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Abstract
To maximize the potential of earthquake early warning (EEW) as a credible tool
for seismic resilience promotion, it should be combined with next-generation
decision-support tools that use advanced risk-based predictions and account for
unavoidable malfunctions of the system (i.e., false alarms) to determine whether
or not alerts/mitigation actions should be triggered. This work contributes to the
required effort by developing a novel end-user-oriented approach for decision
making related to very short-term earthquake risk management. The proposed
methodology unifies earthquake-engineering-related performance assessment
procedures/metrics (for end-user-focused damage and consequence estimation)
with multicriteria decision-making tools (to consider end-user preferences
toward different types of risks). It is demonstrated for EEW in a hypothetical
school building, to specifically investigate the optimal decisions (i.e., “trig-
ger”/“do not trigger” alerts) for a range of earthquake scenarios with varying
parameter uncertainties. In particular, it is found that the best action for a given
ground-shaking intensity can depend on stakeholder (end-user) preferences.

1 INTRODUCTION

Earthquake early warning (EEW) is undergoing a growth
in popularity worldwide as an attractive tool for enhanc-
ing and promoting seismic resilience in urban areas (e.g.,
Cauzzi et al., 2016; Gasparini et al., 2011). Specifically,
EEW systems rely on real-time data telemetry to provide
information about ongoing earthquakes, enabling various
stakeholders (end-users) to take effective steps for reducing
potential harmful impacts of an event before strong shak-
ing occurs at a target site (e.g., Allen & Melgar, 2019; Hsu
et al., 2016; Panakkat & Adeli, 2008; Rafiei & Adeli, 2017;
Satriano, Wu et al., 2011). This type of technology is cur-
rently operating in nine countries, and is being tested for
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feasibility in many more (Cremen & Galasso, 2020; Cre-
men et al., 2021).
To date, innovations in EEW have largely focused

on seismological aspects and hazard models. For exam-
ple, one of the most recent advances in EEW is the
use of machine learning to discriminate seismic signals
from noise, for more reliable earthquake detection (Meier
et al., 2019). However, to maximize the potential of these
technologies as effective risk-management tools, there
also needs to be a focus on developing and incorporat-
ing next-generation decision-support tools. These tools
use advanced engineering-based consequence predictions
related to the corresponding hazards, so that stakeholders
can be informed of appropriate risk mitigation actions to
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take when necessary (e.g., Bozza et al., 2017; Ouyang &
Fang, 2017; Sharma et al., 2020; Tesfamariam et al., 2010;
Zhou et al., 2018).
Some work connected to this requirement has already

been done in the literature. For example, Grasso (2005),
Iervolino, Giorgio et al. (2007), and Iervolino (2011) intro-
duced a probabilistic loss-driven decision-making frame-
work for EEW. This was advanced in Wu et al. (2013)
through the integration of basic decision theory, and the
updated methodology was applied to the automated pro-
cess of elevator control in Wu et al. (2016). Additional
examples of EEW risk-based decision-making procedures
proposed in the literature are those documented in Grasso
et al. (2007), Salzano et al. (2009), Wang et al. (2012), and
Le Guenan et al. (2016).
However,most of the aforementioned studies rely on the

concept of equally weighted cost–benefit analysis and/or
only one loss-related criterion to support decision making.
These types of approaches have several disadvantages.
First, cost–benefit analyses require the use of questionable
assumptions about the dollar value of nonmonetary losses
(such as casualties and functional disruption), which may
not be accurate and can lack consistency across different
jurisdictions (e.g., Krawinkler et al., 2006; Viscusi &
Masterman, 2017). Second, these approaches do not (or
do not easily) enable different dimensions of risk (e.g.,
public safety, economic loss, and functionality) to be dis-
tinguished in the decision-making process, which is prob-
lematic if the stakeholder does not place equal importance
on each risk type (May, 2004). Third, they do not account
for risk tolerance, which is an important consideration
for engineering-related applications (Stewart & Melch-
ers, 1997). While the work of Wu et al. (2013) leverages
expected utility theory in an attempt to overcome this final
limitation, the basis of their decision-making procedure
remains a cost–benefit analysis. As a further improve-
ment, Le Guenan et al. (2016) use multiattribute utility
theory applied to various risk-tolerance scenarios, which
theoretically eliminates all of the above restrictions. But
the proposed methodology only works for binary action
cases (e.g., “trigger” or “do not trigger” an EEW alarm),
uses a simplistic time-independent description of real-time
seismic hazard, and relies on a deterministic engineering-
agnostic damage-to-loss relationship, which make it
unsuitable for a broad range of short-term seismic risk
management purposes.
This paper proposes an advanced methodology that

overcomes all of the previously identified shortcomings in
two main ways. First, it implements a general multicri-
teria decision-making (MCDM) approach, which enables
multiple mitigation actions to be evaluated for various
dimensions of uncertain risk. The particular MCDM tech-
nique discussed in the paper has been successfully imple-

mented in previous work to determine optimal seismic
retrofitting options (Caterino et al., 2008, 2009; Gentile &
Galasso, in press) and more general emergency response
solutions (Zhang et al., 2016), for example. Second,MCDM
is coupled with a modified version of the performance-
based earthquake engineering (PBEE) framework (Moehle
&Deierlein, 2004) that incorporates evolutionary Bayesian
real-time seismic hazard analysis. This framework forms a
convenient mathematical foundation for real-time proba-
bilistic seismic risk decision making that (1) accounts for
all important sources of uncertainty associated with EEW
and (2) considers multiple consequence variables. Fur-
thermore, traditional PBEE has been used to choose opti-
mal actions inmany other earthquake-engineering-related
applications, such as seismic design (Goda & Hong, 2006),
seismic retrofitting (Porter et al., 2006), seismic sensor
implementation (Cremen & Baker, 2018), postearthquake
repair scheduling (Xiong et al., 2020), and parametric
earthquake insurance (Goda, 2015), as well as MCDM
problems involving household recovery (Burton et al.,
2018) and design optimization (Mosalam et al., 2018; Saa-
dat et al., 2014).
This paper is organized in the following manner. The

proposed methodology is developed within Section 2,
which specifically details how MCDM and PBEE are
uniquely unified in the context of risk-driven EEW. Sec-
tion 3 involves an application of the methodology to EEW
in a hypothetical school, and the optimal decision is inves-
tigated for various levels of information on the incom-
ing earthquake. Finally, discussion and conclusions on the
study are provided in Section 4.

2 METHODOLOGY

The proposed methodology consists of a number of well-
defined, computer-implementable steps (i.e., algorithm).
It evaluates a group of end-user selected EEW mitigation
actions ({𝐴𝑖}), as well as the option of taking no action (𝐴),
based on case-specific values associated with a set of cor-
responding uncertain consequence criteria ({𝐶𝑗}) that are
assigned weights ({𝑤𝑗}) to reflect their importance in line
with end-user preferences. The explicit incorporation of
these preferences and the fact that the criteria do not need
to be given amonetary value both represent improvements
over conventional dollar-based (cost–benefit) decision-
making procedures used in past EEW studies, as discussed
in the previous section. The methodology is comprised
of three main steps. The first step represents the real-
time PBEE module of the algorithm (Mod_PBEE), which
computes the probabilistic consequences ({𝐶𝑗}) for each
action and uses an evolutionary seismic hazard analy-
sis to facilitate the integration with existing seismological
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TABLE 1 Explanation of consequence matrix inputs for Step 1 of the proposed methodology

𝑪𝟏 Casualties (Number) 𝑪𝟐 Downtime (days) 𝑪𝟑 Direct cost ($)
𝐴1 Expected casualties from possible

false alarm + expected
casualties from estimated
shaking that is not eliminated
with mitigation action 1,
[𝐸𝐴1 (𝐶

𝐴1

1 |𝐝)]

Expected disruption from
possible false alarm + expected
downtime from estimated
shaking that is not eliminated
with mitigation action 1,
[𝐸𝐴1 (𝐶

𝐴1

2 |𝐝)]

Expected reconditioning cost
from possible false alarm +

expected repair cost from
estimated shaking that is not
eliminated with mitigation
action 1, [𝐸𝐴1 (𝐶

𝐴1

3 |𝐝)]
⋮ ⋮ ⋮ ⋮

⋮ ⋮ ⋮ ⋮

⋮ ⋮ ⋮ ⋮

𝐴𝑁𝑎
Expected casualties from possible
false alarm + expected
casualties from estimated
shaking that is not eliminated
with mitigation action 𝑁𝑎 ,
[𝐸𝐴𝑁𝑎 (𝐶

𝐴𝑁𝑎

1 |𝐝)]

Expected disruption from
possible false alarm + expected
downtime from estimated
shaking that is not eliminated
with mitigation action 𝑁𝑎 ,
[𝐸𝐴𝑁𝑎 (𝐶

𝐴𝑁𝑎

2 |𝐝)]

Expected reconditioning cost
from possible false alarm +

expected repair cost from
estimated shaking that is not
eliminated with mitigation
action 𝑁𝑎 , [𝐸𝐴𝑁𝑎 (𝐶

𝐴𝑁𝑎

3 |𝐝)]
𝐴 (no
action)

Expected casualties from
estimated shaking, [𝐸𝐴(𝐶𝐴

1 |𝐝)] Expected downtime from
estimated shaking, [𝐸𝐴(𝐶𝐴

2 |𝐝)] Expected repair cost from
estimated shaking, [𝐸𝐴(𝐶𝐴

3 |𝐝)]
algorithms for EEW.The second step integrates the outputs
of Mod_PBEE within the MCDM module (Mod_MCDM),
which accounts for the criteria-specific risk priorities of
stakeholders ({𝑤𝑗}). The results ofMod_MCDMare used to
select the optimal decision in the final step of the method-
ology (Mod_Decision).
Step 1: Develop a consequence matrix

(Mod_PBEE). For all 𝑁𝑎 identified actions and 𝐴,
the values associated with each of the 𝑁𝑐 consequence
criteria are first assembled in a consequence matrix (see
Table 1—note that the criteria shown are merely represen-
tative and do not constitute an exhaustive list). The value
of the 𝑗th criterion for𝐴 is equivalent to the expected value
of the consequence 𝐸𝐴(𝐶𝐴

𝑗
|𝐝) for the incoming ground

shaking. 𝐸𝐴(𝐶𝐴
𝑗
|𝐝) is estimated using PBEE theory and

physical measurements from a network of seismic stations
(𝐝), according to the performance-based earthquake early
warning (PBEEW) framework developed by Grasso (2005)
and Iervolino, Giorgio et al. (2007):

𝐸𝐴(𝐶𝐴
𝑗
|𝐝) = ∫

𝑐𝐴
𝑗
∫
𝐝𝐦

∫
𝐢𝐦

𝑐𝐴
𝑗
𝑓𝐴

(
𝑐𝐴
𝑗
|𝐝𝐦)

𝑓(𝐝𝐦|𝐢𝐦)

𝑓(𝐢𝐦|𝐝) 𝑑𝑐𝐴
𝑗
𝑑𝐝𝐦𝑑𝐢𝐦

(1)

𝑓(𝑎|𝑏) is the probability density function (pdf) of 𝑎

conditional on 𝑏, 𝐝𝐦 is a scalar or vector measure of
damage level, and 𝐢𝐦 is a vector of ground shaking
intensities. 𝑓(𝐝𝐦|𝐢𝐦) can be obtained using a building-
level fragility function (scalar damage) or through an
intermediate engineering demand/structural response
parameter (𝐸𝐷𝑃) variable for component-level perfor-

mance assessment procedures (vector damage); in the
latter case, 𝑓(𝐝𝐦|𝐢𝐦) = ∫

𝐄𝐃𝐏
𝑓(𝐝𝐦|𝐞𝐝𝐩)𝑓(𝐞𝐝𝐩|𝐢𝐦) 𝑑

𝐄𝐃𝐏.
𝑓(𝐢𝐦|𝐝) is the pdf of 𝐢𝐦 given current knowledge

on the incoming event. 𝐝 could comprise the vectors of
information used by the implemented seismological EEW
algorithm—for example, ElarmS (Brown et al., 2011) or
PRESTo (Satriano, Elia et al., 2011)—to estimatemagnitude
and location in real time. If the applicable seismological
algorithm provides point estimates of the magnitude (�̂�)
and location of the incoming event, then 𝐝 = {�̂�, 𝑟} (where
𝑟 is the corresponding estimate of the distance from the
source to a target site of interest) and:

𝑓(𝐢𝐦|𝐝) = 𝑓(𝐢𝐦|{�̂�, 𝑟}) (2)

can be computed with the aid of a ground motion model
(GMM), for example. Where the seismological algorithm
uses the seismic network measurements to estimate the
incoming ground shaking at a site ( ̂𝐢𝐦), 𝐝 = ̂𝐢𝐦 and
𝐸𝐴(𝐶𝐴

𝑗
|𝐝) is found using the following simplified version

of Equation (1):

𝐸𝐴
(
𝐶𝐴
𝑗
|𝐝) = 𝐸𝐴

(
𝐶𝐴
𝑗
| ̂𝐢𝐦)

=

∫
𝑐𝐴
𝑗
∫
𝐝𝐦

𝑐𝐴
𝑗
𝑓𝐴

(
𝑐𝐴
𝑗
|𝐝𝐦)

𝑓(𝐝𝐦| ̂𝐢𝐦) 𝑑𝑐𝐴
𝑗
𝑑𝐝𝐦

(3)

It can be seen from Table 1 that the expected value of
the 𝑗th criterion for the 𝑖th action, 𝐸𝐴𝑖 (𝐶𝐴𝑖

𝑗
|𝐝) includes

(1) the consequence associated with a potential false
alarm, 𝐸(𝐶FAij |𝐝), as well as (2) the action-, criterion-, and
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TABLE 2 Sample decision matrix developed in Step 2 of the proposed methodology

𝑪𝟏 Casualties (Number) 𝑪𝟐 Downtime (days) 𝑪𝟑 Direct cost ($)
𝐴1 𝑟𝐴1,𝐶1

𝑤1 𝑟𝐴1,𝐶2
𝑤2 𝑟𝐴1,𝐶3

𝑤3

⋮ ⋮ ⋮ ⋮

⋮ ⋮ ⋮ ⋮

⋮ ⋮ ⋮ ⋮

𝐴𝑁𝑎
𝑟𝐴𝑁𝑎

,𝐶1
𝑤1 𝑟𝐴𝑁𝑎

,𝐶2
𝑤2 𝑟𝐴𝑁𝑎

,𝐶3
𝑤3

𝐴 (no action) 𝑟𝐴,𝐶1𝑤1 𝑟𝐴,𝐶2𝑤2 𝑟𝐴,𝐶3𝑤3

event-specific proportion of the corresponding PBEE-
based consequence for 𝐴 that cannot be mitigated,
𝐸𝐴(𝐶𝐴

𝑗
|𝐝)𝛼𝑖𝑗(𝐝) (where 𝛼𝑖𝑗(𝐝) is a scalar value between 0

and 1). False alarms occur when a risk-mitigation action
turns out to be unnecessary for the level of shaking
actually observed, that is, when no vulnerable component
in the building (either structural or nonstructural) is
damaged. The probability of a false alarm, (𝑝(𝐹𝐴|𝐝)) may
be calculated as follows:

𝑝(𝐹𝐴|𝐝) = (1 − 𝑝(𝐶𝑝|𝐝))(1 − ∫
𝐝𝐦

𝑓(𝐝𝐦|{𝐝, 𝐶𝑝}) 𝑑𝐝𝐦)
(4)

where 𝐶𝑝 is the occurrence of collapse and 𝐶𝑝 is its
complementary. 𝐸(𝐶FAij |𝒅) is then computed using the
following equation:

𝐸
(
𝐶FAij |𝐝) = 𝑐FAij 𝑝 (FA|𝐝) (5)

where 𝑐FAij is the expected consequence due to false alarm
disruption for the 𝑗th criterion and the ith action. Both
𝑐FAij and 𝛼𝑖𝑗(𝐝) are obtained from stakeholder feedback.
Examples of potential EEW actions for a building

include: 𝐴1: “duck, cover, and hold” (DCHO) and 𝐴2:
“evacuate the building.” 𝐴1 will likely lead to larger
expected casualties for an incoming event than 𝐴2, since
DCHOwill not protect occupants if the building collapses.
However, 𝐴2 requires a disruptive (and potentially costly)
period of building reoccupation in the event of a false
alarm, which is avoided for 𝐴1. Potential EEW actions
for a bridge include: 𝐴1: “shut the bridge” and, based on
the work of Maddaloni et al. (2011), 𝐴2: “keep the bridge
open, using semi-active control strategies to optimize its
real-time structural response.” Here, 𝐴1 will result in
lower shaking-related—but higher false-alarm-related—
consequences than 𝐴2, overall. The correct action to take
for any structural type will depend on stakeholder pref-
erences toward specific types of consequences, which are
accounted for in Step 2 of the algorithm.
Step 2: Develop a decision matrix (Mod_MCDM).

The consequence matrix values from Mod_PBEE are first

normalized as follows:

𝑟𝐴𝑖,𝐶𝑗 =
𝐸𝐴𝑖

(
𝐶
𝐴𝑖
𝑗
|𝐝)√∑𝑁𝑎

𝑘=1

(
𝐸𝐴𝑘

(
𝐶
𝐴𝑘
𝑗

|𝐝))2 + (
𝐸�̄�

(
𝐶�̄�
𝑗
|𝐝))2 ,

(6)
where 𝑟𝐴𝑖,𝐶𝑗 is the normalized value of the 𝑗th criterion
for the 𝑖th action, and all other variables are as defined for
Mod_PBEE. 𝑟𝐴𝑖,𝐶𝑗 values are then weighted according to
stakeholder preferences (priorities) toward each criterion,
to form the decision matrix (Table 2).
The correspondingweights ({𝑤𝑗})may be obtained using

the analytic hierarchy process (Saaty, 1980) for exam-
ple. This procedure involves the stakeholder performing a
series of pairwise comparisons for each criterion, based on
qualitative phrasing for relative importance that is quan-
tified (for analysis purposes) on a scale from 1/9 to 9. One
on the quantitative scale implies that the stakeholder con-
siders both criteria to be equally significant, 5 indicates
that the stakeholder believes criterion X is strongly impor-
tant over criterion Y, 9 means that criterion X has extreme
importance to the stakeholder compared to criterion Y, all
other values between 1 and 9 signify intermediate judg-
ments to those stated, and reciprocal values indicate equiv-
alent opinions of criterion Y compared to criterion X. The
quantitative results of the comparison are summarized in
an𝑁𝑐 × 𝑁𝑐matrix, the principal right eigenvector of which
is equivalent to {𝑤𝑗}.
Step 3: Identify the optimal decision

(Mod_Decision). The final part of the methodology
determines the optimal decision among {𝐴𝑖} and 𝐴.
This first involves quantifying the best and worst val-
ues for each criterion across all possible options. Since
the criteria in this case are negative consequences, the
best value of the 𝑗th criterion (𝑣+

𝑗
) is its minimum

value, that is, 𝑣+
𝑗
= min𝑗(𝑟𝐴1,𝐶𝑗𝑤𝑗, … , 𝑟𝐴𝑁𝑎 ,𝐶𝑗

𝑤𝑗, 𝑟𝐴,𝐶𝑗
𝑤𝑗)

and the worst value (𝑣−
𝑗
) is its maximum, that is,

𝑣−
𝑗
= max𝑗(𝑟𝐴1,𝐶𝑗𝑤𝑗, … , 𝑟𝐴𝑁𝑎 ,𝐶𝑗

𝑤𝑗, 𝑟𝐴,𝐶𝑗
𝑤𝑗). The total

distance of a given action 𝐴𝑖 from the best (𝑦+
𝑖
) and

worst (𝑦−
𝑖
) solutions are then, respectively, calculated as
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follows:

𝑦+
𝑖
=

√√√√√ 𝑁𝑐∑
𝑗=1

(
𝑣+
𝑗
− (𝑟𝐴𝑖,𝐶𝑗𝑤𝑗)

)2
, (7)

𝑦−
𝑖
=

√√√√√ 𝑁𝑐∑
𝑗=1

(
𝑣−
𝑗
− (𝑟𝐴𝑖,𝐶𝑗𝑤𝑗)

)2
(8)

The optimal action is the one with the largest 𝑆𝑖 value, cal-
culated according to:

𝑆𝑖 =
𝑦−
𝑖

𝑦+
𝑖
+ 𝑦−

𝑖

(9)

Note that the final two steps have specifically been
described in terms of the TOPSIS (Technique forOrder Pref-
erence by Similarity to Ideal Solution) approach (Caterino
et al., 2009; Yoon & Hwang, 1995), which is adopted in
the case-study application (Section 3). However, the risk
attitudes of stakeholders could additionally be explicitly
accounted for by alternatively using multiattribute utility
theory (Dyer, 2005), without changing the overall struc-
ture of the system. In that case, the 𝑟𝐴𝑖,𝐶𝑗 values of the
decision matrix in Step 2 would be replaced with normal-
ized utility values (𝑢𝐴𝑖,𝐶𝑗 ) that depend on the values of the
consequence matrix and the risk tolerance of stakehold-
ers. 𝑢𝐴𝑖,𝐶𝑗𝑤𝑗 would then be aggregated across each option
(either additively or multiplicatively), and the optimal
decision would be the one that maximizes the final value.
The developed algorithm is provided in Appendix A.

This algorithm could be packaged as a state-of-the-art
risk-driven plug-in to existing EEW platforms, providing
operational EEW with high-resolution structure-specific
decision-making capabilities for the first time. The com-
putational assimilation of the plug-ins and the seismology-
focused algorithms of the current platformswould be facil-
itated by the PBEEWarchitecture, outlined inEquation (1).

3 EXAMPLE APPLICATION TO A
SCHOOL BUILDING

The proposed methodology is now demonstrated, using a
hypothetical school located in Palo Alto, California (37.4◦
North and 122.15◦ West). The choice of location is timely,
given that California is beginning to benefit from public
alerts issued by the ShakeAlert EEW system (e.g., McBride
et al., 2020). This system combines point-source and finite-
source algorithms, to create an alert for incoming earth-
quakes with estimated magnitudes of at least 4.5 (e.g.,

Chung et al., 2020). A hypothetical school is chosen for the
following reasons: (1) The examined consequence weight-
ing scenarios may not accurately reflect the priorities of
actual decision makers in a real school, posing an ethi-
cal challenge; (2) It enables the general applicability of
the method to be emphasized, demonstrating that it is not
just limited to one particular building or even one spe-
cific structural/occupancy type; and (3) The ShakeAlert
EEW system does not (yet) facilitate building-specific pub-
lic EEWalarms,making it impossible to apply themethod-
ology to a real Californian building equipped with EEW.
While it is possible to consider multiple actions using

the proposed methodology (as discussed in Sections 1 and
2), it is assumed that there are only two potential risk-
management options for this particular case study: “Trig-
ger the EEW alarm” (𝐴1) and “Don’t trigger the EEW
alarm” (𝐴). The target structure of interest is assumed to
be a two-story reinforced concretemoment-resisting frame
with column-beam connections, in line with typical char-
acteristics of suburban U.S. schools (FEMA, 2010; The
National Institute of Building Sciences, 2010). The plan lay-
out of the two-story precast concrete frame school detailed
in O’Reilly et al. (2018) is adopted, assuming 4 m (13 feet)
floor heights. Additional details on the building model are
provided in Appendix C.
Casualties, downtime, and direct cost are selected as

the consequence criteria, which are the traditional perfor-
mance metrics considered in PBEE (Moehle & Deierlein,
2004).𝐸𝐴(𝐶𝐴

𝑗
|𝐝) values are obtained using the component-

level FEMA P-58 seismic performance assessment proce-
dure for individual buildings (FEMA, 2018). The FEMA P-
58 simplified structural analysis procedure is used, which
determines engineering demand as a function of peak
ground acceleration (𝑃𝐺𝐴) and spectral acceleration at
the building’s fundamental period (𝑆𝑎(𝑇1)), that is, 𝐢𝐦 =

{𝑃𝐺𝐴, 𝑆𝑎(𝑇1)} in Equation (1). Additional information
on the inputs to FEMA P-58, including the structural
and nonstructural components modeled, are provided in
Appendix C.
It is assumed that a false alarm does not cause any casu-

alties, results in disruption equivalent to 5% of a day (i.e.,
1.2 h—to reorganize classes and ease panicked students),
and costs $200 for a structural engineering inspection to
verify that no damage has occurred. It is assumed that an
alarm eliminates any casualties and laptop (i.e., compo-
nent “UD” in Appendix C) breakages that are not caused
by the building collapsing. A general event-independent
consequence matrix for the case study is presented in
Table 3.
To reflect a diverse range of potential stakeholder

priorities toward the different consequence criteria, the
following sets of {𝑤𝑗} values in Table 2 are examined: (1)
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TABLE 3 Consequence matrix for the case study EEW application, expressed as a function of generic event parameters, d. 𝛼11(𝐝)
accounts for collapse casualties. Both 𝛼12(𝐝) and 𝛼13(𝐝) account for collapse laptop breakages (i.e., failure of component “UD” in
Appendix C). 𝑐FA12 = 0.05 and 𝑐FA13 = 200 in line with the false alarm assumptions outlined in Section 3

𝑪𝟏 Casualties (Number) 𝑪𝟐 Downtime (days) 𝑪𝟑 Direct cost ($)
𝐴1 = Trigger alarm 𝐸𝐴(𝐶𝐴

1 |𝐝)𝛼11(𝐝) 0.05𝑝(𝐹𝐴|𝐝) + 𝐸𝐴(𝐶𝐴
2 |𝐝)𝛼12(𝐝) 200𝑝(𝐹𝐴|𝐝) + 𝐸𝐴(𝐶𝐴

3 |𝐝)𝛼13(𝐝)
𝐴 = Don’t trigger alarm 𝐸𝐴(𝐶𝐴

1 |𝐝) 𝐸𝐴(𝐶𝐴
2 |𝐝) 𝐸𝐴(𝐶𝐴

3 |𝐝)
𝑤1 = 𝑤2 = 𝑤3 = 0.333 (i.e., a stakeholder has equal pref-
erence for all criteria); (2) 𝑤1 = 0.5 and 𝑤2 = 𝑤3 = 0.25

(i.e., a stakeholder has higher preference for mitigating
casualties); (3) 𝑤2 = 0.5 and 𝑤1 = 𝑤3 = 0.25 (i.e., a stake-
holder has higher preference for mitigating downtime);
and (4) 𝑤3 = 0.5 and 𝑤1 = 𝑤2 = 0.25 (i.e., a stakeholder
has higher preference for mitigating direct costs). Sec-
tions 3.1–3.3 investigate the optimal EEW triggering deci-
sion, using three different types of information for estimat-
ing 𝐸𝐴(𝐶𝐴

𝑗
|𝐝).

Note that the proposed approach is not compared with
previous EEW decision-making methodologies discussed
in Section 1, since this would require: (1) tenuous assump-
tions about the dollar value of downtime and casualties or
(2) simplified building-level fragilitymodels and determin-
istic damage-to-loss relationships, which are not compati-
ble with the advanced PBEE approach of our study. In both
cases, discrepancies in the final results would arise due to
the loss or damage assumptions required aswell as because
of the different decision-making approaches adopted, lead-
ing to unfair comparisons.

3.1 Optimal decision as a function of
ground shaking

The optimal decision is first examined for a given level of
ground shaking, to determine how often the EEW alarm
is triggered. This analysis is mathematically equivalent to
a case in which the seismological algorithm accurately
estimates the shaking intensity at the site. Therefore, this
examination uses 𝐸𝐴(𝐶𝐴

𝑗
|𝐝) values computed according to

Equation (3), for ̂𝐢𝐦 = 𝐢𝐦. 2018 US National Seismic Haz-
ardModel (Petersen et al., 2020) site-specific hazard curves
are used (for site class D, in line with the soil properties
discussed in Section 3.2). A uniform hazard approach is
adopted to determine the frequency atwhich the examined
shaking levels (i.e., 𝑆𝑎(𝑇1) ≤ 0.3𝑔) are exceeded.
Figure 1 displays the results of this analysis. As expected,

the optimal decision for small shaking intensities is 𝐴 due
to the low potential for damage at these levels and there-
fore the high probability of a false alarm. The intensity
at which using the alarm becomes the optimal decision
depends on stakeholder preferences. It is triggered as low
as 𝑆𝑎(𝑇1) = 0.12𝑔 (or approximately once every 10 years

F IGURE 1 Identifying the optimal EEW decision in terms of
ground shaking intensity (represented as spectral acceleration at the
building’s fundamental period). Note that 𝐴1 is the action of trigger-
ing the EEW alarm and 𝐴means that no action is taken

on average) when casualties are prioritized, which is partly
explained by the assumption of no casualty consequences
for a false alarm. However, it is only triggered for 𝑆𝑎(𝑇1)
values in excess of 0.22𝑔 (i.e., approximately once every 20
years on average) when downtime is treated as the most
important risk criterion. Variation in the optimal deci-
sion for different criteria weighting is a notable finding,
which confirms the importance of accounting for stake-
holder preferences when designing a decision-support tool
for earthquake risk management.

3.2 Optimal decision as a function of
magnitude and distance estimates

Optimal actions for incoming earthquakes are now investi-
gated, assuming that the seismological algorithm provides
accurate estimates of magnitude and epicentral location.
Thus, 𝐸𝐴(𝐶𝐴

𝑗
|𝐝) values are computed using Equations (1)

and (2), for {�̂�, 𝑟} = {𝑚, 𝑟} (where 𝑟 is the true epicentral
distance value).
Given the focus on scenario events in this case,

𝑓(𝐢𝐦|{𝑚, 𝑟}) is computed according to the conditional
mean spectrum approach proposed by Baker and Cornell
(2005, 2006). 𝑓(𝑆𝑎(𝑇1)|{𝑚, 𝑟}) is first determined using the
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F IGURE 2 Identifying the optimal EEW decision in terms of magnitude, for three epicentral distances: (a) 𝑟 = 30 km, (b) 𝑟 = 50 km, and
(c) 𝑟 = 80 km. Note that 𝐴1 is the action of triggering the EEW alarm and 𝐴means that no action is taken

GMMproposed by Boore et al. (2014) forWesternU.S. shal-
low crustal seismicity and assuming strike-slip faulting to
reflect the style of the seven most prominent Bay Area
faults. This model requires a rupture distance measure
(𝑟𝐽𝐵) as input. 𝑟 is converted to 𝑟𝐽𝐵 using adjustment factors
provided in Thompson and Worden (2018) for strike-slip
faulting in active crustal regions. Uncertainty in the con-
version is accounted for by amplifying the standard devia-
tion of the GMM as suggested by the authors. The shear-
wave velocity input of the GMM (i.e., 𝑉𝑠30) is set equal to
352.1 m/s, which is the value recorded closest to the cho-
sen site in the compilation of𝑉𝑠30measurements prepared
by Yong et al. (2015). The correlation model of Baker and
Jayaram (2008) is then used to find the conditional distri-
bution of 𝑃𝐺𝐴, that is,𝑓(𝑃𝐺𝐴|𝑆𝑎(𝑇1), {𝑚, 𝑟}), according to
eqs. 13 and 14 of Baker and Cornell (2005).
Figure 2 displays the results of this case, for three differ-

ent values of 𝑟: (a) 𝑟 = 30 km; (b) 𝑟 = 50 km; and (c) 𝑟 = 80

km. It is clear that the optimal decision in terms of magni-
tude and distance is also dependent on stakeholder prefer-
ences, underlining the significance of the MCDM compo-
nent in the proposed methodology. Second, it can be seen
that the correct action for a given magnitude and set of
stakeholder preferences may change from 𝐴1 to 𝐴 at far-
ther distances, reflecting the larger amplitudes of nearer-
source shaking intensities. This observation highlights the
importance of accounting for both magnitude and loca-
tion in EEW algorithms, to avoid potentially costly false
alarms; note that some currently operational EEW systems
lack this feature, for example, the SASMEX magnitude-
triggered seismic alert system in Mexico (Cuéllar et al.,
2017). Similarly, the optimal decision for a given distance
and set of stakeholder preferences varies as a function of
magnitude; an alarm should be triggered for magnitudes
near 5 at 𝑟 = 30 km, it should be triggered for magnitudes
around 5.5 at 𝑟 = 50 km, and it should be triggered formag-
nitudes close to 6 at 𝑟 = 80 km.

3.3 Optimal decision as a function of
EEW parameters

The ElarmS EEW algorithm (Brown et al., 2011) is adopted
for this example, which is part of the point-source code
used in the ShakeAlert system. It is therefore assumed that
𝐝 consists of the peak displacements measured during the
first 4 s of the P-wave recorded at each station (𝑃𝑑𝑘 ), which
introduces uncertainty in the magnitude prediction of the
EEW system (note that distance uncertainty is neglected,
since it is negligible with respect to that of magnitude and
ground shaking; Iervolino et al., 2009). In this case, Equa-
tion (1) simplifies to:

𝐸𝐴
(
𝐶𝐴
𝑗
|𝐝) = ∫

𝑀

𝐸𝐴
(
𝐶𝐴
𝑗
|{𝑚, 𝑟})𝑓(𝑚|𝐝) 𝑑𝑀 (10)

where the value of 𝐸𝐴
(
𝐶𝐴
𝑗
|{𝑚, 𝑟}) is taken directly from

the analyses of Section 3.2. 𝑓(𝑚|𝐝) is assumed to follow
the Bayesianmathematical formulation for real-timemag-
nitude estimation proposed by Iervolino, Galasso et al.
(2007). Thus, for 𝑁𝑠 peak displacement measurements:

𝑓(𝑚|𝐝) = 𝑓(𝑚|𝑃𝑑1 , 𝑃𝑑2 , … , 𝑃𝑑𝑁𝑠
) =

𝑓(𝑃𝑑1 , 𝑃𝑑2 , … , 𝑃𝑑𝑁𝑠
|𝑚)𝑓(𝑚)

∫ 𝑀𝑚𝑎𝑥

𝑀𝑚𝑖𝑛
𝑓(𝑃𝑑1 , 𝑃𝑑2 , … , 𝑃𝑑𝑁𝑠

|𝑚)𝑓(𝑚) 𝑑𝑚
(11)

where 𝑓(𝑃𝑑1 , 𝑃𝑑2 , … , 𝑃𝑑𝑁𝑠
|𝑚) is the joint conditional pdf of

the measurements (i.e., the likelihood function) and 𝑓(𝑚)
is the prior pdf of the magnitude.
𝑓(𝑚) is based on the Gutenberg–Richter relationship,

that is:

𝑓(𝑚) =
𝛽𝑒−𝛽𝑚

𝑒−𝛽𝑀𝑚𝑖𝑛 − 𝑒−𝛽𝑀𝑚𝑎𝑥
(12)
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where𝑀𝑚𝑖𝑛 and𝑀𝑚𝑎𝑥 are, respectively, theminimum and
maximummagnitudes considered,𝛽 = 𝑏∕log10(𝑒), and 𝑏 is
the slope of the Gutenberg–Richter magnitude–frequency
relation. 𝑀𝑚𝑖𝑛 is set as 4. 𝑀𝑚𝑎𝑥 = 7.5, which is approxi-
mately equal to the modal maximummagnitude for West-
ern United States shallow crustal seismicity implemented
in Petersen et al. (2014). 𝑏 = 0.8, that is, the relevant
regional value used in Petersen et al. (2020). In line with
Iervolino, Galasso et al. (2007), it is assumed that the sta-
tion measurements are independent and identically dis-
tributed lognormal random variables, such that the con-
ditional pdf of the peak displacement measured at the 𝑘th
station may be expressed as:

𝑓(𝑃𝑑𝑘 |𝑚) = 1√
2𝜋𝜎ln(𝑃𝑑)𝑃𝑑𝑘

𝑒
−
1

2

(
ln(𝑃𝑑𝑘

)−𝜇ln(𝑃𝑑𝑘
)

𝜎ln(𝑃𝑑)

)2

(13)

and the likelihood function for measurements across 𝑁𝑠

stations is

𝑓(𝑃𝑑1 , 𝑃𝑑2 , … , 𝑃𝑑𝑁𝑠
|𝑚) = 𝑁𝑠∏

𝑘=1

𝑓(𝑃𝑑𝑘 |𝑚) (14)

The parameters of the lognormal distribution are provided
by thework ofWurman et al. (2007), which determines the
magnitude–scaling relationship of the ElarmS algorithm
for Northern California. Therefore:

𝜇
ln
(
𝑃𝑑𝑘

) = 1

1.04log10 (𝑒)

[
𝑚 − 1.27log10 (𝑟𝑘) − 5.16

]
(15)

where 𝑟𝑘 is the epicentral distance to the 𝑘th station, and

𝜎ln𝑃𝑑 =
0.3

log10(𝑒)
(16)

based on a visual inspection of the data shown in
Figure 3a of the aforementioned paper.
Using Equations (11)–(15), it can be shown that (see

Appendix B for full details):

𝑓(𝑚|𝐝) = 𝑒

𝑥(𝐝)

2𝜎2
ln(𝑃𝑑) 𝑒−𝛽𝑚

∫ 𝑀𝑚𝑎𝑥

𝑀𝑚𝑖𝑛
𝑒

𝑥(𝐝)

2𝜎2
ln(𝑃𝑑) 𝑒−𝛽𝑚 𝑑𝑚

(17)

for

𝑥(𝐝) = 𝑥1𝑚[2𝑑1 − 𝑁𝑠𝑥1𝑚 + 2𝑥1(𝑥2𝑑2 + 𝑁𝑠𝑥3)] (18)

where 𝑥1 =
1

1.04 log10(𝑒)
, 𝑥2 = 1.27, 𝑥3 = 5.16, 𝑑1 =∑𝑁𝑠

𝑘=1
ln(𝑃𝑑𝑘 ), 𝑑2 =

∑𝑁𝑠

𝑘=1
log10(𝑟𝑘), and all other vari-

ables are as defined previously. The convenience of this
formulation is noteworthy; 𝑑1 and 𝑑2 (and therefore
𝐸𝐴(𝐶𝐴

𝑗
|𝐝)) can be precomputed offline for all possible

values of 𝑃𝑑𝑘 , 𝑟𝑘, and 𝑁𝑠, to facilitate efficient real-time
decision making.
The accuracy of the optimal decision predicted as

a function of 𝑃𝑑𝑘 , 𝑟𝑘, and 𝑁𝑠 is now investigated, for
simulated events at the location of the 1989 Loma Pri-
eta temblor (37.04◦ North and 121.88◦ West), across
three case-study sites for the hypothetical school
(see Figure 3): (1) the aforementioned site in Palo
Alto (PA); (2) a site in San Francisco (SF); and (3) a
site in San Jose (SJ). To calculate 𝐸𝐴(𝐶𝐴

𝑗
|𝐢𝐦), 𝑉𝑠30 is

assumed to be 224.7 m/s for SF and 234 m/s for SJ, which
are the closest measurements recorded by Yong et al.
(2015).
The following scenario earthquakes are specifically

examined: (1) 𝑚 = 5.5; (2) 𝑚 = 6; and (3) 𝑚 = 6.9 (i.e.,
the magnitude of the real Loma Prieta event). For each of
these events, Equation (13) is used to simulate 2000 𝑃𝑑𝑘
values at a given seismic station, and therefore 2000 values
of 𝑑1. Using broadband and strong-motion instrument
locations of the Northern California Seismic Network
(NCEDC, 2014), the optimal decision is determined when
all seismic stations within (a) 10 km; (b) 20 km; (c) 30 km;
and (d) 50 km of the earthquake have triggered (Figure 3),
which, respectively, corresponds to (a) 4; (b) 13; (c) 29; and
(d) 81 triggered stations.
Figure 4 contains summary results of these analyses for

PA, SF, and SJ (i.e., the average proportion of the four
weighting cases investigated for which a correct decision
is obtained, across the 2000 magnitude-dependent sets of
simulated EEW parameters), as a function of the simu-
latedmagnitudes. Before interpreting the findings, the lead
(warning) time available for the different triggered station
cases is additionally considered, which is approximated at
a given site according to:

Lead time at site l =

√
𝑟2
𝑙
+ 𝑑2

ℎ𝑦𝑝𝑜

𝑉𝑠
−

√
𝑟2
𝑡𝑟𝑖𝑔𝑔𝑒𝑟

+ 𝑑2
ℎ𝑦𝑝𝑜

𝑉𝑝
− 𝛿𝑡 (19)

𝑟𝑙 is the site epicentral distance, 𝑑ℎ𝑦𝑝𝑜 is the depth of the
earthquake, 𝑉𝑠 is the average S-wave velocity, 𝑟𝑡𝑟𝑖𝑔𝑔𝑒𝑟 is the
epicentral distance to the furthest triggered station within
the radius of interest, 𝑉𝑝 is the average P-wave velocity,
and 𝛿𝑡 is a delay time that accounts for data telemetry
and the time window of information required by EEW
algorithms to compute source parameter estimates.𝑉𝑝 = 6

km/s and 𝑉𝑝∕𝑉𝑠 = 1.73 are assumed, according to the 1-
D P-wave model and the velocity ratio used in Lin et al.
(2010), respectively. 𝑑ℎ𝑦𝑝𝑜 = 19 km, that is, the true depth
of the 1989 Loma Prieta event. 𝛿𝑡 is taken as 4 s, in line with
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F IGURE 3 Maps displaying the simulated event for the sites considered in Section 3.3, when the incoming P-waves have triggered (a) 4,
(b) 13, (c) 29, and (d) 81 stations

F IGURE 4 Average proportion of the four sets of {𝑤𝑗} considered for which a correct decision is predicted by the Section 3.3 algorithm at
the (a) PA site, (b) SF site, and (c) SJ site, as a function of the three simulated events examined and computed using data from different numbers
of triggered stations
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TABLE 4 Available lead times at examined sites, for simulated earthquakes at the location of the 1989 Loma Prieta event and different
radii of triggered stations. Also shown are possible risk-mitigation actions that can be taken in the corresponding warning time, which are
adapted from previous work (Goltz, 2002; Iervolino, Galasso et al., 2007; Iervolino, 2011; Oliveira et al., 2015; Porter, 2016; Gobbato et al., 2017)

Triggered
station
radius Site

Lead
time (s) Possible actions

10 km PA 6.9 Performing “drop, cover, and hold on”; Stopping and opening elevators at the nearest
floor; Shutting off gas; Shutting down school lab equipment; Evacuating building
ground floors.

SF 15.4 Finding a safe place in an adjacent room; Shutting down industrial equipment;
Controlling production lines; Directing traffic away from underpasses; Stopping
surgical procedures; Removing vehicles from garages.

SJ 2.4 Finding a safe place a few steps away; Switching traffic lights to red; Switching on
semiactive control systems for structures.

20 km PA 5.9 Performing “drop, cover, and hold on”; Stopping and opening elevators at the nearest
floor; Shutting off gas; Shutting down school lab equipment; Evacuating building
ground floors.

SF 14.4 Finding a safe place in the same room; Shutting down industrial equipment;
Controlling production lines; Directing traffic away from underpasses; Stopping
surgical procedures; Removing vehicles from garages.

SJ 1.4 Finding a safe place a few steps away; Switching traffic lights to red; Switching on
semiactive control systems for structures.

30 km PA 4.6 Finding a safe place a few steps away; Switching traffic lights to red; Switching on
semiactive control systems for structures.

SF 13.1 Finding a safe place in the same room; Shutting down industrial equipment;
Controlling production lines; Directing traffic away from underpasses; Stopping
surgical procedures; Removing vehicles from garages.

SJ 0.1 —
50 km PA 1.6 Finding a safe place a few steps away; Switching traffic lights to red; Switching on

semiactive control systems for structures.
SF 10.1 Finding a safe place in the same room; Shutting down industrial equipment;

Controlling production lines; Directing traffic away from underpasses; Stopping
surgical procedures; Removing vehicles from garages.

SJ −2.9 —

previous studies involving the ElarmS algorithm (Kuyuk&
Allen, 2013). Table 4 displays available lead times at each
site for each triggered station radius, along with potential
risk-mitigation actions they enable (for context).
It can be seen in Figure 4 that the accuracy of the pre-

dicted optimal action based on precomputed EEW param-
eters can depend on the magnitude of the incoming earth-
quake. For example, in the case of SF and a triggered sta-
tion radius of 10 km, the correct action (i.e.,𝐴1) is predicted
for all weighting cases across all 2000 sets of simulated
EEW parameter values for𝑚 = 6.9, but many sets of simu-
lated EEW parameter values incorrectly predict this action
for𝑚 = 5.5. This may be explained by the fact that the true
optimal action at SF is constant for all magnitudes close
to 𝑚 = 6.9 (and therefore for all 𝐝 likely to be observed
for this event), whereas the true optimal action switches
from𝐴 to𝐴1 at magnitudes close to𝑚 = 5.5 for all weight-
ing cases. Second, as expected, the accuracy of the system

increases as more stations are triggered and estimates of
the magnitude stabilize. For the specific events and sites
examined here, this means that the average accuracy of
predicted optimal decisions improves from 79% when four
stations are triggered to 100% when 81 stations are trig-
gered. Finally, it is important to note that high accuracy
is achieved sufficiently quickly for risk-mitigation actions
to be implemented at each examined site if an EEW alarm
is triggered. Greater than 99% average accuracy is achieved
when 2.4 s of warning time are still available at the nearest
site (SJ; 10 km triggered station radius) and when 4.6 s are
still available at themiddle site (PA; 30 km triggered station
radius), which would both enable a safe place to be found
a few steps away (see Table 4). Predicted optimal decisions
are 100% accurate at the SF site when 10.1 s of warning time
are still available (50 km triggered station radius), allowing
a safe place to be found in the same room (from Table 4).
These lead times justify the case-study assumptions made
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about consequences mitigated (i.e., noncollapse casual-
ties and laptop breakages avoided) when an EEW alert is
triggered. Potential warning times could be used as addi-
tional inputs to the methodology to ensure that data
provided on consequences mitigated for given actions is
reasonable, using information from the final column of
Table 4; however further discussion on this topic is left to
future work.

4 CONCLUSIONS

This study has developed a novel methodology for risk-
informed EEW that uniquely combines multi-criteria
decisional and earthquake-engineering-related tools, for
informed stakeholder-driven decision making. In partic-
ular, the proposed methodology can be used to select the
optimal risk-mitigation action for current seismic hazard
conditions, accounting for stakeholder priorities toward
multiple types of uncertain consequences that do not need
to be measured in monetary terms.
The proposed methodology was applied to EEW in a

hypothetical Californian school, considering the tradi-
tional performance metrics (consequences) assessed in
PBEE and a range of stakeholder preferences toward them.
This application clearly demonstrated that the optimal
risk-management action for a given level of impending
shaking can depend on stakeholder priorities. For example
(based on completely assumptive data), it was found that
the school’s EEW systemwould trigger at a site in PaloAlto
approximately once every 10 years if stakeholders placed
higher importance on limiting casualties, whereas it would
only trigger approximately half as frequently if stakehold-
ers prioritized the mitigation of downtime. This finding
emphasizes the importance of considering end-user pref-
erences in short-term earthquake riskmanagement, which
should be accounted for in future installations of EEW.
Furthermore, it was shown that the methodology can

be used to make decisions as a function of (1) magnitude–
distance pairs, as well as (2) seismic station/early signal
data that act as input to EEW algorithms for estimating
source parameters. Decision making based on (2) is par-
ticularly useful as it is more representative of realistic sce-
narios (where information on the incoming event is uncer-
tain) and the required EEWalgorithm data can be precom-
puted offline ahead of the event for efficient real-time risk
management. For three different sites of the hypothetical
school, three scenario events and one source location, it
was found that the proportion of correct EEW decisions
based on (2) increases with the density of stations triggered
(as expected) and high accuracy is reached sufficiently
quickly for risk-mitigation actions to be implemented,
underlining the credibility of the proposed methodology.

Future work will explicitly treat potential warning times
as an input of the methodology, to guide the selection
of appropriate and feasible case-specific risk-management
actions in further applications.
The results of this study represent a significant advance-

ment over state-of-the art risk-based decision-making
methods for EEW that mainly rely on cost–benefit anal-
yses. The developed algorithm could be packaged as a soft-
ware plug-in to existing operational EEW platforms, trans-
forming these systems into powerful end-user-driven tools
that effectively promote and prioritize seismic resilience.
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APPENDIX A: ALGORITHM
Algorithm 1 contains the decision-making algorithm pro-
posed in this paper. All variables are as defined in Section 2.

ALGORITHM 1 Identifying the Optimal EEW Decision

Step 1: Mod_PBEE
1.1: Determine 𝑓(𝐢𝐦|𝐝), based on the relevant EEW algorithm.
1.2: Use the result of Step 1.1 and required structural modeling
information (see Appendix C) to generate 𝐸𝐴(𝐶𝐴

𝑗
|𝐝), based

on the PBEEW framework provided in Equation (1).
1.3: Calculate 𝑝(𝐹𝐴|𝐝) according to Equation (4).
1.4: Use the results of Steps 1.2 and 1.3, as well as
stakeholder-reported values of 𝑐FAij and 𝛼𝑖𝑗(𝐝), to calculate
𝐸𝐴𝑖 (𝐶

𝐴𝑖

𝑗
|𝐝) = 𝑝(FA|𝐝)𝑐FAij + 𝛼ij(𝐝)𝐸

�̄�(𝐶�̄�
𝑗
|𝐝).

1.5: Repeat Step 1.4 for all 𝑁𝑎 actions and 𝑁𝑐 consequence
criteria, to develop the consequence matrix.

Step 2: Mod_MCDM
2.1: Use the results of Step 1.5 to generate 𝑟𝐴𝑖 ,𝐶𝑗

according to
Equation (6).

2.2: Use stakeholder-reported values of 𝑤𝑗 to calculate 𝑟𝐴𝑖 ,𝐶𝑗
𝑤𝑗 .

2.3: Repeat Steps 2.1 and 2.2 for all 𝑁𝑎 actions and 𝐴, and 𝑁𝑐

consequence criteria, to develop the decision matrix.
Step 3: Mod_Decision
3.1: Use the results of Step 2.3 to calculate
𝑣+
𝑗
= min𝑗(𝑟𝐴1,𝐶𝑗

𝑤𝑗, … , 𝑟𝐴𝑁𝑎
,𝐶𝑗
𝑤𝑗, 𝑟𝐴,𝐶𝑗𝑤𝑗) and

𝑣−
𝑗
= max𝑗(𝑟𝐴1,𝐶𝑗

𝑤𝑗, … , 𝑟𝐴𝑁𝑎
,𝐶𝑗
𝑤𝑗, 𝑟𝐴,𝐶𝑗𝑤𝑗).

3.2: Use the results of Steps 2.3 and 3.1, and Equations (7)–(9), to
determine the optimal action.

APPENDIX B: DERIVING EQUATION (17)
Using Equation (14) and accounting for the assumptions
that 𝑃𝑑 measurements are lognormally distributed as well
as independent, the likelihood function for thesemeasure-
ments across 𝑁𝑠 stations can be expressed as:

𝑓
(
𝑃𝑑1 , 𝑃𝑑2 , … , 𝑃𝑑𝑁𝑠

|𝑚)
=

(
1√

2𝜋𝜎ln(𝑃𝑑)

)𝑁𝑠 ( 𝑁𝑠∏
𝑘=1

1

𝑃𝑑𝑘

)

𝑒

−
1

2

⎛⎜⎜⎝
∑𝑁𝑠
𝑘=1

(
ln
(
𝑃𝑑𝑘

))2
𝜎2
ln 𝑃𝑑

⎞⎟⎟⎠𝑒
⎛⎜⎜⎜⎝
∑𝑁𝑠
𝑘=1

(
2 ln(𝑃𝑑𝑘

)𝜇ln(𝑃𝑑𝑘
)−𝜇

2
ln(𝑃𝑑𝑘

)

)
2𝜎2
ln 𝑃𝑑

⎞⎟⎟⎟⎠
(B.1)

By (1) substituting Equations (B.1) and (12) into
Equation (11); and (2) canceling the (

1√
2𝜋𝜎ln(𝑃𝑑)

)𝑁𝑠 ,

(
∏𝑁𝑠

𝑘=1

1
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1

2
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ln
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⎞⎟⎟⎠, and (
𝛽

𝑒−𝛽𝑀𝑚𝑖𝑛−𝑒−𝛽𝑀𝑚𝑎𝑥
)

terms that are common to the numerator and the denomi-
nator, the expression for 𝑓(𝑚|𝐝) becomes:

𝑓(𝑚|𝐝) = 𝑒

∑𝑁𝑠
𝑘=1

(
2 ln(𝑃𝑑𝑘
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2
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)

)
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)
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ln 𝑃𝑑 𝑒−𝛽𝑚 𝑑𝑚

(B.2)

Substituting Equation (15) for 𝜇ln(𝑃𝑑𝑘 )
reduces Equa-

tion (B.2) to (17) for:

𝑥(𝐝) = 𝑥1
[
2𝑚𝑑1 − 2 (𝑥2𝑑3 + 𝑥3𝑑1) − 𝑁𝑠𝑥1𝑚

2
)

+ 2𝑥1𝑚 (𝑥2𝑑2 + 𝑁𝑠𝑥3)

−
(
𝑥1

(
𝑥2
2
𝑑4 + 2𝑥2𝑥3𝑑2 + 𝑁𝑠𝑥

2
3

)]
(B.3)

where 𝑑3 =
∑𝑁𝑠

𝑘=1
ln(𝑃𝑑𝑘 )log10(𝑟𝑘), 𝑑4 =

∑𝑁𝑠

𝑘=1
log10(𝑟

2
𝑘
),

and all other variables are as defined previously. Finally,
canceling nonmagnitude-dependent terms (since they are
common to both the numerator and the denominator of
Equation 17) simplifies Equation (B.3) to (18).

APPENDIX C: STRUCTURALMODELING DETAILS
Structural modeling details are provided in Table C.1.
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TABLE C . 1 Structural modeling details of the hypothetical school, including FEMA P-58 parameters. Note that the FEMA P-58 analyses
were run using the SP3 software (https://www.hbrisk.com/)

Parameter Value Additional notes/Justification
Year of construction 2003
Occupancy Elementary school
Number of stories 2 Corresponds with typical characteristics of

suburban U.S. schools (FEMA, 2010; The
National Institute of Building Sciences, 2010)

Lateral system Reinforced concrete space moment frame
Length in direction 1 (m) 26 Corresponds with plan layout of precast concrete

school modeled in O’Reilly et al. (2018)Length in direction 2 (m) 42
Story height (m) 4
Fundamental period (𝑇1)
(s)

0.4 FEMA (2013) assumed value for building

Yield base shear
coefficient (𝑉𝑦)

0.1663 g SP3 default input values to the FEMA P-58
simplified analysis procedure (detailed in Section
5.3 of FEMA (2018)) for building. 𝑎 and 𝛼 are
used in the lateral displacement equations of
Miranda (1999), to compute the Δ𝑖 variable of the
simplified methodology according to eqs. 5–10 of
FEMA (2018).

Yield story drift ratio (Δ𝑦) 0.0075
First mode mass ratio 1
𝑎 0.01
𝛼 12.5
Soil site class D Corresponds with assumed 𝑉𝑠30 values at each site
Collapse capacity Lognormally distributed with 10% probability of

collapse for hazard level with 2% probability of
exceedance in 50 years and dispersion = 0.6

Assumed model, in line with previous studies for
buildings of similar age and identical lateral
system (e.g., Haselton & Deierlein, 2007); FEMA
P-58 default value for collapse dispersion. Hazard
levels are computed at each site using the 2018
US National Seismic Hazard Model (Petersen
et al., 2020)

FEMA P-58 structural
components

ACI 318 concrete SMF (B1041.002a & B1041.002b) SP3 default components for building, except UD.
UD has user-defined cost and repair time

FEMA P-58 nonstructural
components

Wall partition, metal stud (C1011.001a); HVAC
ducting (D3041.011c); curtain walls (B2022.002);
suspended ceiling (C3032.003a, C3032.003b,
C3032.003c, & C3032.003d); independent
pendant lighting (C3034.002); concrete stairs
with seismic joints (C2011.011a); desktop
electronics including computers, monitors,
stereos, etc. on a slip resistant surface (UD)

consequence distributions, which are set as
follows: cost is normally distributed with mean =
$500 and standard deviation = 0.05; repair time is
normally distributed with mean = 0.1 day and
standard deviation = 0.05

FEMA P-58 component
quantities

10 UD per floor; all other quantities are P-58
median values for building layout

Building population
model

FEMA P-58 default model for occupancy

Building replacement cost
($ per sq. ft.)

270 SP3 default value for building

Building replacement time
(days per story)

169 SP3 default value for building

Building repair time type Serial

https://www.hbrisk.com/
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