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Abstract

The Average Silhouette Width (ASW) is a popular cluster validation index

to estimate the number of clusters. The question whether it also is suitable

as a general objective function to be optimized for finding a clustering is ad-

dressed. Two algorithms (the standard version OSil and a fast version FOSil)

are proposed, and they are compared with existing clustering methods in an

extensive simulation study covering known and unknown numbers of clusters.

Real data sets are analysed, partly exploring the use of the new methods with

non-Euclidean distances. The ASW will be shown to satisfy some axioms that

have been proposed for cluster quality functions. The new methods prove useful

and sensible in many cases, but some weaknesses are also highlighted. These

also concern the use of the ASW for estimating the number of clusters together

with other methods, which is of general interest due to the popularity of the

ASW for this task.
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1. Introduction

Cluster analysis is a central task in modern data analysis. It is applied in

diverse areas such as public health, machine learning, psychology, archaeology,

genetics, computer vision, and text analytics to just name a few. There is a wide

variety of clustering methods (Hennig et al. (2015)), and it has been argued that5

there is no universally best approach, and that the cluster analysis approach

needs to be chosen taking into account what kinds of clusters are required,

which depends on domain knowledge and the aim of clustering (Von Luxburg

et al. (2012); Hennig (2015)).

Many cluster analysis methods such as k-means (Lloyd (1982)) and Parti-10

tioning Around Medoids (PAM; Kaufman and Rousseeuw (1987)) are defined

by optimizing an objective function over all partitions of the data set into a

fixed number of k clusters. The objective function formalizes the quality of the

clustering. The PAM objective function, for example, sums up distances of all

observations to the center of the cluster to which they were assigned, and a15

good clustering is one for which this is small. Many of these objective func-

tions are not suitable for finding an optimal number of clusters k, because they

will automatically improve if k is increased due to more degrees of freedom in

optimization.

Therefore, so-called cluster validation indexes that can be meaningfully opti-20

mized over k are often used together with such partitioning clustering methods

in order to find an optimal k. Many such indexes have been proposed in the

literature (see Halkidi et al. (2015); Arbelaitz et al. (2012)). Some of these are

for fixed k equivalent to objective functions of partitioning methods such as

k-means, e.g., the Calinski and Harabasz index (Caliński and Harabasz (1974)).25

Some others are not in this way connected to a specific partitioning method.

One popular such index is the Average Silhouette Width (ASW) (Rousseeuw

(1987)). The ASW achieved overall very good results in the extensive simula-

2



tion study of Arbelaitz et al. (2012). In Kaufman and Rousseeuw (1990) it is

suggested for finding the number of clusters with PAM, but in fact its definition30

is not directly connected to any specific partitioning method, and it can be seen

as a general distance-based approach to assess the quality of a clustering.

The ASW is an intuitive and simple measurement of cluster quality that

does not rely on statistical model assumptions. Given that it is widely used and

trusted for comparing the qualities of clusterings produced by various cluster-35

ing methods over different numbers of clusters, it seems natural to investigate

optimal ASW quality clustering not only over k but also for fixed k in order to

integrate the problem for fixed k and the problem of finding the best k. This

idea is explored here. We treat the idea with an open mind and do not attempt

to suggest that optimum ASW clustering is an optimal clustering method in any40

other sense than optimizing the ASW (which can be seen as desirable on its own

terms); rather what we do is to show both potential and problems with this ap-

proach. The problems are also relevant to the use of the ASW for just choosing

k, for which it is of widespread use despite a far from comprehensive evalua-

tion and theoretical basis. To our knowledge, up to now using the ASW also45

for choosing a clustering with fixed k has only been explored by Van der Laan

et al. (2003), where a modification of the PAM algorithm called PAMSil was

proposed that looks for a local medoid-based optimum of the ASW. Rousseeuw

(1987), where the ASW was originally introduced, mentions a possibility of its

optimisation for finding a clustering in a side remark. Exploring the new clus-50

tering method based on the ASW, we also to some extent explore strengths and

weaknesses of the popular use of the ASW as a method to estimate the number

of clusters.

In Section 2 we introduce optimum ASW clustering and propose two al-

gorithms for it. In Section 3 we show that the ASW fulfils some axioms that55

have been proposed for clustering quality measures in Ackerman and Ben-David

(2009). In Section 4 we run an extensive simulation study to explore the perfor-

mance of optimum ASW clustering compared to other well established clustering

methods. There is also an experiment regarding outliers. Section 5 applies op-
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timum ASW clustering to a number of real data sets with and without given60

“true” clustering, also illustrating the use of optimum ASW for non-Euclidean

dissimilarities. A conclusion is given in Section 6.

2. Methodology

2.1. Notation and basic definitions

Let X = {x1, . . . , xn} be a data set of n objects from a space X , d be a65

dissimilarity or distance over X . The triangle inequality is not really necessary

here, although the intuition behind the concepts cluster separation and homo-

geneity may look dubious if for example for points x1, x2, x3 it is possible that

d(x1, x2) and d(x2, x3) are very small, but d(x1, x3) is very large. We deal with

clusterings that are partitions, i.e., non-overlapping and exhaustive. A partition70

can equivalently be expressed by labels l(1), . . . , l(n) ∈ Nk = {1, . . . , k} where

l(i) = r ⇔ xi ∈ Cr, i ∈ Nn, and cluster sizes are denoted by nr =
∑n

i=1 1(l(i) =

r), r ∈ Nk.

Definition 2.1. The silhouette width for an observation xi ∈ X is

si(C, d) =
b(i)− a(i)

max{a(i), b(i)}
, (1)

where

a(i) =
1

nl(i) − 1

∑
l(i)=l(j)

i6=j

d(xi, xj) and b(i) = min
r 6=l(i)

1

nr

∑
l(j)=r

d(xi, xj)

in case that nr > 1 for l(i) = r. Otherwise si(C, d) = 0.

The Average Silhouette Width (ASW) of a clustering C is

S̄(C, d) =
1

n

n∑
i=1

si(C, d).

a(i) is the average distance of xi to points in the cluster to which it was assigned,75

and b(i) is the average distance of xi to the points in the nearest cluster to

which it was not assigned. A large value of si(C, d) means that b(i) is much

larger than a(i), and that consequently xi is much closer to the observations in
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its own cluster than to the neighboring one. Given that clusters are meant to

be homogeneous and well separated, larger values of si and S̄ indicate better80

clustering quality, and an optimal clustering (for example with optimal k if

various values of k are compared) in the sense of the ASW is one that maximizes

S̄. A more in-depth heuristic motivation of silhouette widths along with some

examples is given by Rousseeuw (1987), which focuses on the graphical display

of individual silhouette widths but also introduces the ASW for assessment of85

the whole clustering.

Here are some simple properties of the ASW. −1 ≤ si ≤ 1 always, and

the same holds obviously for the ASW. In fact an ASW of 0 can be seen as a

rather bad value, because it means that on average observations are not closer

to the observations in their own cluster than to the observations in the closest90

other cluster. However, a random clustering with more than 2 clusters cannot

normally be expected to achieve S̄ = 0, because b(i) is computed by minimizing

over clusters to which an observation does not belong, and on average this

minimum can be expected to be smaller than a(i) if the observations in the

same cluster are as randomly chosen as those in the other clusters.95

If there are well separated and compact subsets in the data, taking these as

the clusters will make the vast majority of si and consequently S̄ substantially

larger than zero, and this will be better than having k close to its maximum

value n (in which case many one-point clusters will lead to si = 0 for many i).

Putting two or more such subsets together in a cluster will have a detrimental100

impact on the corresponding a(i)-values, damaging S̄ in turn, so that the opti-

mum value of S̄ will not normally occur at a k lower than the number of well

separated subsets either. There is a possible exception to this though. Putting

two neighboring clusters together can make their separation from the rest, i.e.,

the corresponding b(i)-values, much higher, so that occasionally data subsets105

that have some separation from each other put together produce a better ASW-

value, if their separation from the rest is much stronger. This can be seen as

a general pitfall of the ASW, particularly when it comes to estimating k. See

also Hennig and Lin (2015), where maximizing the ASW over k (for given k,
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clusterings were produced by PAM) produces an apparently too low value of110

k = 2.

The ASW cannot be computed for k = 1, so it cannot directly be used

to decide whether the data set as a whole is homogeneous and whether there

should be any clustering at all. Hennig and Lin (2015) suggest to compare ASW

values on the data to ASW values from clustering homogeneous “null model”115

data without clustering to see whether the data have a significant clustering

structure.

Definition 2.2. A clustering C∗ is an optimum ASW clustering for dis-

similarity d if

S̄(C∗, d) = max
C

S̄(C, d), (2)

where C ∈ P(X) with |C| ≥ 2. Define C∗k as optimum ASW clustering out of the

clusterings with |C| = k.

As with other clustering principles that are defined as optimizing an objective120

function, finding a global optimum will be computationally infeasible for all but

the smallest data sets. We therefore propose two algorithms to find local optima

that are hopefully close to the global one.

2.2. The OSil algorithm

The following algorithm improves an initialisation by changing the cluster125

membership of the point that improves the ASW most at any given stage until

no further improvement can be found. As the ASW will always be improved

and there are only finitely many clusterings, the algorithm will converge in a

finite number of steps. We call this the OSil (optimum silhouette) algorithm.
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OSil algorithm

� Set kmin as the minimum number of clusters and kmax as the maximum number of clusters.

� Input: dissimilarity d(xi, xh), ∀i 6= h ∈ Nn.

� For every k ∈ {kmin, . . . , kmax}:

1. Start with initialisation clustering C0k defined by l0(X , k) = (l0(1), . . . , l0(n)), for

i ∈ Nn : l0(i) ∈ Nk. Let q = 0.

2. Compute S̄(Cqk, d).

3. For all pairs (i, r) such that l0(i) 6= r, i ∈ Nn, r ∈ Nk, assign l(i,r)(i) = r, l(i,r)(j) =

l0(j) for all j 6= i, and denote the so obtained clustering as C(i,r)k .

4. Compute f (i,r) = S̄(C(i,r)k , d).

5. (h, s) = arg max
(i,r)

f (i,r) (we recommend to constrain (i, r) so that C(i,r)k still has k

nonempty clusters, but not using this constraint would be an alternative if for given

k a clustering with k nonempty clusters is not necessarily required),

6. If f (h,s) ≤ S̄(Cqk, d): q = q + 1, C(q)k = C(h,s)k , and go to Step 2. Otherwise stop and

give out Ck = C(q)k as final solution for number of clusters k.

Give out Ck∗ = argmaxk∈{kmin,...,kmax}S̄(Ck, d) as final clustering.

130

It is advisable to run the algorithm more than once from different initial-

isations, and then to use the solution that achieves the best ASW-value. We

ran some simulations comparing different possible ways of initialisation, particu-

larly initialisation by already existing clustering methods, see Batool and Hennig

(2019). Good solutions over a variety of setups can be achieved initializing six135

times with k-means, PAM, average linkage, single linkage, Ward’s method and

model-based clustering (using the standard settings of the R-package mclust

(Scrucca et al. (2017)), which we recommend here.

2.3. FOSil - An approximation algorithm for bigger data sets

The OSil algorithm is computationally expensive, because it considers all140

possible combinations of cluster and observation swaps for each iteration. For
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large data sets it can be very slow. A simple way to construct a faster algorithm

for larger data sets is to run the OSil algorithm on a subset of observations, and

then to assign all remaining observations to the clusters in such a way that the

ASW is maximized for every observation separately. We call this the FOSil145

(Fast OSil) algorithm.

FOSil algorithm

� Set kmin as the minimum number of clusters and kmax as the maximum number of clusters.

� Set a sample size ns and a number M of samples to be drawn.

� Input: dissimilarity d(xi, xh), ∀i 6= h ∈ Nn.

� For every k ∈ {kmin, . . . , kmax}:

1. For m = 1, . . . ,M :

(a) Choose a random sample Sm of size ns from X. Let ISm ⊂ {1, . . . , n} be the set of

indexes of the observations in Sm. Let dm be d constrained to the elements of Sm.

(b) Run the OSil algorithm on Sm, dm with number of clusters k, potentially start-

ing from several initialisations (see the discussion at the end of Section 2.2). Call

the resulting clustering CSm,k. For a label vector (l∗Sm,k(1), . . . , lSm,k(n)) define

lSm,k(i) = r if xi ∈ Cr in CSm,k for i ∈ ISm .

2. Choose S = arg max
Sm∈{S1,...,SM}

S̄(Sm, dm).

3. Calculate the cluster memberships for the points in S′ = X \S by maximizing the ASW.

For all xi ∈ S′ and Cr ∈ CS,k, i ∈ {2, . . . , n} \ IS , r ∈ {1, . . . , k}:
(a) Consider the clustering C(i,r)S,k of S ∪ {xi} defined by putting xi ∈ Cr and otherwise

leaving CS,k unchanged. Let d∗ denote d constrained to the elements of S ∪ {xi}.
(b) Compute f (i,r) = S̄(C(i,r)S,k , d∗).

(c) (h, s) = arg max
(i,r)

f (i,r); lS,k(h) = s.

4. Give out Ck as defined by lS,k as the final solution for number of clusters k.

Give out Ck∗ = argmaxk∈{kmin,...,kmax}S̄(Ck, d) as final clustering.

We used M = 25 (larger M does not seem to improve matters much) and

ns = 0.2n, although for larger data sets ns can be chosen smaller; the absolute

size of ns will often matter more than its ratio to n. Alternatively, one could150

choose 20 observations times the maximum number of clusters of interest. As
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in Section 2.2, we initialize the clustering of the Sm by k-means, PAM, average

linkage, single linkage, Ward’s method and model-based clustering. See Figure

1 for a comparison of computing times of OSil and FOSil.
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Figure 1: Computing times of OSil and FOSil on two-dimensional data sets with equally sized

Gaussian clusters centered at (0,0), (0,1), (1,0), and (1,1), with standard deviations 0.1 in

both independent dimensions for n between 100 and 1000.

There are some possible variations of the FOSil algorithm. For example,155

when assigning the points in S′ to the clusters, one may use for classifying a

new point the ASW including all points already assigned rather than just S plus

the new point. Also, points in S′ may be assigned to the clusterings CSm,k from

all M subsamples before comparing the results from the different subsamples.

Both of these can be expected to improve the clustering but will take more160

computation time than FOSil. We do not explore them here.

3. Axiomatic characterisation of the ASW

The ASW has originally been introduced as a heuristic concept. Despite

its popularity and good results in some studies, to this day there has not been

much theoretical investigation of its characteristics. We apply an axiomatic165

approach by Ackerman and Ben-David (2009) to the ASW. The general idea

is to characterize a desirable behavior of a reasonable clustering method (or
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clustering quality measure (CQM)) by certain theoretical axioms and then to

check whether for a given method or CQM these axioms are fulfilled. This

approach goes back to at least Rubin (1967). Some further early work was done170

by Jardine and Sibson (1968), Fisher and Ness (1971), and Wright (1973).

More recently, Kleinberg (2003) defined three apparently intuitive axioms

for clustering functions (i.e., clustering methods), “scale invariance” (the clus-

tering does not change if all dissimilarities are multiplied by the same constant),

“consistency” (if dissimilarities are changed in such a way that all within-cluster175

dissimilarities are either made smaller or unchanged, and all between-cluster dis-

similarities are either made larger or unchanged, the clustering does not change),

and “richness” (for all possible clusterings there is a dissimilarity that will pro-

duce them). He then proved that it is impossible for any clustering function to

fulfil all three of them. Ackerman and Ben-David (2009) argued that particu-180

larly the consistency axiom is not as desirable as Kleinberg (2003) had claimed.

They proposed versions of the three axioms that do not apply to clustering

functions but rather to CQMs such as the ASW, which we will use here. In

this way, all three can be fulfilled. Some other relaxations of Kleinberg’s axioms

have been proposed by Zadeh and Ben-David (2009), Correa-Morris (2013), and185

Carlsson and Mémoli (2013).

3.1. Definitions and axioms

Let X = {x1, · · · , xn} be the data set as before and d a dissimilarity on X.

For a given partition C of X, write xi ∼C xj if xi and xj are in the same cluster

in C. Clustering C is called non-trivial if not either C = {X} (only the whole190

data set is a cluster) or C = {{x1}, . . . , {xn}} (all n singletons are the clusters).

A clustering quality measure (CQM) Π takes the pair (X, d) and a clustering C

over (X, d) and returns a non-negative real number, where a larger number is

interpreted as a higher cluster quality.

Definition 3.1. For a dissimilarity d over X and a positive real η, the scalar195

multiplication of d with η is defined for every pair xi, xj ∈ X, as (η · d )(xi, xj)

= ηd(xi, xj).
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Definition 3.2. A dissimilarity d′ is called a C-transformation of d, if d′(xi, xj) ≤

d(xi, xj) for all xi ∼C xj and d′(xi, yj) ≥ d(xi, xj) for all xi 6∼C xj for all

i, j ∈ Nn.200

Definition 3.3. Two clusterings C and C′ of X are isomorphic (C ≈d C′ if

there exists a distance-preserving isomorphism φ : X 7→ X,such that for all

x, y ∈ X : x ∼C y ⇔ φ(x) ∼C′ φ(y).

Ackerman and Ben-David (2009) state their axioms as follows.

Axiom 1. CQM scale invariance: A CQM Π is scale invariant if for all205

η > 0, and every C of (X, d), Π(C, (X, d)) = Π(C, (X, η · d)).

Axiom 2. CQM consistency: A CQM Π is consistent if for every cluster-

ing C over (X, d), Π(C, (X, d′)) ≥ Π(C, (X, d)) holds, provided that d′ is a

C-transformation of d.

Axiom 3. CQM richness: A CQM Π is rich for every possible non-trivial210

clustering C ∈ S(X) of X there exist a dissimilarity d over X such that C =

arg maxC Π(C, (X, d)).

Axiom 4. Isomorphism invariance: A CQM Π is isomorphism-invariant if

for allclusterings C, C′ over (X, d) where C ≈d C′ : Π(C, (X, d)) = Π(C′, (X, d)).

If a clustering method is defined by maximizing a CQM (such as the ASW),215

CQM richness is identical to the richness axiom in Kleinberg (2003), and CQM

scale invariance implies the scale invariance axiom in Kleinberg (2003). CQM

consistency is weaker than Kleinberg (2003)’s consistency for clustering meth-

ods.

The axioms are justified as follows. Scalar multiplication should not affect220

the grouping structure of a data set, as all dissimilarities are modified in the

same way. Regarding CQM consistency, a C-transformation improves both the

within-cluster homogeneity and the between-cluster separation, so the existing

clustering should be rated as of higher quality by the CQM. Kleinberg (2003)’s
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consistency demands more, but it is hard to justify that the transformation is not225

allowed to lead to another even better clustering, see Ackerman and Ben-David

(2009). The rationale behind richness is that if any non-trivial clustering cannot

be achieved by constructing a dissimilarity for which this clustering is optimal,

non-optimality of that clustering is an artefact of the CQM (or the clustering

method) rather than a defect of the clustering itself. Ackerman and Ben-David230

(2009) show that CQM scale invariance, CQM richness, and CQM consistency

form a consistent set of axioms. They added isomorphism invariance in order

to stop some functions that would be unreasonable as CQMs from fulfilling all

axioms.

3.2. Characterisation of the ASW235

We now prove CQM scale invariance, CQM richness, and CQM consistency

for the ASW. Isomorphism invariance is trivially fulfilled because the ASW

depends on dissimilarities only.

Proposition 3.4. The ASW is a scale invariant CQM.

Proof: If d is replaced by ηḋ, for all i both a(i) and b(i) are multiplied by η,240

and therefore si does not change.

Theorem 3.5. The ASW is a consistent CQM.

Proof: Let d′ be a C-transformation of d, and a′(i), b′(i), s′i = si(C, d′), S̄′ =

S̄(C, d′) denote the corresponding quantities from the definition of the ASW

based on d′. By Definition 3.2: d′(xi, xj) ≤ d(xi, xj) for all xi ∼C xj , and

minxi 6∼Cxj
d′(xi, yj) ≥ minxi 6∼Cxj

d(xi, xj). This implies for all i ∈ Nn :

a′(i) ≤ a(i), b′(i) ≥ b(i). (3)

Show for all i:

b′(i)− a′(i)
max{a′(i), b′(i)}

− b(i)− a(i)

max{a(i), b(i)}
≥ 0, (4)

which is equivalent s′i(C, d) ≥ si(C, d), and implies CQM consistency, as S̄′ and

S̄ average these.
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There are four possible cases:

Case I: max{a(i), b(i)} = a(i), max{a′(i), b′(i)} = a′(i) (5)

Case II: max{a(i), b(i)} = a(i), max{a′(i), b′(i)} = b′(i) (6)

Case III: max{a(i), b(i)} = b(i), max{a′(i), b′(i)} = a′(i) (7)

Case IV: max{a(i), b(i)} = b(i), max{a′(i), b′(i)} = b′(i). (8)

Check whether (4) holds for each of these:

Case I: (4) amounts to

b′(i)− a′(i)
a′(i)

− b(i)− a(i)

a(i)
≥ 0⇔

b′(i)

a′(i)
− b(i)

a(i)
≥ 0.

This follows from (3).245

Case II: (4) amounts to

2− a′(i)

b′(i)
− b(i)

a(i)
≥ 0,

and due to (6) both a′(i)
b′(i) and b(i)

a(i) are ≤ 1.

Case III: b(i) ≥ a(i) and a′(i) ≥ b′(i) imply a′(i) ≥ b′(i) ≥ b(i) ≥ a(i), which

is only compatible with (3) if they are all equal, and s′i = si(C, d).

Case IV: (4) amounts to

b′(i)− a′(i)
b′(i)

− b(i)− a(i)

b(i)
≥ 0⇔

a(i)

b(i)
− a′(i)

b′(i)
≥ 0.

This follows from (3).250

Theorem 3.6. The ASW is a rich CQM.

Proof: Consider every possible non-trivial clustering C and construct a distance

function d for it such that no other clustering C′ is as good or better in terms

of the ASW.
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Case I: All clusters in C contain more than one object. Construct d by

setting d(xi, xi) = 0, d(xi, xj) = 1 if xi ∼C xj , i 6= j, and d(xi, xj) = 2 if

xi 6∼C xj for all i, j ∈ X. Then for all i ∈ Nn :

a(i) = 1, b(i) = 2, si(C, d) = 0.5, S̄(C, d) = 0.5.

Consider any other clustering C′ (with quantities in the definition of the ASW255

denoted as a′(i), b′(i)). As long as C′ contains no one-point clusters, either in

C′ there are i 6= j with xi ∼C xj and d(xi, xj) = 2, or i 6= j with xi 6∼C xj and

d(xi, xj) = 1, or both. This results in a′(i) ≥ 1, b′(i) ≤ 2, and si(C′, d) ≤ 0.5

with strict inequality for at least one i, therefore S̄(C′, d) < 0.5. One-point

clusters {xi} ∈ C′ yield si(C′, d) = 0 by definition, and no other sj(C′, d) can be260

larger than 0.5, hence again S̄(C′, d) < 0.5, showing that all S̄(C′, d) < S̄(C, d)

for all C′ 6= C.

Case II: C contains t one-point clusters, n > t > 0, w.l.o.g, {x1}, . . . , {xt}.

Construct d by setting d(xi, xi) = 0, d(xi, xj) = 1 if xi ∼C xj , i 6= j, d(xi, xj) =

2 if xi 6∼C xj , and at least one of i and j is larger than t, otherwise d(xi, xj) =265

2 + 1
2n2 .

Observe for i = 1, . . . , t : si(C, d) = 0, for i = t + 1, . . . , n : si(C, d) = 0.5,

therefore S̄(C, d) = (n−t)0.5
n .

For t = 1, if xt ∼C′ xi for any i 6= t, then s1(C′, d) = 0 because b′(1) =

a′(1) = 2, and s1(C′, d) = 0 also otherwise. Any difference between C and C′

will make at least for one i > 1 : si(C′, d) < 0.5, because for at least one

i > 1 : xi ∼C′ xj where xi 6∼C xj , leading to a′(i) > 1, b′(i) ≤ 2, or {xi} ∈ C′

with si(C′, d) = 0, and for all i : si(C′, d) ≤ 0.5, so

S̄(C′, d) <
(n− 1)0.5

n
= S̄(C, d).

If t ≥ 2, consider first the case that there is no pair (i, j) where i ≤ t and

j > t with xi ∼C′ xj . Because C 6= C′, there must be either (i, j) with both270

i, j ≤ t and xi ∼C′ xj , or (i, j) with both i, j > t, xi 6∼C xj , and xi ∼C′ xj , or

xi ∼C xj , and xi 6∼C′ xj . In all these cases, for i > t always si(C′, d) ≤ 0.5 as

before, and for i ≤ t : a′(i) ≥ 2, b′(i) ≤ 2, therefore si(C′, d) ≤ 0. Therefore still

14



S̄(C′, d) ≤ (n−t)0.5
n .

Now show “<”, which is required to make C the unique maximiser of S̄.275

If there exists (i, j) with both i, j ≤ t and xi ∼C′ xj , si(C′, d) < 0 because

a′(i) > 2, b′(i) ≤ 2, thus S̄(C′, d) < (n−t)0.5
n . If there exists (i, j) with both

i, j > t, xi 6∼C xj , and xi ∼C′ xj , a′(i) > 1, b′(i) ≤ 2, therefore si(C′, d) < 0.5

and again S̄(C′, d) < (n−t)0.5
n . If there exists (i, j) with both i, j > t, xi ∼C xj ,

and xi 6∼C′ xj , then a′(i) ≥ 1, b′(i) < 2, therefore si(C′, d) < 0.5 and again280

S̄(C′, d) < (n−t)0.5
n .

The last situation to consider is t ≥ 2 where there exists (i, j) where i ≤ t

and j > t with xi ∼C′ xj . Then

2 +
1

2n2
≥ a′(i) ≥ 2, 2 +

1

2n2
≥ b′(i) ≥ 2,

so that si(C′, d) ≤ 1
2n2 , and this holds for all i ≤ t (in fact, si(C′, d) ≤ 0 as

before unless xi ∼C′ xm with any xm, m ≥ t). Therefore,
∑

i≤t si(C′, d) ≤ t
2n2 .

Furthermore, let n′j = |C|, where xj ∈ C ∈ C′. With that,

2 ≥ a′(j) ≥
2 + (n′j − 2)

n′j − 1
= 1 +

1

n′j − 1
,

b′(j) ≤ 2, so that

sj(C′, d) ≤
2− (1 + 1

n′j−1
)

2
= 0.5− 1

2(n′j − 1)
.

For j > t so that there is not any m ≤ t with xj ∼C′ xm, still sj(C′, d) ≤ 0.5.

Therefore,

n∑
i=1

si(C′, d) ≤ 0.5− 1

2(n′j − 1)
+ (n− t− 1)0.5 +

t

2n2
< (n− t)0.5

because t
2n2 <

1
2(n′j−1)

. Overall S̄(C′, d) < (n−t)0.5
n , finishing the proof.

4. Simulation study

We have run a comprehensive simulation study comparing OSil, FOSil, and

PAMSil with a number of well established clustering methods from the litera-285

ture. We simulated from a variety of data generating processes (DGPs) with

15



different characteristics that are listed in Table 1 and illustrated in Figure 2.

A detailed description can be found in the supplementary material. 500 data

sets were simulated from every DGP. The case of the number of clusters fixed

at the true number is investigated as well as the case of an estimated number290

of clusters. We consider the achieved values of the ASW (the optimisation of

which can be of interest in its own right) and the recovery of the “true” clusters

using the Adjusted Rand Index (ARI; Hubert and Arabie (1985)).

The involved clustering methods are: k-means (Lloyd (1982), Hartigan and

Wong (1979), kmeans-function in R using nstart=100 to stabilize the results;295

apart from this default parameters were used everywhere), k-medoids/Partitioning

Around Medoids (PAM; Kaufman and Rousseeuw (1987), pam-function in R-

package cluster ; Maechler et al. (2017)), average and single linkage (Sokal and

Michener (1958)), Ward’s method (Ward Jr (1963), all three incorporated in

function agnes in R-package cluster), spectral clustering (algorithm by Ng et al.300

(2001) implemented as specc in R-package kernlab; Zeileis et al. (2004)), and

Gaussian mixture model-based clustering (Fraley and Raftery (1998)), using

function Mclust in R-package mclust ; Scrucca et al. (2017)). For PAMSil we

have used the standalone C code written by the authors Van der Laan et al.

(2003). The function silhouette from R-package cluster was used for computing305

ASW-values outside OSil.
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(c) DGP 3 (k = 4)
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(e) DGP 5 (k = 6)
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(f) DGP 6 (k = 6)
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Figure 2: Plots of the first two dimensions of exemplary data sets generated by the DGPs 1-7

with true clusters indicated by colors.
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Table 1: DGPs used in the simulation study. k: number of clusters, p: number of dimensions,

n: number of observations. See the Appendix for precise descriptions.

DGP k p Distributions Cluster size n

DGP1 2 2 Spherical Gaussians 50 100

DGP2 3 2 Spherical Gaussians 50 150

DGP3 4 2 t, uniform and two Gaussians 50 200

DGP4 5 2 F , χ2, t, skew Gaussian, Gaussian 50 250

DGP5 6 2 six different distributional shapes 50 300

DGP6 5 5 five Gaussians with different 50 250

within-cluster dependence structures

DGP7 10 500 10-cluster structure on 1-d hyperplane 50 500

in 500-d space.

DGP8 7 60 Experiment of Van der Laan et al. (2003) varying 500

simulated genes defining 3 patient groups

DGP9 3 1000 First 100 dimensions informative 40 120

spherical Gaussian

Estimating k was done by optimizing the ASW with two exceptions. Gaus-

sian mixture model-based clustering was used with the BIC, which is the stan-

dard choice for mixtures. Exemplary for many other possible combinations of

clustering method and method to estimate the number of clusters, we also ran310

k-means with the gap statistic (Tibshirani et al. (2001)) as implemented in the

R-function clusGap.

4.1. Results and discussion

Results of the simulations for the DGPs 1-3 are in Table 2; for the DGPs

4-6 in Table 3, and for DGPs 7-9 in Table 4. These tables report average ARI315

and ASW and their estimated standard errors over the simulation runs for both

fixed and estimated k as well as the percentage of runs out of those for estimated

k in which the true k was estimated.
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Table 2: Simulation results for DGPs 1-3. PPR is the percentage of runs in which the true k

was estimated.

Fixed k Estimated k

Methods ASW SE ARI SE ASW SE ARI SE PPR

DGP1

k-means 0.665 0.001 0.808 0.004 0.665 0.001 0.796 0.004 92

gap-k-means 0.665 0.001 0.760 0.005 70

PAM 0.665 0.001 0.834 0.003 0.666 0.001 0.816 0.004 92

average 0.622 0.004 0.687 0.016 0.655 0.001 0.812 0.007 72

Ward’s 0.654 0.001 0.936 0.004 0.656 0.001 0.891 0.006 86

Single 0.410 0.007 0.167 0.016 0.545 0.005 0.785 0.013 29

BIC-mixture 0.646 0.001 0.993 0.001 0.643 0.001 0.991 0.001 99

spectral 0.643 0.003 0.923 0.005 0.656 0.001 0.906 0.009 89

PAMSil 0.667 0.001 0.848 0.006 0.668 0.001 0.816 0.008 87

OSil 0.666 0.001 0.847 0.004 0.667 0.001 0.812 0.005 86

FOSil 0.659 0.001 0.785 0.007 0.662 0.001 0.803 0.005 94

DGP2

k-means 0.711 0.001 0.844 0.004 0.719 0.001 0.805 0.005 39

gap-k-means 0.714 0.001 0.801 0.002 39

pam 0.711 0.001 0.85 0.003 0.719 0.001 0.809 0.004 38

average 0.671 0.004 0.773 0.013 0.711 0.001 0.821 0.005 26

Ward’s 0.696 0.002 0.934 0.005 0.708 0.001 0.844 0.006 30

single 0.348 0.021 0.404 0.023 0.611 0.008 0.818 0.014 11

BIC-mixture 0.652 0.002 0.863 0.002 0.682 0.002 0.991 0.001 91

spectral 0.628 0.013 0.898 0.012 0.700 0.002 0.877 0.006 50

PAMSil 0.710 0.001 0.859 0.004 0.721 0.001 0.804 0.004 22

OSil 0.712 0.001 0.856 0.004 0.722 0.001 0.806 0.004 25

FOSIL 0.705 0.002 0.67 0.015 0.714 0.001 0.815 0.006 48

DGP3

k-means 0.674 0.002 0.815 0.005 0.764 0.001 0.318 0.001 0.2

gap-k-means 0.692 0.001 0.816 0.006 38

pam 0.702 0.001 0.912 0.001 0.765 0.001 0.319 0.001 0.2

average 0.644 0.001 0.647 0.004 0.764 0.001 0.325 0.000 0

Ward’s 0.689 0.001 0.96 0.003 0.762 0.001 0.328 0.001 0

single 0.54 0.005 0.464 0.009 0.75 0.002 0.341 0.004 0.6

BIC-mixture 0.676 0.001 0.996 0.000 0.664 0.002 0.964 0.002 53

spectral 0.563 0.009 0.329 0.001 0.761 0.001 0.836 0.007 0

PAMSil 0.703 0.001 0.913 0.002 0.768 0.001 0.320 0.001 0

OSil 0.703 0.001 0.91 0.003 0.768 0.001 0.322 0.000 0

FOSil 0.699 0.001 0.502 0.002 0.767 0.001 0.32 0.000 0
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Table 3: Simulation results for DGPs 4-6. PPR is the percentage of runs in which the true k

was estimated.

Fixed k Estimated k

Methods ASW SE ARI SE ASW SE ARI SE PPR

DGP4

k-means 0.727 0.006 0.887 0.007 0.791 0.002 0.962 0.003 65

gap-k-means 0.728 0.004 0.814 0.010 47

pam 0.818 0.000 0.99 0.000 0.818 0.000 0.99 0.000 100

average 0.808 0.002 0.975 0.003 0.816 0.000 0.99 0.001 93

Ward’s 0.817 0.000 0.992 0.001 0.817 0.000 0.992 0.001 99

single 0.694 0.005 0.859 0.005 0.777 0.002 0.965 0.003 42

BIC-mixture 0.8 0.001 0.98 0.001 0.761 0.003 0.956 0.002 37

spectral 0.645 0.010 0.962 0.003 0.785 0.002 0.885 0.006 58

PAMSil 0.818 0.000 0.993 0.000 0.818 0.000 0.993 0.000 97

OSil 0.818 0.000 0.993 0.000 0.818 0.000 0.993 0.000 98

FOSil 0.817 0.000 0.987 0.002 0.817 0.000 0.99 0.001 99

DGP5

k-means 0.659 0.004 0.769 0.007 0.723 0.001 0.745 0.013 35

gap-k-means 0.626 0.005 0.565 0.009 2

pam 0.743 0.001 0.957 0.003 0.745 0.000 0.975 0.001 82

average 0.581 0.001 0.342 0.006 0.700 0.000 0.232 0.010 0

Ward’s 0.717 0.000 0.775 0.000 0.726 0.001 0.766 0.005 48

single 0.572 0.002 0.581 0.007 0.68 0.001 0.191 0.008 2

BIC-mixture 0.696 0.001 0.778 0.001 0.731 0.001 0.821 0.001 4

spectral 0.646 0.006 0.766 0.005 0.725 0.001 0.798 0.012 33

PAMSil 0.748 0.000 0.995 0.001 0.748 0.000 0.995 0.001 95

OSil 0.747 0.001 0.974 0.003 0.748 0.000 0.988 0.001 87

FOSIL 0.747 0.001 0.785 0.005 0.748 0.000 0.815 0.001 92

DGP6

k-means 0.649 0.007 0.739 0.009 0.77 0.003 0.852 0.008 28

gap-k-means 0.773 0.002 0.589 0.008 7

PAM 0.865 0 1 0 0.865 0 1 0 100

average 0.865 0 1 0 0.865 0 1 0 100

Ward’s 0.865 0 1 0 0.865 0 1 0 100

Single 0.865 0 1 0 0.865 0 1 0 100

BIC-mixture 0.865 0 1 0 0.865 0 1 0 100

spectral 0.618 0.023 0.881 0.016 0.797 0.007 0.834 0.016 43

PAMSil 0.865 0 1 0 0.865 0 1 0 100

OSil 0.865 0 1 0 0.865 0 1 0 100

FOSil 0.865 0 0.980 0 0.865 0 0.98 0 100
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Table 4: Simulation results for DGPs 8-10. PPR is the percentage of runs in which the true

k was estimated.

Fixed k Estimated k

Methods ASW SE ARI SE ASW SE ARI SE PPR

DGP7

k-means 0.754 0.003 0.767 0.004 0.825 0.002 0.863 0.004 21

gap-k-means 0.724 0.003 0.649 0.006 3

PAM 0.921 0.001 1 0 0.921 0.001 1 0 100

average 0.921 0.001 1 0 0.921 0.001 1 0 100

Ward’s 0.921 0.001 1 0 0.921 0.001 1 0 100

Single 0.92 0.001 1 0 0.921 0.001 1 0 99.6

BIC-mixture 0.921 0.001 1 0 0.860 0.001 0.896 0 0

spectral 0.584 0.031 0.798 0.017 0.830 0.011 0.854 0.032 14.6

PAMSil 0.921 0.001 1 0 0.921 0.001 1 0 100

OSil 0.921 0.001 1 0 0.921 0.001 1 0 100

FOSil 0.921 0.001 1 0 0.921 0.001 1 0 100

DGP8

k-means 0.178 0.004 0.823 0.010 0.231 0.000 0.949 0.005 47

gap-k-means 0.180 0.003 0.747 0.010 16

PAM 0.104 0.003 0.528 0.009 0.118 0.003 0.591 0.008 20

average 0.242 0.000 0.999 0 0.242 0.000 0.999 0 100

Ward’s 0.242 0.000 1 0 0.242 0.000 1 0 100

single 0.186 0.001 0.703 0.007 0.217 0.000 0.522 0.016 12

BIC-mixture 0.191 0.000 0.695 0.006 0.203 0.000 0.785 0.006 24

spectral 0.081 0.004 0.546 0.011 0.220 0.000 0.546 0.012 16

PAMSil 0.242 0.000 1 0.000 0.243 0.000 0.907 0.013 91

OSil 0.242 0.000 0.999 0 0.255 0.000 0.230 0.018 22

FOSIL 0.240 0.000 0.996 0.005 0.247 0.000 0.609 0.018 68

DGP9

k-means 0.488 0.006 0.827 0.013 0.56 0.001 0.865 0.010 69

gap-k-means 0.074 0.003 0.654 0.006 6

PAM 0.573 0 1 0 0.573 0 1 0 100

average 0.573 0 1 0 0.573 0 1 0 100

Ward’s 0.573 0 1 0 0.573 0 1 0 100

Single 0.573 0 1 0 0.573 0 1 0 100

BIC-mixture 0.573 0 1 0 0.573 0 1 0 100

spectral 0.544 0.005 0.956 0.007 0.569 0.001 0.966 0.006 92

PAMSil 0.573 0 1 0 0.573 0 1 0 100

OSil 0.573 0 1 0 0.573 0 1 0 100

FOSil 0.573 0 1 0 0.573 0 1 0 100
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As could be expected, the methods for (at least locally) optimizing the ASW

achieve the best ASW values, although sometimes PAM and occasionally some320

other methods find solutions with competitive ASW values. Occasionally, PAM

can find a slightly better ASW value than FOSil, which often loses some opti-

mization power compared with OSil and PAMSil. OSil yields sometimes higher

ASW values than PAMSil, but sometimes slightly worse; for achieving the high-

est possible ASW value, it is advisable to run both.325

Regarding the recovery of the modelled clusters, OSil and PAMSil clearly

do the best job for DGP 5 compared to the other methods both for estimated

and fixed k. They are best by a small margin for DGP 4 and up with the best

for DGPs 6, 7, and 9, and for fixed k only for DGP 8. FOSil drops a bit in

comparison in some of these. DGP 4 and 5 in particular are difficult for most330

standard methods because of the different distributional shapes of the clusters,

with variance-covariance structures also strongly varying. As could be expected,

Gaussian mixture model-based clustering is best in the setups with all or mostly

Gaussian within-cluster distributions. For DGP 3 and estimated k, it is the only

method that does a good job.335

The performance of PAMSil and OSil for DGPs 1-3 is surprisingly relatively

better for fixed k than for estimated k, contrasting with the popularity of the

ASW for estimating k. In DGP 8, where Ward’s method and average linkage

perform best, PAMSil, OSil, and FoSil sometimes find solutions with better

ASW for wrong values of k (often k = 2) when estimating k, which diminishes340

their ARI-performance for estimated k. This is in line with the skepticism that

can be found in Hennig and Lin (2015) regarding naively maximizing the ASW

for estimating k, see also Section 5.3. The fact that OSil can find a better

ASW for another than the modelled k more often than PAMSil, leads to a

disappointingly low ARI here.345

Regarding the other methods and the recovery of the modelled clusters,

Ward’s method performs very well across the board with exception of DGP 5,

where it particularly drops for estimated k. It is almost always better than k-

means despite being worse at optimizing the k-means objective function. Prob-
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ably the hierarchical structure helps it to adapt better to the varying cluster350

shapes; similarly PAMSil can occasionally do better than OSil even where the

value of the objective function ASW is worse.

The other methods have some mixed results, with spectral, k-means and

single linkage performing mostly clearly behind the top methods. PAM has

some drops in quality but performs generally well and often similar to PAMSil355

and OSil; it achieves the best ASW values out of the methods that do not

attempt to optimize it. The results of average linkage are overall with one

exception on a slightly lower level than PAM. The Gaussian mixture drops in

quality in DGPs 5 and 8, but is good in the other setups. The gap statistics

with k-means achieves a good result for DGP 3 but does worse than k-means360

with the ASW otherwise.

Overall PAMSil and OSil do a good job, particularly with the mixed distri-

bution shapes and fixed k, with none of the two clearly superior to the other.

Some more caution is required when estimating k. The simulation shows that

there are situations in which these methods are best, and therefore they can365

be seen as a valuable addition to the cluster analysis toolbox without generally

outperforming the competition. Particularly in situations with Gaussian dis-

tributions only, Gaussian mixture-based clustering is to be preferred. Ward’s

method presents itself as a good allrounder. The computationally less intensive

FOSil can sometimes not keep up with OSil and PAMSil, but it has some very370

good results estimating the number of clusters, better than OSil and PAMSil in

DGPs 1, 2, and 4.

4.2. An experiment with outliers

The ASW and OSil do not rely on any distributional assumption, and it

is therefore of interest whether they are less affected by outliers than methods375

that rely on a normal distribution assumption or on sums of squares such as

k-means or Gaussian mixture model-based clustering. Unfortunately, as shown

in Hennig (2008), as a method for estimating the number of clusters, the ASW

is not perfectly robust. An outlier that is very far from the rest of the data can
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prompt the ASW to select a solution with two clusters, where one cluster is just380

the outlier, and the other cluster is everything else taken together. The reason

for this is that if k is made larger, and less strongly separated data subsets that

intuitively still qualify as “clusters” are separated, the corresponding b(i)-values

in the ASW are much smaller than if these subsets are put together and there

is another cluster far away from them, which then is the closest (for k = 2 in385

fact the only) other cluster.

The ASW can however add some robustness in case that the outliers are

not that extreme. We generated two more data sets from DGP 6, one with 250

and one with 1000 observations, for which most methods did a very good job,

see Table 3. We added outliers, one at (70, 70, 30, 0, 55) in some distance from390

the clusters but not outside the original data range in any variable, and another

one at (−100,−100,−100,−100,−100), outlying on all variables. Four datasets,

namely with 250 and 1000 original points, plus the first outlier only and two

outliers, are considered. The original clustering pattern is very clear (see Figure

2), and it would be desirable to still find this structure with outliers present.395

OSil with estimated k isolates each outlier in a one-point cluster, leaving the

original clustering intact, which seems sensible. Standard hierarchical methods

do the same if the ASW is used to decide the number of clusters. FOSil needs

the outliers in the random subsample used for initial clustering to arrive at the

same result. Otherwise it assigns the outliers to the nearest original cluster, still400

leaving the original structure intact, but causing some very large within-cluster

distances. The same happens with Gaussian model-based clustering for three

of the four data sets. With 1000 observations and the first outlier only, the

first outlier is merged with a small part of an original cluster, which is split

up. k-means splits original clusterings in the presence of outliers in its solutions405

with k = 5, 6, and 7; the gap statistic chooses k = 5 anyway with one outlier,

but k = 1 with two outliers. PAM and spectral clustering also avoid one-point-

clusters and split original clusters and join parts with outliers if present. In

these examples, the ASW both for choosing k and used by OSil and FOSil for

given k treats the outliers better than competing methods, due to its ability to410

24



isolate well separated one-point (or very small) clusters.

5. Applications

Section 5.1 is devoted to four genetic data sets using the Euclidean distance,

which come with ground truth information. Sections 5.2 and 5.3 explore the ap-

plication of OSil, FOSil, and PAMSIL to data represented by other dissimilarity415

measures than the Euclidean distance.

5.1. Clustering single cell RNA sequencing data

Clustering of single cell RNA sequencing (scRNA-seq) data is a vital field.

It is of interest in its own respect, and it can be used as first step for further

analysis. Since much of the downstream analysis is based on clustering, the final420

conclusions may be strongly affected by it. Definition or discovery of new cell

types via clustering is an important area of research in the field. Many different

studies have been conducted on various organs either during development or at

fixed time to discover several new putative cell sub-populations using novel clus-

ters, for instance, in early embryonic development (Biase et al. (2014), Goolam425

et al. (2016)) or various regions of the brain (Zeisel et al. (2015)). We consider

scRNA-seq data clustering by the proposed methods for a number of published

data sets for which the true cell types were originally identified by the authors.

The data sets are listed in Table 5. We followed Lun et al. (2016) normalizing

them. All data sets were represented by principal components (PCs). Euclidean430

distances on these were used for clustering. scRNA-seq data are typically of

low sample size and high dimensionality, and dimension reduction is routinely

applied. The number of principal components was generally chosen as q so that

from q to q+ 1 PCs there was still a substantial drop in explained variance per

PC, but from q+1 PCs onward every PC would only account for low percentages435

of the variance with little further drop from one PC to the next. For j > 0,

variance PC q + j was only bigger than variance PC q + j + 1 by substantially

less than factor 2.The maximum number allowed for the estimation of number

of clusters was 12.
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Table 5: scRNA-seq data sets

Data n number of genes number of PCs k

Yan et al. (2013) 90 20214 2 7

Biase et al. (2014) 49 25737 3 3

Goolam et al. (2016) 124 41324 4 5

Kolodziejczyk et al. (2015) 704 38577 5 3

Yan et al. (2013) is a study of human embryonic development. The authors440

identified 7 cell types (development stages) as oocyte (3 samples), zygote (3

samples), 2-cell (6 samples), 4-cell (12 samples), 8-cell (20 samples), lateblast

(30 samples), and morula (16 samples). The first two principal components

were used, which explain 80% of the variance.

Biase et al. (2014) studied the cell fate decision during early embryo develop-445

ment. There are 1-cell (9 samples), 2-cell (20 samples), and 4-cell (20 samples)

embryos. The first three principal components were used. They explain 43% of

the variance.

Goolam et al. (2016) studied pre-implantation development. There are five

distinct cell types, 2-cell (16 samples), 4-cell (64 samples), 8-cell (32 samples),450

16-cell (6 samples) and 32-cell (6 samples). The first four principal components

were used, which explain 60% of the variance.

Kolodziejczyk et al. (2015) studied mouse embryonic stem cell growth under

different culture conditions. The three culture conditions are serum (250 cells),

2i (295 cells) and 2ai (159 cells). The first five principal components were used,455

which explain 36% of the variance.

The first two PCs of all data sets are plotted in Figure 3. It can be seen here

is that for all data sets except the one of Biase et al. (2014), the “true” clusters

have clearly separated subgroups. One could therefore expect a reasonable

cluster analysis method to choose more clusters than the given “true” groups,460

although this does not happen for the data of Yan et al. (2013), because some
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“true” clusters are not well separated. In case of Kolodziejczyk et al. (2015) it is

actually known that there are meaningful sub-populations within each culture

condition. These are subsets of the true clusters, so similarity of solutions to

the true clusters as measured by the ARI is still relevant.465
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Figure 3: Plots of first two PCs with true cell types: (a) Yan et al. (2013) data, (b) Biase

et al. (2014) data, (c) Goolam et al. (2016), (d) Kolodziejczyk et al. (2015) data.
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Table 6: Clustering results for the scRNA-seq data sets of Yan et al. (2013) and Biase et al.

(2014) for all methods included in the comparison with k fixed as the true known k, for

estimated k, and averaged over all k ∈ {2, . . . , 12}. Best ARI values in every column are

boldfaced.

Yan et al. (2013) data

estimated k fixed k = 7 ave. all k

Method ASW ARI k̂ ASW ARI ARI

k-means 0.827 0.796 6 0.489 0.515 0.617

gap-k-means 0.803 0.791 5

PAM 0.803 0.791 5 0.778 0.894 0.722

average 0.827 0.796 6 0.766 0.795 0.671

Ward’s 0.827 0.796 6 0.778 0.894 0.693

BIC-mixture 0.578 0.651 8 0.766 0.795 0.663

spectral 0.827 0.796 6 0.716 0.842 0.565

PAMSil 0.827 0.796 6 0.807 0.795 0.746

OSil 0.827 0.796 6 0.778 0.894 0.750

FOSil 0.801 0.685 3 0.592 0.632 0.644

Biase et al. (2014) data

estimated k fixed k = 3 ave. all k

Method ASW ARI k̂ ASW ARI ARI

k-means 0.765 1.000 3 0.765 1.000 0.581

gap-k-means 0.765 1.000 3

PAM 0.765 1.000 3 0.765 1.000 0.575

average 0.765 1.000 3 0.765 1.000 0.683

Ward’s 0.765 1.000 3 0.765 1.000 0.619

BIC-mixture 0.560 0.902 4 0.765 1.000 0.612

spectral 0.765 1.000 3 0.765 1.000 0.535

PAMSil 0.765 1.000 3 0.765 1.000 0.682

OSil 0.765 1.000 3 0.765 1.000 0.751

FOSil 0.765 1.000 3 0.765 1.000 0.716
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Table 7: Clustering results for the scRNA-seq data sets of Goolam et al. (2016) and

Kolodziejczyk et al. (2015) for all methods included in the comparison with k fixed as the true

known k, for estimated k, and averaged over all k ∈ {2, . . . , 12}. Best ARI values in every

column are boldfaced.

Goolam et al. (2016) data

estimated k fixed k = 5 ave. all k

Method ASW ARI k̂ ASW ARI ARI

k-means 0.632 0.544 5 0.632 0.544 0.493

gap-k-means 0.698 0.571 7

PAM 0.698 0.571 7 0.623 0.528 0.458

average 0.698 0.571 7 0.566 0.842 0.624

Ward’s 0.690 0.566 7 0.624 0.543 0.518

BIC-mixture 0.598 0.432 9 0.632 0.544 0.400

spectral 0.698 0.571 7 0.617 0.562 0.436

PAMSil 0.698 0.571 7 0.632 0.544 0.590

OSil 0.698 0.571 7 0.632 0.544 0.583

FOSil 0.661 0.522 6 0.632 0.544 0.500

Kolodziejczyk et al. (2015) data

estimated k fixed k = 3 ave. all k

Method ASW ARI k̂ ASW ARI ARI

k-means 0.525 0.451 7 0.389 0.295 0.336

gap-k-means 0.420 0.347 12

PAM 0.528 0.524 7 0.465 0.434 0.423

average 0.506 0.478 12 0.465 0.389 0.399

Ward’s 0.526 0.531 7 0.465 0.389 0.413

BIC-mixture 0.442 0.432 9 0.415 0.147 0.418

spectral 0.499 0.359 4 0.415 0.147 0.345

PAMSil 0.529 0.531 7 0.465 0.432 0.438

OSil 0.529 0.531 7 0.465 0.389 0.421

FOSil 0.528 0.525 7 0.465 0.432 0.412

Tables 6 and 7 show ASW and ARI results for most of the methods also
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compared in the simulation study (single linkage yields inappropriate results).

We show ASW, ARI, and the estimated number of clusters k̂ for the solutions

optimizing the ASW. The ARI here is the most important result, because in

reality the assumption will usually be that k is unknown. We also show ASW470

and ARI values at fixed “true” k. As this is often not a reasonable “data

analytic” number of clusters, we also show the average ARI over all k between

2 and 12 in order to investigate whether the methods based on optimizing the

ASW for fixed k can find good clusters also at other numbers k.

Results differ between data sets. The Biase et al. (2014) data (Table 6) are475

easiest to cluster. Almost all methods find the true clustering and estimate

k = 3 correctly, except the BIC-mixture. Some more differentiation occurs at

the averaged ARI over all k. OSil yields the best result here, followed by FOSil.

For the Yan et al. (2013) data (Table 6), OSil is best in all respects, but for

estimated k many other methods find the same solution. FOSil drops somewhat480

in quality compared with the other ASW-optimizing methods.

For the Goolam et al. (2016) data (Table 7), most methods estimate a higher

k than the true k = 5 here, as was to be expected. k-means with ASW delivers

k̂ = 5, but the corresponding clustering is worse than most others in terms

of the ARI. For estimated k, the best clustering is found by OSil, PAMSil,485

PAM, average linkage, k-means with the gap statistic, and spectral clustering.

Regarding fixed k, average linkage (which is up with PAMSil and OSil regarding

estimated k) produces a solution that is far superior to everything else, also

lifting its average ARI over all k to the top spot. PAMSil and OSil follow on

the next positions.490

For the Kolodziejczyk et al. (2015) data (Table 7) and estimated k, OSil,

PAMSil, and Ward do best. The BIC-mixture and gap/k-means are much

worse. For fixed k, PAM is best, only very narrowly over PAMSil and FOSil.

There are three clustering solutions with almost the same ASW 0.465 (rounded)

at the true k = 3, namely the one found by PAM, the one found by PAMSil495

and FOSil, and the third one by OSil, average linkage and Ward. All these

are clearly better than the solutions found by k-means, model-based clustering,
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and spectral clustering. Regarding the average ARI over all k, PAMSil is best,

followed by PAM and OSil. This is the largest of the data sets, and FOSil,

which is meant for larger data sets, loses less quality here compared with OSil500

than for the smaller data sets, and is substantially faster.

Considering ASW-values, as in the simulation study, PAMSil is sometimes

better and sometimes worse than OSil. Overall, in terms of optimizing the ASW,

PAMSil does a good job, and in practice one may run them both and then pick

the one that yields the better ASW. The ASW does a generally good job picking505

the number of clusters; almost all ARI values with k estimated by optimizing

the ASW are clearly better than the ARI at true k or averaged over k, and the

ASW seems to be far more suitable here than model-based clustering with the

BIC, probably because the BIC tries to approximate non-Gaussian clusters by

more than one Gaussian component. The BIC always yields the largest k̂ here510

leading to a usually weak ARI.

OSil and PAMSil show the best performances overall. Regarding estimated

k they are the only methods that find the best solution for all four data sets,

with some good results for average linkage, Ward, and PAM. These three each

miss the best solution just once, but do occasionally much worse averaged over515

all k.

5.2. Species delimitation of Veronica plants

The Veronica data set analysed here is from Martinez-Ortega et al. (2004).

It gives genetic information about 207 individual Veronica plants of sub-genus

Pentasepalae from the Iberian peninsula and Morocco. The aim of clustering520

these is to discover and delimit different species of such plants. The plants are

characterized by 583 variables. These contain genetic information, which was

obtained using AFLP-technology (“amplified fragment length polymorphism”).

This detects the presence or absence of certain characteristics (“markers”) of

DNA fragments (AFLP bands from 61 to 454 bp). The variables can take the525

values 0 (absence) and 1 (presence). As joint presences are the key informa-

tion and far more relevant than joint absences, we computed a Jaccard distance
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matrix (see, e.g., Shi (1993)) on the individuals. Involving also further infor-

mation, Martinez-Ortega et al. (2004) gave a “true” species classification into

eight species. Figure 4 shows a 2-dimensional classical multidimensional scaling530

(MDS) representation of the data. The left side shows the true species, which

look very much in line with the data. Running OSil and PAMSil on the data,

estimating the number of clusters, delivers k̂ = 8 clusters that are exactly iden-

tical to those true clusters. The ASW picks the same solution out of the average

linkage and complete linkage dendrogram. As this is distance data, mclust and535

k-means are not available in their standard form. The ASW was in Kaufman

and Rousseeuw (1990) proposed for use together with PAM, but with PAM it

suggests 7 clusters, merging somewhat counter-intuitively true species 5 and 8.

The reason is that the 8-cluster PAM solution, shown on the right side of Fig-

ure 4, is even worse in terms of the ASW. The PAM objective function for this540

solution is better than for the true 8-cluster solution, so the problem is not that

the PAM algorithm would not find a global optimum. Inspecting individual

distances, it turns out that according to the PAM objective function it is better

to fit the 48 members of true species 3 by two centroids, sacrificing the only 4

members of true species be merging them with a part of true cluster 3.545
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Figure 4: 2-dimensional multidimensional scaling representation of the Veronica plants data.

Left side: “True” species, identical to the solution found by OSil and PAMSil. Right side:

Solution found by PAM for 8 clusters.
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Optimizing the ASW also for fixed number of clusters k = 8 stops this

from happening, because the large distance within PAM-8 cluster 5 spoils the

homogeneity (a(i)) values in the silhouette, whereas separating true clusters 5

and 3 is good for the separation (b(i)). The OSil solution is not only better in

line with the “true” species, but also with the impression given by the MDS550

plot, and going through individual distances.

This is an example how optimizing the ASW can be beneficial, particularly

compared to PAM, for a non-Euclidean distance. Other methods (e.g., average

and complete linkage) contain the true 8-species solution in the dendrogram,

but require the ASW to pick k = 8.555

5.3. France rainfall data clustering
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Figure 5: France rainfall data: ASW for clusterings from 2 to 12 clusters by OSil and PAM.

Finding spatial or temporal patterns in climate data sets based on statistical

techniques is of crucial importance for climatologists. The data analysed here

is taken from Bernard et al. (2013), who clustered 92 French weather stations

based on rainfall for the three months of fall, September to November from 1993560

to 2011, considering weekly maxima of hourly precipitation, resulting in time

series of length 288. Based on subject matter considerations, they proposed a

specific distance measure, the F-madogram, and then ran a PAM clustering on
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the data. They used the ASW in a rather exploratory manner. For PAM, the

optimum number of clusters is k = 2 (see Figure 5), however the authors are also565

interested in more than two clusters, and they also show and interpret solutions

for k = 5 and k = 7, which are local optima of the ASW. As Figure 5 shows,

OSil yields consistently higher values of the ASW. The two-cluster solution of

OSil just separates two outlying weather stations from the rest, which is not

very useful.570

This points to a weakness of the ASW, which has a tendency to favor k = 2

or a low k if one or more clearly separated clusters (potentially small) can be

found, ignoring less strongly separated structure elsewhere, see Section 4.2.
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Figure 6: France rainfall data: Clusterings for PAM and OSil (k = 7) and average linkage

(k = 9).
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A simpler approach is to look for local optima, and OSil delivers a local

optimum at k = 7 (see Figure 5). Figure 6 shows the 7-cluster solutions for575

PAM (as used in Bernard et al. (2013)), OSil, and (for comparison) a local

ASW optimum at k = 9 of average linkage. There is no true clustering given

for these data, but one can look at individual distances to assess the different

clusterings.

OSil cluster 4 has just three stations, two of them on Corsica, with average580

within-cluster distance (awcd) 0.095. OSil cluster 3 has an awcd of 0.091. PAM

cluster 3 is mainly a merger of these two, and has a much larger awcd of 0.101.

There is an average distance of 0.115 between OSil clusters 3 and 4, whereas the

average distance between PAM clusters 3 and 1 is just 0.111. This means that

OSil clusters 3 and 4 actually seem well separated and leaving them separated585

is more convincing that merging them, as PAM does. On the other hand, OSil

cluster 1 is much bigger than the roughly corresponding PAM clusters 1 and 5.

The awcds of these two PAM clusters are 0.085 and 0.086, respectively. OSil

cluster 1 has awcd 0.093, which is admittedly bigger, however three of the seven

PAM clusters and only two OSil clusters have awcds larger than that (the largest590

awcd of any cluster of both clusterings is 0.101 of PAM cluster 3). The average

distance to the closest different cluster for OSil cluster 1 is 0.108, and not only

is this larger than the average distance 0.098 between PAM cluster 1 and 5, also

both are closer on average (0.107 and 0.104) to the closest of the remaining five

PAM-clusters. Overall the OSil clustering has a smaller average within-cluster595

distance, and a larger average between-cluster distance, and it looks overall more

convincing. OSil focuses more on homogeneity and separation, whereas PAM

focuses more on representation by the best centroid, which is arguably not that

important in this application.

We ran some other distance-based clustering methods on these data. PAM-600

Sil, as usually, performed similar to OSil, with an ASW optimum at k = 2 and

a local optimum at k = 7, however the ASW maximum found by OSil was not

found and PAMSil’s solution is a bit different and slightly worse in ASW. All

tried out methods had their ASW optimum at k = 2. Figure 6 shows the local

35



ASW optimum at k = 9 for average linkage (only local optimum for k ≤ 12,605

which was the largest k we tried). The smaller clusters 6 (2 stations) and 9 (just

one station) in this solution have average distances to the closest other cluster

of 0.113 and 0.108, smaller than the corresponding value between OSil clusters

3 and 4, so they are hardly strongly outlying, and arguably not that useful.

Complete and single linkage do not yield very convincing solutions either.610

Lacking “true” cluster information (as is typically the case in real applica-

tions), such arguments elaborate in what sense the OSil method can achieve

something valuable for these data that is not achieved by the other methods.

This is only achieved after accounting for a weakness of the ASW for estimating

k (for which it is regularly used), namely that it can get stuck at k = 2 because615

of large within-cluster distances that hide smaller but still relevant separation

at a higher level of k. In real data analysis, higher local optima should also be

explored, be it with OSil, or be it where the ASW is used with other methods

for choosing k.

6. Conclusion620

We introduce the OSil and FOSil methods for optimum ASW clustering.

The ASW is shown to fulfil the desirable axioms for clustering quality measures

proposed by Ackerman and Ben-David (2009). From our experiments, the abil-

ity of OSil to find “true” clusters is good, but there are exceptions. It was the

strongest method for DGPs containing clearly separated clusters with differing625

spreads and sizes. For several further models, including those with higher di-

mensionality, it performed well, and in line with most other methods. Results

for the scRNA-seq data were overall best. An issue, highlighted in Sections 4.2

and 5.3, but also present in some simulations, is that the ASW as an estimator

of the number of clusters k can be tempted to choose a too low k if this allows for630

very large distances between “neighboring” clusters, which can hide structure

that is still meaningful but characterized by somewhat lower between-cluster

distances. This is a problem not only with OSil, but with the widespread gen-
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eral use of the ASW as a criterion to estimate k. It is advised to consider locally

optimal values of k regarding the ASW on top of the global optimum where the635

global optimum is at k = 2 or very low. A bootstrap scheme to estimate the

number of clusters with the ASW correcting for bias in favor of low k has been

proposed in Hennig and Lin (2015). On the other hand, the applications to

non-Euclidean data show that OSil can achieve sensible results where PAM and

other methods have difficulties. Also the ASW did better finding good cluster-640

ings at estimated k for the scRANA-seq data than the BIC with a Gaussian

mixture model.

The PAMSil algorithm by Van der Laan et al. (2003) is a good approximation

to OSil, often finding the same optimum ASW, sometimes worse, sometimes

even better. For larger data sets, the FOSil algorithm based on subsetting has645

been proposed, which however occasionally results in considerable quality loss.

As long as the optimisation of the ASW is of interest in its own right, FOSil

still usually achieves a better ASW-value than other clustering methods apart

from the slower OSil and PAMSil.

Software650

An R package is available at the first author’s Github site at https://

github.com/bfatimah. Code for PAMSil was built on the standalone C-code

by Van der Laan et al. (2003).
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Caliński, T., Harabasz, J., 1974. A dendrite method for cluster analysis. Com-

munications in Statistics-Theory and Methods 3, 1–27.

Carlsson, G., Mémoli, F., 2013. Classifying clustering schemes. Foundations of

Computational Mathematics 13, 221–252.675

Correa-Morris, J., 2013. An indication of unification for different clustering

approaches. Pattern Recognition 46, 2548–2561.

Fisher, L., Ness, J.W.V., 1971. Admissible clustering procedures. Biometrika

58, 91–104.

Fraley, C., Raftery, A.E., 1998. How many clusters? which clustering method?680

answers via model-based cluster analysis. The Computer Journal 41, 578–588.

Goolam, M., Scialdone, A., Graham, S.J., Macaulay, I.C., Jedrusik, A., Hu-

palowska, A., Voet, T., Marioni, J.C., Zernicka-Goetz, M., 2016. Heterogene-

ity in oct4 and sox2 targets biases cell fate in 4-cell mouse embryos. Cell 165,

61–74.685

Halkidi, M., Vazirgiannis, M., Hennig, C., 2015. Method-independent indices

for cluster validation and estimating the number of clusters, in: Hennig, C.,

38



Meila, M., Murtagh, F., Rocci, R. (Eds.), Handbook of Cluster Analysis.

CRC Press, pp. 595–618.

Hartigan, J.A., Wong, M.A., 1979. Algorithm as 136: A k-means clustering algo-690

rithm. Journal of the Royal Statistical Society: Series C (Applied Statistics)

28, 100–108.

Hennig, C., 2008. Dissolution point and isolation robustness: robustness criteria

for general cluster analysis methods. Journal of Multivariate Analysis 99,

1154–1176.695

Hennig, C., 2015. What are the true clusters? Pattern Recognition Letters 64,

53–62.

Hennig, C., Lin, C.J., 2015. Flexible parametric bootstrap for testing homo-

geneity against clustering and assessing the number of clusters. Statistics and

Computing 25, 821–833.700

Hennig, C., Meila, M., Murtagh, F., Rocci, R., 2015. Handbook of Cluster

Analysis. CRC Press, Boca Raton, USA.

Hubert, L., Arabie, P., 1985. Comparing partitions. Journal of Classification 2,

193–218.

Jardine, N., Sibson, R., 1968. The construction of hierarchic and non-hierarchic705

classifications. The Computer Journal 11, 177–184.

Kaufman, L., Rousseeuw, P., 1987. Clustering by means of medoids. Amster-

dam: North-Holland.

Kaufman, L., Rousseeuw, P.J., 1990. Finding groups in data: an introduction

to cluster analysis. volume 344. John Wiley & Sons.710

Kleinberg, J.M., 2003. An impossibility theorem for clustering, in: Advances in

neural information processing systems, pp. 463–470.

39



Kolodziejczyk, A.A., Kim, J.K., Tsang, J.C., Ilicic, T., Henriksson, J., Natara-

jan, K.N., Tuck, A.C., Gao, X., Bühler, M., Liu, P., et al., 2015. Single cell

rna-sequencing of pluripotent states unlocks modular transcriptional varia-715

tion. Cell stem cell 17, 471–485.

Van der Laan, M., Pollard, K., Bryan, J., 2003. A new partitioning around

medoids algorithm. Journal of Statistical Computation and Simulation 73,

575–584.

Lloyd, S., 1982. Least squares quantization in pcm. IEEE Transactions on720

Information Theory 28, 129–137.

Lun, A.T., McCarthy, D.J., Marioni, J.C., 2016. A step-by-step work-

flow for low-level analysis of single-cell rna-seq data with bioconductor.

F1000Research 5.

Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M., Hornik, K., 2017. cluster:725

Cluster Analysis Basics and Extensions. R package version 2.0.6.

Martinez-Ortega, M.M., Delgado, L., Albach, D.C., Elena-Rossello, J.A., Rico,

E., 2004. Species boundaries and phylogeographic patterns in cryptic taxa

inferred from aflp markers: Veronica subgen. pentasepalae (scrophulariaceae)

in the western mediterranean. Systematic Biology 29, 965–986.730

Ng, A.Y., Jordan, M.I., Weiss, Y., 2001. On spectral clustering: Analysis and

an algorithm, in: NIPS, pp. 849–856.

Rousseeuw, P.J., 1987. Silhouettes: a graphical aid to the interpretation and

validation of cluster analysis. Journal of Computational and Applied Mathe-

matics 20, 53–65.735

Rubin, J., 1967. Optimal classification into groups: an approach for solving the

taxonomy problem. Journal of Theoretical Biology 15, 103–144.

Scrucca, L., Fop, M., Murphy, T.B., Raftery, A.E., 2017. mclust 5: clustering,

classification and density estimation using Gaussian finite mixture models.

The R Journal 8, 205–233.740

40



Shi, G.R., 1993. Multivariate data analysis in palaeoecology and

palaeobiogeography-a review. Palaeogeography, Palaeoclimatology, Palaeoe-

cology 105, 199–234.

Sokal, R.R., Michener, C.D., 1958. A statistical method for evaluating system-

atic relationships. Univesity Kansas Science Bulletin 38, 1409–1438.745

Tibshirani, R., Walther, G., Hastie, T., 2001. Estimating the number of clusters

in a data set via the gap statistic. Journal of the Royal Statistical Society:

Series B (Statistical Methodology) 63, 411–423.

Von Luxburg, U., Williamson, R.C., Guyon, I., 2012. Clustering: Science

or art?, in: Proceedings of ICML Workshop on Unsupervised and Transfer750

Learning, pp. 65–79.

Ward Jr, J.H., 1963. Hierarchical grouping to optimize an objective function.

Journal of the American Statistical Association 58, 236–244.

Wright, W.E., 1973. A formalization of cluster analysis. Pattern Recognition 5,

273–282.755

Yan, L., Yang, M., Guo, H., Yang, L., Wu, J., Li, R., Liu, P., Lian, Y., Zheng,

X., Yan, J., et al., 2013. Single-cell rna-seq profiling of human preimplantation

embryos and embryonic stem cells. Nature structural & molecular biology 20,

1131.

Zadeh, R.B., Ben-David, S., 2009. A uniqueness theorem for clustering, in: Pro-760

ceedings of the twenty-fifth conference on uncertainty in artificial intelligence,

AUAI Press. pp. 639–646.

Zeileis, A., Hornik, K., Smola, A., Karatzoglou, A., 2004. kernlab —an s4

package for kernel methods in r. Journal of Statistical Software 11, 1–20.
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