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Abstract 10 

Near-real time water segmentation with medium resolution satellite imagery plays a critical role in water 11 
management. Automated water segmentation of satellite imagery has traditionally been achieved using 12 
spectral indices. Spectral water segmentation is limited by environmental factors and requires human 13 
expertise to be applied effectively. In recent years the use of convolutional neural networks (CNN’s) for 14 
water segmentation has been successful when used on high-resolution satellite imagery, but to a lesser 15 
extent for medium resolution imagery. Existing studies have been limited to geographically localised 16 
datasets and reported metrics have been benchmarked against a limited range of spectral indices. This study 17 
seeks to determine if a single CNN based on Red, Green, Blue (RGB) image classification can effectively 18 
segment water on a global scale and outperform traditional spectral methods. Additionally, this study 19 
evaluates the extent to which smaller datasets (of very complex pattern e.g harbor megacities) can be used 20 
to improve a globally applicable CNN’s within a specific region. Multispectral imagery from the European 21 
Space Agency, Sentinel-2 satellite (10 m spatial resolution) was sourced. Test sites were selected in Florida, 22 
New York, and Shanghai to represent a globally diverse range of water body typologies. Region-specific 23 
spectral water segmentation algorithms were developed on each test site, to represent benchmarks of 24 
spectral index performance. DeepLabV3-ResNet101 was trained on 33,311 semantically labelled true-25 
colour samples. The resulting model was retrained on three smaller subsets of the data, specific to New 26 
York, Shanghai and Florida. CNN predictions reached a maximum mean intersection over union result of 27 
0.986 and F1-Score of 0.983. At the Shanghai test site, the CNN’s predictions outperformed the spectral 28 
benchmark, primarily due to the CNN’s ability to process contextual features at multiple scales. In all test 29 
cases, retraining the networks to localised subsets of the dataset improved the localised region's 30 
segmentation predictions. The CNN’s presented are suitable for cloud-based deployment and could 31 
contribute to the wider use of satellite imagery for water management. 32 

1. Introduction 33 

Near-real time mapping of water bodies from satellite imagery plays a critical role in water management. 34 
The continuous monitoring of environmental change over time, such as estimation of water availability, 35 
prediction of floods, and droughts, is essential to human activities such as agriculture, hydrology, and 36 
management (Molden, 2007; Schanze, et al., 2006, Ferral, et al., 2019). As a result, there has been 37 
significant interest in identifying methods of accurately automating the water segmentation of satellite 38 
imagery.  39 



A large body of research has been devoted to the development of Spectral Indices (SIs) to automate water 40 
mapping tasks (McFeeters, 1996; Feyisa, et al., 2014; Xu, 2006; Jain, et al., 2020, Zhou et al 2017). SIs are 41 
the most prominent tool for automated water mapping and are widely integrated with geospatial software 42 
platforms and application programming interfaces (API’s). SIs classify each image pixel independently 43 
without processing the contextual features of an image. Subsequently, the performance of SIs is hindered 44 
by features such as shadow or bright objects such as roofs and solar panels. Additionally, the process of 45 
selecting and optimally thresholding a SI is a complex arduous task that must be performed by an 46 
experienced professional. 47 

In recent years, the expansive growth in the availability and capabilities of graphics processing units 48 
(GPU’s) has driven the development of sophisticated deep learning (DL) architectures, and more 49 
specifically, convolutional neural networks (CNN’s). Innovations in CNN architecture has enabled 50 
multiscale contextual detection of features within a scene (Chen, et al., 2017). This has led to a surge of 51 
interest in state-of-the-art CNN applications to classify land with semantic segmentation (Hoeser and 52 
Kuenzer, 2020; Tsagkatakis, et al., 2019). CNN’s been hugely successful  when used on very high-53 

resolution imagery ( < 1 m × pixel), with reported overall accuracy scores that exceed 99% (Talal, et al., 54 

2018; Chen, et al., 2018). CNN’s have been less successful on medium resolution imagery, achieving 55 
segmentation results ranging from 84% to 97% overall accuracy (Isikdogan, et al., 2017; Wang, et al., 2020; 56 
Wieland and Martinis, 2020). Medium resolution imagery contributes to the majority of land mapping 57 
activities due to their typically higher spatial and temporal resolution, highlighting a need for further 58 
development within this field (Belward, A. and Skoien, J., 2015).  59 

Studies tend to be localized to specific geographic regions and have benchmarked CNN predictions against 60 
a small group of spectral water segmentation indices, most often Normalized difference water index 61 
(NDWI) and Modified Normalized Difference Water Index mNDWI (Isikdogan, et al., 2017; Wang, et al., 62 
2020; Guo, et al., 2020). This study seeks to determine how effective CNN’s are in on a global scale, and 63 
if CNN’s are able to outperform a wide range of spectral methods. Regarding the use of machine learning 64 
(ML) for water mapping, Land Remote-Sensing Satellite (Landsat) imagery was used in a ML framework 65 
in Nepal (Acharya et al., 2018, 2019) and China (Jiang et al., 2018), where the latter assessed also the 66 
performance of the surface water extraction for the entire scene. While the subpixel surface water coverage 67 
in urban environments was object of investigation in Sun et al. (2017), and a focus on detection of subpixel-68 
scale inundation was proposed by Jones (2019). 69 

Regarding CNN for Remote sensing classification, a recent increase in the output of literature could be seen 70 
by a systematic search carried out in Scopus; the query included title abstract and keywords, (“water  AND 71 
segmentation  AND with  AND convolutional  AND neural  AND networks”)  and it was limited for document 72 
type (articles and reviews) and subject area earth and environmental sciences, resulted in 66 research paper 73 
between the 2017 and 2020. Out of this papers (Wieland and Martinis, 2020) used CNN and Sentinel-2 74 
multispectral imagery to describe a methodology to map large-scale surface water change after drought in 75 
Germany. Hughes et al., (2020) used the CNN for classify Synthetic Aperture Radar (SAR) imagery. 76 

The first water separation index developed for a multispectral sensor was the (NDWI (McFeeters, 1996). 77 
The index was built initially for a Landsat Thematic Mapper (TM) and uses the Near Infrared (NIR) band 78 
and Green band to delineate open water features, excluding soil and terrestrial vegetation. There are 79 
significant challenges associated with mapping shallow water due to shadow from large physical structures 80 
from built-up areas. Xu, (2006) modified the NDWI with mNDWI, replacing the NIR band with short-81 
wavelength infrared (SWIR) band to better partition built-up areas. The resolution performance of mNDWI 82 
is limited by the typically lower resolution of the SWIR band. The mNDWI also produces a higher 83 
occurrence of false positives in shadow areas, such as cloud shadow, or on dark surfaces such as roads. 84 



Feyisa et al. (2014) addressed this shadowing problem with two automated water extraction indices: 85 
AWEInsh and AWEIsh, optimized for environments with no shadow and shadow. The AWEIsh removes 86 
shadow pixels, while AWEInsh has been designed specifically for urban areas. An alternative method was 87 
proposed by Mishra and Prasad (2015) to improve detail the detection of shallow water. This was achieved 88 
simply through the addition of an index using blue and NIR band. Jain, et al. (2020) built upon I, with PI, 89 
demonstrating a reduction in noise with the SWIR band instead of the NIR band. Errors often occur from 90 
spectral diversity within the water. Turbid water has higher reflectance in the NIR and above bands due to 91 
high concentrations of suspended sediment. This can be corrected by integrating the normalized difference 92 
built-up (NDBI) index (Zha, et al., 2004). False negatives can occur from water bodies that contain high 93 
concentrations of phytoplankton (Chen, et al., 2015). This can be corrected using the normalized difference 94 
vegetation index (NDVI) (Tarpley, et al., 2015). Table 1 summarizes all SIs described in this literature 95 
review.  96 

Table 1: A summary table of all Spectral Indices related to water segmentation. 97 

Indices Equation Merit Limitation Reference 

NDWI (𝜌Green - (NIR)) / (𝜌Green + (NIR)) NIR channel has higher 

resolution capabilities that 

other sensors. 

Less capable of delineating between 

built-up areas and water. 

(McFeeters, 1996) 

mNDWI (𝜌Green – (SWIR1)) / (𝜌Green + (SWIR1)) Use of the SWIR band 

offers greater contrast 

between built-up areas and 
water bodies. 

The SWIR bands are less capable at 

higher resolutions.  

Typically produces false positives on 
roads, shadows and dark surfaces. 

(Xu, 2006) 

AWEInsh 4  (𝜌Green – (SWIR1)) – 0.5  (NIR) + 2.75  

(SWIR2) 

Capable of delineating 

water and dark surfaces 
that occur from shadow in 

built up urban areas 

Typically produces false positives on 

roads, shadows and dark surfaces. 

(Feyisa, et al., 2014) 

AWEIsh (𝜌Blue + 2.3 𝜌Green - 1.5  ((NIR) + 

(SWIR2)))  /  ((𝜌Green + (NIR) + (SWIR1) + 

(SWIR2)) 

Removed shadow pixels.  High albedo surfaces such as snow, 

white roofs and crop-coverings can 

produce false positives.  

(Feyisa, et al., 2014) 

I (𝜌Green – (NIR)) / (𝜌Green + (NIR)) +  

(𝜌Blue – (NIR)) / (𝜌Blue  + (NIR)) 

Improves the detail of 

shallow water detection. 

Excess spectral noise. (Mishra and Prasad, 

2015) 

PI (𝜌Green – (SWIR1)) / (𝜌Green + (NIR)) +  

(𝜌Blue – (SWIR1)) / (𝜌Blue + (NIR)) 

Noise reduction resulting 
from SWIR use. 

SWIR bands are less capable at higher 
resolutions.  

(Jain, et al., 2020) 

NDBI ((SWIR1) – (NIR)) / ((SWIR1) + (NIR)) Identifying built up areas. 

Capable of isolating 
narrow water bodies.  

Only applicable in areas of dense  

Noise occurs from any vegetation.  

(Zha, et al., 2004) 

NDVI ((NIR) - 𝜌Red) / ((NIR) + 𝜌Red) Can be used for 

calibrating against high 
water phytoplankton 

content. 

Water bodies with low reflectance in 

both red and NIR can produce false 
positives.  

(Tarpley, et al., 2015) 
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The rationale of this work is to develop a widely usable application Copernicus Sentinel-2 multispectral 100 
and true-color imagery, Red, Green and Blue (RGB) composite, for selected sites will be accessed and 101 
labelled manually, existing spectral algorithms will be fine-tuned to generate benchmarks that represent the 102 
optimal capabilities of spectral water segmentation methods, sites containing complex and diverse 103 
waterbodies were selected. This study also investigates the potential of geographically localizing CNN’s 104 
with the use of smaller subsets of data through transfer learning. The results of this study hope to contribute 105 



to the development of automated water segmentation tools to streamline access to earth observation 106 
analytics.  107 

The aim of this work is twofold: i) Determine if water segmentation using CNN’s on Sentinel-2 row 108 
imagery can outperform multispectral water segmentation indices and, ii) determine if transfer learning 109 
with small geographically localized datasets can improve CNN water segmentation's performance in 110 
specific regions.   111 

2. Material and methods 112 

2.1 Data Preparation 113 

Suitable areas of interest were selected using google earth imagery. Satellite data from the sites was 114 
downloaded from the Sentinel-hub API and labelled. Test sites from Florida, New York and Shanghai 115 
were set aside for testing.  116 

As part of the Copernicus programme of the European Commission (EC), the European Space Agency 117 
(ESA) has launched the Sentinel-2 constellation (Drusch et al.,2012). The Copernicus programme aims to 118 
enable atmospheric, land and marine environment monitoring, climate change research, emergency 119 
management, and support security. The constellation consists of two satellites, 2A and 2B (Drusch, et al., 120 
2012). The purpose of the Sentinel-2 mission is to monitor global land surfaces and coastal waters 121 
continuously. The Sentinel-2 constellation systematically acquires imagery between −56° to 84° latitude. 122 
Sentinel-2 is sun-synchronous at 786 km altitude with 14 + 3/10 revolutions per day. The Sentinel-2 123 
satellites are equipped with filter-based push-broom imager multispectral (MSI) sensors. The bands at 10 124 
m resolution are the blue (458 to 523 nm), green (543 to 578 nm), red (650 to 680 nm) and near-infrared 125 
(NIR) (785 to 900 nm). There are 6 bands of 20 m spatial resolution, four of which are narrow bands (689 126 
to 713 nm, 733 to 748 nm, 773 to 793 nm, 855 to 875 nm), primarily used for vegetation 127 
characterisations, and two SWIR-1 (1565 to 1655 nm), SWIR-2 (2100 to 2280 nm) used for detecting 128 
clouds, snow and ice and vegetation moisture measurements. There are 3 bands of 60 m spatial 129 
resolutions: aerosols (433 to 453 nm), important for analysing the oceanic ecosystem and water vapour 130 
(935 to 955 nm) Shortwave infrared for Cirrus detection (1360 to 1390 nm); these bands are used for 131 
atmospheric corrections (Gascon, et al., 2017). The Sentinel-2 scenes were accessed using the Sentinel-132 
hub Web Coverage Service (WCS). 133 

The Sentinel hub application programming interface (API) was used to source all data used within this 134 
study. The API enabled programmatic processing and integration of satellite data into a Python 135 
environment. The data is made available through two different levels: Level-1C (L1C) and Level-2A 136 
(L2A). L1C corresponds to top-of-atmosphere (TOA) observations, while the L2A is an atmospherically 137 
corrected bottom-of-atmosphere (BOA) product. Specific layer configurations were set up to generate the 138 
data. Bands 1 to 12 were sourced from both L1C and L2A products and corresponding true-colour 139 
composite were accessed for each selected scene. 140 

2.1.1 Site Selection and Data Acquisition 141 

 142 



 143 

Figure 1. Flowchart to show the stages of model training and proposed water segmentation index development. 144 

The workflow is summarised in a flowchart (Figure 1). Sites were identified with the aid of the google 145 
earth imagery platform. Areas of heavily built-up and complex sea to land interfaces or locations with 146 
densely packed diverse inland water bodies were selected. The training data was selected from the 147 
Netherlands, Osaka, New York, and Florida (Figure 2). The Sentinel-hub EO Browser was used to quick 148 
search for suitable acquisition dates. From selected sample sites and acquisition dates, the 10 m 149 
resolution, 12 multi-spectral layers data and a corresponding true colour reconstruction was requested 150 
from the Sentinel-hub API. Samples downloaded for the labelling purposes were both L1C and L2A 151 
products and were filtered at 0% cloud coverage to prevent any incorrect labelling. The samples intended 152 
for labelling were also selected from summer months, to prevent mislabelling due to periodic snow or ice 153 
within the scene. Once labelled, additional scenes at the same location were downloaded at both the L1C 154 
and the L2A processing levels, with a maximum cloud cover filter of 20%.   155 

 156 



 157 

Figure 2. Labels for all samples used in the training process. a) New York, b) Marseille, c) Rotterdam, d) Osaka, e) 158 
Florida region, d) Shanghai and surrounding region. 159 

 160 

Every sample used in the training process and for evaluation purposes was labelled by photointerpretation 161 
and validated using at least 3 images throughout the year. The labelling process was aided by photoshop 162 
tools, primarily the ‘magic wand’ tool. The magic wand tool accepts a colour value of the selected pixels 163 
and expands the selection area to all neighbouring pixels of a similar colour value to build the “Region of 164 



Interest” ROI.  Large water bodies with homogenous colour could be quickly labelled, however scenes 165 
containing variable water texture required a more fragmented and attentive approach. Small localised 166 
water bodies required meticulous examination to ensure they were not missed. To reduce the number of 167 
falsely identified pixels, the scene was checked against 0.3 m resolution imagery obtained by 168 
miscellaneous sources through google earth imagery at a scale of at least 1:1000.  169 

Once the sites boundaries were defined and were fully labelled, imagery of the same region were 170 
downloaded and matched with the original scene labels. The additional scenes were within the closest 171 
possible time periods to the original image to reduce any changes that may have occurred over time. 172 
These duplicates were chosen to represent the variability in both atmospheric and surface properties that 173 
can be expected within a scene.  174 

The CNN used required input channels with dimensions of 3 × 244 × 244, and labels with dimensions 1 × 175 

244 × 244. To preserve the 10 m resolution of the original samples, the images and the labels were spliced 176 

into sub-samples with dimensions of 224 × 244 (Figure 3). The number of spliced subsets equates to the 177 

number of samples stated for model training.  178 

 179 

 180 

 181 

Figure 3. Input and output of splicing algorithm used to generate 244 x 244 pixel samples compatible with 182 
the DeepLabV3 model.  a) Original true-colour image of Fort Myers, Florida. b) Corresponding true colour 183 

images spliced into 244 x 244 samples.   184 
 185 

2.1.2 Test Sites 186 

Three areas were delegated and preserved specifically as a benchmark for evaluating water mask 187 
predictions. The areas were not exposed to the CNN at any stage of the training process. These three sites 188 
have been displayed in Figure 4 and Table 2. All three test sites cover a mixture of heavily urbanised and 189 

rural land use. The first evaluation area was a 21.96 km × 19.52 km region covering Jacksonville Florida. 190 

The area was chosen due to the extraordinary density of small lakes within the land, and the complex 191 

meandering inland river network. The second area was a 19.52 km × 19.52 km region covering New 192 

York. The area was chosen primarily due to the densely packed tall buildings with extensive shadowed 193 

regions. The third area chosen was a 21.96 km × 19.52 km region of the northern section of Shanghai 194 

City, this area enabled the model to be evaluated on a transient intertidal zone with high levels of 195 
suspended sediment. Additionally, the area has a very high density of both large and small boats. 196 



 197 

 198 
Figure 4. Test sites chosen to test the quality of the model for a) Jacksonville, Florida, b) New York, c) Shanghai. 199 
Each test site depicted in true colour form and corresponding binary classification label. 200 

2.2. Benchmarks 201 

The mIoU values for a range of SIs were calculated. SIs were developed for each test site through 202 
parameterisation with NBDI and NVDI indices.  203 



2.2.1 Development of Spectral Benchmark 204 

To test the performance of the model against benchmark SI, an optimised SI was generated for each 205 
evaluation sample to represent a theoretical best-case performance for what could be achieved through 206 
spectral methods. The process has been summarised in figure 5.  207 

 208 

 209 
Figure 5. Flowchart to describe the stages of development for a spectral benchmark at each test site. 210 

2.2.2 Algorithm tuning  211 

A novel method was developed using regression curves was used to ‘fine-tune’ the algorithms. A 212 
preliminary assessment of the available SI showed that the index I, AWEIsh, and NDWI, demonstrated 213 
the highest-ranking performance for Florida, Shanghai and New York respectively. To ‘fine-tune’ this 214 
algorithm, it was multiplied by the NDBI and NDVI at different scalars. The scalars were plotted against 215 
mIoU results in a regression curve. The optimised scalar values were derived from the regression curve to 216 
produce an optimised SI for each test site. The finalised optimised spectral algorithms have been denoted 217 
in equations 1, 2 and 3.  218 

PWIFlorida =  −0.4 
(SWIR 2)−(NIR)

(SWIR 2)+(NIR)
+

𝜌Green−(NIR)

𝜌Green+(NIR)
+

𝜌Blue−(NIR)

𝜌Blue+(NIR)
+ 0.2 

(NIR)−𝜌Red

(NIR)+𝜌Red
 (1) 219 

 220 

Equation 1: Proposed spectral index for the Florida test scene: PWIFlorida 221 

 222 

PWIShanghai = 0.5 
(SWIR 2)−(NIR)

(SWIR 2)+(NIR)
+ 4(𝜌Green − (SWIR1)) − 

0.25 (NIR)+2.75 (SWIR 2)

𝜌Green+(SWIR 1)+(SWIR 2)+(NIR)
− 3.4

(NIR)−𝜌Red
(NIR)+𝜌Red

 (2) 223 

 224 

Equation 2: Proposed spectral index for the Shanghai test scene: PWIShanghai 225 

PWINew York =  −0.1 
(SWIR 2)−(NIR)

(SWIR 2)+(NIR)
+

𝜌Green−(NIR)

𝜌Green+(NIR)
+

𝜌Blue−(NIR)

𝜌Blue+(NIR)
+ 0.3 

(NIR)−𝜌Red
(NIR)+𝜌Red

 (3) 226 

 227 

Equation 3: Proposed spectral index for the New York test scene: PWINewYork 228 

 229 

2.2.3 Benchmark Algorithm Threshold Optimisation 230 

The optimum threshold value for the benchmark water indices was determined by plotting the result of 231 
the probability density function of pixel intensity values of the proposed water index. This enabled visual 232 
inspection of the distribution of pixel intensity. The segmentation threshold was chosen by visually 233 
identifying the lowest point between the two intensity peaks. This was performed iteratively in unison 234 
with the algorithm tuning step (Figure 6). 235 

 236 



 237 

 238 

Figure 6. Distribution plots to show the results of the probability density function of pixel intensity values 239 
of the proposed water index for a) Florida, b) New York, c) Shanghai. Includes indication of the values of 240 
optimal thresholds. 241 

Table 2: Summary table for test site data 242 

 Jacksonville Florida New York Shanghai 

Coordinates (WGS84) -81.761727, 30.241694,  

-81.507889, 30.454348 

-73.957111, 40.717802,  

-73.703274, 40.930456 

120.69626, 30.873884, 

120.950097, 31.086538 

Sample features  Small densely distributed lakes and 

urban water bodies. 

Narrow, convoluted, intertidal rivers. 
Variable water texture and 

reflectivity.  

Densely packed tall 

buildings and with extensive 

shadowing. 

Large intertidal zone with complex 

tributaries and patched of sediment 

rich water. 
Variable water texture and 

reflectivity.  

Dimensions 2196 pixels × 1952 pixels  

21.96 (km) × 19.52 (km) 

1952 pixels × 1952 pixels  

19.52 km × 19.5 2km 

2196 pixels × 1952 pixels  

21.96 km × 19.52 km 

Product L1C (BOA) L1C (BOA) L1C (BOA) 

 243 

 244 



2.3. Image Segmentation and CNN  245 

2.3.1 Semantic segmentation  246 

The semantic segmentation refers to the process of making pixel-wise predictions for a given image  247 
(Long, et al., 2015). The potential methods of scene classification have been depicted in figure 7. 248 
Semantic segmentation differs from image recognition, object detection and instance segmentation in that 249 
every pixel in the image is given a classification, in this case, black pixels represent planet earth, while 250 
pink pixels in. For EO classification tasks, semantic segmentation is the classification method of choice, 251 
due to their applicability to land surface classification and change detection tasks (Jain, et al., 2020; 252 
Hoeser and Kuenzer, 2020).  253 

 254 

 255 

Figure 7. Depiction of various computer vision classification tasks. a) Object Detection, b) Object Localisation, c) 256 
Instance Segmentation, d) Semantic Segmentation. 257 

 258 

2.3.2 Evaluating Segmentation 259 

The similarity of the segmentation prediction and ‘ground truth’ indicates the quality of the prediction. 260 
Many evaluation criteria have been proposed to evaluate the quality of the performance of a given 261 
segmentation method. Intersection over Union (IoU) and F1-scores are the two most frequently used 262 
metrics of evaluation for computer vision semantic segmentation tasks. All the metrics used within this 263 
study have been outlined in table 3. 264 

IoU computes a ratio between the intersection and the union of the prediction and the ground truth. This 265 
returns a value between 0 and 1. A value of 1 indicates a segmentation result that perfectly matches the 266 
ground truth (Figure 8). 267 

 268 

 269 

Figure 8. Visualised formula for the computation of the intersection over union (IoU) metric. 270 

Where more than one class exists, the mean Intersection over Union (mIoU) can be calculated by taking 271 
the mean of the IoU values across all the classes (Garcia-Garcia, et al., 2018). 272 

The F1 score is a statistical metric for evaluating classification that represents the harmonic mean 273 
between the precision and recall.  The metric returns a result between 0 and 1, where 1 indicates both the 274 
precision and the recall was perfect (Sasaki, 2007).  275 



It is important to note that there is no metric that perfectly represents the quality of a semantic prediction. 276 
The IoU penalizes instances of incorrect classification more than the F1-score. Therefore, a lower IoU 277 
score can be expected.  278 

Table 1: Table to describe metrics used within this thesis. 279 

Metric Description Formula 

Total number of classes Number of classes defined, (2 for a binary task). K 

True Positive Sum of correctly identified water pixels. TP 

True Negative  Sun of correctly identified non-water pixels. TN 

False Positive   Sum of pixels incorrectly identified as water  FP 

False Negative   Sum of pixels incorrectly identified was non-water FN 

Precision (P) The proportion of water detected water pixels TP

TP + FP
 

Recall (R) The proportion of ground truth water pixels detected TP

TP + FN
 

F1 Score  The harmonic mean between the precision and recall 
2 ×

𝑅 × 𝑃

𝑅 + 𝑃
 

Intersection over union 

(IoU)  
The ratio between the intersection and the union of the predicted 

segmentation and the ground truth.  
TP

TP + FP + FN
 

Mean Intersection over 

Union (mIoU) 

The mean of the IoU values across all the classes 
1

𝐾
∑ IoU𝑘  

𝐾

𝑘=1

 

 280 

2.3.3 Choice of Model: DeepLabV3 281 

A CNN that is tasked with the segmentation of these water bodies must have the capability to learn 282 
features that are spatially invariant and complex in nature. Based on a review of existing architectures for 283 
semantic segmentation, a naïve decoder architecture was chosen over an encoder-decoder. The results 284 
reported by Guo, et al. (2020) in particular showed that the models that used bilinear upsampling were 285 
better suited to water segmentation tasks. The model chosen for this task was the DeepLabV3-ResNet101 286 
model (Figure 9). This is a state-of-the-art CNN with that is currently ranked the third highest performing 287 
network on the PASCAL-VOC 2012 test dataset for semantic segmentation and the second highest 288 
performing naïve decoder (Hoeser and Kuenzer, 2020). The segmentation of water bodies is possible 289 
primarily due to the atrous spatial pyramid pooling section of the network combined with 6.091 × 107 290 
trainable parameters, enabling the CNN to understand features at depth, across multiple scales.  291 



 292 
Figure 9. Model training flow chart. 293 

 294 

2.3.4 Models 295 

This study presents four models that were trained and evaluated within this study (figure 7), train: 296 
DeepLabV3 was retrained with the 33,331 samples collected in step one.  297 

1. DeepLabV3_Global:  298 
The DeepLabV3 model was loaded in a ‘untrained’ form. The hyperparameters were adjusted and the model 299 
was retrained with all 33,311 training samples. Intended for water segmentation tasks independent of 300 
location.  301 

2. DeepLabV3_Florida:   302 
DeepLabV3_global was retrained with 2314 samples from the state of Florida. intended to complete water 303 
segmentation tasks in Florida.  304 

3. DeepLabV3_New_York:  305 
DeepLabV3_global was retrained with 1912 training samples within New York and Pennsylvania. Intended 306 
to perform water segmentation tasks in the New York area. 307 

4. DeepLabV3_Shanghai:   308 
DeepLabV3_global was retrained with 2345 training samples within Shanghai and small surrounding cities. 309 
Intended to perform water segmentation tasks in the New York area. 310 

2.3.5 Dataset Manipulation 311 
 312 
The non-test dataset was randomly split so 80% of the training samples were training data, and the 313 
remaining 20% of the data was validation data. A train-loss and a validation-loss was computed for each 314 
batch. Where the train-loss exceeded the validation loss, the model was considered to be underfitting, and 315 
if they validation loss exceeded to the train loss then the model was considered to be overfitting.  316 

The dataset was augmented to enhance the size, quality, and diversity of the training data set. This acts as 317 
a regularizer to reduce overfitting. Synthetically created duplicates of the training set were created by 318 
combinations of horizontally and vertically flipped images before splicing. Further augmentation was 319 
done with ‘salt and pepper’ noise and by blurring the samples. By training the network on deliberately 320 
noisy data, it was hoped that the model would better generalise when tested on noisy data.   321 

The model hyperparameters were ‘fine-tuned’ to find an optimal trade-off between bias and variance. The 322 
model training was performed on a smaller subset of the dataset containing 1000 samples. The training 323 
loss and validation loss were recorded at each batch and plotted in training logs. The relationship between 324 
train-loss and validation loss was used to fine tune the hyperparameters. The final training 325 
hyperparameters have been summarised in table 4. 326 



Trial runs of model training with learning rates of × 10-2, × 10-3, × 10-4, and × 10-5 were tested. A learning 327 

rate of × 10-3 was chosen for all the training. This learning rate was found to be an optimal trade-off 328 

between large gradient descent step sizes that fail to identify global minima by overshooting, and gradient 329 
descent step sizes cause convergence on local minima and require impractical training time periods.   330 

The number of epochs refers to the number of times an algorithm will train through the entire dataset. 331 
Gradient descent is an iterative optimisation algorithm, therefore, requires more than one epoch. Each 332 
epoch is comprised of at least on batch. The size of a batch is determined by how many training samples 333 
are present within the batch and the number of iterations is defined at the number of batches required to 334 
complete one epoch (Smith, et al., 2017; Masters and Luschi, 2018). Figure 10 demonstrates the trajectory 335 
of the train-loss and validation-loss outputs when a model is trained for too many epochs. Each model 336 
was trained for between 60 and 90 epochs. At a specific point during the training process, the validation 337 
loss would start to increase. This was the indicator that the model was overfitting to the training data. This 338 
point was identified, and the model was configured to stop training at the identified epoch (Figure 10). 339 
The loss function used for the model was mean squared error (MSE). 340 

 341 

 342 

 343 

Figure 10. Visual representation of the how the optimal training epoch is chosen. 344 

2.4. Transfer Learning 345 

The resulting model from step three was retrained three times with smaller subsets of data from Florida, 346 
New York and Shanghai.  Once the DeepLabV3 Global was successfully trained and evaluated, the model 347 
was loaded with the weights and re-trained with the smaller region-specific datasets. The Florida samples 348 
made up of sites limited to the state of Florida, the New York samples were limited to the sites within the 349 
State of New York and Pennsylvania. Shanghai training samples were limited to Shanghai and 350 
neighbouring cities Suzhou and Nantong.  351 

Table 4: Summary of Model Hyperparameters, all parameters were set using the validation score. 352 

Model name Optimiser Learning 

rate 

Loss 

function 

Number of 

training 

sample 

Epochs 

stop 

Max epoch Training-

validation 

split 

Batch size 

 

DeepLabV3 

Global 

 

 

Adam 

 

1 × 10-3 

 

MSE 

 

33331 
 

10 

 

60 
 

80/20 

 

20 

DeepLabV3 

Florida 

Adam 1 × 10-3 MSE 

 

2314 25 90 80/20 20 

DeepLabV3 

New York 

Adam 1 × 10-3 MSE 

 

1912 25 90 80/20 20 

DeepLabV3 

Shanghai 

Adam 1 × 10-3 MSE 

 

2345 25 90 80/20 20 



 353 

 354 

 355 

2.5. Model Evaluations 356 

The trained models were used to generate water mask predictions for each test site. The predictions were 357 
compared to the ground truths and the water mask predictions made using the SIs developed in step two. 358 
The predictions were quantitatively and qualitatively analysed. 359 

The evaluation of a semantic segmentation output is conventionally done using metrics. However, the 360 
evaluation can benefit from a parallel qualitative analysis to visually identify the relationships and 361 
patterns that may exist. 362 

To evaluate quantitatively the CNN’s performance against spectral water segmentation methods, the F1-363 
Scores and mIoU results were computed for all the CNN and SI predictions on all three test sites. Each 364 
metric was calculated by comparing the prediction to the manually generated ground truths. Comparisons 365 
are made between the CNN’s and the SI benchmark. 366 
To determine whether transfer learning improved the results with respect to a specific region, the 367 
performance of DeepLabV3_Florida, DeepLabV3_New_York and DeepLabV3_Shanghai was compared 368 
to DeepLabV3_Global for each test site.   369 

Qualitative observations were made about the overall prediction quality and how the CNN’s responded to 370 
contextually dependent features. Special attention was focused on transient features such as boats and 371 
intertidal zones or wetlands. This was achieved by visually identifying specific sources of false positives 372 
and false negatives for all the segmentation methods. The characteristics that were exclusive to each 373 
method or common to both methods were noted. 374 

It is important to note the following assumptions made within this study: 375 

1. The evaluations made within this study are made on the assumption that the test sites were labelled within an 376 
error margin of 10 m (1 pixel). The use of high-resolution third-party validation data combined with a manual 377 
pixel-wise classification enabling accuracy to be maximised, however there is no existing benchmark to 378 
validate the accuracy of the test site labels. 379 

2. The additional scenes used to expand the data, was assumed to have equal water body limits as the original 380 
labelled sample. 381 

3. The spectral benchmark algorithms presented within this study are assumed to be the best possible 382 
representation of what can be achieved using SI.  383 

3. Results 384 

 385 

3.1 Test Site: Jacksonville, Florida 386 

The results of the segmentation predictions for DeepLabV3_Global, DeepLabV3_Florida and, PWIFlorida 387 
have been displayed in Figure 11 and table 5. All SIs performed better than the CNN predictions (Figure 388 
12). The mIoU results for DeepLabV3_Global, DeepLabV3_Florida and the PWIFlorida were 0.913, 0.918, 389 
0.93, respectively with F1-Scores of 0.923, 0.927, 0.943, respectively. Retraining DeepLabV3_Global on 390 
the 2314 sample Florida dataset increased the mIoU result and F1-Score by 0.004 respectively. 391 



Predictions made on the Jacksonville Florida test site yielded the lowest segmentation performance of all 392 
the test sites for all segmentation methods.   393 

 394 

 395 

Figure 11. Bar chart to compare the F1-Score and the IoU scores for all water segmentation methods for test site 396 
Jacksonville Florida. 397 

Table 5: Florida Segmentation Results, the best performing  398 

 mIoU F1 Score 

DeepLabV3_Global 0.91759 0.9268 

DeepLabV3_Florida 0.9268 0.9353 

PWIFlorida 0.9346 0.9426 

 399 

Both DeepLabV3_Global and DeepLabV3_Florida identified all the boats (supplemental materials figure 400 
1) within the scene as water, however both CNN’s were unable to segment the protruding structures such 401 
as pontoons, jetties and harbours. The boundaries were spatially consistent but appeared to be generalised.  402 

The PWIFlorida predictions were sharper around the land-sea interface. However, large sediment-rich water 403 
in bays, inlets, and rivers as land was segmented as land.   404 

In the case of DeepLabV3_Global small sections of false positives occurred in areas of forest vegetation. 405 
This error was reduced by retraining on the local dataset, and therefore not present in the 406 
DeepLabV3_Florida prediction, however sections of false negative predictions occurred larger water 407 
bodies where they had not occurred in the DeepLabV3_Global predictions. For example, a section of 408 
water at the mouth of the estuary, classified as land by DeepLabV3_Florida.  409 

A common characteristic of all the predictions was the misidentification of riverine wetlands and failure 410 
to identify narrow ( < 10 m) rivers and small ( < 30 m) water bodies.  411 



 412 

 413 
Figure 12. Plots to compare segmentation results of the DeepLabV3 Global Model trained on all 33,311 training 414 
samples, the DeepLabV3_Florida model retrained on imagery from the surrounding area and the PWIFlorida 415 
spectral index, fine-tuned specifically for the test site. The mask has been overlaid on the original true colour 416 
sample at 83% opacity. 417 

3.2 Test Site: New York 418 

The results of the segmentation predictions for DeepLabV3_Global, DeepLabV3_New_York and the 419 
PWIFlorida have been displayed in Figure 13 and table 6. The CNN’s were outperformed by all SIs with the 420 
exception of the index I and AWEIsh (Figure 14). The mIoU results for DeepLabV3_Global, 421 
DeepLabV3_New_York and the PWINewYork predictions were 0.969, 0.975, 0.976 respectively with F1-422 
Scores of 0.978, 0.982, 0.983 respectively. The quality of the water segmentations in the New York test 423 
site were best of all the test sites, for all segmentation methods. 424 

 425 

Figure 13. Bar chart to compare the F1-Score and the IoU scores for all water segmentation methods for test site 426 
New York. 427 

Re-training of DeepLabV3_Global to samples local to New York increased the mIoU result and F1-Score 428 
by 0.006, 0.005 and respectively, this was the largest improvement of all the test sites. 429 

Table 6: New York: Segmentation Results 430 

 mIoU F1 Score 

DeepLabV3_Global 0.969 0.978 

DeepLabV3_New_York 0.975 0.982 

PWINewYork 0.976 0.983 



 431 

DeepLabV3_Global predictions in New York mirrored those of the Florida test site with very large false 432 
positive occurring over the forest areas, particularly in Van Cortlandt Park. This was reduced in the 433 
DeepLabV3_New_York predictions by retraining on localised imagery.  434 

Both DeepLabV3_Global and DeepLabV3_New_York were unable to accurately label sections of river 435 
that were less than 30 m wide. The CNN’s generalised across complex sections of the land-water 436 
interface, which mirrored the Florida test site results.   437 

The DeepLabV3_New_York prediction demonstrated a reduced ability to detecting bridges and features 438 
compared to the DeepLabV3_Global prediction. 439 

 440 

 441 

Figure 14. Plots to compare segmentation results of the DeepLabV3 Global Model trained on all 33,311 training 442 
samples, the DeepLabV3_New York model retrained on imagery from the surrounding area and the PWINewYork 443 
spectral index, fine-tuned specifically for the test site. The mask has been overlaid on the original true colour sample 444 
at 83% opacity. 445 

3.3 Test Site: Shanghai 446 

The results of the segmentation predictions for DeepLabV3_Global, DeepLabV3_Shanghai and the 447 
PWIShangahi have been displayed in Figure 15 and table 7. Both CNN predictions outperformed all SIs 448 
(Figure 15).  The mIoU results for DeepLabV3_Global, DeepLabV3_Shanghai and the PWIShanghai 449 
predictions were 0.952, 0. 953, 0. 951 respectively with F1-Scores of   0.973, 0.974, 0.973 respectively. 450 
The transfer learning process increased the mIoU result and F1-Score by 0.001 respectively, indicating 451 
that the transfer learning process was the least effective in Shanghai than at any of the three test sites. 452 

 453 



Figure 15. Bar chart to compare the F1-Score and the IoU scores for all water segmentation methods for test site 454 
Shanghai. 455 

Table 7: Segmentation Results: Shanghai 456 

 457 

 458 

 459 

 460 

PWIShanghai predictions produced false positives at the 461 
locations of white roofs and solar panels. False negatives in areas of sediment rich water, particularly 462 
around features that are intertidally submersed. The PWIShanghai algorithm was unable to predict at about 463 
5.6 × 105 m2 intertidal island in the middle of the coastal estuarine system, this island was however 464 
identified by DeepLabV3_Global. A zoomed in perspective of this has been displayed in Figure 16. 465 

The contextually dependent features like the boats and the residual turbid water of the boats was mapped 466 
as land by the PWIShanghai index (supplemental materials figure 1). The CNN’s demonstrated a 467 
capability to identify the boats, turbid water and map them as water. This has been demonstrated in closer 468 
detail in Figure 16.  469 

 470 

Figure 16. Plots to compare segmentation results of the DeepLabV3 Global Model trained on all 33,311 training 471 
samples, the DeepLabV3_Shanghai model retrained on imagery from the surrounding area and the PWIShanghai 472 
spectral index, fine-tuned specifically for the test site. The mask has been overlaid on the original true colour sample 473 
at 83% opacity. 474 

A common characteristic of all segmentation predictions was the inability to identifying the narrow, 475 
sediment rich tributaries within the intertidal zone and the piers protruding into the estuary. This result 476 
was common to the CNN predictions of all test sites, Table 8.  477 

Table 8: Results for all water segmentation predictions at all test sites. Numbers in bold are the highest scoring results. 478 

 Florida  New York  Shanghai  

 mIoU F1 Score mIoU F1 Score mIoU F1 Score 

 mIoU F1 Score 

DeepLabV3_Global 0.952 0.973 

DeepLabV3_Shanghai 0.953 0.974 

PWIShanghai 0.951 0.973 



DeepLabV3 Global 0.91328 0.9228 0.96106 0.9719 0.95165 0.9731 

DeepLabV3 Fine Tuned 0.91759 0.9268 0.96873 0.9775 0.95303 0.9738 

PWILOCATION 0.9346 0.9426 0.9759 0.9827 0.9512 0.9731 

NWDI 0.9268 0.9353 0.975 0.9821 0.9456 0.9696 

MNDWI 0.9192 0.9279 0.9605 0.9714 0.9463 0.9701 

I 0.9334 0.9415 0.975 0.982 0.9426 0.9679 

PI 0.9315 0.9398 0.975 0.982 0.9465 0.9702 

AWEInsh 0.919 0.9277 0.9667 0.9758 0.947 0.9704 

AWEIsh 0.9331 0.9413 0.8998 0.8998 0.9477 0.9709 

 479 

Interestingly, despite an improved mIoU and F1-score, the DeepLabV3_Shanghai was less able to 480 
accurately identify islands in the middle of the estuary than DeepLabV3_Global (supplemental materials 481 
figure 2).  482 

4. Discussions 483 

From the obtained results, it was observed that CNN’s are capable of outperforming SIs for water 484 
segmentation tasks. The CNN’s demonstrated an ability to identify contextual features such as boats, 485 
turbid water and sediment rich intertidal water bodies. It was shown in all test cases that re-training the 486 
neural network to localised datasets improved prediction accuracy. This section explains these results and 487 
the associated successes and limitations. The results were placed within the context of existing literature 488 
with additional recommendations for further developments. The potential impact of these results on the 489 
field of earth observation will be discussed.  490 

4.1 DeepLab_Global  491 

The Shanghai test site results showed that the CNN’s were capable of outperforming all available SIs. 492 
This was driven primarily by the intrinsic failures of spectral methods and CNN’s ability to process 493 
context at multiple scales of an image.  494 

The Shanghai test site was characterised by a large intertidal zone, sediment-rich water, and a high marine 495 
traffic volume. Suspended sediment within water bodies increases reflectance in NIR and SWIR radiation 496 
(Pham, et al., 2018). The gradient of reflectance between the VL and NIR and SWIR wavelengths was 497 
reduced causing large misclassification errors in the PWIShanghai predictions in the East China Sea 498 
intertidal zone. The solar panels and white roofs were incorrectly mapped as water, this is likely attributed 499 
to the increased reflectance of VL, which in turn increases the gradient between VL and NIR/SWIR. 500 
SI classify pixels on an individual basis without considering the context of the image. This accounted for 501 
the high quality prediction observed on the  New York test site where the majority of water bodies are 502 
deep and there is a clear water-to-land interface due to the relatively small 0.5 m tidal range (Bowman, 503 
1976). However, transient features such boats and turbid water are classified as non-water bodies. This an 504 
intrinsic error that could not be resolved through spectral methods.  505 
The CNN approach is very different. The CNN’s learned combinations of characteristics that make up a 506 



water body. These include edges, shapes, colour gradients and textural features (Zeiler and Fergus, 2014). 507 
The DeepLabV3 network used ASPP to examine convolutional feature layers with filters at multiple 508 
sample rates and fields of view (Chen, et al., 2017). This enabled the network to capture the various 509 
spatial contexts associated with water detection. The CNN was trained with 33,311 samples, this was a 510 
sufficient volume to develop a deep and rich contextual understanding of combinations of characteristics 511 
to make accurate prediction of sediment rich water bodies, boats and turbid water. The ability of the CNN 512 
to distinguish contextual features was the main driver of success when evaluated against a spectral 513 
methods of water segmentation at the Shanghai test site.  514 

The CNN’s were unable to accurately classify narrow meandering inland rivers, smaller water bodies ( < 515 
3 m) and complex structures protruding into the water. This was most observable in the Florida test case. 516 
The CNN’s had a tendency to generalise across complex features, decreasing the prediction quality. This 517 
accounted for the poor overall segmentation predictions for the Florida test site where an extensive and 518 
complex land-sea interface exists. This was only partially reduced by retraining the model on region 519 
specific subsets of data, implying that the detection capabilities were partially limited by the CNN 520 
architecture. The ‘black box’ nature of deep neural networks makes drawing comparisons between results 521 
and network architecture difficult and speculative. However, it is clear that the ‘smoothing’ effect of the 522 
DeepLabV3 model precludes the model from achieving the same level of pixel-precision that is present in 523 
a SI segmentation. It is important to note that the DeepLabV3 model was built for computer vision tasks 524 
from terrestrial, close-range, side-view perspectives. The overhead perspective of EO imagery results in 525 
clustering and random distribution of features across which is very different from typical computer vision 526 
images.  527 

4.2 Transfer Learning Performance  528 

During the initial training stages, the DeepLabV3_Global model was shown a globally diverse range of 529 
water body typologies. The characteristics of these water bodies are heavily influenced by interdependent 530 
variables such as local geomorphology, weather patterns and human activities. These variables are often 531 
homogenous to a region. As an example, Florida is characterised by a porous plateau of karst limestone 532 
that allows water to move freely forming large wetlands and an extraordinary  number of small lakes 533 
(Beck, 1986). The DeepLabV3_Global model learned the features to predict water bodies at all three sites 534 
based upon the generic characteristics of water bodies. Re-training the network with a small number of 535 
local samples reinforced the correct predications made by the DeepLabV3_Global model, while 536 
extracting characteristics that are specific to the local region and transferred the knowledge into the new 537 
network. This was particularly successful when applied to the New York test site; Large areas of forest 538 
were predicted as water by the DeepLabV3_Global model, but resolved in the DeepLabV3_New_York 539 
model prediction. It could be speculated that the DeepLabV3_Global model had fitted to the green texture 540 
rich water bodies in the Florida dataset and when knowledge was extracted and transferred to the 541 
DeepLabV3_New_York network, the error was eliminated. 542 

In all test cases, the retraining of the networks resulted in some new errors that did not occur in the 543 
DeepLabV3_Global predictions. The most notable, unexpected error was the patch of water identified as 544 
land in the Florida test case.  Deep learning models are known to be robust to label noise that is evenly 545 
distributed across a large dataset, yet highly sensitive to label noise that is concentrated within the dataset 546 
(Karimi, et al., 2020). Errors most likely arose from concentrated label noise within the smaller subsets of 547 
data. This noise would also be amplified in the augmentation process and transferred to the retrained 548 
network.  549 



4.3 Comparisons with other CNN performances.  550 

The Sentinel-2 mission has been in operation since 2015, which is still a relatively short time frame. As a 551 
result of this, the majority of studies covering water segmentation utilised different data sources. It is 552 
difficult to compare the performance of CNN’s across different image resolutions. The most recent and 553 
closest matching study was the segmentation of water bodies within Sentinel-2 imagery exclusively in 554 
Germany by Wieland and Martinis, (2020). The results of the current study marginally improved upon 555 
this with more diverse and challenging urban test sites. The improved results could be attributed to the use 556 
of a more modern and sophisticated CNN that utilises ASPP. The use of complex and contextually rich 557 
training samples could also contribute to the small improvement in segmentation accuracy.  558 

The findings of this study support the growing consensus that CNN’s are becoming more capable than 559 
traditional SIs for land classification tasks. It is widely acknowledged that Deep Learning will be 560 
instrumental to sustainability and automation in the future (Gulati and Sharma, 2020). It can be expected 561 
that the development of network architectures will continue to improve and the subsequently, the quality 562 
segmentation tasks will follow.  563 

4.4 Implications for the field 564 

At a global scale Pekel et al. (2016) showed how long-term changes of water coverage are difficult to 565 
map and represent a societal challenge due to the documented reduction of inland water occurred in the 566 
Middle East, Central Asia, Australia and the USA. This is linked to drought and anthropic factors (Pekel 567 
et al., 2016) and reference therein. The different algorithms reported in the state-of-the-art were based on 568 
ML (Acharya et al., 2019), noise suppression methods used in order to mitigate the effect of landforms 569 
shadows and solid water forms (Jiang et al., 2018, 2020), and model fusion (Wagle et al., 2020).  570 

For a long time, satellite imagery has been expensive and difficult to access for both individuals and 571 
organisations (Turner, et al., 2015). The barrier to entry has dropped significantly in recent years with the 572 
introduction high performance computing systems and large scale cloud- based computing frameworks, 573 
most notably ‘Google Earth Engine’ (GEE) (Gorelick, et al., 2017). However, to achieve reliable, high 574 
quality water mapping with SIs, expertise is required to select and optimise a SI. The CNN’s developed 575 
within this study are easily deployable to cloud-based platforms. Very little skill is required to use a CNN 576 
within a platform like GEE. This could help broaden scope of the possibilities available to individuals and 577 
organisations who wish to use satellite imagery for water management.  578 

SIs generally require EM radiation in the VL and the NIR and SWIR range. This adds a computational 579 
cost for image processing chains and a dependence on satellite sensors' multispectral capabilities. This 580 
study shows that state-of-the-art CNN’s capabilities match and outperform SIs, potentially precluding the 581 
need for NIR and SWIR channel for water segmentation tasks. Alongside a large body of parallel 582 
research, this study could contribute to the development of streamlined satellite processing chains 583 

5. Conclusion 584 

Better results could be achieved through a redesign of the CNN architecture to better suit EO imagery. 585 
This could involve adjusting the dilation rates of the atrous convolution kernels to better suit the clustered 586 
nature of the water bodies. Alternatively, the use of an encoder-decoder network like DeepLabV3+ has 587 
the potential to improve segmentation performance. The incorporation of additional skip connections 588 
from the entry and middle blocks of the DeepLabV3+ encoder has been shown to sharpen segmentation 589 
outputs (Prabha, et al., 2020). Experimenting with this technique could make it possible to detect and 590 
localise very small, narrow and complex water bodies. Some recent studies have swapped RGB input 591 



channels for alternatives (Jain, et al., 2020). The performance of water segmentation with CNNs could be 592 
improved by replacing the RGB channels with band ratios or outputs of an existing spectral water index. 593 

A further enhancement of the transfer learning aspect of this study could involve retraining 594 
DeepLabV3_Global to identify specific water typologies rather than geographic locations. For example, 595 
re-training DeepLabV3_Global on images collected in areas of karst limestone, instead of samples limited 596 
to Florida. CNN’s trained to capture the characteristics of specific typologies would enable broader usage 597 
than a CNN retrained specifically to geographic location.  598 

This study has shown that CNN’s are an effective tool for the segmentation of water bodies in medium 599 
resolution satellite imagery. This was done by training the DeepLabV3-ResNet101 network with 600 
manually labelled Sentinel-2 imagery.  601 

Three main conclusions can be made based upon this research:  602 

i) CNN’s can be applied to medium resolution true-colour satellite imagery to effectively map water 603 

bodies on a global scale.     604 

ii) Water segmentation using CNN’s on medium resolution true colour satellite imagery can 605 

outperform multispectral water segmentation indices.  606 

iii) Transfer learning with small geographically localised datasets can improve the performance of 607 

CNN water segmentation in specific geographic regions.   608 

Further developments of the study could include adjusting the network to improve segmentation 609 
sharpness and feature localization in EO imagery. Results could be improved by replacing the RGB input 610 
channels with alternatives such as band ratios or SI outputs. Additionally, the model presented within this 611 
study could be ‘fine-tuned’ for specific water body typologies.   612 

The results of this study could help broaden and streamline the use of EO imagery for water management 613 
by improving the efficiency of EO processing chains and lowering the skill barrier. 614 
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