic presented in Section V). This allows
the algorithm to reach a sampling rate of 2−d and thus obtain
speedups by reducing hash computations.

The results, shown in Figure 16, illustrate that SALSA AEE
is always as accurate as SALSA (when SALSA only merges
counters), and more accurate for small amounts of memory.

3Note that this is not on-arrival computation and the results are not
comparable with those obtained in figures 10 and 11.
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Fig. 17: Affect of splitting counters in SALSA AEE (CM sketch).

For large amounts of memory, SALSA AEE only merges, and
therefore its accuracy is identical to SALSA while it is slightly
slower due to the added logic. Compared with AEE MaxAccu-
racy, SALSA AEE has comparable accuracy for small memory
allocations (where it is mostly better to downsample than
merge). Further, for large memory allocations (e.g., 100KB
or higher), SALSA AEE is more accurate than AEE MaxAc-
curacy, as in such scenarios it is better to merge than to down-
sample. Compared with AEE MaxSpeed, SALSA AEE10 pro-
vides improved accuracy (by up to 25%), especially for small
amounts of memory, while also being faster (by up to 7%),
except when using large space (2MB+ in this experiment).

Should We Split Counters? Finally, we check the accuracy
gains obtainable by splitting counters. Intuitively, once a
counter is downsampled, it may require fewer bits to represent.
Therefore, if previously the counter had s · 2` bits and the
downsampled value is lower than 2s·2

`−1 − 1 (and ` ≥ 1), we
can split the counter into two s ·2`−1-bit counters. As a result,
there are now fewer collisions between elements, and SALSA
AEE has better accuracy. However, as the results in Figure 17
suggest, this effect is minor, and in most cases, the accuracy
gains are insignificant.

VII. CONCLUSIONS

We have presented SALSA, an efficient framework for dy-
namically re-sizing counters in sketching algorithms, extend-
ing counters only when needed to represent larger numbers.
SALSA starts from small counters and gradually adapts its
memory layout to optimize the space-accuracy tradeoff. By
evaluating across multiple real-world traces, sketches, and
tasks, we have shown that, for a small overhead for its merging
logic, SALSA reduces considerably the measurement error.
In particular, our evaluation indicates that SALSA improves
on state-of-the-art solutions such as Pyramid Sketch [12],
ABC [17], Cold Filter [9], and the AEE estimators [16].

We believe that SALSA can replace and enhance ex-
isting sketches in more complex algorithms, such as Lp-
samplers [49] and database systems (e.g., [50], [51]). All of
our code is released as open source [1].
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APPENDIX A
IMPROVED ENCODING

Here, we lower bound the space required to
encode SALSA, and then suggest a near-optimal
encoding that has O(1) time operations.

Lower bound. For n ∈ N, we define by an the number
of possible layouts for a consecutive block of 2n · s
bits (i.e., a block that started from 2n counters of size
s-bits each). For example, we have a2 = 5 since the
possible combinations for 4 consecutive counters are
〈{a} , {b} , {c} , {d}〉 , 〈{a, b} , {c} , {d}〉 , 〈{a} , {b} , {c, d}〉 ,
〈{a, b} , {c, d}〉 , 〈{a, b, c, d}〉 . Observe that either all 2n

counters are merged together, or it is enough to specify the
layouts of the first 2n−1 counters and last 2n−1 counters.
Therefore, we get the recursive relation an = a2n−1 + 1 and
a0 = 1. Given that we start from w counters, this implies that
the number of possible layouts is lower bounded by ablog2 wc.

Lemma A.1. ∀n ∈ N :
⌊
1.52

n⌋ ≤ an < 1.512
n

.
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Fig. 18: An encoding example for m = 5. This layout is encoded
by X5 = 449527 < a5. To compute the size of counter 9, we
first check that X5 < a5 − 1 and thus not all counters are merged.
Next, we have that X4 = bX5/a4c = 663 < a4 − 1 and thus
counters 0-15 are not all merged. Then, we check that X ′3 = X4

mod a3 = 13 < a3 − 1 which means that counters 8-15 are not all
merged. We continue with X2 = bX ′3/a2c = 2 < a2 − 1 (thus 8-11
are not merged) and finally get X1 = bX2/a1c = 1 = a1− 1 which
implies that 9 is merged with 8.

Proof. The inequality is easy to verify for
n ≤ 3. By induction, one can then easily prove
that ∀n ≥ 3 : 1.52

n

+ 1 < an < 1.512
n − 1.

This suggests a lower bound of
⌈
log2 ablog2 wc

⌉
≤⌈

2blog2 wc log2 1.5
⌉

bits. Specifically, for w ≥ 24 values which
are powers of 2 any encoding must use at least log2 1.5 ≈
0.585 bits per counter.

Near-optimal encoding. Denote by m the maximal number of
merges a single counter may go through during the execution.
We note that m = O(1) as we assumed the final counters
must fit into O(1) machine words. For example, if we start
from s = 2 bits counters and we assume that counters
grow up to 128 bits, then m = 6. Let m = max {5,m}.
Intuitively, we encode every 2m counters separately, thereby
allowing O(m) = O(1) time size computation. According to
Lemma A.1, we have that zm , dlog2 ame bits are enough to
encode the counter-set layout; for example, z5 = 19 bits are
enough to encode the layout of 25 = 32 counters. Specifically,
for n = m,m − 1, . . . , 0 we write a zn-bits value Xn such
that Xn = an − 1 means that all 2n counters are encoded,
and otherwise Xn−1 , bXn/an−1c encodes the layout of the
first 2n−1 counters while X ′n−1 , Xn mod an−1 encodes
the layout of the rest (i.e., they are the base-(an−1) digits of
Xn). As a result, we use zm bits for each consecutive set
of 2m counters, giving an overhead of zm/2m. For n ≥ 5,
we have that zn/2n < 0.594, i.e., we require at most 0.594
overhead bits per counter. Computing the size of a counter
then becomes simple: we start from n = m and every time
check if the value is an − 1, or recurse into either the left
or right half depending on the counter index. An example of
this process is illustrated in Figure 18. While this approach
reduces the overhead, the decoding process involves division
and modulo operations that may reduce the speed.

APPENDIX B
UNDERSTANDING THE DIFFERENCES –

EXTENDED RESULTS

For completeness, we repeat the experiment in Figure 6
using even smaller (4-bit) counters. The results are shown in
figures 19 and 20. We measured the error on all heavy hitters
– elements larger than a φ fraction of the input. The leftmost
point (φ = 10−8) of Figure 19 corresponds to the ARE metric
(i.e., all flows will be considered). As shown, in this case, the
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Fig. 19: Running CMS with small number of bits and the “0”
algorithm for estimating heavy hitter sizes (2MB) using average
relative error metric. The leftmost point corresponds to the standard
ARE metric (used in figures 8g and 8h), which considers all flows.
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Fig. 20: Running CMS with small number of bits and the “0”
algorithm for estimating heavy hitter sizes (2MB) using average
absolute error metric. The leftmost point corresponds to the standard
AAE metric (used in figures 8e and 8f), which considers all flows.

best algorithm is 0, which corresponds to returning 0 estimates
for all element sizes. That is, according to this metric, one
can reduce the error by not running measurements at all. A
similar result was observed for AAE, in Figure 20), where
the 0 algorithm outperforms the baseline when considering all
flows (leftmost point).
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