
1 

 

Multivariate Time Series Modelling for  

Urban Air Quality 
 

Hajar Hajmohammadia,*1and Benjamin Heydeckera 

 

a Centre for Transport Studies (CTS), Department of Civil, Environment and Geomatic Engineering, 
University College London, Gower Street, London, UK  

 

 

Abstract: We introduce a spatio-temporal model to represent development of atmospheric 

pollution in an urban area. An important element of this is that recorded measurements are 

often incomplete which undermines time-series approaches. We identify the multiple 

imputation by chained equation (MICE) method as effective to complete data sequences 

synthetically. Following on from this, we develop a vector autoregressive moving average 

(VARMA) model for the spatio-temporal development of atmospheric pollution in urban areas. 

This model was fitted to hourly measurements of four pollutants (NO, NO2, NOx and PM10) for 

the whole of the calendar year 2017 at 30 stations across London, completed by MICE as 

required. We show by cross-validation that the VARMA model is more effective than other 

formulations, including the Kriging method of spatial interpolation, and seasonal ARMA 

models for individual stations with either daily or weekly trends. The resulting model can be 

used for prediction of air quality in different periods and as the basis for assessment of policy 

interventions such as increasing vehicle emission standards, and traffic management and 

control policies such as low and ultra-low emission zones. 
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1. Introduction 1 

Air pollution is largely known as a crucial issue for management and mitigation which is 2 

responsible for over 8.5 million deaths annually worldwide (Orach et al., 2021). A wide range 3 

of research has established the strong adverse association between air pollution and public 4 

health, such as increases risk of hospital admissions for patients with asthma (Pfeffer et al., 5 

2020), as well as negative impacts on anthropogenic ecosystems (Ochoa-Hueso et al., 2017) 6 

and climate (Shindell et al., 2009).  7 

In London, several regulations and policies have been made in the road transport sector, 8 

which is recognised as a major source of urban air pollution, to improve air quality. These 9 

policies include establishing a low emission zone (LEZ) in 2008 and an ultra-low emission 10 

zone (ULEZ) in 2019. These zones in London restrict toll-free access to vehicles that comply 11 

with Euro 4 (petrol), Euro 6 (diesel), or better standards. However, concentrations of 12 

atmospheric pollutants such as Nitrogen dioxide (NO2) in several parts of London still exceed 13 

the annual mean EU Limit Values of 40 gm-3 (Air Quality Standards, 2009). Figure 1 shows 14 

the annual average NO2 concentration in London in 2016 (London Environment Strategy, 15 

2018). As is clear from this, most of the areas within and close to central London, as well as 16 

major roads to central London, exceed the EU limit.  17 

While controlling air pollution is a costly long-term process, the impacts of different policies on 18 

air quality could be investigated relatively easily by modelling air quality: In these models, 19 

trends in pollutants, effective factors and interventions are investigated for predicting the future 20 

state of air quality.  21 
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 22 

Figure 1: Annual average NO2 concentrations in 2016 in Greater London (London Environment Strategy, 2018) 23 

Several different statistical modelling approaches have been applied at varying temporal and 24 

spatial resolutions of air quality dataset. These range from a simple autoregressive moving 25 

average (ARMA) model (Kumar and Goyal, 2011), a non-stationary time series analysis for 26 

daily and weekly logarithmically transformed NO concentrations (Romanowicz et al., 2006), 27 

and multiple linear regression (Donnelly et al., 2015) to more complicated models such as 28 

hierarchical dynamic linear models of daily values of pollutant concentrations (Shaddick and 29 

Wakefield, 2002) and (Xu et al., 2016; Young et al., 2015). In these models, the spatio-30 

temporal dependencies for different pollutants were developed using a Bayesian approach 31 

(Lee, 2007) and implementation of Markov Monte Carlo simulation (Gamerman, 2006). 32 

However, the study duration and observation sites of these researches were limited.  33 

Deep learning modelling (Schmidhuber, 2015) is another approach implemented by Du et al. 34 

(2019; 2020) and Xie (2017) for predicting air quality in different cities of China. Freeman et 35 

al. (2018) integrated this approach with time series analysis to predict 8 hour averaged surface 36 

EU Limit 

NO2 (gm-3 
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ozone (O3) concentrations in Kuwait. They developed a recurrent neural network (RNN) with 37 

long-short term memory that has around 17000 fitted parameters. 38 

The present study develops a vector autoregressive moving average (VARMA) model for the 39 

spatio-temporal development of atmospheric pollution in urban areas. This model has the 40 

advantage of using a joint vector of hourly observations at multiple stations: we apply this to 41 

data from 28 stations across London. Hence, not only the temporal dependency but also the 42 

relationship between stations for each pollutant species will be investigated. Time series 43 

modelling requires continuous data whilst observed data series typically have breaks for 44 

several practical reasons. To synthesise complete sequences, several methods of imputations 45 

are investigated and compared, among which the multiple imputation by chained equation 46 

(MICE) (Resche-Rigon and White, 2018) method was identified as the best approach for the 47 

present application. The performance of the proposed VARMA model was tested by cross-48 

validation in estimating data at each of a set of reserved sites. The results of this were shown 49 

to be substantially better compared to the performance of a fully-fitted instantaneous spatial 50 

Kriging method.  51 

The rest of the paper is organized as follows: in section 2, the London air quality dataset is 52 

described and tested for regional effect by analysis of variance (ANOVA). Imputation of 53 

missing values by various methods is compared and the preferred MICE method is presented. 54 

Section 3 is devoted to spatio-temporal modelling methodology, including presentation of the 55 

VARMA model, its evaluation and validation. In section 4, the results of fitting the VARMA 56 

model are presented. Section 5 and 6 are devoted to discussion and conclusion, respectively.  57 

2. Data Analysis and Preparation 58 

In this section, the London air quality dataset used in this study is presented, together with a 59 

statistical analysis of its characterises. This includes an analysis of variance (ANOVA) and an 60 

imputation method for estimating missing values in the dataset to complete the time series.  61 
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2.1. London air quality dataset 62 

A total of  30 stations across London were selected with 13 in the central London congestion 63 

charging zone (located within the London inner ring road, thus including the City of London 64 

and the West End), 9 in the remainder of the London low emission zone (LEZ) and 8 in greater 65 

London (outside of the LEZ). Figure 2 shows the location of each station, along with the 66 

boundaries of central London and the LEZ. This dataset contains hourly measurements of 67 

Nitric oxide (NO), Nitrogen dioxide (NO2), oxides of Nitrogen (NOx) and Particulate Matter with 68 

diameter less than 10 micrometres (PM10) for the calendar year 2017 (8760 hours) during 69 

which no major air quality measures were implemented.  70 

 71 
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 87 

Figure 2: Location of the stations across London with their code 88 

These pollution measurements were extracted from the London Air Quality Network (LAQN) 89 

(Environmental Research Group Kings College London, 2016). The code (assigned by 90 
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LAQN), location and pollutant measurement availability of each station are presented in Table 91 

1. 92 

Table 1: London Air Quality Network (LAQN) code, location and data availability in the studied stations 93 

Number LAQN code Location 
Available Measurements 

NO NO2 NOx PM10 

1 WM6 Westminster - Oxford Street ✓  ✓  ✓  - 

2 BM0 Camden - Bloomsbury ✓  ✓  ✓  ✓  

3 IM1 Camden - Holborn (Bee Midtown) ✓  ✓  ✓  - 

4 CT4 City of London - Beech Street ✓  ✓  ✓  ✓  

5 NB1 Westminster - Strand (Northbank BID) ✓  ✓  ✓  - 

6 WM0 Westminster - Horseferry Road ✓  ✓  ✓  ✓  

7 CT3 City of London - Sir John Cass School - - - ✓  

8 MY1 Westminster - Marylebone Road ✓  ✓  ✓  ✓  

9 MY7 Westminster - Marylebone Road FDMS ✓  ✓  ✓  ✓  

10 CD9 Camden - Euston Road ✓  ✓  ✓  ✓  

11 SK6 Southwark - Elephant and Castle ✓  ✓  ✓  ✓  

12 LB5 Lambeth - Bondway Interchange ✓  ✓  ✓  ✓  

13 HK6 Hackney - Old Street ✓  ✓  ✓  ✓  

14 CD1 Camden - Swiss Cottage ✓  ✓  ✓  ✓  

15 IS6 Islington - Arsenal ✓  ✓  ✓  ✓  

16 HG4 Haringey - Priory Park South ✓  ✓  ✓  - 

17 TH2 Tower Hamlets - Mile End Road ✓  ✓  ✓  - 

18 LW4 Lewisham - Loampit Vale ✓  ✓  ✓  ✓  

19 SK5 Southwark - A2 Old Kent Road ✓  ✓  ✓  ✓  

20 LB4 Lambeth - Brixton Road ✓  ✓  ✓  ✓  

21 RI1 Richmond Upon Thames - Castelnau ✓  ✓  ✓  ✓  

22 EA8 Ealing - Horn Lane ✓  ✓  ✓  ✓  

23 BT4 Brent - Ikea ✓  ✓  ✓  ✓  

24 EN5 Enfield - Bowes Primary School ✓  ✓  ✓  ✓  

25 LW1 Lewisham - Catford  ✓  ✓  - 

26 WA2 Wandsworth - Wandsworth Town Hall ✓  ✓  ✓  - 

27 RHG Richmond Upon Thames - Chertsey Road ✓  ✓  ✓  ✓  

28 LB6 Lambeth - Streatham Green ✓  ✓  ✓  ✓  

29 GN4 Greenwich - Fiveways Sidcup Rd A20 ✓  ✓  ✓  ✓  

30 HV3 Havering - Romford ✓  ✓  ✓  ✓  

 94 

The distribution of NO, NO2, NOx and PM10 measurements at each station are presented as 95 

box plots in Figure 3. In this figure, the stations are arranged in increasing order of median 96 
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value, as indicated by the box midlines. A statistical summary of data at each station is 97 

presented in Table 2.  98 
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Figure 3: distribution of pollutant concentrations at different stations: a) NO, b) NO2, c) NOx and d) PM10
  (gm-3) 105 

  106 

(c) station 

N
O
x 

(
g

m
-3
) 

(d) station 

P
M

10
 (


g
m

-3
) 



9 

 

Table 2: statistical summary of NO, NO2, NOx and PM10
  data at each station 107 

Zone Station 

Average (gm-3) Standard Deviation (gm-3) 

NO NO2 NOx PM10 NO NO2 NOx PM10 

Central 
Zone 

WM6 111.33 72.07 242.77 - 78.95 29.51 145.59 - 

BM0 15.44 37.70 61.37 29.38 24.52 18.81 51.87 20.48 

IM1 75.44 74.49 190.16 - 75.00 32.56 143.31 - 

CT4 132.32 79.97 282.85 22.87 153.98 36.60 266.89 13.63 

NB1 114.43 91.74 267.62 - 82.75 34.98 156.88 - 

WM0 - - - 16.63 - - - 12.43 

CT3 15.05 38.04 61.11 22.58 26.68 18.59 54.59 15.32 

MY1 131.73 83.68 285.67 27.41 110.82 37.54 202.18 14.29 

MY7 - - - 24.18 - - - 14.16 

CD9 117.83 83.15 263.84 20.33 95.25 35.67 177.73 11.79 

SK6 11.80 34.11 52.20 19.20 27.66 19.52 57.02 12.15 

LB5 65.04 65.46 165.19 36.78 55.99 27.69 109.89 24.73 

HK6 51.71 57.32 136.59 19.05 41.14 20.88 79.94 9.56 

 Summary*  76.51 64.92 182.27 23.86 70.44 28.32 131.56 14.86 

LEZ 

CD1 56.97 52.70 140.04 20.16 67.26 28.32 126.97 14.82 

IS6 11.32 30.92 48.28 18.09 31.72 20.08 64.62 11.55 

HG4 8.91 24.39 38.05 - 28.40 16.91 55.00 - 

TH2 38.23 48.48 107.10 - 42.55 22.79 83.32 - 

LW4 58.40 53.92 143.46 20.97 52.79 25.09 100.99 18.40 

SK5 33.68 42.44 94.08 21.59 49.33 28.22 99.86 15.52 

LB4 127.19 95.48 290.51 34.55 85.87 39.80 166.66 17.44 

RI1 23.77 31.04 67.48 17.68 41.83 19.41 78.74 11.74 

 Summary* 44.83 47.43 116.16 21.86 49.86 25.05 96.82 14.74 

Greater 
London 

EA8 38.42 44.98 103.89 27.03 49.89 22.18 93.55 17.22 

BT4 96.38 72.42 220.20 32.96 95.43 32.16 173.80 22.21 

EN5 43.27 44.86 111.21 19.01 72.35 25.21 131.03 15.09 

LW1 29.34 43.08 88.07 - 45.11 22.40 87.16 - 

WA2 26.07 39.78 79.76 - 35.06 21.61 71.08 - 

RHG 34.54 36.61 89.56 21.19 54.14 25.07 103.80 14.42 

LB6 16.65 29.66 55.23 25.59 27.68 20.37 58.40 17.29 

GN4 43.34 41.15 107.79 21.16 54.31 24.22 103.90 12.37 

HV3 32.84 40.09 90.44 19.87 48.52 24.26 94.10 14.69 

 Summary*  39.88 43.62 104.79 24.04 53.32 24.10 101.36 16.45 

 Observations 231,326 179,500  

* Summary averages are weighted by the number of observations at each station.  108 
    Summary standard deviations are pooled estimates 109 
 110 

The average of NO in the central London stations is 76.56 gm-3 while it is about 30% and 111 

40% lower at stations in the LEZ and greater London, respectively. Similar spatial variation 112 

occurs in each of NOx and NO2. However, there is also substantial variation among the stations 113 

within each of the zones. By contrast, the average of PM10 does not vary substantially either 114 

within or across zones. The standard deviations of concentration of NO and hence of 115 

combined NOx at stations in the central zone are more variable than in the other zones. The 116 

mean and standard deviations of PM10 values vary little across the stations, showing that this 117 

pollutant is spread more evenly across London.  118 
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2.2. Analysis of variance (ANOVA) 119 

The concentrations of the oxides of nitrogen summarised in Table 2 vary across the three 120 

zones (central London, LEZ and greater London), among the stations within each of these 121 

zones, and over the hours of observation at each of the stations. The question arises naturally 122 

of whether the variation across zones is greater than would be expected given the variation 123 

among stations. If the observations vary across zones are sufficiently large, then allowance 124 

would be appropriate for the zone in which each station is located. Otherwise, the variation 125 

across zones observed in the data can be considered as consistent with the variation among 126 

stations so that no allowance for zone would be justified. 127 

To investigate the variation in air pollution measurements across the zones (central London, 128 

LEZ and greater London), a nested two-factor analysis of variance (ANOVA) with random 129 

effects was performed (Ledolter and Hogg, 2009). In this analysis, the zones are represented 130 

in the upper level, with each station associated uniquely with the zone of its location (hence 131 

the nested structure). The stations are considered as a sample of locations in London so that 132 

measurements at an additional station would be expected to vary similarly. The results of this 133 

analysis for each of the 4 pollutants are presented in Table 3. 134 

The ANOVA procedure compares two estimates of the variance in the observations across 135 

stations. The first is a zone-based estimate 
zM  that is calculated from the sum  of the squared 136 

( 2

zS ) differences between the zonal means and the mean of all estimates: 137 

2

z z zM S=            (1) 138 

where  z  is the degree of freedom associated with the zonal sum of squares. This estimate 139 

is compared with  
sM   that is calculated from the sum 2

sS  of the squared differences between 140 

the observations at the stations and the mean at their respective zone,  allowing for the 141 

residual variation 2

rS  at the stations: 142 

( )2 2

s s rM S S n= −          (2) 143 
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In this expression, n  is the effective number of observation (because some observations are 144 

missing at some of the stations) and is calculated as:  145 

( )
2

1 1 1

1

1

J J J

j j j

j j j

n n n n
J = = =

 
= − 

−  
            (3) 146 

where 
jn (1 < j < 30)  is the actual number of observations at station j, and J  is total number 147 

of stations (30).    148 

The estimate zM  of variance calculated across zones from (1) is compared to the 149 

corresponding estimate sM of variance among stations calculated from (2) in the ratio: 150 

z z sF M M= .          (4) 151 

The probability  P(Fz|H0)  is calculated of a value at least this large arising with the degrees of 152 

freedom (z , n ) under the null hypothesis  H0  that variation across zones arises from that 153 

among stations. This is compared against the critical value for the required level of statistical 154 

significance: if the probability calculated from (4) is less than the critical one, then the null 155 

hypothesis is rejected.  156 

The results of these ANOVAs show that the mean concentrations of each of the three 157 

measures of oxides of nitrogen vary substantially across the zones (central London, LEZ and 158 

greater London), as quantified by the associated sum of squared deviations 2

zS  of the zonal 159 

mean from the mean of all measurements of that pollutant. The resulting estimate zM of 160 

variance across zones calculated from (1) for each of the oxides of nitrogen (NO, NO2, NOx) 161 

is 2-3 times greater than the corresponding estimate sM of variance among stations calculated 162 

from (2), though for the particulates (PM10) these estimates are in reverse magnitude: 163 

z sM M .  However, in each case, the  Fz  ratio for zones calculated from (4) is less than the 164 

critical value at  α=0.05 . Accordingly, the null hypothesis that the variation across zones arises 165 

from that among stations cannot be rejected at this level of statistical significance.  166 
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Table 3: Nested analysis of variance (ANOVA) of NO, NO2, NOx and PM10 (µgm-3) at each station 167 

  
Sum of  
squares  

S2 

Degrees 

of  
freedom  

 

Mean 

square 

M = S2/ 

F P(F|H0) ss 

NO 

Zone 6.53×107 2 3.27×107 2.59 0.095  

Station 3.15×108 25 1.26×107 2876.3 <0.001 39.8 

Residual 1.01×109 2.31×105 4.39×103   n =7967 

Total 1.40×109 2.31×105       

NO2 

Zone 8.25×106 2 4.12×106 1.18 0.323  

Station 8.72×107 25 3.49×106 4843.9 <0.001 20.9 

Residual 1.67×108 2.31×105 7.20×102   n =7967 

Total 2.62×108 2.31×105       

NOx 

Zone 2.89×108 2 1.45×108 2.86 0.076  

Station 1.27×109 25 5.06×107 3329.4 <0.001 79.7 

Residual 3.52×109 2.31×105 1.52×104   n =7967 

Total 5.07×109 2.31×105       

PM10 

Zone 5.15×104 2 2.58×104 0.10 0.909  

Station 5.40×106 20 2.70×105 1099.4 <0.001 6.0 

Residual 4.41×107 1.79×105 2.46×102   n =7457 

Total 4.95×107 1.79×105       

The interpretation of this result is that there is insufficient evidence in the data that the variation 168 

in concentration of the pollutants across the zones exceeds that expected from the substantial 169 

variability among the sites.  170 

The categorical models implicit in this analysis show that for each pollutant a significant 171 

variation in air pollution arises among sites as quantified by the large values of the  F  ratios 172 

for stations  Fs = Ms / Mr . However, only a small proportion of the total sum of squared 173 

variations 2

TS  in the data arises from differences among the stations, with the remainder arising 174 

from variation at the individual stations. This is quantified by the coefficient of determination 175 

(R2) calculated as the proportion of the total sum of squares that is associated with zones and 176 

stations:  177 

2 2
2

2

z s

T

S S
R

S

+
= .          (5) 178 

The resulting values of  R2  are: 0.27, 0.36, 0.31 and 0.11 respectively for NO, NO2, NOx and 179 

PM10
 . These low values of  R2  show that the measured variation is about 3-4 times greater at 180 
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the stations than among them so that other effects including spatio-temporal ones should also 181 

be considered to represent the variation in concentrations of pollutants.  182 

2.3. Imputation of missing values  183 

Missing observations are a common issue in practical data analysis: this presents particular 184 

problems for multivariate time-series analysis in which the series of observations would be 185 

interrupted by any missing values at any time within the series. To address this, various 186 

methods to impute missing values have been devised to complete series synthetically. These 187 

range from simple methods such as assigning the mean or median of each time series (Anzai, 188 

2012; Bishop, 2006); Du et al., 2019), linear interpolation between available observations 189 

during short gaps (Freeman et al. 2018), use of data at the corresponding time on the previous 190 

day during longer gaps (Freeman et al. 2018) to more sophisticated methods such as spline 191 

interpolation (Shaub, 2020) and Kalman filtering (Hyndman and Khandakar, 2008).  192 

In the London air quality dataset analysed here, the proportion of missing values varies across 193 

stations and pollutants. Station LB6 is critical in this respect with 52.5% missing data in PM10, 194 

and 15.7% in each of the oxides of Nitrogen. Across all stations, an average of 11% of the 195 

measurements of PM10, and 5% in each of NO, NO2 and NOx are missing. 196 

To identify a suitable imputation approach to complete the data series, six different methods 197 

were investigated and their results compared. For this comparison, station HG4 was selected, 198 

which has measurements of 3 pollutants (NO, NO2 and NOx) and a low missing data rate 199 

(0.2%). For each variable at this station, 500 observations were selected for use as validation 200 

data using two approaches: 201 

• Single missing gap: 202 

In this approach, a set of 500 successive hourly observations (about 3 weeks) without 203 

any missing values was identified separately for each pollutant. 204 

 205 

  206 



14 

 

• Multiple missing gaps: 207 

Here, multiple gaps with an average of 24 successive observations (1 day of data 208 

monitoring) were selected randomly within the series of each pollutant. The total 209 

number of validation data is still 500, but they are distributed with smaller durations 210 

within the dataset at times when original observations are available at that station. 211 

These two sets of 500 observations were then used as validation data by comparing the values 212 

estimated by imputation methods with the true values. The two approaches for selecting 213 

validation data intervals are illustrated in Figure 4.  214 
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0

10

20

30

40

 215 

Figure 4: NO concentrations (gm-3) in station HG4 from May to Sept. 2017, top: all observations, bottom: validation points 216 
selected by “single” and “multiple” missing gaps 217 

The process of imputation uses available observations, denoted as the set   ,  to estimate 218 

the missing values in the complementary set 
C . We denote an interval throughout which 219 

values of a series  xt  are missing as  I = [a+1, b-1]  between observations  xa  and  xb  at times  220 

t = a  and  t = b  respectively: the imputation method provides estimates for these missing 221 

values in all such intervals and thus completes the series.  The methods for this investigated 222 

here are described in turn. 223 

 224 

 225 

 226 
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I. Linear interpolation  227 

Linear imputation is a simple and convenient method to impute missing values in a univariate 228 

time series (Suresh et al., 2019).  This method applies a constant rate of change between 229 

values that were observed:  230 

( ) ( )b a
t a

b a

x x
x x t a a t b

−

− 
= + −   

 
      (6) 231 

In this linear interpolation, the imputed values are bounded to lie in the interval  [xa, xb]  between 232 

the ones that have been observed. This approach will not bias the mean value of the time 233 

series but will usually give estimates that vary from it, and will also tend to reduce both variance 234 

and covariance. By its nature, it will minimise the rate of change throughout each interval 235 

within which it is applied and so increase serial correlation. 236 

II. Spline interpolation 237 

Spline imputation is an extension of the linear method that fits a smooth curve to the observed 238 

data that is available in     and uses that to estimate missing values. The most widely used 239 

form of spline is cubic (Wood, 2017), which is therefore considered here. The values imputed 240 

for an interval I = [a+1, b-1] are calculated using the cubic function: 241 

( ) ( ) ( )
3 3

0 0

α β
h h

t h h

h h

x t a b t a t b
= =

= − + −         (7) 242 

where the parameters  α  and  β  are calculated to ensure continuity of finite difference 243 

approximations to the first and second derivatives at times  t = a  and  t = b  as well as 244 

throughout the interval  I .  245 

III. Exponentially weighted moving average (EWMA) 246 

The EWMA approach uses values ( )sx s t   up to the time  t  at which is it applied according 247 

to the formula: 248 
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( )

( )

1

1

1 2

1 λ λ

1 λ λ

j

t t j

j

t t

x x

x x



− −

=

− −

= −

= − +


        (8) 249 

with smoothing parameter ( )λ 0,1 . 250 

If no observation  xt-1  is available at time  t-1 ,  then substituting the EWMA estimate 1tx −  into 251 

the recursion relationship gives:  252 

( ) 1 2

1

1 λ λ

.

t t t

t t

x x x

x x

− −

−

= − +

 =
        (9) 253 

Accordingly, values calculated using this approach will be constant and equal to the most 254 

recent value, so the imputed values will be constant throughout the interval  I .  This estimate 255 

will be sensitive to the weighting parameter  λ  through the accuracy of estimation of the first 256 

missing value and the equality of all subsequent missing ones. This approach will not bias the 257 

mean value of the time series but will usually give estimates that vary from it, and will also 258 

reduce both variance and covariance. Because it gives estimates that are constant within the 259 

interval to which it is applied, it will increase serial correlation. 260 

IV. Multiple imputation 261 

The simplest multivariate method uses correlations observed among the components to 262 

estimate deviations of imputed values from their mean (Raghunathan, 2015). Thus let,  263 

( )
( )

( ) ( ) ( )( )
( ) ( )

1

,
: ,

1

, ,
: , ,

μ

σ μ μ

k ksk s
s k s

jk js j ks kj s k s
s j s k s

x

x x




 
 

=

= − −




                 (10) 264 

so that μk
 is the mean of observed values of series  k  and σ jk

 is the sample covariance of 265 

series  j  and  k .  266 

Then the values imputed by this method are: 267 

( )
( )

( ) C

: ,

μ μ σ ,kt k jt j jk

j j t

x x k t


= + −                             (11) 268 
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V. Multiple imputation by chained equation (MICE) 269 

The MICE method (Resche-Rigon and White, 2018; van Buuren and Groothuis-Oudshoorn, 270 

2011; Zhang, 2016) adopts a joint distribution function of the multivariate data 271 

( )1 2, , ...t t t Ktx x x


=x at each time  t .  The multivariate normal (MVN) distribution was used in 272 

the present study, though others could be used in its place. The MICE procedure starts with 273 

initial estimates for missing data ( ) C, ,ktx k t   using the mean value of the observations of 274 

the corresponding quantity: 275 

( ) ( )
( )

( ) C1

,
: ,

0,

,kt ksk s
s k s

n

x n x k t




=

=                         (12) 276 

Based on this extension to the observations, parameters are specified for distributions of the 277 

multivariate mean,  , and covariance matrix, , of the data; parameters ( ) ( ) ( )( ),n n n=θ μ σ  278 

are then drawn from these distributions.  Then the algorithm proceeds with two steps: 279 

Imputation (I) and Posterior (P):  280 

• I-step:  281 

Each missing value ( ) ( ) C, ,ktx n k t   is synthesised by sampling from the specified 282 

distribution with parameters ( )nθ so that: 283 

( ) ( ) ( )( )
( )

( )

( ) ( ) ( )

: ,

C

μ μ σ

σ ,

kt k jt j jk

j j t

kt kk

E x n n x n n

Var x n n k t



  = + − 

  =  


             (13)284 

   285 

 (using previously imputed values for  
jtx   in the right-hand side where  ( ) C,j t  ).  286 

• P-step:  287 

The distributions for the parameters θ  are updated using the observed values 288 

complemented with those imputed in the I-step.  289 
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If updating the distributions of the parameters θ  results in negligible changes, the 290 

algorithm terminates yielding the imputed values from the I-step. Otherwise, the process 291 

continues with the next I-step. 292 

When convergence is achieved, stationary distributions have been achieved. This process 293 

completes the multivariate time series by imputing values where observations are missing, 294 

resulting in statistical distributions that are consistent with the observed data. 295 

These six imputation methods were applied to data from the station HG4, to estimate the 296 

values in the validation intervals. Validation data were reserved from the dataset, then the 297 

effectiveness of each imputation method was evaluated by comparing each of the imputed 298 

values with the corresponding reserved one. The criterion adopted for this was the root mean 299 

squared error (RMSE), e, calculated for the test interval(s) of imputation as:  300 

( )
C

2

C

1
t t

t

e x x


= −


 ,                  (14) 301 

where  
C   is the number of values imputed in the test interval (here 

C  = 500), tx  is the 302 

observed and tx  is the imputed value at time  t . Only a small proportion, about 0.2%, of 303 

missing values outside the test interval in this dataset were imputed in this procedure, and 304 

because no corresponding observed values are available, they were not considered in this 305 

test. The results for each of the imputation methods are presented in Table 4. 306 

Table 4: Root mean squared error  e  for the imputation methods 307 

 308 

 309 

 310 

 311 

 312 

 313 

Imputation method Selection Method 
RMSE e (µgm-3) 
NO NO2 NOx 

Mean 
Single gap 14.21 19.87 21.18 
Multiple gaps 14.21 19.87 21.28 

Linear 
Single gap 4.72 6.73 8.63 

Multiple gaps 3.87 5.80 7.29 

Spline 
Single gap 3.34 5.22 6.58 

Multiple gaps 3.21 5.24 6.40 

Exponentially weighted moving average (EWMA) 
Single gap 3.74 5.52 6.78 

Multiple gaps 3.4 5.23 6.92 

Multivariate 
Single gap 2.23 3.55 5.24 

Multiple gaps 1.83 2.58 3.76 

Multiple imputation by chained equation (MICE) 
Single gap 1.74 2.52 3.65 

Multiple gaps 1.45 2.02 3.41 
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The results of imputation with these methods show that the MICE algorithm works substantially 314 

better than any of the other approaches. In general, the RMSE values for multivariate 315 

approaches are lower than the corresponding ones in the univariate ones. Besides this, when 316 

the missing gap is relatively large (500 successive hourly observations, about 3 weeks), the 317 

value of  e  is greater compared to the case with smaller gaps (24 successive hourly 318 

observations on average, 1 day). Based on these results, the MICE method was adopted to 319 

synthesise complete the multivariate time series in the present study.  320 

3. Methodology 321 

The analysis of variance (ANOVA) presented in Section 2 shows that the majority of variation 322 

in atmospheric pollution measurements arises at each of the stations, with relatively little 323 

difference among them. To investigate the time dependency of pollutant concentrations, time-324 

series analyses are investigated in this section. The time series models developed here are 325 

based on the autoregressive integrated moving average (ARIMA) model, introduced by Box 326 

and Jenkins (Box, 2008) with seasonal extensions. Initial investigation showed that there is 327 

no need for differencing the data series, so that the simpler autoregressive moving average 328 

(ARMA) formulations were pursued. 329 

Two approaches were investigated for modelling atmospheric pollution. In the first one, each 330 

station is modelled independently from the others, with the temporal variation of each pollutant 331 

modelled as a univariate time-series at that station. The second approach includes the spatial 332 

relationship among stations as well as temporal dependency; hence the observations at all 333 

stations are modelled jointly as a vector.  334 

Because the response variable (atmospheric concentration of pollutants) cannot be negative, 335 

the logarithm transformation of concentrations was used as the dependent variable of these 336 

models.  337 



20 

 

3.1. Seasonal ARMA model (SARMA) 338 

SARMA (Wei et al., 2013) is an extension of ARMA models that estimates the univariate 339 

temporal dependency of observations with seasonal trends. The seasonal trend is a repeated 340 

pattern over a specified time period, denoted as  s . In the SARMA, the autoregressive and 341 

moving average orders ( p and q, respectively) represent the non-seasonal trends in the time 342 

series. To represent the seasonal trend, three further parameters are used, which are denoted 343 

as P, Q and s for seasonal autoregressive, seasonal moving average and span of seasonality 344 

(seasonal period), respectively. Based on that, the SARIMA model for time series  xt  can be 345 

expressed in the form: 346 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

1 1

1 1

1 1

1 1

θ

φ

,

,

Q P

Q Si P Si

i i

i i

q p

q i p i

i i

i i

Q q

t tP p

B B B B

B B B B

B B
x

B B

= =

= =

 = +   = − 

 = +   = + 


= 



 

 

                      (15) 347 

where B is the backshift operator (Br xt = xt-r ),   and θ  are the moving average coefficients for 348 

seasonal and non-seasonal trend, respectively. The parameters   and   are the 349 

autoregressive coefficients for seasonal and non-seasonal trend, respectively, and ω  is 350 

normally distributed and uncorrelated white noise.  351 

This model was developed in R version 3.5.2 using package “forecast”(R. Hyndman et al., 352 

2020).  353 

3.2. Vector ARMA model (VARMA) 354 

VARMA models were developed to improve forecast accuracy by using interrelated variables 355 

(Cavicchioli, 2016; Dias and Kapetanios, 2018; Simionescu, 2013). In these models, the 356 

temporal relationship of each variable with the vector of others is estimated.  357 

If  Xt  is a multivariate time series of K- dimensional vectors, then a VARMA model with 358 

autoregressive order  p   and moving average order  q  can be expressed in the vector form:359 

  360 
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( )

( )

( ) ( )
1 1

θ 1 θ φ 1 φ,
q P

q i P si

i i

i i

q

t tp

B B B B

B

B

= =

= + = −

=

 

θ
X ω

φ
                      (16) 361 

where θ  and φ  are  K × K  matrices for autoregressive and moving average coefficients, 362 

respectively, and ω  is a normally distributed white noise vector of dimension  K . 363 

This model was developed in R version 3.5.2 using package “MTS” (Tsay and Wood, 2018).   364 

4. Results 365 

The results of fitting the SARMA and VARMA model to the London air quality, evaluation and 366 

validation the models are presented in this section. The performance of these models was 367 

evaluated using the Bayes Information Criterion (BIC) (Eilers and Möbus, 2011; Pandis, 2016):  368 

BIC 2 log ( )e n m= − +L         (17) 369 

where  m  is the number of free parameters in the model,  n  is the number of observations 370 

and L  is the log-likelihood of the fitted model. Models with smaller values of  BIC  are 371 

preferred, with use of additional parameter justified by sufficient improvement in the likelihood 372 

of the fitted model. This criterion provides a balance between improvement in fit (represents 373 

by increased log-likelihood) and model complexity (represented by the number of parameters 374 

used) whilst respecting the scaling effect of the dataset size (Pandis, 2016).  375 

4.1. SARMA models 376 

To investigate the effects of the seasonal trend for each pollutant type, SARMA models were 377 

developed with each of no seasonal (s= 0), daily (s= 24), and weekly (s= 7 × 24 = 168) 378 

seasonal spans. For choosing the best orders for autoregressive and moving average parts, 379 

different combinations are tried with  , , , 1, 2, 3, 4p q P Q  and the model with the smallest 380 

BIC was selected (Table 5). In this table, the total of BIC values of stations in each zone 381 

(central London, LEZ and greater London) are presented for each pollutant as well.  382 

 383 
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Table 5: SARMA models fitted order and total BIC in each zone 384 

  PM10 NO NO2 NOx 

ARMA  

Order (p,q) (4,4) (3,3) 

BIC 

Central 464367 842898 742294 952844 

LEZ 464365 842757 618585 951278 

Greater 461365 848985 768941 956078 

  Total studied area  1390097 2534640 2129820 2860200 

SARMA, s=24 

(daily) 

Order (p,q) (P,Q) (2,2)(1,1) (1,1)(1,1)  

BIC 

Central 461861 841147 739640 943704 

LEZ 462401 840281 605478 950101 

Greater 461258 840252 760132 947045 

  Total studied area 1385520 2521680 2105250 2840850 

SARMA, s=168 

(weekly) 

Order (p,q) (P,Q) (1,1)(1,1) (1,1)(1,1) 

BIC 

Central 460437 840211 733018 940012 

LEZ 460818 837101 605000 947044 

Greater 460355 839208 759012 946054 

  Total studied area 1381610 2516520 2097030 2833110 

 385 

For each pollutant, the same SARMA orders were preferred for all stations, although the 386 

coefficients differed: the preferred seasonal models have fewer parameters than the non-387 

seasonal ARMA, so are preferred on grounds of parsimony as well as BIC. Comparing the 388 

BIC of SARMA models with different seasonal span shows that for all stations and pollutant 389 

types, models with weekly (s= 168) seasonal trends perform better than the corresponding 390 

one with daily (s= 24) seasonal trend. 391 

The observed values are plotted against the estimates for station BM0 with the weekly SARMA 392 

(1,1)(1,1) model in Figure 5 in natural units for each of the pollutants. The reference red 393 

reference line indicates the case in which the observed values would be identical to the fitted 394 

ones. The points are spread along the reference line, but there is high variation around this 395 

line especially at large values of NO, NO2 and NOx. For PM10, greater variation occurs at small 396 

values. 397 

 398 

 399 

 400 

 401 
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 417 

 418 

Figure 5: Observed values vs SARMA week-season model estimates: a) NO, b) NO2, c) NOx and d) PM10 (µgm-3) 419 

In Figure 6, the autocorrelation function (ACF) and partial autocorrelation function (PACF) of 420 

the residuals in the weekly SARMA model for station BM0 are shown. These plots indicate 421 

that some temporal structure (significant lags) remains in the residuals of the weekly SARMA 422 

model. Hence, this model is not fully successful in representing the temporal variations. 423 
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 448 

Figure 6: ACF and PACF of residuals, SARMA weekly model for: a) NO, b) NO2, c) NOx and d) PM10 449 

4.2. VARMA models 450 

The VARMA models were developed for each pollutant separately over a vector of stations. 451 

The preferred order of each of these models is (p, q) = (1, 1). Hence, two 30-dimensional 452 

matrixes (one autoregressive and one moving average) were estimated for each pollutant. In 453 

these matrixes, the principal is the coefficient of one hour lagged at the same station and the 454 

off-diagonal elements are the effects of other stations, again at one-hour time lag. As an 455 

example, the autoregressive θ  and moving average φ  matrix parameters for NO2 are 456 
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summarised in Table 6 and Table 7, respectively. The parameters in these tables are 457 

presented as the self-effects autoregressive  (jj) and moving average (jj ) for 1 < j < 30  (at 458 

one hour lag, t-1) and for each station  j, the mean and standard deviation of autoregressive 459 

(ji) and moving average (ji) of other stations (1 < i < 30, i  j ). The distribution of these 460 

coefficients is plotted in Figure 7 and 8 for autoregressive and moving average, respectively.  461 

To summarise the association with other stations, the ratio of mean to standard deviation and 462 

the number of other stations with estimates that are more 2 standard deviations are also 463 

shown.  464 
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Table 6: Summary of the θ  matrix of autoregressive parameters in VARMA model for loge NO2 465 

Zone 
Station 

j 

Lagged effect of 
same station (t-1) 

jj 

Effects of other stations (t-1)  ji 

Mean 
µ 

Standard 

deviation 

 
µ/ 

Number  i 

ji
 > 2 

C
e

n
tr

a
l 
Z

o
n

e
 

WM6 0.886 0.516 4.452 0.116 5 

BM0 0.909 0.496 2.237 0.222 6 

IM1 0.868 0.488 2.012 0.243 5 

CT4 0.917 0.477 1.843 0.259 3 

NB1 0.907 0.479 4.916 0.097 2 

CT3 0.920 0.495 3.271 0.151 5 

MY1 0.882 0.505 66.340 0.008 4 

CD9 0.851 0.483 9.595 0.050 5 

SK6 0.912 0.516 6.448 0.080 4 

LB5 0.894 0.510 1.489 0.343 3 

HK6 0.888 0.484 1.546 0.313 5 

L
E

Z
 

CD1 0.914 0.494 4.595 0.108 2 

IS6 0.910 0.521 6.289 0.083 3 

HG4 0.907 0.481 1.633 0.295 2 

TH2 0.931 0.506 3.546 0.143 5 

LW4 0.884 0.481 1.679 0.286 3 

SK5 0.889 0.512 2.039 0.251 5 

LB4 0.896 0.474 1.977 0.240 6 

G
re

a
te

r 
L

o
n

d
o
n
 

RI1 0.899 0.485 0.488 0.994 12 

EA8 0.882 0.485 0.769 0.631 8 

BT4 0.921 0.484 0.434 1.117 16 

EN5 0.890 0.475 0.508 0.936 6 

LW1 0.872 0.488 0.230 2.123 25 

WA2 0.913 0.509 0.271 1.880 24 

RHG 0.924 0.494 0.229 2.160 25 

LB6 0.906 0.436 0.283 1.539 16 

GN4 0.892 0.488 0.219 2.225 18 

HV3 0.927 0.477 0.439 1.087 14 

 466 
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Figure 7: autoregressive coefficients for a) same station (jj) and b) average of other stations (ji
 ) 468 

  469 

Autoregressive coefficient  ii Autoregressive coefficient  ji  (ji) (b) (a) 
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Table 7: Summary of the φ matrix of moving average parameters in VARMA model for loge NO2 470 

Zone 
Station 

j 

Lagged effect of 

same station (t-1) 

jj 

Effects of other stations (t-1) ji 

Mean 
µ 

Standard 

deviation 

 
µ/ 

Number  i 

ji
 > 2 

C
e

n
tr

a
l 
Z

o
n

e
 

WM6 0.787 0.014 0.0869 0.159 2 

BM0 0.736 0.054 0.1625 0.318 3 

IM1 0.896 0.020 0.0542 0.349 2 

CT4 0.699 0.102 0.2680 0.369 3 

NB1 0.803 0.043 0.0750 0.138 1 

CT3 0.795 0.006 0.0264 0.224 2 

MY1 0.911 0.034 0.0959 0.011 1 

CD9 0.754 0.007 0.0896 0.073 1 

SK6 0.890 0.002 0.0183 0.113 2 

LB5 0.843 0.022 0.0427 0.496 2 

HK6 0.873 0.017 0.0374 0.430 3 

L
E

Z
 

CD1 0.862 0.007 0.0437 0.152 1 

IS6 0.964 -0.010 0.0777 -0.121 0 

HG4 0.777 0.040 0.0313 0.416 1 

TH2 0.875 0.027 0.1249 0.210 1 

LW4 0.836 0.033 0.0819 0.392 2 

SK5 0.819 0.007 0.0186 0.364 4 

LB4 0.808 0.014 0.0397 0.352 5 

G
re

a
te

r 
L

o
n

d
o
n
 

RI1 0.801 0.036 0.0244 1.432 9 

EA8 0.813 0.065 0.0394 0.905 8 

BT4 0.831 0.037 0.0219 1.614 12 

EN5 0.801 0.047 0.0339 1.336 6 

LW1 0.725 0.060 0.0191 3.010 22 

WA2 0.934 0.061 0.0214 2.747 24 

RHG 0.903 0.053 0.0160 3.178 22 

LB6 0.878 0.064 0.0286 2.154 13 

GN4 0.747 0.060 0.0186 3.137 18 

HV3 0.881 0.048 0.0294 1.580 10 
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 473 

Figure 8: moving average coefficients for a) same station (jj) and b) average of other stations (ji
 ) 474 

 475 

Moving average coefficient  ji  (ji) (a) (b) Moving average coefficient  ii 
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The autoregressive self-effect of stations at one-hour lag (t-1) for loge NO2 ranges from 0.85 476 

to 0.93 with mean 0.900 and standard deviation 0.019:  considering the stations as a sample 477 

of locations in London, these can be viewed as random effects. This range is similar for other 478 

pollutants, indicating the relevance of the one-hour lagged value in estimating the current 479 

value at each station. The corresponding moving average self-effect is slightly weaker but 480 

more variable, ranging from 0.70 to 0.96 with mean 0.830 and standard deviation 0.066, a 481 

pattern that is repeated for other pollutants. For both autoregressive and moving average parts 482 

of the model, the number of other stations with estimates of effects that exceed twice the 483 

standard deviation for the associated station is greatest in outer London. For the 484 

autoregressive part these are between 2 to 6 (typically around 4) for stations in central London 485 

and the LEZ (typically around 4) but between 6 to 25 (typically around 16) for stations outside 486 

the LEZ. Hence remarkably, the air quality of the stations located outside of the LEZ (away 487 

from central London) is associated with a greater number of other stations, compared to those 488 

in central London. 489 

The observed vs estimated values from VARMA model for station BM0 are plotted in Figure 9 490 

in natural units of µgm-3 . The reference red line is the line of equality. Based on this, there is 491 

a good correspondence between the fitted values from the model and the observed ones.   492 
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 516 

Figure 9: Observed values vs VARMA model estimates: a) NO, b) NO2, c) NOx and d) PM10 (µgm-3) 517 

The ACF and PACF of the residuals in the VARMA model (at station BM0) are shown in Figure 518 

10. Based on these plots, the VARMA model is reasonably successful in representing all the 519 

variations in the observations, leaving few significant lags in the residuals. 520 
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     522 

Figure 10: ACF and PACF of residuals, VARMA model station BM0: a) NO, b) NO2, c) NOx and d) PM10 523 

4.3. Evaluation 524 

Because the SARMA models are fitted to each station individually whilst VARMA models use 525 

a vector of all stations, the BIC values of the SARMA models cannot be compared directly with 526 

corresponding ones for VARMA. To address this, an aggregated form of BIC (denoted as 527 

BIC ) was calculated for the SARMA models as:  528 

BIC 2 log ( )e n m   = − +L         (18) 529 
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where the L  is the sum of model log-likelihoods, m is the sum of the numbers of free 530 

parameters and n  is the sum of the number of observations in the SARMA models across all 531 

stations. The BICof the SARMA models was calculated by summing the individual values 532 

from Equation (18). These results along with the corresponding BIC values of VARMA models 533 

are presented in Table 8.  534 

Table 8: BIC’ and BIC values (millions)  for SARMA and VARMA models 535 

Pollutant  

        BIC   (SARMA) *     
BIC  

(VARMA)* ARMA s=24 (daily) s=168 (weekly) 

PM10 1.37 (e’) 1.36 1.34 1.14 

NO 2.35 2.34 2.33 1.62 

NO2 1.95 1.94 1.93 1.69 
NOx 2.64 2.63 2.61 2.30 

* the values presented are BIC’ and BIC divided by 106  

The values of BIC in Table 8 show that for each pollutant the seasonal SARMA models 536 

perform better than the corresponding non-seasonal one. The weekly models in all pollutant 537 

types have better (smaller) BICvalues than the daily ones, indicating that air quality at the 538 

current time (t) is estimated more effectively by considering corresponding time one week 539 

beforehand (t-168) rather than the corresponding time on the previous day (t-24). However, 540 

for each pollutant, the BIC values of the VARMA models are substantially smaller than any of 541 

the corresponding SARMA ones, even though the VARMA models have 15 times more 542 

parameters. According to this criterion, the VARMA model formulation with 1-step temporal 543 

influence alongside broad spatial influence is preferred strongly to the non-spatial ARMA and 544 

SARMA models even with 3-step, daily and weekly temporal effects.  545 

In addition, comparing the ACF and PACF plots of these models shows that the VARMA model 546 

performs better in representing the temporal structure in the data: statistically significant lags 547 

in the residuals of the SARMA models indicate that this model cannot represent all variations 548 

in atmospheric pollutants. 549 

In terms of running time, SARMA models are more quickly than VARMA. However, it is worth 550 

mentioning that the SARMA models should be run separately for each station, while VARMA 551 
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models are run with a vector of all stations. VARMA was developed in UCL Myriad High 552 

Throughput Computing Facility with CPU @8.60 GHz, in 81 hours. SARMA models are 553 

developed for each station in less than 30 minutes with CPU  @1.90 GHz.  554 

4.4. Validation 555 

To test the performance of the preferred VARMA model formulation, internal cross-validation 556 

was conducted to assess the effectiveness in estimating values observed at stations that were 557 

omitted from the estimation process. The Kriging method (Ogundare, 2018; Warf, 2014; Wiart, 558 

2016) of spatial interpolation was selected as a comparison for the results of the VARMA 559 

model for all pollutants. In the Kriging method, the value of each location is estimated as a 560 

weighted combination of values ( )1,..., Wx x  observed at a set of  W  neighbouring locations:  561 

( ) ( )
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       (19) 562 

where ( )0
ẑ x  is the estimated value at location 0x , ( )z x is the observed value at location  x  563 

and the λ  is the vector of weights of the neighbouring locations.  564 

The Kriging method was applied to estimate the values of the four pollutants during the year 565 

2017 at the 20 stations across London that have all four pollutants measurements available. 566 

For each station, the reciprocal distance between stations was calculated and used as the 567 

basis for an initial value of the weighting vector  , then a constrained optimization was used 568 

to calculate weights that minimise the sum of squared deviations from the values at location 569 

0
x . As an example, the initial and estimated weights for the four pollutants at station BM0 are 570 

presented in Figure 11, with the other stations arranged in order of increasing distance. 571 

This shows that the initial values based on reciprocal distance were excessively focused: 572 

whilst all but one of the optimal values for each pollutant decreased with distance, they did so 573 

less rapidly than the initial ones. Furthermore, the values for NO2 decrease most sharply with 574 
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distance whilst those for PM10 decrease least: this shows that NO2 is more localised whilst 575 

PM10 more uniformly distributed across London.  576 
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Figure 11: Kriging initial weights (reciprocal distance) and estimated weights for four pollutants 578 

In the validation test, each station was selected in turn as the test station designated by 579 

location 0
x , then the values there were estimated by each of the Kriging and VARMA models 580 

applied to data for the remaining stations. To compare the results of this, the root mean 581 

squared error (RMSE), e ,   for each pollutant type was calculated as:  582 

2

1

1
( )

n

t t

t

e y y
n =

 = −          (20) 583 

where n  is the number of observations at the test station, iy  is the observed value 584 

(measurement) and ˆiy  is the corresponding value estimated by the model under investigation. 585 

The results for the Kriging and VARMA models are presented in Table 9 and Figure 12.  586 

  587 
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Table 9: RMSE of estimation for Kriging and VARMA 588 

Station Model 
e (µgm-3) 

PM10 NO NO2 NOx 

BM0 
Kriging 20.22 13.55 29.3 62.63 

VARMA 12.96 8.71 17.84 36.29 

CT4 
Kriging 11.13 92.68 43 125.16 

VARMA 7.76 55.44 27.40 77.94 

CT3 
Kriging 17.42 12.95 30.96 48.89 

VARMA 10.36 7.25 17.89 31.60 

MY1 
Kriging 22.59 117.26 56.32 144.33 

VARMA 12.58 71.03 29.84 78.19 

CD9 
Kriging 14.67 80.16 70.85 171.16 

VARMA 7.86 39.46 42.00 113.03 

SK6 
Kriging 16.4 9.2 21.89 36.8 

VARMA 9.09 5.42 11.62 22.80 

LB5 
Kriging 19.22 40.95 42.54 64.81 

VARMA 12.03 25.47 22.45 39.70 

HK6 
Kriging 14.95 37.2 50.68 113.41 

VARMA 8.44 20.30 28.09 70.83 

CD1 
Kriging 13.84 45.03 22.3 93.96 

VARMA 7.63 27.30 14.70 61.38 

IS6 
Kriging 12.91 7.61 14.08 40.72 

VARMA 8.17 5.44 7.26 22.42 

LW4 
Kriging 15.03 31.6 23.08 86.54 

VARMA 9.52 18.06 13.98 53.49 

SK5 
Kriging 12.41 26.32 35.56 55.92 

VARMA 7.09 16.31 24.16 33.80 

LB4 
Kriging 21.45 30.8 80.52 159.49 

VARMA 11.97 20.48 41.77 102.65 

RI1 
Kriging 13.32 21.22 13.96 55.52 

VARMA 7.50 12.02 9.72 32.55 

EA8 
Kriging 15.97 17.51 36.02 66.11 

VARMA 10.07 11.58 23.39 39.94 

BT4 
Kriging 23.04 68.62 47.58 119.8 

VARMA 13.67 42.50 29.68 73.58 

EN5 
Kriging 14.99 32.72 38.14 86.79 

VARMA 8.75 21.07 25.60 49.47 

RHG 
Kriging 12.81 30.46 30.39 75.44 

VARMA 7.72 16.79 18.24 42.87 

LB6 
Kriging 15.41 12.34 26.34 32.77 

VARMA 9.15 7.27 17.07 18.95 

GN4 
Kriging 12.84 35.65 35.85 81.21 

VARMA 7.22 25.27 23.60 58.10 

Average 
Kriging 16.03 38.19 37.47 86.07 

VARMA 9.48 22.86 22.32 52.98 
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Figure 11: VARMA vs Kriging RMSE (µgm-3)  590 

The RMSE values e  for the VARMA model are smaller than the corresponding ones for 591 

Kriging in each case, with typical reduction of about 40%. This indicates the substantially better 592 

performance of VARMA compared to Kriging. 593 

5. Discussion  594 

Continuous time series of data are important in estimating statistical models with temporal 595 

components. However, available measurements often have missing values for various 596 

reasons stemming from detector or recording issues. Any such interruption will fragment the 597 

time series of data and so impede modelling processes: this is especially influential in 598 

multivariate analyses where a value from any of the variables will be influential. For this 599 

reason, imputation methods are valuable to complete the time series by estimating suitable 600 

values in place of missing ones. The investigation presented here considered a range of 601 

approaches to this, of which multiple imputation by chained equations (MICE) was preferred. 602 
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This method synthesises complete time series that preserve the mean and covariance of the 603 

available data. It was found to outperform the other methods tested in estimating values for 604 

data withheld from estimation, both in the case of a single interval of 500 hours (about 3 weeks) 605 

or multiple intervals of mean duration 24 hours (1 day) with total duration 500 hours. The 606 

analysis of variance (ANOVA) of the London air quality dataset (Table 3) shows that the air 607 

pollution measurements vary across the zones of London (central London, LEZ and greater 608 

London) but with greater variability among the individual stations. Statistical analysis of this 609 

variation established that it can be represented efficiently by associating it solely with the 610 

individual sites. Beyond the substantial variation of the pollutants among the sites, the greater 611 

amount that occurs over time at each of them shows the need for a time-series approach. 612 

Hence, the temporal autoregressive moving average models (ARMA, and SARMA with 613 

seasonal component) and the spatio-temporal vector autoregressive moving average 614 

(VARMA) models were developed for comparison. The effectiveness of the temporal (ARMA 615 

and SARMA) models was assessed using a form of the Bayes information criterion BIC616 

shown in Table 8. This confirms that using a seasonal component (either weekly or daily) 617 

improves the performance of the model, reflecting repeated weekly and diurnal variation in 618 

generation of these pollutants. Of these, the weekly SARMA model for each of the pollutant 619 

types performs better than the corresponding daily one, indicating that atmospheric pollution 620 

concentrations at each time  t  can be estimated more accurately by considering its value at 621 

the corresponding time one week beforehand (t-168) rather than on the previous day (t-24). 622 

The spatio-temporal VARMA model developed here uses data from all sites in the study area, 623 

but at the previous time only. This was found to have better performance than either of the 624 

SARMA models forms even though they use data from earlier times in addition to the previous 625 

one. This preference for the VARMA formulation is supported by substantially better goodness 626 

of fit to the data as assessed by the BIC values shown in Table 8. This outcome is further 627 

supported by the ACF and PACF plots of the residuals of the SARMA and VARMA models 628 

(Figure 6 and 10, respectively). The presence of statistically significant correlations at many 629 
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lags for the SARMA models in Figure 6 shows they are not effective in describing the temporal 630 

structure of the data. By contrast, the absence of most such correlations for the VARMA 631 

models in Figure 10 shows that by including a spatial element, this model is effective in 632 

capturing the temporal structure. 633 

The performance of the spatio-temporal VARMA and the purely spatial Kriging methods can 634 

be compared by estimating pollution at sites not used in their estimation. This was undertaken 635 

in turn for each of the 20 stations across London that have all four pollutants measurements 636 

available. The resulting root mean square error (RMSE) values  e   in Table 9 show that the 637 

VARMA model is typically about 40% more accurate than the corresponding Kriging one. This 638 

indicates the substantially better performance of the VARMA model compared to the Kriging 639 

technique.   640 

6. Conclusion  641 

The present study considered the development of atmospheric pollution in London in the 642 

calendar year 2017 during which no major air quality measures were implemented. The 643 

pollutants analysed were Nitric oxide (NO), Nitrogen dioxide (NO2), oxides of Nitrogen (NOx) 644 

and Particulate Matter with diameter less than 10 micrometres (PM10). The data were based 645 

on hourly measurements of atmospheric concentrations at 30 stations, each in one of three 646 

zones (central London, LEZ, greater London), throughout the year (8760 hours). The 647 

investigation developed spatio-temporal models of the pollution and compared these with 648 

corresponding temporal (time-series) and spatial formulations.  649 

Statistical analysis of the London 2017 dataset showed that the atmospheric concentrations 650 

of pollutants varied across the three zones. However, there is greater variation among the 651 

stations. Treating the stations as sited at a sample of locations in London, the variability across 652 

the zones is consistent with the combined variability at the stations within each of them. From 653 

this, the conclusion is that measurements at an additional station would be expected to vary 654 

similarly to the stations irrespective of its zone of location. 655 
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The absence from the datasets of some observations is usual for several reasons. The dataset 656 

used here and hence the analysis was found to be affected by this, thus hampering the present 657 

time-series analysis. Several methods were investigated to impute values for the missing 658 

observations and so complete the dataset. Of these, the multiple imputation by chained 659 

equations (MICE) approach was found to be more effective than others. The methods were 660 

tested by withholding observed data artificially from test intervals to compare with imputed 661 

ones: the MICE approach generated the most accurate estimates. The MICE approach has 662 

the additional benefit of preserving the mean and covariance of the dataset that it completes. 663 

The goodness of fit of a spatio-temporal vector autoregressive moving average (VARMA) and 664 

purely temporal seasonal autoregressive moving average (SARMA) models were compared 665 

using the Bayes information criterion (BIC). According to the results of this, the VARMA model 666 

performs substantially better than any of the SARMA ones. This shows that the distribution of 667 

atmospheric pollutants is strongly influenced by the previous hourly observation at the same 668 

and nearby locations: this leads to more accurate estimation than use of purely temporal data 669 

from the site even including observations from the previous day or week.  670 

In addition to tests on goodness of fit using BIC, diagnostic tests were undertaken on the time 671 

series of model residuals using autocorrelation (ACF) and partial auto correlation (PACF). The 672 

results of this show that the spatio-temporal VARMA model is more successful in representing 673 

temporal variations in atmospheric pollution than any of the purely temporal SARMA models. 674 

This is indicated by absence of residual temporal structure in VARMA while this is substantial 675 

in both the daily and weekly SARMA models.  676 

The strength of the spatial influence identified by the VARMA model is greater at the periphery 677 

of London (greater London zone) than in the central London zone. This spatial influence is 678 

more extensive for particulates PM10, showing that it is more diffused, and least for NO2, 679 

indicating that this is more localised. 680 

Validation tests were undertaken of the VARMA model in estimating values of data reserved 681 

at each of several sites in turn that were not used in its estimation. The results of this showed 682 
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that the spatio-temporal VARMA performs substantially better than the purely spatial Kriging 683 

method even when that was fitted optimally to instantaneous values at the test site: the root 684 

mean squared error (RMSE) for the VARMA model in estimation is about 40% less than that 685 

of the corresponding fitted Kriging one.  686 

The conclusion from this investigation is that spatio-temporal modelling is effective for 687 

atmospheric concentrations of pollution. Comparison with purely temporal models shows 688 

presence of spatial influences, thus verifying the distribution of pollution due to dispersion 689 

within the atmosphere and mobility of some sources. Comparison with purely spatial models 690 

shows presence of temporal influences, thus verifying the persistence of pollutants in the 691 

atmosphere and continuing emission from their sources. Whilst the strength of these 692 

influences varies among atmospheric pollutants, the importance of spatio-temporal modelling 693 

and the structure of the VARMA used for this applies to all those investigated here. 694 

This investigation has established the VARMA model as appropriate for use as a basis for the 695 

evaluation of interventions such as the Ultra-Low Emissions Zone on air quality across 696 

London. This approach will need further parameters to represent the effects of interventions.   697 
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