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A B S T R A C T

Video action recognition is a vital area of computer vision. By adding temporal dimension into con-
volution structure, 3D convolution neural network owns the capacity to extract spatio-temporal fea-
tures from videos. However, due to computing constraints, it is hard to input the whole video into
the convolution network at one time, resulting in a limited temporal receptive field of the network.
To address this issue, we propose a novel 3D temporal dilation convolution (3D-TDC) framework, to
extract spatio-temporal features of actions from videos. First, we deploy the 3D temporal dilation con-
volution as the shallow temporal compression layer, enabling an e�ective capture of spatio-temporal
information in a larger time domain with the reduced computational load. Then, an action recognition
framework is constructed by integrating two networks with di�erent temporal receptive fields to bal-
ance the long-short time di�erence. We conduct extensive experiments on three widely-used public
datasets (UCF-101, HMDB-51, and Kinetics-400) for performance evaluation, and the experimental
results demonstrate the e�ectiveness of our proposed framework in video action recognition with low
computational load.

1. Introduction
Video action recognition encompasses a wide range of

applications, such as human computer interaction, smart video
surveillance, sports, and health care [1]. It has made great
progress, due to the rapid development of deep networks.
These deep networks can be mainly divided into 2D and 3D
convolution networks. A 2D convolution network, although
e�ective for image recognition, is not strong to model the
temporal information, while a sequential reasoning struc-
ture, such as recurrent neural network, is not su�ciently ef-
fective in visual analysis. Therefore, for video action recog-
nition, on the one hand, two-stream methods [2–4] construct
2D convolution networks with the input of both RGB image
and optical flow. The optical flow, however, is computation-
ally costly, which limits the practical applications of such a
method. On the other hand, 3D convolution networks [5–
10] directly construct an end-to-end model to extract both
the temporal and spatial features of actions, but such a net-
work usually entails a large number of parameters and com-
putation. As a result, how to improve the network structure,
such that the action model can extract the spatio-temporal
features in a large time domain with finite computation, has
become a research focus of video action recognition.

Because the duration of a video varies, the video needs
to be cut into segments with a fixed temporal size determin-
ing the temporal receptive field of the network. The recog-
nition accuracy of a 3D convolution network is thus limited
by the temporal size of each segment. To address this is-
sue, in this paper, we propose a novel action recognition
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Figure 1: A novel 3D temporal dilation convolution (3D-TDC)
framework. It consists of two branches with different time-
domain sizes (⌧ and ⌧ ®) but the same computational load
(FLOPs). m is the total number of video frames.

framework called 3D temporal dilation convolution frame-
work (3D-TDC, as shown in Figure 1). First, we regularize
the video duration for the network input. Then, the shal-
low temporal compression layer is introduced to embed 3D
temporal dilation convolution, for e�ectively capturing the
spatio-temporal information with a reduced computational
load. Finally, the action recognition framework is constructed
by integrating two networks with di�erent temporal recep-
tive fields, which can e�ectively control the network com-
putational load while improving the recognition accuracy.
The main contributions of this work are threefold:

1. Better spatio-temporal feature extraction: The 3D tem-
poral dilation convolution embedded as the shallow
temporal compression layer can e�ectively improve
the temporal receptive field of the network for bet-
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ter exploration of the spatio-temporal information and
can reduce the computational load.

2. Improved recognition performance: By integrating two
networks with di�erent temporal receptive fields through
parameter transfer, our proposed 3D-TDC framework
can improve the accuracy of video action recognition.

3. Good practicability: Our 3D-TDC framework achieved
superior performance on di�erent benchmark datasets
with a large range of tasks, including UCF-101, HMDB-
51, and Kinetics-400. Moreover, our method can ef-
fectively balance the computational load and recogni-
tion accuracy of the network, vitally in practice.

The rest of the paper is organized as follows. In Sec-
tion 2, we summarize the related work. Section 3 describes
our proposed method and framework. The implementation
details, experimental results, and analysis are presented in
Section 4. Finally, conclusions are drawn in Section 5.

2. Related Work
Video action recognition methods can be roughly cate-

gorized into traditional and deep-learning methods. Tradi-
tional methods extracted low-level action features from videos.
The deep neural networks extracted high-level action seman-
tic features and adopted end-to-end models to carry out uni-
fied feature extraction and classification [11]. In this sec-
tion, we focus on the related work in deep learning, which
can be mainly divided into three groups: two-stream convo-
lution framework, dilation convolution network, and spatio-
temporal convolution network.

2.1. Two-stream convolution framework
Two-stream convolution neural networks [2] extracted

dynamic time-domain motion (optical flow) features and static
spatial RGB features with two independent networks. These
networks can be summarized from three aspects: input, net-
work, and optimization. In the input aspect, the sparse time
sampling strategies [3, 4] were used to segment video in
the time domain; features were extracted from di�erent seg-
ments; multiple branches were used to fit a whole-video-
level recognition. FlowNet [12] and hidden two-stream con-
volution networks [13] focused on using convolution net-
works to generate optical flow features. TVNet [14] pro-
posed an end-to-end neural network to simulate optical fea-
tures. DMC-Net [15] and [16] were based on the video com-
pression domain, transferring motion information from opti-
cal flow. In the network aspect, [17] explored di�erent fusion
algorithms of networks. AssembleNet [18] sought neural ar-
chitectures with better connectivity and spatio-temporal in-
teractions. CTAN [19] integrated the channel-wise atten-
tion mechanisms into networks. Yang et al. [20] proposed
a generic temporal pyramid network at the feature level to
capture action instances at various tempos. Besides, recur-
rent neural network based on two-stream convolution frame-
works [21, 22] were used to directly fuse the convolution fea-
tures to complete the temporal reasoning. In the optimization

aspect, VLAD [23] aggregated deep features across the en-
tire video according to adaptive video feature segmentation
and sampling. PBNets [24] designed a watch-and-choose
mechanism to optimize the back-propagation algorithms dur-
ing two-stream network training. However, the motion fea-
ture coding of the two-stream frameworks depended on the
optical flow, leading to a huge computational load in the in-
put stage. In this work, we only use RGB images as the input
of a two-stream network to pursue comparable performance
with optical flow.

2.2. Dilation convolution network
Dilation convolution [25] in action recognition usually

adopted to model temporal features and extract larger con-
textual information. In [26], a dense dilated network was
trained to recognize actions from clip-level to global-level,
by fusing outputs from each densely-connected dilated con-
volutions layer. In temporal aggregation network (TAN) [27],
a dedicated temporal aggregation block was designed to en-
code multi-scale spatio-temporal patterns, and larger tem-
poral context can be captured by dilated convolutions ef-
fectively. For long videos [28, 29], encoder-decoder tempo-
ral convolutional networks (TCN) can capture spatio-tempo-
ral and contextual information from adjacent image frames,
and share the parameters between all time steps. Dilated-
TCN [30] fused residual connections and dilated convolu-
tions to model long-range temporal relationship. After that,
MS-TCN [31] combined multiple dilated-TCNs [30] to form
a multi-stage framework, in each stage of which the predic-
tion results of the previous stage were refined. In the untrimmed
videos with densely distributed actions, selecting the key
temporal information is particularly vital. In [32], dilated at-
tention layers (DAL) were proposed to encode representative
local features, by weighting attentional coefficients to differ-
ent frames. Based on multiple DALs deploying different di-
lation rates, a pyramid dilated attention network (PDAN) can
structure both short-term and long-term temporal relations.
However, these approaches require a complex design of dila-
tion convolution and multiple blocks of the network. In this
work, we are mainly interested in designing dilation convo-
lution only in the shallow layer, instead of multiple dilation
convolution blocks throughout the network.

2.3. Spatio-temporal convolution network
Spatio-temporal convolution networks are usually end-

to-end models, including 3D convolution network and its
variants. The 3D convolution network [5] added a tempo-
ral dimension into the 2D convolution network, which en-
ables a convolution network to simultaneously mine tem-
poral and spatial features. For network structure, the ma-
ture topological structures of 2D convolution networks were
transferred into the 3D convolution network. P3D [6] and
R(2+1)D [8] split the 3D convolution kernel into convolu-
tion of space and convolution of time. TSM [33] proposed
a temporal shift module to achieve the balance between the
computational load of 2D CNN and the performance of 3D
CNN. COST [10] proposed to extract spatio-temporal fea-
tures from three video orthogonal views by three convolu-
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tions with shared parameters. Song et al. [34] introduced a
temporal-spatial mapping for capturing the temporal evolu-
tion of the frames by jointly analyzing all the frames of a
video. Materzynska et al. [35] proposed a spatial-temporal
interaction network to reason the geometric relations between
constituent objects and an agent performing acting on com-
positional action recognition. [36] and [37] explored dif-
ferent structure constructions and the correlation between
spatio-temporal channels. Di�erent spatio-temporal coding
structures [38–42] were proposed for improving the discrim-
ination ability of spatio-temporal convolution networks. Be-
sides, graph convolution networks (GCN) [43, 44] based on
3D convolution were adopted to capture the appearance fea-
tures and the temporal relation between video sequences.
For optimization, the video action transformer network in-
troduced an attention mechanism to a 3D convolution net-
work. Spatial-temporal attentive convolution neural network
(STA-CNN) [45] incorporated a temporal attention mecha-
nism and a spatial attention mechanism into a unified convo-
lution network to recognize actions in videos. MARS [46]
proposed a training method for a 3D convolution network
under the supervision of optical flow. Kim et al. [47] pre-
sented random mean sampling (RMS) to relieve the overfit-
ting in 3D residual networks. For framework construction,
SlowFast networks [48] proposed a framework composed
of two networks with di�erent time scales. Sudhakaran et
al. [49] introduced spatial gating in spatial-temporal decom-
position of 3D kernels without additional parameters and
computational overhead. Compared with 2D convolution
networks, the spatio-temporal convolution framework has
significant advantages in recognition performance for video
actions. However, due to the existence of time domain in
the hidden layers, the computational load of spatio-temporal
convolution networks increases sharply with the expansion
of the temporal receptive field. In this work, we adopt the
dilation convolution to explore a tradeo� between computa-
tional load and temporal receptive field size.

3. Method
To balance the computational e�ectiveness and recogni-

tion accuracy, we propose a 3D temporal dilation convolu-
tion (3D-TDC) framework deployed as the shallow temporal
compression layer, which can e�ectively extract the spatio-
temporal features from a larger temporal receptive field with-
out heavy computational load. In this section, we first intro-
duce the action video prepossessing mechanism as the net-
work input (section 3.1). Then, we describe the 3D tem-
poral dilation convolution to demonstrate the e�ect of good
temporal compression (section 3.2). Finally, we present our
framework construction devoting to e�ective extraction of
the spatio-temporal features of the action video, high recog-
nition accuracy, and low computational load (section 3.3).

3.1. Network input
Suppose the original video input is IT (:, :, t) À Rwùhùm,

where m is the total number of the video frames (t À Rmù1)

and wù h is the spatial size of the frame. The temporal size
of the video (m) varies from video to video. Therefore, for
network input, the video needs to be segmented into di�erent
local temporal clips with a fixed temporal size as follows:

t = (t1,… , tm)T = (s⌧ , s2⌧ , s3⌧ ,… , sn⌧ ), (1)

where s⌧ = (t1, t2,… , t⌧ )T , s2⌧ = (t⌧+1, t⌧+2,… , t2⌧ )T , … ,
sn⌧ = (tn⌧+1, tn⌧+2,… , tm)T ; n is the number of clips; ⌧ is
the fixed temporal size. Then the video can be expressed as

IT (:, :, t) = IT (:, :, (t1,… , tm)T )

=
b
f
f
fd

IT (:, :, (t1, t2,… , t⌧ )T )
IT (:, :, (t⌧+1, t⌧+2,… , t2⌧ )T )

4
IT (:, :, (tn⌧+1, tn⌧+2,… , tm)T )

c
g
g
ge

=
b
f
f
fd

IT (:, :, s⌧ )
IT (:, :, s2⌧ )

4
IT (:, :, sn⌧ )

c
g
g
ge
.

(2)

Convolution network fConvNet encodes the clips sepa-
rately and generates the output vector scorei À R1ùc of the
ith clip, where c is the number of action categories. Finally,
the output vector score À R1ùc of the whole video is ob-
tained by average fusion of all clips:

score1 = fConvNet(IT (:, :, s⌧ ))
score2 = fConvNet(IT (:, :, s2⌧ ))

4

scoren = fConvNet(IT (:, :, sn⌧ ))

score =
≥n

i=1 scorei
n

(3)
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Figure 2: Temporal variation in 3D convolution network.

For the 3D convolution network, 3D ResNeXt-101 [9],
the temporal size decreases gradually over the hidden layers
to aggregate the spatio-temporal features, as shown in Figure
2. The temporal size of the first 3D-convolution-output fea-
ture maps remains the same as the original input, while after
3D pooling and four 3D-ResNeXt blocks, the temporal size
of the hidden-layer feature maps is gradually compressed to
encode the spatio-temporal features. For example, when ⌧ =
16, the temporal variation is 16-16-8-8-4-2-1-1. However,
when the temporal size of the clip is small (e.g. ⌧ = 16), the
temporal size in the network will be quickly compressed to a
very low value, so it is di�cult to obtain su�cient temporal
correlation for the hidden layers in such a 3D convolution
network.
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The computational load FLOPs (floating point of oper-
ations) of a 3D convolution layer is as follows:

FLOPs =
⌅�
kinw � kinh � Cin � Tc

�
� Cout + Cout

⇧

�
�
H �W � ⌧out

�
,

(4)

where kinw, kinh and Tc are the spatial and temporal sizes of
convolution kernel; Cin and Cout are the numbers of input
and output channels; H , W and ⌧out are the spatial and tem-
poral sizes of feature maps; for fixed Tc , temporal stride and
temporal padding, ⌧out is proportional to the temporal size ⌧.
Therefore, when the clip temporal size ⌧ is large, it will lead
to a high FLOPs for the network.

3.2. 3D temporal dilation convolution
To balance the clip temporal size ⌧ and the convolution

computational load (FLOPs), temporal dilation is introduced
here into the time domain of the 3D convolution kernel, lead-
ing to a 3D temporal dilation convolution, as shown in Figure
3. Each 3D convolution kernel can skip a certain number of
input frames, to improve the temporal receptive field. Tem-
poral dilation coe�cient Dt represents the number of inter-
vals between frames in the 3D convolution kernel.

Figure 3: Comparison of temporal receptive fields of the 3D
temporal dilation convolution and the basic 3D convolution.

As illustrated in Figure 3, the magnitude of the temporal
receptive field R of basic 3D convolution operation is R =
T , where T is the number of frames in a single convolution;
in contrast, the magnitude of the temporal receptive field R®

of 3D temporal dilation convolution is

R
® = T + (T * 1) �Dt. (5)

Since T Œ 1 and Dt Œ 1, we can obtain

R
® Œ R. (6)

That is, when T is fixed, the temporal receptive field of the
3D temporal dilation convolution kernel is larger than that
of the original 3D convolution kernel.

Then the number of parameters Params and computa-
tional load FLOPssingle of a single 3D temporal dilation
convolution (that is ⌧out = 1 in FLOPs) are

Params =
�
kinw � kinh � Cin � Tc

�
� Cout + Cout,

FLOPssingle = Params � (H �W ) .
(7)

For the time domain, when Tc is fixed, the temporal dila-
tion will not cause the above parameters to change. There-
fore, compared with the original 3D convolution, 3D tempo-
ral dilation convolution will not increase the number of pa-
rameters Params and the computational load FLOPssingle.
Then, when ⌧out is fixed, the computational load of a 3D con-
volution layer FLOPs will remain unchanged. As a result,
3D temporal dilation convolution can enhance the tempo-
ral receptive field of the convolution without increasing the
number of parameters and computational load.

3.3. Framework construction
As shown in Figure 1, we build a novel 3D temporal di-

lation convolution framework for action recognition. The
temporal size in the hidden layers of the 3D convolution net-
work decreases from the shallow layer to the deep layer, and
the output temporal size of the former layer is the input of the
latter layer. That is when the temporal size is reduced in the
shallower layer, the computational load of the whole network
decreases greatly. Therefore, we deploy the 3D temporal di-
lation convolution layer as the shallow layer of the network,
which accomplishes the sparse expression of the larger time
domain, as shown in Figure 4.

Transfer

3D temporal 
dilation layer

backbone 
branch ② 

3D CNN layer

backbone 
branch ① 

+
results

Time domin
Time domin

Branch ① Branch ②  

߬ᇱ

߬ᇱ

߬ᇱ ߬ᇱ ߬
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Figure 4: The 3D temporal dilation convolution (3D-TDC)
framework. It consists of two branches, which input segments
with two different temporal sizes ⌧ ® and ⌧ (⌧ ® < ⌧). Meanwhile,
the computational load of the two branches remains the same.

As illustrated in Figure 4, the overall framework has two
branches. Each branch consists of a shallow layer and a back-
bone branch (3D ResNeXt-101 [9]). The shallow layer of
the “branch 1” is the original 3D convolution layer to ex-
tract the spatio-temporal features with a small temporal size
(⌧ ® ) of the clip. The shallow layer of the “branch 2” is the

Y. Ming, F. Feng, C. Li and J.-H. Xue: Preprint submitted to Elsevier Page 4 of 11



3D-TDC: A 3D Temporal Dilation Convolution Framework for Video Action Recognition

3D temporal dilation convolution layer to extract the features
with a large temporal size (⌧) of the clip. Finally, the two
branches are fused to obtain the final classification results.
The 3D temporal dilation convolution layer of “branch 2”
compresses the temporal size from ⌧ to ⌧ ® , while maintaining
the same computational load as the original 3D convolution
layer of “branch 1”.

The network training adopts multi-part training and trans-
fer strategies. First, we use the backbone parameters trained
by the large temporal size ⌧ of the clip as the initialization
parameters. Then, the “branch 1” is trained by the small tem-
poral size ⌧ ® of the clip. Meanwhile, the first layer param-
eters of the initialization are removed and transferred to the
“branch 2”, which consists of the 3D temporal dilation con-
volution layers and the backbone branch. The “branch 2” is
trained by the large temporal size ⌧ of the clip to obtain the
final parameters. We use cross-entropy losses with softmax
and back-propagate their gradients.

4. Experiments
We evaluate the proposed 3D-TDC framework on three

datasets: UCF-101, HMDB-51 and Kinetics-400. The de-
scriptions of datasets, data preprocessing and training details
are presented in section 4.1. Then we present the details of
our experiments on the e�ect of temporal input size (sec-
tion 4.2.1), the comparison of di�erent temporal compres-
sion structures (section 4.2.2), the performance and compu-
tational load of each branch (section 4.2.3), and the compar-
ison with other state-of-the-art methods (section 4.3).

4.1. Data preprocessing and training details
Datasets. Our experiments are performed on three ac-

tion recognition datasets: UCF-101 [50], HMDB-51 [51]
and Kinetics-400 [52]. UCF-101 contains 101 categories of
actions, with 13,320 instances. The videos are mainly from
movies and Google videos. HMDB-51 contains 51 action
categories, with 6,766 instances. Each category contains at
least 101 videos. The Kinetic-400 contains 400 action cate-
gories, each of which contains more than 400 training video
samples, and the temporal length of each video is about 10s.

Data preprocessing. We first transform the original video
into the frame sequences (at 25FPS) through FFmpeg1, and
resize the frame such that the smallest dimension is 256.
During the training, we apply the data augmentation meth-
ods including random clipping, subtracting ActivityNet mean
(114.7748, 107.7354, 99.475), and vertical and horizontal
flipping with the spatial size of 112. For the training, three
di�erent temporal sizes ⌧ (16 frames, 32 frames and 64 frames)
of clips are generated for the experiments. For the testing,
the original frame sequences are cut into continuous clips
without overlap. The recognition accuracy is obtained by
the average fusion of multiple clip accuracy.

Training details. The selected backbone networks are 3D
ResNeXt-101 [9] with di�erent depths. When constructing
a 3D temporal dilation convolution framework, the shallow

1https://github.com/FFmpeg/FFmpeg

Table 1
The instantiation of 3D temporal dilation convolution
framework (101 layers). The structure parameters of
convolution kernel are expressed as {k3,Cout}, where k
is the spatio-temporal size of the kernel, and Cout is the
channel number; g means group; “ùN” means the num-
ber of blocks.

stage “branch 1” “branch 2”

conv1 73, 64 73,Dt = 1, 64

block1

`
r
r
r
rp

13, 128

33, g = 32, 128

13, 256

a
s
s
s
sq

ù 3

`
r
r
r
rp

13, 128

33, g = 32, 128

13, 256

a
s
s
s
sq

ù 3

block2

`
r
r
r
rp

13, 256

33, g = 32, 256

13, 512

a
s
s
s
sq

ù 4

`
r
r
r
rp

13, 256

33, g = 32, 256

13, 512

a
s
s
s
sq

ù 4

block3

`
r
r
r
rp

13, 512

33, g = 32, 512

13, 1024

a
s
s
s
sq

ù 23

`
r
r
r
rp

13, 512

33, g = 32, 512

13, 1024

a
s
s
s
sq

ù 23

block4

`
r
r
r
rp

13, 1024

33, g = 32, 1024

13, 2048

a
s
s
s
sq

ù 3

`
r
r
r
rp

13, 1024

33, g = 32, 1024

13, 2048

a
s
s
s
sq

ù 3

fully-connected fully-connected

layer of “branch 2” is removed and then connected with dif-
ferent temporal compression layers, and finally fused with
the “branch 2”. Here we list the detailed structure param-
eters of the network with 101 layers, as shown in Table 1.
In the training, the momentum gradient descent method is
used. The corresponding parameters of weight attenuation
are set to 0.001 and 0.9, and the dropout is 0.9. The ini-
tial learning rate is 0.01 based on the large temporal size ⌧
(64 frames) of clips and 0.0001 based on the small temporal
size ⌧ ® (16 frames) of clips. Meanwhile, the structural pa-
rameters of the main network are frozen for transfer. After
transfer, the overall learning rate is set to 0.000001 as the
final fine-tuning. The learning rate attenuation strategy is
that, when the accuracy of the last three rounds is not im-
proved, the learning rate is halved. The model parameters
are saved every two iterations, and the model with the best
performance is finally selected. The experiments use the Ki-
netics pre-trained model [9], and the FLOPs are generated
by the THOP2 module in Python. The experiment is car-
ried out on a processor equipped with two NVIDIA GeForce
GTX Titan X and eight 1080Ti GPUs, and the deep learning
framework in experiments is PyTorch3.

2https://github.com/Lyken17/pytorch-OpCounter
3https://pytorch.org
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4.2. Ablation studies
4.2.1. E�ect of temporal input size on 3D convolution

network
To verify the e�ect of di�erent temporal size (⌧) of the

video clip on the recognition accuracy of the 3D convolu-
tion network with the original 3D convolution in the shallow
layer, we explore di�erent temporal sizes (16, 32, and 64
frames) of clip input. The experimental results of the com-
putational load (FLOPs) and accuracy are shown in Table
2 and Figure 5 (UCF-101 and HMDB-51).

Figure 5: Recognition accuracy of 3D convolution network
with different temporal sizes (⌧ = 16, 32, 64) of clips from UCF-
101 and HMDB-51.

As shown in Figure 5, the recognition accuracy of the 3D
convolution network is significantly improved with the in-
crease of temporal sizes from 16 to 64 frames, for any depth.
It verifies that the spatio-temporal feature expressiveness of
the network can be improved by increasing the temporal size
⌧ of the clip. That is, for a 3D convolution network, a larger
temporal receptive field can provide more su�cient tempo-
ral motion information. However, from Table 2, we can ob-
serve that: on the one hand, the computational load of the
network increases gradually with the scale of model param-
eters; and on the other hand, when the temporal size ⌧ of
the clip is multiplied, the computational load of the network

Table 2
FLOPs of the 3D residual convolution network with differ-
ent temporal sizes ⌧. “(xx.xx G)” is the computation load
(FLOPs). “(xx.xx M)” is the number of parameters of net-
work. The spatial size of input frame is 112 ù 112.

⌧
18 layers

(33.25M)

34 layers

(63.56M)

50 layers

(26.07M)

101 layers

(47.72M)

16 8.31G 12.71G 7.49G 9.61G

32 16.63G 25.41G 14.98G 19.20G

64 33.27G 50.83G 29.97G 38.40G

is multiplied, which requires higher computing capacity for
devices. Therefore, the experiment demonstrates that the
network recognition accuracy can be improved quickly by
increasing the temporal size ⌧ of the clip, but the network
computational load will also increase sharply.

4.2.2. Comparison of di�erent temporal compression
structures

In this section, we take the 3D ResNeXt-101 [9] as the
backbone, and combine it with the 3D temporal dilation con-
volution layer to build the 3D temporal dilation convolu-
tion framework, and compare it with other shallow temporal
compression structures, including sparse sampling, sliding1
and sliding2, as shown in Figure 6.

(a) Sparse sampling

3D Convolution
(stride>1)Temporal stride

Conv

3D Convolution ķ 
(stride1>1)

Conv

3D Convolution ĸ  
(stride2>1)Conv

(b) (c) 

Time domin

Time domin =64߬ =64߬ =64߬

߬ᇱ=16 ߬ᇱ=16 ߬ᇱ=16
݈ܵ݅݀݅݊݃ଵ ݈ܵ݅݀݅݊݃ଶ

Figure 6: Different temporal compression structures.

For the video clips with temporal size ⌧ = 64, uniform
sampling is carried out to obtain the temporal size ⌧ ® =
16 of the clip. sliding1 and sliding2 adjust the temporal
step: stride and padding of original 3D convolution layer.
sliding1 represents one layer, and sliding2 represents two
layers. sliding1: convolution kernel size k1 = 7, stride1 =
4. sliding2: k21 = 7, stride21 = 2; k22 = 3, stride22 = 2.
The 3D-TDC layer: k = 7, stride = 4, Dt = 1_2_3.
Then, we conduct an experimental comparison on the UCF-
101 dataset, apply the above shallow temporal compression
structures on the “branch 2” of the framework, and obtain
the recognition accuracy and computational load (FLOPs)
of the framework, as shown in Table 3 and Figure 7.

In sparse sampling, 64 frames are directly reduced to 16
frames, so that the temporal information is not compressed
and mapped by parameter learning, but part of the infor-
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Table 3
Recognition accuracy (%) of the frameworks with different
shallow temporal compression structures on UCF-101. (sp
stands for uniform sampling, sld1 for sliding1, and sld2 for
sliding2.)

layers original sp sld1 sld2 Dt=1 Dt=2 Dt=3

18 84.21 84.21 84.55 85.00 84.91 84.62 84.62

50 89.20 89.10 89.31 89.53 89.50 89.00 89.05

101 90.09 89.52 90.97 91.83 91.85 90.55 90.21

Figure 7: FLOPs results of different temporal compression
structures and networks. (101 layers)

mation in the long time domain is lost directly, resulting
in low accuracy. In the shallow layer, the sliding1 layer,
sliding2 layer, and 3D-TDC layer are to learn the temporal
compression mapping relationship through convolution pa-
rameters. From Table 3, we can observe that, compared with
the original network (⌧ = 16), the accuracy of the frame-
works using the above three temporal compression struc-
tures (⌧ = 64, ⌧ ® = 16) is significantly improved. Among
them, the performances of sliding2 and the 3D-TDC layer
are the best. Both sliding1 and sliding2 compress the time
domain by controlling the temporal stride, but the recogni-
tion accuracy of sliding2 is higher. This is because, when
the temporal stride is large, it is di�cult to fully encode tem-
poral relations, and sliding2 learns better mapping relations
through smaller stride with more parameters. However, the
accuracy of 3D-TDC is almost the same as that of sliding2
and is the highest one in the 101-layer network. Therefore,
the larger temporal feature can be encoded by increasing the
temporal size ⌧ of the clip. When Dt increases, with the in-
put temporal sparsity increasing, the input information loss
increases during feature extraction, and thus the accuracy
slightly decreases, but it is still higher than the original net-
work.

We obtain the computational load FLOPs of di�erent
temporal compression structures and the network, when the
spatial size of the input frames is 112 ù 112 and its tempo-
ral size is 64. According to Table 3, the frameworks with the
sliding2 layer and the 3D-TDC layer provide higher recogni-
tion accuracy, while the FLOPs of the 3D-TDC layer is less
than that of sliding2 (Figure 7). This indicates that, by using
the 3D-TDC layer, the recognition accuracy is improved and

the computational load is also controlled.
In this framework, we further observe the di�erence, be-

tween the proposed 3D-TDC framework (Dt = 1) and the
original 3D CNN, in the recognition confidence di�erence
of the random selected examples from the UCF-101 dataset
(Figure 8). �a1 is the di�erence between the highest confi-
dence and the sub-high confidence (�a1 = max1(score) *
max2(score). �a2 is the di�erence between the highest con-
fidence and the third highest confidence (�a2 = max1(score)*
max3(score). Here maxn(score) is the n-th largest value in
score. Note that, �a1 and �a2 can highlight the di�erence
between the prediction category confidence and other cate-
gories. From Figure 8, compared with the original 3D CNN,
the �a1 and �a2 of the 3D-TDC framework is larger, indi-
cating that the 3D-TDC framework extracts more discrim-
inative features of actions in these samples. In addition to
randomly selected examples for visualization, we calculate
the mean confidence of �a1 and �a2 for each class based
on UCF-101, as illustrated in Figure 9. From Figure 9, we
can observe that �a1 of 59 categories and �a2 of 63 cat-
egories in 3D-TDC have a distinct improvement, compared
with �a1 and �a2 of original 3D CNN, respectively. This
reveals that the 3D-TDC framework has a stronger ability
to identify specified video categories; that is, in these cate-
gories, the 3D-TDC framework can encode more discrimi-
native representations.

4.2.3. Performance and computational load of each
branch

For further elaboration of the motivation for designing
the two-branch framework, we show in Table 4 the perfor-
mance, computational load, and temporal receptive field size
of “conv1” in each branch. The experiment results are based
on UCF-101. “branch 1” is with a small temporal size ⌧ ® = 16,
while “branch 2” uses a large temporal size ⌧ = 64. “branch
1<” has a same model configuration as “branch 1” except
for a 64-frame input. The only difference between “branch
1” and “branch 2” is the shallow layer (i.e. “conv1”), where
the latter adopts temporal dilation convolution to achieve a
larger temporal receptive field. From Table 4, we can ob-
serve that “branch 2” has a larger temporal receptive field
due to temporal dilation convolution, and it has the same
model parameters as “branch1” which has a small temporal
size ⌧ ® = 16. Note that, when temporal size is 64 frames, the
computational load of “branch 2” is about a quarter of that
of “branch 1<”. Although “branch 2” gains a larger tempo-
ral receptive field, temporal dilation convolution decreases
the resolution in temporal dimension and makes the model
difficult to optimize, which results in performance degrada-
tion. To address this issue, we fuse the results of “branch 1”
and “branch 2” by using a weighted average. Note that, the
computational load of “branch (1+2)” is about half that of
“branch 1<”, while “branch (1+2)” acquires a comparable
performance compared with “branch 1<”.
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Figure 8: Recognition confidence difference of samples from UCF-101. In each block, the middle panel is the recognition
confidence difference of basic 3D CNN, and the right-hand panel is that of the proposed 3D-TDC framework. �a1 is the
difference between the highest confidence and the sub-high confidence; �a2 is the difference between the highest confidence and
the third highest confidence.

Figure 9: Confidence differences between original 3D CNN and 3D-TDC for all categories in UCF-101.

4.3. Comparison with state-of-the-art methods
For evaluating the accuracy of our proposed 3D-TDC

framework more comprehensively, we conduct experiments
on UCF-101, HMDB-51, and Kinetics-400, and we com-
pare the accuracy of 3D-TDC with other action recognition
methods. Note that the listed results of other methods are
taken from their original papers. From Table 5, we can ob-
serve that the 3D-TDC (101) framework with only RGB in-
put has the accuracy advantage and is closer to the meth-
ods that integrate optical flow as additional input. As can
be observed from Table 6, when using R(2+1)D [8] as the
backbone to construct our framework, we can improve the
recognition accuracy to 93.82% on UCF-101 and 66.83% on
HMDB-51, and the performance of our 3D-TDC (R(2+1)D)
is also closer to that of the optical flow method, such as

Mars [46]. Compared with other optical flow methods, such
as Two-stream CNN [53] and Two-stream I3D [53], our 3D-
TDC (R(2+1)D) achieves better recognition accuracy, and
the recognition accuracy of our 3D-TDC (101) is better than
that of the Two-stream CNN [53]. The FLOPs of 3D-TDC
(R(2+1)D) are far below the FLOPs of Two-stream I3D [53]
that adopts RGB and optical flow as input. As for 3D CNN
methods, the recognition accuracy of our 3D-TDC (101) is
better than C3D [5], P3D [6], T3D [54], I3D [53] and 3D-
ResNeXt-101 [9]. Furthermore, the FLOPs of our 3D-TDC
(101) are lower than C3D [5], P3D [6], I3D [53], R(2+1)D [8]
and 3D-ResNeXt-101 [9]. As for dilation convolution meth-
ods, such as DDN [26], our 3D-TDC (101) and 3D-TDC
(R(2+1)D) increase the accuracy by 2.16% and 4.13% on
UFC-101, respectively. Compared with TSM [33], our 3D-
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Table 4
The accuracy (%), computational load (FLOPs), and tempo-
ral receptive field size of “conv1” in each branch are based on
UCF-101. “R” denotes temporal receptive field size. “branch
(1+2)” represents the proposed 3D-TDC framework. The tem-
poral size of “branch 1<” is 64 frames.

branch 1 branch 1< branch 2 branch (1+2)

R 7 7 13 -

FLOPs 9.61G 38.40G 9.61G 19.22G

Accuracy 90.09 94.10 84.11 91.85

TDC achieves the comparable recognition accuracy, and the
FLOPs of 3D-TDC (101) are lower than TSM [33]. All of
these verify the e�ectiveness and general applicability of
our proposed 3D-TDC framework in achieving comparable
recognition accuracy with less computational consumption.

Table 5
Accuracy (%) on Kinetics-400 compared with the state-of-the-
art methods.

Input Method accuracy

RGB+Flow

Two-stream CNN [53] 61.0

Two-stream I3D [53] 71.6

Mars [46] 68.9

3D-ResNext-101 [46] 69.1

RGB

CNN+LSTM [53] 57.0

3D-ResNeXt-101 [9] 65.1

3D-TDC (101) 67.5

5. Conclusion
We propose a new action-recognition framework based

on 3D temporal dilation convolution. We introduce the 3D
temporal dilation convolution structure into the shallow layer,
to enlarge the temporal receptive field of the whole network
and compress the large temporal information. Then we build
the 3D temporal dilation convolution framework for action
recognition. Through extensive experiments and analysis on
the various benchmark datasets, the performance advantages
of our framework are verified. In the future, we will further
explore the deployment of the 3D temporal dilation structure
over the whole network and investigate a temporal feature
extraction network suitable for a longer time domain.
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