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Abstract 10 

Machine learning techniques have inspired reduced-order solutions in the fluid mechanics' field 11 

that benefit from unprecedented capability and efficiency. Targeting ocean-wave problems, 12 

this work has developed a novel data-driven computational approach, named Wave-GAN. This 13 

new tool is based upon the conditional Generative Adversarial Network (GAN) principle, and 14 

it provides the ability to predict three-dimensional nonlinear wave loads and run-up on a fixed 15 

structure. The paper presents the principle of Wave-GAN and an application example of regular 16 

waves interacting with a vertical fixed cylinder. Computational Fluid Dynamics (CFD) is used 17 

to provide training and testing datasets for the Wave-GAN deep learning network. Upon 18 

verification, Wave-GAN proved the ability to provide accurate results for predicting wave load 19 

and run-up for wave conditions that were not informed during training. Yet the CFD-20 

comparative results were only obtained within seconds by the deep learning tool. The 21 

promising results demonstrate Wave-GAN's outstanding potential to act as a pioneering sample 22 

of applying machine learning techniques to ocean-wave interaction problems. It is envisioned 23 

that the new approach could be extended to more complex shapes and wave conditions to 24 

facilitate the early design stage of marine and offshore engineering applications such as 25 

monopiles. As a result, enhanced reliability is expected to prevent environmental disasters in 26 

the offshore industry. 27 

Keywords: Machine Learning, Deep Learning, Generative Adversarial Network, Image 28 

processing, Ocean waves, Wave load, Monopile. 29 
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1. Introduction 32 

The interactions between ocean surface waves and structures have significant 33 

importance in various environmental and engineering problems, such as the safety and 34 

durability of coastal/offshore structures (Liu et al., 2009; Pavlou and Li, 2018), the performance 35 

of ships and floating facilities  (Cleary and Rudman, 2009; Rrake et al., 2015; Rajendran et al., 36 

2016; Jiao et al., 2019; Huang et al., 2020), the efficiency of wave energy converters (Anderlini, 37 

2018; Benites-Munoz et al., 2020; Windt et al., 2020), and the natural evolution of waves with 38 

sea floors, vegetation and sea ice (Li et al., 2018; Huang et al., 2019; Jacobsen et al., 2019; Li 39 

et al., 2020). Therefore, vast scientific and financial resources are being spent studying these 40 

processes, including performing physical tests and developing prediction models. 41 

Experimental and full-scale tests are the most reliable methods for such purposes; they generate 42 

prohibitive cost and are inconvenient to consider fickle wave conditions fully. Therefore, 43 

prediction methods have been more generally used in relevant design circles, and their 44 

applicabilities are dictated by a compromise between accuracy and computing speed. 45 

Studies on wave-structural interactions (WSI) started with analytical solutions. 46 

Generally, the wave fields may be obtained using the potential flow theory. Heins (1950) used 47 

the Wiener-Hopf method to predict the reflection and transmission of waves against a plate 48 

fixed under the water surface. Morison et al. (1950) devised an approximate formula for 49 

calculating the unbroken wave loads on fixed vertical cylinders. This method is widely used in 50 

the industry but it presents limitations. For example, the Morison equation assumes that the 51 

flow acceleration is more-or-less uniform at the body's location, and it requires the diameter of 52 

the cylinder to be much smaller than the wavelength. The equation also presents challenges 53 

when modelling wave breaking phenomena. Keller and Karal (1960) formulated a geometric 54 

theory for wave diffraction against a bottom-mounted vertical cylinder. Subsequently, the 55 

diffracted wave solutions were combined with wave-induced structural loads by integrating the 56 

fluid force over the structural surface. Rainey (1989)  introduced an improved Morrison's 57 

equation to predict the wave load on an offshore structure. Faltinsen et al. (1995) combined 58 

nonlinear velocity attributes in the potential flow theory with the wave load on a fixed vertical 59 

cylinder. They demonstrated that the nonlinear effects could give a non-negligible contribution 60 

to the wave load. 61 

The analytical solutions mentioned above were only applicable to solving linear or 62 

weakly nonlinear WSI due to their formulation's inherent linearity (Pena and McDougall, 63 

2016). In real life, relevant engineering design usually needs to consider significant 64 

nonlinearities, since it is of more interest to consider rough wave conditions, i.e. the conditions 65 
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that easily expose structural issues. For this reason, instead of analytical solutions limited to 66 

mild WSI, the contemporary development of WSI prediction methods has focussed on the 67 

computational fluid dynamics (CFD) technique. CFD numerically solve the nonlinear Navier–68 

Stokes equations, by which it is possible to obtain a fully matched solution between the wave 69 

field and the structure. Following validation against experiments, the accuracy of CFD in 70 

predicting WSI has been widely proved. For example, Buldakov et al. (2019) reported parallel 71 

CFD and experimental presentations of the evolution of highly nonlinear focussed wave 72 

groups. Liu et al. (2019) compared CFD and experimental results of the load from violent 73 

breaking waves on a vertical wall; Lyu et al. (2019), Chen et al. (2019) and Brown et al. (2020) 74 

accurately predicted the load of focussed wave groups on a fixed or floating cylinder.  75 

Nonetheless, a CFD simulation requires a relatively long time to complete, and CFD 76 

may not always be accurate because the solution is highly dependent on the user's setup. 77 

Usually, large-scale verifications and validation are required before a CFD model can be 78 

acceptable, which means CFD cannot be directly compatible with applications requiring rapid 79 

computing. In early design stages, it would be of great help to have an alternative method that 80 

is very fast and can provide comparative prediction as CFD does. This approach may sound 81 

self-contradictory in conventional computations, as high precision is based upon computational 82 

complexity - in most cases, the solution accuracy increases with the computational time.  83 

In recent years, data-driven solutions, known as Machine Learning (ML), have provided 84 

the possibility to skip the complexities of physical modelling while allowing to obtain accurate 85 

and fast solutions. These models are highly flexible and can be generalised to 'unseen' data not 86 

used to build and calibrate the Machine Learning algorithm. Data-driven techniques have 87 

shown a vast potential of application in various engineering fields such as wind energy (Bre et 88 

al., 2018), aerospace engineering (Krishnakumar, 2003) and civil engineering (Reich, 1997). 89 

Also, a series of examples of ML applications in the maritime field has already been 90 

demonstrated from ship design, marine engineering and ship operation optimisations (Pena et 91 

al., 2020). However, the application of ML in offshore engineering where strong wave-92 

structure interactions exist is still understudied. 93 

Depending on how the learning task is achieved, data-driven algorithms can be 94 

classified into two broad categories: Supervised Learning and Unsupervised Learning. 95 

Supervised learning algorithms rely on a set of input dataset whose characteristics, output and 96 

relationship are known and the data used to train the algorithm is labelled. By contrast, 97 

unsupervised learning finds structures in non-labelled data with no human supervision needed 98 

during the training. The majority of current models are based on shallow Artificial Neural 99 
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Network (ANNs) configurations inspired by the biological brain. They are made by multiple 100 

artificial neurons which receive a signal, then processes it and sends it to neurons connected to 101 

it. A signal, which is represented by a number, is computed by a certain nonlinear function that 102 

is assigned a weight with its value been adjusted as the learning takes place. Neurons are 103 

typically grouped into layers and the signal travels from the input layer to the output layer (a 104 

signal can pass layers multiple times). While shallow ANNs require a relatively small amount 105 

of data, they lack generalisation for the data far away from the training data. For this reason, 106 

large numbers of data are usually needed in the training process to enhance the model 107 

generalisation for complex problems. By contrast, deep learning approaches, as illustrated in 108 

Fig. 1, provide a possibility to handle this problem. The successful applications in the area of 109 

computer vision (O'Mahony et al., 2019) and Natural Language Processing (Young et al., 2018) 110 

have recently drawn researchers' attention to deep learning methods in the field of structural 111 

mechanics and fluid mechanics (Young et al., 2018). More recent examples of Deep Learning 112 

applications can be found in (Rabault et al., 2020; Viquerat et al., 2021). 113 

Deep Learning regressors have provided average characteristics of the flow in 114 

aerodynamics, accounting for nonlinearities of the flow. However, conventional deep learning 115 

is still lacking the possibility to provide more detailed information such as the flow 116 

unsteadiness. Generative adversarial networks (GANs) are an approach to generative 117 

modelling using deep learning methods, such as convolutional neural networks., It can remedy 118 

the limitation of conventional deep learning by generating various types of data and innovated 119 

in theory and model structure, thus investigating nonlinear phenomena and unsteady flow fields 120 

(Lee and You, 2019). GANs offer the possibility to model the whole flow fields in the form of 121 

images.  122 

In such a context, this work aims to build ML deep learning models for predicting mean 123 

and fluctuating wave pressures around smooth circular cylinder fixed to the seabed under 124 

various wave conditions. The new tool, named Wave-GAN, successfully bridges the gap of 125 

yielding a rapid and reliable solution for WSI; in public space, Wave-GAN should be the first 126 

one achieving this purpose. In the present work, deep learning GANs are preferred among other 127 

regression supervised learning approaches due to their ability to predict highly nonlinear 128 

phenomena such as the evolution of steep waves on a structure and other unsteady phenomena 129 

inherent in the flow that regression methods might miss. Wave-GAN is trained based on CFD 130 

datasets to predict the hydrodynamic interaction of regular waves with a vertical fixed cylinder. 131 

Following this introduction, Section 2 gives an overview of the methodology followed to build 132 

the Wave-GAN, including the CFD model used to obtain the datasets, a brief introduction to 133 
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the data-driven predictive method, data mining, and the quantitative index to evaluate the 134 

accuracy of Wave-GAN. Subsequently, Section 3 gives a detailed explanation of the Wave-135 

GAN principles and architecture. In Section 4, the results obtained by the Wave-GAN for wave 136 

conditions that were not informed during training are compared with the ones calculated by 137 

CFD, and the accuracy is analysed in detail to verify the novel Wave-GAN deep learning 138 

method. Section 5 discusses the usage and benefits of such a deep learning tool in realistic 139 

engineering applications. Section 6 summarises this work with its implications. Overall, the 140 

readers can expect to study a heuristic approach for applying deep learning techniques in WSI 141 

problems. 142 

 143 

 144 

Fig 1: A flowchart of deep learning approaches (Bre et al., 2018); by contrast, a shallow 145 

learning approach would only have one hidden layer. 146 

 147 

2. Methodology 148 

2.1 CFD Method 149 

 150 

Three-dimensional fully nonlinear numerical simulations of regular waves 151 

propagating against a fixed vertical cylinder were conducted using the STAR-CCM+ CFD 152 

code. The solution of the fluid domain was obtained by solving the Reynolds-Averaged Navier-153 

Stokes (RANS) equations for an incompressible flow: 154 
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 155 

∇ ⋅ 𝒗̅  =  𝟎                  (1) 156 

                       
𝜕 (𝜌𝒗)̅̅ ̅

𝜕𝑡
+ ∇ ⋅ (𝜌𝒗𝒗̅̅̅̅ )  =  −∇p̅  + ∇ ⋅ (τ̅  −  ρ 𝒗′𝒗′̅̅ ̅̅ ̅) + ρg    (2) 157 

 158 

where 𝐯 is the time-averaged velocity vector and 𝐯′ is the fluctuating component, ρ is the fluid 159 

density, 𝑝 denotes the time-averaged pressure, 𝜏 = µ[∇v+ (∇v)T] is the viscous stress term, µ is 160 

the dynamic viscosity and g is gravitational acceleration set at 9.81 m/s2. The k−ω SST model 161 

(Menter, 1993) was implemented along with the Reynolds-Averaged Navier Stokes (RANS) 162 

equation to model the turbulence.  163 

The free surface between the air and water was modelled by the Volume of Fluid (VOF) 164 

method (Nichols and Hirt, 1979). The VOF method introduces a passive scalar α, denoting the 165 

fractional volume of a cell occupied by a specific phase. In this case, a value of α = 1 166 

corresponds to a cell full of water and a value of α = 0 indicates a cell full of air. Thus, the free 167 

surface, which is a mix of these two phases, is formed by the cells with 0 < α < 1. The elevation 168 

of the free surface along time is obtained by the advection equation of α, expressed as Equation 169 

(3). For a cell containing both air and water, its density and viscosity are determined by a linear 170 

average according to Equation (4) and Equation (5).  171 

 172 

𝜕𝛼

𝜕𝑡
+ ∇ ⋅ (𝐯𝛼) = 0 

(3) 

𝜌 = 𝛼𝜌𝑤𝑎𝑡𝑒𝑟 + (1 − 𝛼)𝜌𝑎𝑖𝑟 (4) 

𝜇 = 𝛼𝜇𝑤𝑎𝑡𝑒𝑟 + (1 − 𝛼)𝜇𝑎𝑖𝑟 (5) 

  

In this study, ρwater = 1000 kg/m3, µwater = 8.90×10−4 N·s/m2; ρair = 1 kg/m3, µair = 1.48×10−5 173 

N·s/m2. 174 

The governing equations were applied to a discretised cuboid tank as shown in Fig.  175 

with the x-axis being parallel to the wave advancing direction and the z-axis is positive 176 

upwards. A cylinder of 0.05 m diameter (L) is vertically installed in the domain, at the midplane 177 

along the y-axis. The domain was filled with water to a depth of 2 m, with air filling the 178 

remainder. At the top boundary of the domain, a static pressure boundary condition was applied 179 

to represent atmospheric conditions whereas the bottom boundary was defined as a no-slip wall 180 

to account for the seabed presence. The two side planes were defined as symmetry planes. A 181 

Dirichlet condition was applied at the inlet and pressure at the outlet.  182 



7 

 

 183 

 184 

Fig. 2: Computational domain for obtaining the RANS solution. 185 

 186 

Periodic regular waves were generated at the inlet boundary, propagating in the positive 187 

x-direction, and a wave absorption zone was placed at the outlet to eliminate the reflection of 188 

waves from the outlet boundary. The wave generation and absorption were realised following 189 

the fifth-order Stokes theory for nonlinear waves (Dean and Dalrymple, 1984). Equation (6) – 190 

(8) give the solutions of the first two orders, since the full equations are lengthy. Fifth order 191 

Stokes waves were selected since the Ursell number (U) was not exceeding 46.7. The Ursell 192 

number indicates the nonlinearity of long surface gravity waves and is defined as 𝑈 =193 

 𝐻𝜆2/ ℎ3, where H represents the wave height, h the mean water depth, and λ is the wavelength. 194 

This approximation is acceptable in shallow waters and it has been validated with experiments 195 

in the literature (Zhao et al., 2016). 196 

 197 

 𝜂 = 𝐷 +
𝐻

2
cos(𝑘𝑥 − 𝜔𝑡) +

𝐻2𝑘

16

cosh(𝑘ℎ)

sinh3(𝑘ℎ)
× [2cosh(2𝑘ℎ)] × cos 2(𝑘𝑥 − 𝜔𝑡)            (6)                   198 

   𝑣𝑥 =  
𝐻𝑔𝑘

2𝜔 

cosh(𝑘𝑦+𝑘ℎ)

cosh (𝑘ℎ)
cos(𝑘𝑥 − 𝜔𝑡) +

3

16

𝐻2𝜔𝑘 × cosh 2(𝑘ℎ+𝑘𝑦)

sinh4(𝑘ℎ)
× cos 2(𝑘𝑥 − 𝜔𝑡)       (7)                   199 

𝑣𝑦  =  
𝐻𝑔𝑘

2𝜔 

sin(𝑘𝑦+𝑘ℎ)

cosh (𝑘ℎ)
sin(𝑘𝑥 − 𝜔𝑡) +

3

16

𝐻2𝜔𝑘 × sinh 2(𝑘ℎ+𝑘𝑦)

sinh4(𝑘ℎ)
× sin 2(𝑘𝑥 − 𝜔𝑡)          (8)         200 

                        201 

Cylinder 

Outlet 

Inlet 



8 

 

in which 𝜂  is the free surface elevation, 𝑣𝑥  and  𝑣𝑦  are horizontal and vertical velocity 202 

components, respectively. H is the wave height, k is the wavenumber, and 𝜔 is the angular 203 

frequency.  204 

Inside the wave absorption zone, waves are dissipated by an artificial damping force to 205 

achieve a still water surface. Specifically, in the wave absorption zone, the momentum 206 

Equation (2) is modified into: 207 

 208 

               
𝜕(𝜌𝒗̅)

𝜕𝑡
+ ∇ ⋅ (𝜌𝒗𝒗̅̅̅̅ ) = −∇p̅ + ∇ ⋅ (τ̅  −  ρ 𝒗′𝒗′̅̅ ̅̅ ̅) + +ρg + 𝜌𝜑(𝒗 –  𝒗𝒔𝒕𝒓)                   (9) 209 

 210 

The last term is the artificial damping force that dissipates the wave motion, where 𝜑 is the 211 

damping coefficient in units of s−1, and it increases smoothly in the wave propagation direction. 212 

 𝒗𝒔𝒕𝒓 is the background stream velocity that is exempted from damping, which equals zero 213 

when there is no current. 214 

The computational domain sizes are 120 L and 40 L in the streamwise and the spanwise 215 

directions, respectively, where L is the cylinder diameter. The cylinder was placed at a distance 216 

of 40 L from the inlet. The length of the wave absorption zone is 38 L, where 38 L equals 217 

approximately twice the maximal incident wavelength examined in this study. The above 218 

dimensions were determined by sensitivity tests to ensure the boundary effects are in line with 219 

the physical conditions. 220 

Using the finite volume method, a hexahedral unstructured mesh type was used to 221 

discretise the fluid domain with local refinements at the cylinder proximity where a higher 222 

resolution of the flow was required. A second-order spatial resolution scheme was used to solve 223 

the RANS equations. Mesh sensitivity tests were performed on three mesh sizes G.1, G.2 and 224 

G,3, which is a standard CFD procedure to check the convergence (Pena et al., 2019). The 225 

timestep was adjusted to achieve a Courant Number of around 1, a well-established rule of 226 

thumb. As shown in Table 1, a convergent solution for the maximum load during a wave period 227 

(Fmax) was achieved with half a million cells, with the variance (ΔFmax) between G.2 and G.3 to 228 

be a minimal level (0.51%).  229 

The applied CFD approach has been following mature guidelines of the field, e.g. ITTC 230 

(2017), which has been extensively validated to be highly accurate, while it should be remarked 231 

that the focus of the present study is not about the accuracy of CFD but the capability of using 232 

a machine learning approach to obtain comparative outcomes in a fraction of time. 233 
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Table 1: Mesh Convergence Study of the CFD model 234 

Mesh Cell number (Million) Fmax (N) ΔFmax (%) 

G.1 0.23 1.89 - 

G.2 0.50 1.98 4.54 

G.3 0.74 1.97 -0.51 

 235 

2.2 Data-Driven Deep Learning Predictive Model 236 

 237 

Nonlinear wave impact loads and wave run-up were predicted using the Wave-GAN 238 

that was built as part of this work. The Wave-GAN is based on the conditional Generative 239 

Adversarial Networks (cGAN) principle which has been successfully used to solve multiple 240 

image-to-image translation problems from maps to satellite images (Isola et al., 2017). Input 241 

and output datasets were the essential elements to train and test the performance of Wave-242 

GAN, and they were obtained from the CFD computations described in the previous section. 243 

More details of the Wave-GAN architecture and training will be presented in the forthcoming 244 

sections. 245 

 246 

2.3 Data Mining 247 

 248 

A series of CFD simulations were created to account for different wave profile 249 

scenarios. Wavelengths ranging from 0.5 m to 1.5 m in intervals of 0.1 m together with wave 250 

heights between 0.05 m to 0.1 m in intervals of 0.01 m were defined at the inlet corresponding 251 

to Keulegan–Carpenter (KC) numbers ranging from 2.5 to 5 and 5 different wave amplitudes. 252 

The KC number is defined as 𝐾𝐶 = 𝑎𝑥 𝑇/𝐿 , where 𝑎𝑥  is the surge amplitude of wave 253 

oscillation, T is the wave period and L is the characteristic length of the structure. A small KC 254 

value indicates that the drag force that comes from the viscosity is negligible compared to 255 

inertial forces, whilst a high KC means considerable turbulent behaviours. 256 

After the convergence of each simulation, screenshot datasets composed of input and 257 

output images were recorded every 0.002 s and ensuring that at least one full wave period was 258 

documented for each simulation case. In total, 55 simulations with different wave amplitude 259 

and length were conducted, and approximately 100,000 screenshots of input and output images 260 

were extracted.  261 

On the one hand, input images represent the superimposition of an undisturbed wave 262 

field and a cylinder with a diameter L as shown in Fig. . While input images can be sketched 263 



10 

 

manually using Paint, Photoshop, MATLAB and Excel, this study extracted them directly from 264 

the CFD software.  265 

 266 

 267 

Fig. 3: Sample of an input image. 268 

 269 

On the other hand, output images represent the 'disturbed' wave field together with the 270 

wave load on the cylinder's surface, as shown in Fig. 4. During the present work, dynamic 271 

pressure was chosen as the predicted target of the network algorithm, considering its relevance 272 

to the design of offshore structures such as monopiles, rigs and ships. The scale of dynamic 273 

pressure used during the present study is as included in Fig. 4, which ranges from -500 Pa to 274 

1000 Pa; this could be also replaced by pressure coefficient. And yet, following the same 275 

approach, the Wave-GAN could be trained to predict other parameters such as flow velocities 276 

or more complex fluid-structure interaction parameters.  277 

Undisturbed wave 

Cylinder 
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 278 

 279 

Fig. 4: Sample of an output image. The contour for dynamic pressure is consistent with all the 280 

following pictures. 281 

 282 

Once all the datasets were generated, they were separated into two distinct groups: 283 

training and testing – out of the generated pictures, 20% of the data was used for training, 40% 284 

for dev and the remaining 40% was employed for testing purposes. Each dataset contains an 285 

input picture serving as ground truth and an output picture used to judge Wave-GAN's 286 

accuracy.  287 

 288 

2.4 Error Quantification 289 

 290 

As part of this study, the error between predicted and ground truth images (CFD 291 

calculation) was estimated by using the Mean Absolute Error (MAE) technique. The MAE is 292 

described in Equation (10), where 𝑦𝑖 represents the ith pixel intensity for the predicted image, 293 

𝑦𝑖̂ is the ith pixel intensity for the ground truth and m is the number of pixels.  294 

 295 

𝑀𝐴𝐸 =
1

𝑚
∑ [(𝑦𝑖 − 𝑦𝑖̂]

𝑚
𝑖=1           (10) 296 

 297 

Wave loads 

Disturbed wave 

Dynamic Pressure (Pa) 
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3. Generative Adversarial Network 298 

3.1 Overall Wave-GAN Principle 299 

 300 

The algorithm was conceived as a supervised learning generative model suitable for 301 

building one-to-one mapping from a given condition into predictions of wave loads and run-302 

up on a cylinder. The Wave-GAN, which is based on GAN's principle (Goodfellow et al., 303 

2014), was therefore formulated as a minimax two-player game between two distinct deep 304 

learning network models - (a) a Generator 'G' which is responsible to create samples that are 305 

intended to come from the same distribution as that of the real data and, (b) a discriminator 'D' 306 

that determines whether the sample from the target domain is a real (ground truth) or a 307 

generated version of the source image. This process is illustrated in Fig. 5. 308 

 309 

 310 

Fig. 5: Overall Wave-GAN training principle for wave load prediction and run-up on a 311 

cylinder. 312 

 313 

3.2 Loss Functions 314 

 315 

As reported in the literature, the objective of a cGAN can be expressed as (Isola et 316 

al., 2017): 317 

 318 

ℒ𝑐𝐺𝑎𝑛 (𝐺, 𝐷)  =  𝔼𝑥.𝑦[𝑙𝑜𝑔 𝐷 (𝑥, 𝑦)] + 𝔼𝑥.𝑧[𝑙𝑜𝑔(1 − 𝐷(𝑥, 𝑧))]    (11) 319 

 320 

where G, the generator, tries to minimise this objective against an adversarial discriminator, D. 321 

The Generator G is optimised by playing a min-max game with the Discriminator D in the form 322 

of: 323 
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 324 

𝐺∗ =  𝑎𝑟𝑔 𝑚𝑖𝑛𝐺𝑚𝑎𝑥𝐷 ℒ𝑐𝐺𝑎𝑛 (𝐺, 𝐷)    (12) 325 

 326 

Previous studies reported that it is beneficial to mix the GAN objective with a more traditional 327 

loss, such as L1 distance which encourages less blurring (Isola et al., 2017) and which is 328 

defined as follows: 329 

 330 

ℒ𝐿1 (𝐺)  =  𝔼𝑥.𝑦[‖𝑦 –  𝐺 (𝑥, 𝑧)‖1]     (13) 331 

 332 

Therefore, the final objective of Wave-GAN considering L1 distance is: 333 

 334 

𝐺∗ =  𝑎𝑟𝑔 𝑚𝑖𝑛𝐺𝑚𝑎𝑥𝐷 ℒ𝑐𝐺𝑎𝑛 (𝐺, 𝐷)  +  𝜆 ℒ𝐿1 (𝐺)   (14) 335 

 336 

3.3 Network Architecture 337 

 338 

The Wave-GAN generator architecture, as shown in Fig. 6, follows an encoder-decoder 339 

structure with skip connections between mirrored layers in the encoder and decoder stacks, 340 

also called a modified U-net (Olaf Ronneberger et al., 2015). Note that skip connections were 341 

established between i and n-i layers where n is the total number of layers. 342 

 343 

 344 

Fig. 6: Generator fundamental structure following a U-Net with skip connections. 345 

 346 

The generator uses modules of the form convolution-BatchNorm-ReLu (Leaky ReLU) 347 

(Ioffe and Szegedy, 2015) as described in (Isola et al., 2017). The encoder structure obeys the 348 
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structure c64-c128-c256-c512-c512-c512-c512-c512-c512 as shown in Fig. 7, where ck denote 349 

a Convolution-BatchNorm-ReLU layer with k filters. All convolutions are run with a 4x4 350 

kernel size, a stride of 2 and the convolution in the encoder was programmed to downsample 351 

by a factor of 2. Batch-Norm is not applied to the first c64 layer in the encoder. In the decoder 352 

part, however, the upsampling process is done from the latent high dimensional vector back to 353 

the original input size sequentially. The decoder follows a cd512-cd512-cd512-c512-c512- 354 

c256-c128-c64 architecture as shown in Fig. 7, where cdk denotes a Convolution-BatchNorm-355 

Dropout-ReLU layer with k filters and with a dropout rate of 50%. Note that convolutions 356 

upsamples by a factor of 2. In the decoder, after the last layer, a convolution is applied to map 357 

to the number of outputs 3 RGB channels followed by a tanh activation function. All ReLUs 358 

in the encoder are leaky, with a slope of 0.2, while ReLUs in the decoder are not leaky. The 359 

architecture presented was found by conducting a careful meta-parameter study. 360 

 361 

 362 

Fig. 7: Architecture of the generator. 363 

 364 

The discriminator follows a PatchGAN structure (Li and Wand, 2016) where 70x70 365 

patches aim to classify if a generated image is real or fake. The discriminator was also defined 366 

by modules of the form convolution-BatchNorm-ReLu (Leaky ReLU) (Ioffe and Szegedy, 367 

2015) and its architecture follows a c64-c128-c256-c512 structure with a kernel size of 4x4. 368 

After the last layer, a convolution is applied with a stride of 1, followed by a Sigmoid activation 369 

function. For the discriminator, all ReLUs are leaky, with a slope of 0.2. 370 
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With regard to the network performance, this study followed the approach described by 371 

Goodfellow et al. (2014) by first alternating between one gradient descent step on D and then 372 

one step on G. The Wave-GAN was therefore trained to maximise log D (x; G(x; z) as 373 

suggested by Goodfellow et al. (2014). Besides, the rate at which D learns relative to G was 374 

slowed down but dividing the objective by 2. This practice is a recommended practice that has 375 

shown to offer stability to the training of GANs (Goodfellow et al., 2014). Minibatch stochastic 376 

gradient descent is used and the Adam solver (Kingma and Ba, 2015) is applied with a learning 377 

rate of 0.0002, the first moment of 0.5 and the second-moment of 0.99. 378 

 379 

4. Results and analyses 380 

4.1 Training 381 

 382 

Deep learning models are known to be particularly sensitive to parameters such as the 383 

number of training datasets. Therefore, as part of this study, the frequency at which samples 384 

were taken for training was studied. This sensitivity test could be particularly beneficial to 385 

minimise training times during offshore/marine structures' design, without reducing the results' 386 

accuracy. 387 

Three deep learning networks with distinct training datasets were created: Case A, Case 388 

B and Case C. All models were trained from scratch, and the weights were initialised from a 389 

Gaussian distribution with a mean value of 0 and a standard deviation of 0.02.  Case A employs 390 

a high period between data samples, whereas Cases B and C use a smaller period between 391 

datasets. A summary of the three cases is summarised in Table 2. It can be seen that after an 392 

initial training time, Wave-GAN can just take seconds to provide a prediction for a new test 393 

condition. 394 

 395 

Table 2: Cases used for training with different data sizes. 396 

Case  Frequency Training 

Pairs 

Training 

time 

Prediction 

time 

A  1/40 2,500 3 hours 

≈ 10 seconds B  1/20 5,000 12 hours 

C  1/10 10,000 1.3 days 

 397 
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Fig. 8 depicts the ground truth compared with the images generated from the three 398 

networks A, B and C at the 300th epoch for datasets not included in the training. Overall, it is 399 

possible to see that the number of datasets affects the quality of the generated picture and the 400 

prediction of wave loads and run-up on the cylinder. Besides, Case A produces a blurrier load 401 

prediction than Cases B and C. This phenomenon is reasonable since the lack of training data 402 

is expected to affect the final predictions and the rate at which the networks learn. However, it 403 

is essential to note that training a model with more datasets significantly increases the 404 

computational power required to train the network. Table 2 displays the necessary time to train 405 

each of the models using a Tesla V100 GPU and TensorFlow 2.3.1. This result confirms that 406 

the training time and computational demand should be considered before running data-driven 407 

analyses using GANs. 408 

 409 

 410 

Fig. 8: Wave load predictions for Cases A, B and C vs ground truth (CFD). 411 

 412 

Additionally, the prediction accuracy for each model for datasets not included during 413 

training was evaluated using MAE, which helped gain further insight into each model's 414 
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performance. By plotting the MAE in a Box-and-Whisker style chart, it is possible to see if 415 

high bias or high variance problems exist and therefore detect overfitting or underfitting issues. 416 

Fig.  9 depicts the average MAE values for each of the three cases studied and showing a 417 

significant accuracy difference between them. Whilst MAE in Case A is much higher than the 418 

others, there is no significant difference between Case B and Case C. This indicates that Case 419 

B achieved great generalisation compared to the models with more training datasets while 420 

requiring significantly less computational time than Case C (Fig. 9). Case B is deemed as the 421 

best choice for further studies, as it can provide an equivalent accuracy as Case C but requiring 422 

much less training time and computational memory.  423 

 424 

 425 

Fig. 9: Average MAE for the three cases. 426 

 427 

4.2 Evaluation 428 

 429 

Wave-GAN verification is potentially the most crucial step that needs to be carefully 430 

assessed to build confidence in the proposed approach. Therefore, a systematic verification 431 

using datasets not informed during training was conducted following four steps: (a) convergent 432 

study, (b) perceptual observation, (c) localised quantitative comparison, and (d) MAE 433 

evaluation. 434 

The first step in validating the Wave-GAN model consisted of examining the overall 435 

convergence process and the prediction accuracy during the training phase. Fig. 10 shows the 436 

convergence curve, which displays the average generator loss against every epoch. Overall, it 437 
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can be seen that the process reaches convergence at about epoch 30. In Fig. 11, at epoch 10 the 438 

disturbed wave shape was not predicted; At Epoch 30, the generated image is very close to that 439 

at Epoch 100, indicating that the Wave-GAN reached a level at Epoch 30 that it cannot learn 440 

anymore and the training may be stopped. 441 

 442 

 443 

Fig. 10: Convergence of the prediction residual of Wave-GAN. 444 

 445 

 446 

Fig. 11: Wave load and run-up prediction comparison at different epochs. 447 

 448 

The second stage of validation was conducted through perceptual comparisons between 449 

the predicted images generated by Wave-GAN and the ground truth generated by CFD. Fig. 450 

12-15 depict the hydrodynamic load contours on the cylinder and wave run-up, which 451 
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correspond to KC numbers between 3.14 and 4.4. Overall, it can be seen that very good 452 

agreement between the ground truth and the Wave-GAN prediction was achieved.  453 

In Fig. 12, a KC of 3.14 generated some difference in the disturbed wave pattern 454 

prediction, as marked using the red arrows, despite this does not impact the wave run-up 455 

prediction. It is interesting to notice that although the disturbed wave pattern is slightly 456 

distorted, the wave load still agrees well with CFD. This phenomenon happens because the 457 

wave load is predicted using image-processing rather than mathematically from the wavefield.  458 

 459 

 460 

Fig. 12: Input vs ground truth and Wave-GAN prediction at KC = 3.14. 461 

 462 

Fig. 13 shows that the disturbed wave pattern has been predicted with a high level of 463 

consistency with CFD. The wave load peak (red) has also been predicted by Wave-GAN and 464 

demonstrates the image-to-image method for the present application. Besides, Wave-GAN has 465 

been able to catch the nonlinearity of the wave pattern, which is becoming sharper as it is 466 

approaching the maximum steepness for the given wave. 467 

 468 
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 469 

Fig. 13: Input vs ground truth and Wave-GAN prediction at KC = 3.54. 470 

 471 

A more challenging perceptive test is conducted by passing a very nonlinear and highly 472 

steep wave (about to break) by the cylinder, as shown in Fig. 14 and with a KC = 4.4. For this 473 

challenging condition, the prediction still correlates well with CFD; however, when the pictures 474 

are zoomed in (see insert), it can be seen that there is a thin yellow region contouring the peak 475 

pressure load (in red) for the ground truth which Wave-GAN has not been able to predict. This 476 

phenomenon could happen because the input wave condition is distinctively different from the 477 

trained wave conditions. Moreover, when zoomed in, the picture loses resolution, which could 478 

potentially affect the predicted loads. This blurriness could be corrected by increasing the 479 

input-output layer sizes in the overall structure of Wave-GAN. On the other hand, it can be 480 

seen that the disturbed wave has been predicted with a high degree of accuracy regardless of 481 

the high nonlinearity of the wave. 482 

 483 

 484 

Fig. 14: Input vs ground truth and Wave-GAN prediction at KC = 4.4. 485 

 486 
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It is also of interest to test the wave load and run-up prediction when a trough breaks 487 

on the cylinder instead of a peak. Fig. 15, at KC = 3.14, depicts that Wave-GAN can accurately 488 

predict both wave load and run-up with excellent accuracy regardless of the changed wave 489 

phase. Minimal deviances in the contour can be seen as the CFD outputs high-resolution 490 

contours for the pressure load. In contrast, Wave-GAN blurs the contour lines by showing a 491 

more homogeneous hydrodynamic load on the cylinder. However, the maximum load has been 492 

accurately predicted and again confirming the rationality of the present method. Hence, it could 493 

be concluded that the position of the wave with respect to the cylinder does not have a notable 494 

effect on the accuracy of Wave-GAN in predicting the wave load and run-up. 495 

 496 

 497 

Fig. 15: Input vs ground truth and Wave-GAN prediction at KC = 3.14. 498 

 499 

Parallel tests on Wave-GAN accuracy with various incident wave heights outside of the 500 

training envelope were also performed. Fig. 16 shows a wavelength much longer than the ones 501 

contained in the training datasets. It can be seen that the accuracy in the results is fairly high, 502 

with minor irregularities in the disturbed wave pattern downstream of the cylinder (indicated 503 

by the red arrow). Moreover, the load prediction agrees very well between the ground truth 504 

(CFD) and the predicted image. This shows Wave-GAN can be particularly useful to handle 505 

vast testing conditions during the early design stage of marine and offshore engineering 506 

applications – with a certain number of wave conditions trained, Wave-GAN can provide a 507 

reliable prediction for the design containing an extensive range of operation conditions. 508 

 509 
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 510 

Fig. 16: Input vs ground truth and Wave-GAN prediction at KC = 5.0. 511 

 512 

A third step in the validation process is conducted by comparing the dynamic pressure 513 

distribution over the cylinder diameter at the water depth of 0.5 m and the still free surface, 514 

respectively expressed as z/L = 1 and z/L = 0, as shown in Fig. 17. This plot corresponds to the 515 

prediction shown in Fig. 14, which represents a highly nonlinear wave condition. Overall, it is 516 

possible to see that pressure for the ground truth and the predicted image correlate well and 517 

that the predicted image keeps good accuracy against the CFD results. For z/L = 1, a 518 

discrepancy of 15% can be observed at x/L = 0.4. Although the discrepancy is considerable, it 519 

does not impact the accuracy at any of the other locations. At z/L = 0, the prediction is very 520 

accurate with all deviations being less than 2%. Those discrepancies could be potentially solved 521 

with higher-resolution generated images, while the computational cost would increase 522 

accordingly if a higher resolution is required.  523 

To provide a direct quantitative metric on how well Wave-GAN can predict the pressure 524 

results against CFD, the maximum pressure on the cylinder during a wave period was extracted 525 

for all tested cases. Figure 18 displays the average percentage difference between the maximum 526 

pressure predicted by CFD and by Wave-GAN, showing that there is a relative difference 527 

between 1.6 to 2% for all cases, regardless of the KC number. This comparison depicts that the 528 

model is able to predict the maximum load with a high degree of accuracy. 529 

 530 
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 531 

Fig. 17: Dynamic load comparison for ground truth (CFD) and Wave-GAN at two 532 

different water depths. 533 

 534 

 535 

Fig. 18 Relative difference of the maximum pressure on the cylinder, between CFD and 536 

Wave-GAN. 537 

 538 

Further quantitative validation is conducted by analysing the MAEs for all samples in 539 

the training and test sets to ensure that bias and variance are not high. Fig. 19 depicts that the 540 

MAE for the training set is smaller than for the testing set. This phenomenon is expected as the 541 

training datasets have been passed to Wave-GAN during the training process while the testing 542 

dataset has not. Still, the MAEs for the testing dataset are fairly small, even though these 543 

correspond to a much more comprehensive wave range than the trained range. Therefore, it can 544 

be concluded that Wave-GAN can predict detailed hydrodynamic characteristics rapidly (in 545 

less than 10 s as shown in Table 2) and effectively.  546 

 547 
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 548 

Fig. 19: Average MAE for training and testing datasets. 549 

 550 

5. Practicality  551 

It has been demonstrated that Wave-GAN can effectively predict wave-structural 552 

interactions as a surrogate approach to CFD. Whilst this is the first demonstration of a deep 553 

learning approach for such a purpose, it is of great interest to discuss how such a new tool may 554 

be applied in real industrial problems. 555 

(1) Usage 556 

For the academic community, the demonstrated validation of Wave-GAN has shown 557 

values to keep developing machine learning models for engineering application; for the 558 

industry, since Wave-GAN requires CFD for training, it does not show superior advantages 559 

over CFD if it is used on one single design. However, as industrial members (e.g. a 560 

classification organisation or a business group) conduct numerous projects per year, provided 561 

an initial stage (e.g. hundreds of projects over half to one year period) to extract quality CFD 562 

results for training the deep learning model, it is envisioned that Wave-GAN will have the 563 

independent ability to provide reliable assessment for the following years, and its capability 564 

can still be expanding via additional CFD inputs over time. This means that a wide range of 565 

wave conditions, water depths, structural dimensions and structural types will be included, and 566 

the model can automatically identify these parameters through the input image. 567 

(2) Benefits  568 

            The early design stages will see significant benefits by using Wave-GAN, where vast 569 

configurations need to be tested that would be prohibitive to obtain using CFD. Rapid estimates 570 
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can be provided through Wave-GAN, with nonlinear wave-structural behaviours accounted 571 

for, overcoming inaccuracies in contemporarily-used linear analytical methods.  572 

           Wave-GAN will provide benefits to the late design stages as its capability and speed 573 

allow to evaluate the structural performance for a wide range of wave conditions consisting of 574 

infinitely small variations, i.e. a response surface versus different wavelengths and wave 575 

heights. Benefited from the improved accuracy of Wave-GAN through its inherent 576 

nonlinearities, such response surfaces will be beneficial to conduct fast spectral analyses of 577 

wave loads on structures.  578 

            Wave-GAN can also bring benefits to the operation stage of offshore and coastal 579 

structures. Once a structure is placed, the geographical location's metocean data can be used to 580 

calculate the long-term structural dynamics, based on the response surface provided by Wave-581 

GAN. In this way, the rapid deep learning tool may facilitate continuous monitoring of 582 

structures in waves, providing the ability to assess structural integrity risks and fatigue, thus 583 

improving maintenance and repair strategies over the lifecycle. In addition, a device's response 584 

surface built by Wave-GAN could be used to achieve relevant real-time controlling purposes, 585 

e.g. controlling the device's dynamics to optimise its performance in the real-time sea condition 586 

(Anderlini et al., 2020; Li et al., 2020). 587 

 588 

6. Conclusions 589 

 590 

This work has developed and presented a novel data-driven computational technique, 591 

Wave-GAN based on the Convolutional Neural Networks cGAN principle. It demonstrates the 592 

ability to predict three-dimensional nonlinear regular wave loads and run-up on a fixed cylinder 593 

by using the Convolutional Neural Networks principle. Datasets used during training and 594 

testing of Wave-GAN were constructed using CFD simulations with various wave conditions. 595 

The trained Wave-GAN was subsequently subject to a thorough verification using 596 

varied techniques ranging from perceptual observation, MAE evaluation and convergence 597 

validation. While minimal deviances in the disturbed wave pattern were observed, this did not 598 

impact the prediction of wave profile in other locations. Wave-GAN replicated the CFD results 599 

with a high level of accuracy for the wave load, even for the high nonlinearity of the input 600 

waves that were close to their breaking point. However, it was observed that the resolution 601 

from the predicted images could be increased to potentially allow for easier recognition of the 602 

impact loads and improve the average calculated MAE.  603 
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Upon verification, the proposed deep learning approach proved the ability to provide 604 

comparative results for the prediction of wave load and run-up as obtained using CFD, and 605 

Wave-GAN can yield the results in a fraction of time – per the CFD simulation took an average 606 

of 6 h to complete whereas Wave-GAN requires only less than 10 s to provide the desired 607 

answer. Wave-GAN's rapidity and capability show the potential to be extremely helpful in 608 

various design and operation stages. 609 

Finally, despite the extensive usage of Wave-GAN discussed on surrogating CFD, i.e. 610 

in a well-trained scope, Wave-GAN can be operated independently from CFD, Wave-GAN is 611 

not envisioned to be a complete replacement to CFD or physical experiments, because (a) 612 

quality CFD results are always valuable to add training images for the deep learning model, 613 

which can continuously expand its applicability and refine its accuracy (b) CFD and 614 

experiments are essential to address some extreme operating conditions and very complex 615 

structures that are not trained into the deep learning model. 616 

 617 
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