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A B S T R A C T   

White matter hyperintensities (WMHs) on T2-weighted images are radiological signs of cerebral small vessel 
disease. As their total volume is variably associated with cognition, a new approach that integrates multiple 
radiological criteria is warranted. Location may matter, as periventricular WMHs have been shown to be asso-
ciated with cognitive impairments. WMHs that appear as hypointense in T1-weighted images (T1w) may also 
indicate the most severe component of WMHs. We developed an automatic method that sub-classifies WMHs into 
four categories (periventricular/deep and T1w-hypointense/nonT1w-hypointense) using MRI data from 684 
community-dwelling older adults from the Whitehall II study. To test if location and intensity information can 
impact cognition, we derived two general linear models using either overall or subdivided volumes. Results 
showed that periventricular T1w-hypointense WMHs were significantly associated with poorer performance in 
the trail making A (p = 0.011), digit symbol (p = 0.028) and digit coding (p = 0.009) tests. We found no as-
sociation between total WMH volume and cognition. These findings suggest that sub-classifying WMHs according 
to both location and intensity in T1w reveals specific associations with cognitive performance.   

1. Introduction 

White matter hyperintensities (WMHs) on T2-weighted magnetic 
resonance images (MRI) are radiological signs of cerebral small vessel 
disease (SVD) (Wardlaw et al., 2013). They are associated with a higher 
incidence of stroke and dementia (Debette and Markus, 2010), mood 
disorders, motor impairments and urinary incontinence (Poggesi et al., 
2011). Moreover, WMHs are related to cognitive impairments, partic-
ularly executive dysfunctions and poorer psychomotor speed 

(Bolandzadeh et al., 2012). Whilst WMHs have acquired considerable 
interest in the field of translational and clinical research, the assessment 
and the reporting of WMH volume are often inconsistent in research 
studies and medical practice (Frey et al., 2019). 

The optimal MRI sequence to assess WMHs is fluid-attenuated 
inversion recovery (FLAIR). This sequence generates T2-weighted im-
ages where the signal from the cerebrospinal fluid is suppressed and 
hyperintense regions stand out on a low intensity homogeneous back-
ground (Wardlaw et al., 2013). In research, quantification of WMHs is 
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preferred to qualitative assessment due to higher reliability, sensitivity 
and objectivity of the former (De Guio et al., 2016; Van den Heuvel et al., 
2006) and the widespread availability of segmentation software. How-
ever, the interpretation of quantitative results and comparison between 
studies remain difficult due to acquisition-related differences (scanner, 
protocol), discrepancies between processing methods (pre-processing 
pipelines, method/tool used to extract WMH measurements) and vari-
ations in the definition of what should be considered a WMH (De Guio 
et al., 2016). Harmonisation methods that reduce or compensate for the 
variability due to acquisition differences and/or processing discrep-
ancies are being developed to enable comparisons between or pooling of 
MRI-derived measures from different datasets (Bordin et al., 2020). 
Notwithstanding, the lack of a clear definition on what should be 
segmented as a WMH and whether some WMH sub-classes are more 
clinically relevant than others warrant further investigation (Alber et al., 
2019; Frey et al., 2019; Murray et al., 2010; Smith et al., 2019; Tate 
et al., 2008; Wardlaw et al., 2013). 

Periventricular WMHs are more strongly associated with concurrent 
cognitive deficits than deep ones (Bolandzadeh et al., 2012). This is in 
line with longitudinal studies on regional baseline WMH volumes and 
their association with the risk of transition from intact cognition to mild 
cognitive impairment and dementia (De Groot et al., 2002; Kim et al., 
2015; van Straaten et al., 2008). To explain this finding, the hypothesis 
of reduced brain reserve in periventricular regions has been put forward 
(De Groot et al., 2002). Despite this evidence, it is still unclear whether 
periventricular and deep WMHs would constitute a continuous entity or 
should be considered and reported separately (DeCarli et al., 2005). If 
the latter is true, a single method for distinguishing types of WMHs 
should be adopted among the many that have been proposed (Griffanti 
et al., 2018). 

White matter hyperintensities can either be iso- or hypointense in T1- 
weighted images (Spilt et al., 2006; Wardlaw et al., 2013). To the best of 
our knowledge, there are no studies performed on brain tissue samples 
that investigate whether there is any difference in the underlying pa-
thology between non T1-hypointense versus T1-hypointense WMHs. 
However, clinical research in multiple sclerosis has showed that demy-
elinating T1-hypointense lesions (“black holes”) represent permanent 
damage to the white matter and are associated with cognitive impair-
ments (Nowaczyk et al., 2019; Ozakbas et al., 2019). In WMHs of pre-
sumed vascular origin, the co-located hypointensity in T1-weighted 
images (here on referred to as T1-hypointense WMHs) may indicate 
more severe damage to the white matter than WMHs that are visible in 
T2-weighted images without any corresponding hypointensities in the 
T1-weighted images (here on referred to as non T1-hypointense WMHs). 
Quantitative measures of the motion of water molecules in vivo using 
diffusion tensor imaging (DTI) metrics have shown microstructural 
changes in the white matter in WMH areas (Soriano-Raya et al., 2014; 
Wardlaw et al., 2015). Altered DTI metrics were reported in multiple 
sclerosis lesions that turn into permanent “black holes” (Naismith et al., 
2010). Similarly, we could expect lower fractional anisotropy and higher 
radial diffusivity to reflect more severe axonal and myelin damage in T1- 
hypointense WMHs than in non T1-hypointense WMHs. T1-hypointense 
WMHs could thereby represent the portion of WMHs that carries the 
highest clinical impact. 

For the reasons outlined above, we tested the hypothesis that peri-
ventricular (rather than deep) and T1-hypointense (rather than non T1- 
hypointense) WMHs may indicate the most severe forms of lesion in 
terms of impact on cognitive function. To this purpose, we classified 
WMHs according to both their anatomical location and intensity in T1- 
weighted images in a large cohort of community-dwelling older adults, 
and studied whether this classification could provide added value on the 
association between WMHs and cognitive function. We implemented a 
method for categorizing WMHs according to spatial location and in-
tensity in T1-weighted images that was automatic and objective and 
used multiple linear regression analysis to see if these WMH sub-classes 
show specific associations with validated scores of cognitive functions. 

Given the current limitations and discrepancies in WMHs definition, 
our ultimate goal was to identify which sub-class(es) are specifically 
linked to cognitive function. This would inform future guidelines to 
focus the assessment on clinically-relevant radiological criteria of WMHs 
beyond their total extent, with a clear and objective definition of WMHs 
radiological appearance and location. 

2. Methods 

The study sample was drawn from 800 participants of the Whitehall 
II imaging sub-study (Filippini et al., 2014), which is part of a larger 
prospective occupational cohort study of British civil servants estab-
lished in 1985 (Marmot and Brunner, 2005). Participants were between 
60 and 85 years of age at the time the MRI study started. Participants 
with contraindications to MRI scanning or who were unable to travel to 
Oxford without assistance were excluded from the study. Ethical 
approval was obtained from the University of Oxford Central University 
Research Ethics Committee, and the UCL Medical School Committee on 
the Ethics of Human Research. Informed written consent was obtained 
from all participants. Socio-demographic, health and lifestyle variables 
and current cognitive function were assessed at the time of the MRI. 

MRI data were acquired at the Oxford Centre for Functional MRI of 
the Brain (FMRIB), Wellcome Centre for Integrative Neuroimaging 
(University of Oxford), using a 3-T, Siemens Magnetom Verio (Erlangen, 
Germany) scanner with a 32-channel receive head coil from April 2012 
to December 2014 (N = 550 participants) and a 3-T Siemens Prisma 
(Erlangen, Germany) with a 64-channel receive head-neck coil from July 
2015 to December 2016 (N = 250 participants) due to a scanner up-
grade. Details of acquisition protocols are shown in (Filippini et al., 
2014) and (Zsoldos et al., 2020) and are reported in Supplementary 
Table S1. For the purpose of this study we used high-resolution T1- 
weighted images, FLAIR images and diffusion weighted images (DWI). 

All images were processed and analysed using FMRIB Software Li-
brary (FSL) v.6.0 tools (Jenkinson et al., 2012). Participants’ T1- 
weighted and FLAIR images were skull-stripped with FSL-BET (Smith, 
2002) and bias field corrected with FSL-FAST (Zhang et al., 2001). DWI 
scans were pre-processed as described in (Filippini et al., 2014) and a 
diffusion tensor model was fit at each voxel to obtain maps of fractional 
anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) and radial 
diffusivity (RD). T1-weighted and FA images were then linearly regis-
tered to the corresponding FLAIR with FSL-FLIRT (Jenkinson and Smith, 
2001). WMHs segmentation was performed with FSL-BIANCA (Griffanti 
et al., 2016), using intensity features (T1-weighted and FLAIR), local 
average intensities (3 voxels kernel), and spatial features (MNI co-
ordinates obtained from the transformation between FLAIR and MNI for 
each subject, weighting factor of 2). To avoid scanner-specific biases in 
the estimates, BIANCA was trained with WMH masks manually delin-
eated in a sub-sample of individuals scanned on the Prisma (n = 24) and 
Verio (n = 24) scanners and an independent sample from the UK Bio-
bank study (n = 12). The processing steps and the training settings have 
been previously optimised (Bordin et al., 2020) to offer the best balance 
between segmentation performance and removal of scanner-specific 
biases in the WMH estimates. The total WMH mask included voxels 
exceeding a probability of 0.9 of being a WMH and located within a 
white matter mask as described in (Griffanti et al., 2016). Finally, WMH 
masks were visually checked by an experienced observer to exclude 
images where small segmentation errors could hinder subsequent WMH 
sub-classification. The total WMH mask included voxels exceeding a 
probability of 0.9 of being a WMH and located within a white matter 
mask as described in (Griffanti et al., 2016). The total WMH volume was 
adjusted for the total brain volume and log transformed for statistical 
analysis. 

We separated WMHs voxels into T1-hypointense and non T1-hypo-
intense. To achieve this, we used FSL-FAST (Zhang et al., 2001) on T1- 
weighted images to perform tissue type segmentation and calculate 
maps of partial volume estimates (PVE) for the three classes (grey 
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matter, white matter and cerebrospinal fluid). Due to their low-intensity 
values, T1-hypointense WMHs are classified by FAST as either grey 
matter or cerebrospinal fluid. We therefore classified voxels as non T1- 
hypointense WMHs the voxels within the total WMH mask where the 
corresponding white matter PVE was greater than 0.5. We then obtained 
T1-hypointense WMHs by subtraction. 

We used a cluster-based approach to separate between periven-
tricular and deep WMHs, similar to the “continuity to ventricle” crite-
rion described by (Griffanti et al., 2018). To do so, we created an 
extended ventricle mask (i.e. a ventricle mask that extended beyond the 
ventricular boundaries) in the Montreal Neurological Institute (MNI) 
space. The extended ventricle mask consisted of the probability maps 
-set with a very low threshold- of the lateral ventricles, thalami and 
fornix bilaterally. We transformed the mask to the single-subject FLAIR 
space via the corresponding T1 using linear (Jenkinson et al., 2002) and 
non-linear registration (Andersson et al., 2007), and classified as peri-
ventricular WMHs the clusters that overlapped with any part of the 
mask. Deep WMHs were then defined by subtraction. 

We finally combined the two criteria and obtained four WMH masks 
for the following sub-classes for each participant: periventricular T1- 
hypointense WMHs; periventricular non T1-hypointense WMHs; deep 
T1-hypointense WMHs; deep non T1-hypointense WMHs. Then, each 
mask was used to derive the corresponding WMH volume, which was 
adjusted for the total brain volume and log transformed for statistical 
analysis. 

We performed univariate multiple linear regression using the uni-
variate general linear model function type III sum of squares on SPSS 
version 25.0 (IBM Corp. Armonk, NY). The following measures of par-
ticipants’ cognition were selected as indices of global functioning, ex-
ecutive function, processing speed, working memory and word retrieval, 
in line with (Bolandzadeh et al., 2012): Montreal cognitive assessment 
(MoCA), trail-making test (TMT, A and B), digit span forward, back-
wards and sequence, digit symbol, digit coding, Boston naming-60 test 
(BNT), phonemic (letter) fluency (FLU-L) and semantic (category) 
fluency (FLU-C) tests. For details on the cognitive tests please refer to 
(Filippini et al., 2014). Demographic variables (age at the examination, 
sex, total years of education, systolic blood pressure, diastolic blood 
pressure) were used as covariates of no interest. For each cognitive test 
(dependent variable in the univariate multiple linear regression), two 
models were investigated, in which participants’ demographic variables 
were kept unchanged while WMHs were included as either WMHs total 
volume (corresponding to the BIANCA output) or subdivided WMH 
volumes (corresponding to the four sub-classes reported above). 

To better investigate the meaning of T1-hypointensity in our sample, 
we performed two post-hoc analyses. First, we studied WMH micro-
structure using DTI-derived metrics, given the lack of histopathological 
data for this dataset. Accordingly, we compared T1-hypointense and non 
T1-hypointense WMHs in terms of average fractional anisotropy (FA), 
mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD) 
using paired t-tests to evaluate potential differences in the underlying 
microstructure. Second, since we noticed that a WMH often includes 
both T1-hypointense and non T1-hypointense voxels, we adopted an 
alternative T1-weighted intensity-based classification of WMHs by 
dividing the total WMH map into WMH clusters with and without T1- 
hypointense voxels. This sub-classification was then used to look at the 
prevalence of WMH clusters with a T1-hypointense component and to 
better interpret the results of the main analysis. 

We also used Pearson correlations to further investigate the associ-
ations between WMH sub-classes, total WMH volume and age. 

Statistical significance was set at α = 0.05. Further correction for 
multiple hypotheses testing was performed using Bonferroni correction 
(Di Leo and Sardanelli, 2020). 

3. Results 

Participants characteristics (demographics, cognitive scores and MRI 

measures) are reported in Table 1. One hundred and sixteen participants 
were excluded from our analysis due to incomplete or poor-quality 
images (N = 44), neurological disorders (N = 30) and inaccurate 
WMH segmentation masks (N = 42) to leave a total of 684 community- 
dwelling older adults. Participants’ age ranged from 60 to 83 years. Most 
of participants were male (551/684, 81%) and had a MoCA score greater 
than or equal to 26 (551/684, 81%). 

An example of the WMH segmentation output resulting from the 
method we developed is provided in Fig. 1. 

White matter hyperintensities expressed as total volume were not 
significantly associated with any of the cognitive tests. However, when 
the four sub-classes of WMHs were instead used in the model, we found 
statistically significant associations between periventricular T1-hypo-
intense WMHs and poorer performance on the TMT-A (p = 0.011), digit 
symbol (p = 0.028) and digit coding (p = 0.009) tests. Conversely, non 
T1-hypointense periventricular WMHs were associated with higher 
scores on the digit backwards test (p = 0.023). Also, deep non T1- 
hypointense WMHs were found to be positively associated with the 

Table 1 
Sample characteristics.  

Descriptive 
statistics 

N Minimum Maximum Mean Standard 
deviation 

Demographics      
Age (years) 684 60.34 83.03  69.65  5.06 
Sex (M:F) 551:133     
Total education 

(years) 
684 13 28  19.10  2.85 

Systolic blood 
pressure 
(mmHg) 

681 93 226  141.09  17.54 

Diastolic blood 
pressure 
(mmHg) 

680 47 114  77.21  10.77       

Cognitive scores      
MoCA 684 17 30  27.25  2.25 
Trail making A 682 13 125  30.98  11.73 
Trail making B 680 24 321  67.08  33.84 
Trail making B-A 680 − 8 253  36.25  28.73 
Digit span 

forward 
683 5 16  11.08  2.28 

Digit span 
backwards 

683 4 16  9.65  2.45 

Digit span 
sequence 

683 0 16  10.05  2.48 

Digit symbol 683 13 46  30.78  5.75 
Digit coding 683 13 114  63.02  13.22 
Boston naming 

test-60 
684 15 60  57.38  4.66 

Letter fluency 684 3 31  15.78  4.64 
Category fluency 684 3 40  22.36  5.34       

MRI measures      
Total brain 

volume (dm3) 
684 1.023 1.928  1.456  0.133 

Total WMH 
volume (cm3) 

684 0.339 35.627  5.855  3.715 

Periventricular 
T1-hypointense 
WMHs (cm3) 

684 0.240 31.448  2.679  3.025 

Periventricular 
non T1- 
hypointense 
WMHs (cm3) 

684 0.050 6.379  2.138  0.831 

Deep T1- 
hypointense 
WMHs (cm3) 

684 0.001 5.274  0.434  0.577 

Deep non T1- 
hypointense 
WMHs (cm3) 

684 0.003 3.976  0.604  0.565 

Legend: MoCA, Montreal cognitive assessment; WMHs, white matter 
hyperintensities. 
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letter (p = 0.004) and category (p = 0.036) fluency tests. Regression 
analysis results for the models where WMHs sub-classes were signifi-
cantly associated with cognitive performances are shown in Table 2. 
Comprehensive results for all the models, including all covariates, are 
showed in Supplementary Table S2. 

When looking at microstructural differences in WMHs classified ac-
cording to the intensity in T1-weighted images criterion, T1-hypointense 
WMHs showed significantly lower FA, and higher MD, AD and RD than 
non T1-hypointense WMHs (p < 0.001 for all measures). Results of the 
within-subject paired t-tests for the averages of DTI-derived metrics 
between T1- and non T1-hypointense WMHs are reported in Table 3. 

Results for the separation of the total WMH volume into WMH 
clusters with and without corresponding T1-hypointense voxels are re-
ported in Table 4. 

We found that 50% of the WMH clusters had T1-hypointense voxels. 
However, despite constituting half of all clusters, these WMH clusters 
with at least one T1-hypointense voxel composed 94% of the whole 
WMH volume. The remaining 6% of the WMH volume consisted of small 
non T1-hypointense WMH clusters, i.e. WMH clusters without co-located 

Fig. 1. The left panel shows the native images (FLAIR and T1-weighted) and image processing outputs (WMH total and WMH sub-classes) for a subject drawn from 
the study sample. The right panel shows a colour-coded detailed view of the four sub-classes of WMHs. 

Table 2 
Multiple linear regression analysis results. Model results and significant WMH predictors of cognitive scores adjusted for age at the examination, sex, total years of 
education, systolic blood pressure and diastolic blood pressure.   

Model Parameter estimates 

Cognitive test F p-value Adjusted R2 Significant WMH covariate β (SE) p-value#        

Trail making A  10.08  <0.001  0.11 T1-hypointense periventricular WMHs 4.79 (1.87)  0.011        

Digit span backwards  5.92  <0.001  0.06 Non T1-hypointense periventricular WMHs 1.30 (0.57)  0.023        

Digit span sequence  4.99  <0.001  0.05 T1-hypointense periventricular WMHs − 0.79 (0.41)  0.054^        

Digit symbol  8.25  <0.001  0.09 T1-hypointense periventricular WMHs − 2.05 (0.93)  0.028        

Digit coding  11.06  <0.001  0.12 T1-hypointense periventricular WMHs − 5.52 (2.09)  0.009        

Letter fluency  3.74  <0.001  0.04 Non T1-hypointense deep WMHs 2.10 (0.72)  0.004        

Category fluency  8.07  <0.001  0.09 Non T1-hypointense deep WMHs 1.83 (0.87)  0.036 

Legend: SE, standard error; WMHs, white matter hyperintensities. 
note: #P-values did not remain significant after adjustment for multiple comparisons across cognitive tests. 
note: ^Predictor that shows a trend for significance (0.05 < p < 0.06). 

Table 3 
Comparison between the T1- and non T1- hypointense WMHs in terms of DTI- 
derived metrics. Paired t-tests results. Diffusivity values are expressed in 
(mm2/s) × 10-3.  

Metric T1-hypointense 
WMHs 

Non T1-hypointense 
WMHs 

t p-value# 

Mean SD Mean SD 

FA  0.26  0.03  0.37  0.04 − 86.21  <0.001 
MD  1.12  0.09  0.92  0.06 71.24  <0.001 
AD  1.42  0.11  1.30  0.08 33.03  <0.001 
RD  0.97  0.09  0.73  0.06 88.14  <0.001 

Legend: FA, fractional anisotropy; MD, mean diffusivity; AD, axial diffusivity; 
RD, radial diffusivity; SD, standard deviation; WMHs, white matter hyper-
intensities. 
note: #P-values remained significant after adjustment for multiple comparisons 
across metrics. 
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hypointensity in T1-weighted images. 
The volume of non T1-hypointense WMHs is the sum of non T1- 

hypointense clusters and the hyperintense rims of T1-hypointense clus-
ters (a schematic representation is depicted in Fig. 2). 

Given the unexpected significant positive associations of non T1- 
hypointense WMHs with the digit span backwards, letter and category 
fluency, we investigated which of these two components (either non T1- 
hypointense clusters or rims of T1-hypointense clusters) drove the 
observed associations. When fitting multiple linear regression models 
with either of these two components as the only WMH predictor for the 
fluency and digit span backwards scores, we found that non T1-hypo-
intense clusters were significantly associated with the fluency perfor-
mances (FLU-L: β = 1.98, p = 0.001; FLU-C: β = 2.02, p = 0.004). 
Conversely, rims were significant predictors of the digit span backwards 
scores (β = 0.92, p = 0.035). 

Additional multiple regression models and Pearson correlations 
among WMH sub-classes, total WMH volume and age supporting these 
findings are reported in Supplementary Tables S3 and S4. 

4. Discussion 

In this study we sought to provide a clinically-oriented insight into 
WMHs by developing an automated method for classifying WMHs ac-
cording to spatial location (periventricular versus deep WMHs) and 
lesion intensity in the corresponding T1-weighted image (T1-hypo-
intense versus non T1-hypointense WMHs). We fitted univariate multiple 
linear regression models using the volumes of WMH sub-classes as 
predictors for the participants’ performance in several cognitive tests 
and then further explored the microstructural properties of T1-hypo-
intense WMHs to understand the meaning of this radiological appear-
ance. Our classification proved to be clinically meaningful, as 
periventricular T1-hypointense WMHs were found to be linked to poorer 
performance on multiple cognitive tests, including the trail making A, 
digit symbol and digit coding tests. Since most of participants showed 
global functioning scores within normal limits, our sub-classification 
method could predominantly prove useful in healthy elderly. Subjects 
without overt cognitive decline or dementia would also benefit more 
from prompt preventive and therapeutic interventions. Overall, our re-
sults suggest that sub-classifying WMHs according to intensity and 
spatial location may turn out to be useful for investigating cognitive 
performance in the ageing population. Notably, periventricular T1- 
hypointense WMHs would represent a promising WMH biomarker for 
investigating cognitive domains related to executive function and pro-
cessing speed. 

Our finding of periventricular WMHs being associated with poorer 
executive function and psychomotor speed scores is in line with previous 
large longitudinal population-based studies on non-demented elderly 
(De Groot et al., 2002; Griffanti et al., 2018), where periventricular 
WMHs were found to be more strongly associated with participants’ 
cognition than deep WMHs. Increased volume of periventricular WMHs 
in the Alzheimer Disease Neuroimaging Initiative dataset was also 
associated with evidence of beta-amyloid deposition in the brain 

(Marnane et al., 2016), suggesting a synergistic damage driven by 
concurrent SVD and Alzheimer’s pathology in these areas. Periven-
tricular regions are also characterised by high density of long associating 
fibres which link the cortex to the deep grey matter and other distant 
brain territories (Filley, 1998). For this reason, they are potentially 
susceptible to pathologies that damage cortical arteries and eventually 
provoke distal hypoperfusion (Moody et al., 1990). Disrupted cholin-
ergic activity is related to periventricular (and not deep) WMHs and may 
be involved in the physio-pathological pathway that underpins the 
observed cognitive scores (Bohnen et al., 2009). Moreover, high peri-
ventricular WMHs were found to be associated with frontal cortical 
thinning, where both imaging findings were independently linked to 
executive dysfunctions (Seo et al., 2012). Altogether, these findings 
endorse our results of periventricular WMHs being more strongly asso-
ciated with domain-specific poorer cognitive performance than deep 
WMHs. 

Although the location criterion is well established, less is known 
about the meaning of T1-intensity in WMHs. This aspect has been well- 
investigated in demyelinating disease where hypointense lesions in T1- 
weighted images are more likely to represent low axonal density and 
irreversible tissue damage (Bitsch et al., 2001; Van Walderveen et al., 
1998). Our DTI analysis showed decreased FA and increased MD, AD 
and RD in T1-hypointense WMHs. Not surprisingly, these findings mirror 
similar microstructural results found in multiple sclerosis (Vavasour 
et al., 2019) and suggest more severe damage to the white matter in T1- 
hypointense areas than their T1-isointense counterpart. 

T1-hypointense and non T1-hypointense WMHs may represent two 
distinct entities with different meanings. Alternatively, WMHs could 
start as small punctate FLAIR hyperintensities and later develop a T1- 
hypointense “core”. Despite the lack of longitudinal data in our cohort, 
we attempted to investigate further the meaning of the intensity in T1- 
weighted images and the theoretical evolution of WMHs and their in-
tensity in T1-weighted images from a cross-sectional basis. Within the 
total WMH mask, we separated WMH clusters that contained some T1- 
hypointense voxels (T1-hypointense clusters) from those that did not 
(non T1-hypointense clusters) (Table 4). Since most of the WMH volume 
comprised (relatively big) clusters with a T1-hypointense component, 
our results suggest that the evolution of a WMH may be a cascade of 
events starting from small punctate lesions leading to bigger lesions with 
a T1-hypointense core and surrounding non T1-hypointense rim (Fig. 2). 

This mechanism could explain the significant association we 
observed between higher volume of deep non T1-hypointense WMHs 
and higher scores at the fluency tests. Since the volume of non T1- 
hypointense WMHs includes both the volume of non T1-hypointense 
clusters and the outer rim of the clusters with a T1-hypointense core, we 
hypothesized that the positive association of deep non T1-hypointense 
WMHs with higher cognitive scores at the fluency tests could be driven 
by non-T1 hypointense clusters (i.e. smaller, less severe WMHs, that 
have not yet progressed into a WMH with a T1-hypointense component). 
We tested this hypothesis by fitting multiple linear regression models 
with either the volume of all non T1-hypointense clusters or only the 
volume of deep non T1-hypointense WMHs voxels as the only imaging 
predictors for the fluency tests (Supplementary Table S3). Notably, non 
T1-hypointense clusters were more strongly associated with fluency 
scores than deep non T1-hypointense WMHs. Thus, it is likely that the 
volume of clusters of non T1-hypointense WMHs drove the observed 
significance of deep non T1-hypointense WMHs as predictors of better 
cognitive scores at the fluency tests. 

The positive associations of non T1-hypointense clusters with fluency 
scores could be due to the fact that these small lesions are more frequent 
in younger individuals with a low WMH volume. The hypothesized 
evolution into T1-hypointense clusters would then explain the apparent 
decrease of this type of lesions in individuals with lower fluency scores. 

Since non T1-hypointense clusters are small, we cannot exclude the 
possibility that some of these are false positives from BIANCA segmen-
tation. However, WMH masks have been visually checked so that it is 

Table 4 
Number and size of WMH clusters with and without T1-hypointense voxels.   

Number Average volume 
per subject (cm3) 

Average volume 
per cluster (mm3) 

WMH clusters 223.91 ±
103.77 

5.86 ± 3.72 36 ± 42 

Clusters without T1- 
hypointense voxels 

112.43 ±
59.43 

0.30 ± 0.19 3 ± 1 

Clusters with T1- 
hypointense voxels 

111.48 ±
57.55 

5.56 ± 3.75 66 ± 63 

Rims  2.45 ± 1.02 28 ± 19 
Cores  3.11 ± 3.23 38 ± 50 

Legend: WMHs, white matter hyperintensities. 
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unlikely that the results could be driven by errors in WMHs 
segmentation. 

Our finding of higher non T1-hypointense periventricular WMHs 
linked to higher scores at the digit span backwards test could instead be 
explained by the other component of non T1-hypointense WMHs, the 
non T1-hypointense voxels belonging to T1-hypointense clusters (i.e. the 
hyperintense “rims”). In fact, when fitting the multiple linear regression 
model with the volumes of rims of all T1-hypointense clusters as the only 
imaging predictor, we found a positive association with the digit span 
backwards that was very similar to the one given by non T1-hypointense 
periventricular WMHs alone (Supplementary Table S3). Although rim 
and core belong to the same physical entity (i.e. the WMH cluster) they 
are likely to have opposite meanings. On the one hand, T1-hypointense 
WMHs voxels predict bad cognitive scores, as seen for the Trail Making 
Test A, digit symbol and digit coding tests. On the other hand, in spite of 
the positive association between rims and cores in terms of overall 
volume, the former are predictors of higher cognitive scores from the 
digit span backwards test. Thus, within the context of our hypothesized 
evolution of WMHs, rims would represent those WMH areas belonging 
to T1-hypointense clusters that have not turned T1-hypointense yet and 
theoretically “withstand” further tissue damage. When this occurs, the 
number of non T1-hypointense voxels would decrease because they 
become T1-hypointense. This would in turn explain the positive rela-
tionship with cognition observed in our results. Further investigation 
would be necessary to explore the potential cascade of events leading to 
change in T1 intensity in a longitudinal setting, since the hypothesis of 
rims as WMHs associated with healthy cognitive aging is very 
speculative. 

Our study has some limitations in terms of the data and the 
methodology. 

The Whitehall II imaging sub-study dataset shows a narrow age 
range (60–84 years) and a strong gender imbalance, skewed towards 
men, since it reflects the demographic of British civil servants at the time 
of recruitment in the main study. Moreover, our finding that higher 
periventricular WMHs are linked to poorer cognitive scores is based on 
the definition of periventricular WMHs as the WMHs that are contiguous 
with the margins of each lateral ventricle. Despite previous comparisons 
of different ways to define periventricular WMHs on this population 
giving comparable results across criteria (Griffanti et al., 2018), we 
cannot exclude that other sub-classification criteria may yield different 
results. Future work is therefore needed to test the generalisability of our 
findings. Furthermore, our approach for the sub-classification of WMHs 
relies on automated segmentation of WMHs with BIANCA, tissue type 
segmentation with FAST, and registration of images with different 
spatial resolutions. As already mentioned, we cannot exclude inaccur-
acies in the WMH masks, despite visual inspection of the results. We 
used FAST segmentation as a proxy for defining T1-hypointensity, 
therefore inaccuracies in the segmentation would translate to inaccur-
acies in the sub-classification. Moreover, we performed linear and non- 

linear registrations between images with different resolutions (FLAIR, T1 
and MNI space) and the interpolation process could have slightly 
affected the segmented volumes. 

Finally, our hypothesis on the evolution of WMHs should be inter-
preted cautiously and prompt further longitudinal studies. For example, 
it would be very valuable to follow up participants and study how WMH 
sub-classes evolve over time to validate the proposed theory. Another 
interesting future development would be looking at how the different 
WMH sub-classes are related to incidence of diseases, such as stroke and 
dementia, using risk models in well-balanced longitudinal datasets. If 
results are confirmed, our classification system could ultimately be 
translated into the clinic. 

Despite these limitations, this study presents some novel theoretical 
and methodological insights that can contribute to better understanding 
of the role of WMHs in cognitive aging. The methods developed herein 
can be easily adopted in other research settings. The extended ventricle 
mask and the scripts created for images post-processing are publicly 
available1. These scripts can also be equally applied to any manually- or 
automatically-derived WMH masks, other than those from BIANCA, to 
obtain the four WMH sub-classes presented in this study. 

4.1. Conclusion 

We showed that information from spatial location and intensity in 
T1-weighted images provide potentially clinically useful insights into the 
meaning of WMHs with regards to participants’ cognitive function. 
Notably, the combination of these two criteria revealed an association 
with cognitive scores related to executive function, processing speed, 
working memory and language, that the WMH total volume alone could 
not provide. 
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