
entropy

Article

Getting Ahead of the Arms Race: Hothousing the Coevolution
of VirusTotal with a Packer

Héctor D. Menéndez 1,* , David Clark 2 and Earl T. Barr 2

����������
�������

Citation: Menéndez, H.D.; Clark, D.;

T. Barr, E. Getting Ahead of the Arms

Race: Hothousing the Coevolution of

VirusTotal with a Packer. Entropy

2021, 23, 395. https://doi.org/

10.3390/e23040395

Academic Editor: Amelia Carolina

Sparavigna

Received: 28 February 2021

Accepted: 23 March 2021

Published: 26 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Computer Science Department, Middlesex University London, London NW4 4BG, UK
2 Computer Science Department, University College London,

London WC1E 6BT, UK; david.clark@ucl.ac.uk (D.C.); e.barr@ucl.ac.uk (E.T.B.)
* Correspondence: h.menendez@mdx.ac.uk

Abstract: Malware detection is in a coevolutionary arms race where the attackers and defenders
are constantly seeking advantage. This arms race is asymmetric: detection is harder and more
expensive than evasion. White hats must be conservative to avoid false positives when searching
for malicious behaviour. We seek to redress this imbalance. Most of the time, black hats need only
make incremental changes to evade them. On occasion, white hats make a disruptive move and find
a new technique that forces black hats to work harder. Examples include system calls, signatures and
machine learning. We present a method, called Hothouse, that combines simulation and search to
accelerate the white hat’s ability to counter the black hat’s incremental moves, thereby forcing black
hats to perform disruptive moves more often. To realise Hothouse, we evolve EEE, an entropy-based
polymorphic packer for Windows executables. Playing the role of a black hat, EEE uses evolutionary
computation to disrupt the creation of malware signatures. We enter EEE into the detection arms race
with VirusTotal, the most prominent cloud service for running anti-virus tools on software. During
our 6 month study, we continually improved EEE in response to VirusTotal, eventually learning a
packer that produces packed malware whose evasiveness goes from an initial 51.8% median to 19.6%.
We report both how well VirusTotal learns to detect EEE-packed binaries and how well VirusTotal
forgets in order to reduce false positives. VirusTotal’s tools learn and forget fast, actually in about
3 days. We also show where VirusTotal focuses its detection efforts, by analysing EEE’s variants.

Keywords: coevolution; adversarial machine learning; malware arm race; EEE; VirusTotal; hothouse

1. Introduction

The malware detection arms race favours black hats, who can effectively respond to
detection efforts with low-cost incremental moves. White hats are trapped chasing black
hats’ moves. To get ahead, white hats must make a disruptive move. A good example of
such a disruptive move is forcing black hats to evade machine learning-based detectors.
Once black hats have adapted to the new detection technique, the race reverts to a status
quo where black hats need only make trivial modifications to a malware sample. This has
already happened with malware detection, where black hats can easily and effectively add
opaque predicates to evade machine learning algorithms [1,2]. Black hats are exploiting
the new status quo with a flood of cheap, evasive variants and are provoking white hats
to develop new disruptive techniques; white hats’ efforts currently center on semantics-
based detection methods [3] and general improvements to their machine learning based
detectors [4]. Simulating these black hats’ incremental moves will speed white hats’ ability
to detect variants based on them, and force black hats to make disruptive moves instead of
incremental ones. We study this arms race as a coevolution [5].

Search and, specifically, genetic algorithms simulate evolutionary behaviour, usually
with a restricted palette so as to make the simulation tractable [6]. We use genetic algorithms
to place evolutionary stress on state of the art malware detectors so that they have to
improve their detection and quickly improve their ability to detect incrementally produced

Entropy 2021, 23, 395. https://doi.org/10.3390/e23040395 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-6314-3725
https://doi.org/10.3390/e23040395
https://doi.org/10.3390/e23040395
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23040395
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/1099-4300/23/4/395?type=check_update&version=2


Entropy 2021, 23, 395 2 of 19

variants. This evolutionary stress ’hothouses’ the detector speeding its acquisition of
detection power, modulo the last disruptive move (Section 2). The question that provoked
this research is “Can we engineer a situation in which artificial evolutionary behaviour can
assist in ‘hothousing’ the actual malware detection arms race to the benefit of the detection
side?”. This necessitate coevolution. In this coevolution, the detector and the evader try to
defeat each other.

VirusTotal’s [7] existence makes answering our question possible. VirusTotal is a
framework where different vendors can contribute with anti-virus (AV) engines. At the
time of this study there were 56. The plan was to treat the AV engines of VirusTotal as black
boxes with which we interact in real time. We measured success in terms of driving down
their median detection proportion across the malware submitted to anti-virus engines.
Our long term aim is, of course, to strengthen them through coevolution. In addition, we
studied their responses individually and in aggregate learn what the black boxes were
doing. During the study, we polymorphically protect packed malware from entropy-based
detection by adding controlled entropy regions, chosen and placed so as to make our
packed binaries indistinguishable from benign-ware (Section 3). Subsequently, we added
the ability to learn from the median detection rate to vary these regions so that the detection
rate was lowered.

Our packer, called EEE [2] (the evolutionary packer or El Empaquetador Evolutivo
in Spanish), focused on Windows malware because of the importance of the Windows’
ecosystem. Designing a tool to modify binary Windows malware and preserve behaviour
and maintain viability, such as size, offered challenges. Polymorphic engines working at
the machine code level with unpacking and repacking abilities were not available to us, so
we created EEE by adding new capabilities to an open source packer, UPX. EEE creates
variants by combining its packing abilities, encryption and the injection of controlled
entropy regions. The packer learns how to combine these skills to disrupt the detector.
UPX is able to repack PE and ELF binaries, among others, therefore it is able to manipulate
almost any Windows malware in the wild. It has the advantage that it is widely used to
pack benign programs so that it did not signal malware of and in itself. However, any
packer is vulnerable to dynamic analysis and we needed to protect against that (Section 3).

Figure 1 tracks the coevolution of our versions of EEE and VirusTotal, in terms of
malware detection. EEE has already shown its effectiveness by attacking machine learning
detectors based on frequency features [2]. Here, we extend it to attack real anti-virus
engines. We create different version of EEE including protections and skills. Its last version,
which appears at the last point of Figure 1 (H) reduced VirusTotal’s median detection rate
from 32.5% to 19.6%. The same figure also shows the VirusTotal AV engine’s ability to
evolve in response at points E and G on the same graph. Point A (82.1%) in Figure 1 is the
initial, median detection rate and the response to the novelty of the packer can be witnessed
in the precipitous drop between points A and D (12.3%) on the graph as we added new
capabilities to UPX (Section 4.1).

VirusTotal responded throughout our coevolution, at times surprisingly quickly. At
one point, we observed the growth of false positives in its detections, which we exper-
imentally confirmed (Section 4.2). Later, the AV engines involved began to correct the
overcompensation (Section 4.3). Our current assessment is that the constituent AV engines
have not yet learned to detect the results of the abilities of EEE directly but instead focus
on its stub where critical information unique to EEE is stored. One of our experiments
demonstrates this (Section 4.4). Another identifies four of the VirusTotal AV engines as
champions at detecting us (Section 4.4). The paper presents the following contributions:



Entropy 2021, 23, 395 3 of 19

●

●

●

●

●

●

●

●

0 1 2 3 4 5 6

20
40

60
80

Months

D
et

ec
tio

n 
P

er
ce

nt
ag

e

A

B

C

D

E
F

G

H

A: No Packer
B: UPX
C: XOR
D−E: Fixed CERs
F−G: Sample CERs
H: GA and Oligo.

Figure 1. EEE coevolution with VirusTotal; delayed start and variable delimiters accompanied the
addition of sampled CERs: interpolating from 07/16 to 01/17. The non-linear interpolation estimates
the responds of VirusTotal during the coevolution.

• We introduce a learning method that can show white hats where they are more
vulnerable, to help them to anticipate black hats (Section 2).

• We instantiate this framework for information theoretic malware detection by evolving
a polymorphic engine, EEE, and coevolve it against VirusTotal (Section 3).

• We demonstrate that artificial evolution via a genetic algorithm can drive down
the median detection rate of state of the art malware detectors in the context of a
coevolutionary detection arms race (Section 4).

2. Hothousing the Coevolution

Like any arms race, malware has a coevolutionary aspect. As we already observed,
the arms race favours the black hats who are evading. This is similar in other arm races
in cybersecurity. Obfuscation and de-obfuscation [8], spam and filters [9] and network
neutrality [10] are all examples. Arms races proceed through series of breakthroughs, each
conferring an advantage to one side. Automatic methods cannot make breakthroughs, as
this is undecidable and requires human ingenuity. Automatic methods like search can,
however, optimally leverage a given type of attack or defence. If the optimisation defeats
the opponent’s current capabilities, the disruption forces them to seek a breakthrough.
Optimisation can end the cat and mouse incremental tweaks to existing detection and
evasion methods, forcing both sides into a more expensive and creative search for dis-
ruptive techniques, slowing the race and taking away the structural advantage black hats
currently enjoy.



Entropy 2021, 23, 395 4 of 19

The concept is to combine program analysis, search algorithms, and machine learning.
These algorithms can artificially force evolution and coevolution in the malware detection
arms race. We call this hothousing and use the word hothouse to mean a particular set of
experiments that investigate the effect of learning algorithms on a given set of detection
and evasion techniques. This idea about hothousing the arms race is related to game
theory [11]. Zhou et al. described the connection between the arms race and adversarial
machine learning as zero-sun game, where the benefits of the adversary are opposite to
those from the learner. We designed hothousing as a sequential game, where each agent
plays its strategy before the next. More precisely, hothousing is a form of Stackelberg
game [12], consisting on a leader agent, in this case the adversary and a follower which
responds, in this case the detection system.

The arms race in terms of disk resident executables on desktop systems can be under-
stood as a coevolution between the anti-virus engines and the malware. Malware aims to
execute its payload avoiding the detection while anti-viruses aim to detect and eliminate
malware. This detection-evasion scenario evolves in two directions: the black hats design
new concealment strategies based on packing, polymorphism and metamorphism, and
anti-virus companies define new methods to increment their detection rate. This work
introduces itself in this scenario to hothouse VirusTotal with EEE [2], the evolutionary
packer. VirusTotal contains different anti-virus engines and provides detections from all
the different engines. However, we have no knowledge about the detection features, data
or algorithms that the anti-viruses are using.

Our Research Hypothesis is: EEE will generate malware with better concealment abilities,
forcing VirusTotal to improve the detection performance. Evolving EEE will also make
VirusTotal evolve and improve the detection of the individual antivirus engines.

Several works are based on the assumption of knowing these three factors or combina-
tions of them [13]. According to Srndic and Laskov, our scenario is one of the unexplored
areas of adversarial machine learning [14]. We also include inside this area the concept of
detection system coevolution, i.e., the uncontrolled evolution of the detection system to the
adversary, which, from the knowledge of the authors, is a completely novel area. During
the iterations of this coevolution, EEE parts from a detected malicious instance, modifies
the program shape to create a variant and uses this variant to attack the anti-virus. As the
anti-viruses respond to the attacks, we will improve the skills of the packer during the
hothousing process, to understand how the other side responds and evolves.

3. EEE: The Evolutionary Packer

In previous work [2], we considered a relatively unexplored malware detection tech-
nique based on information theory. This approach, called EnTS, aims to distinguish disk
resident malware from benign-ware based on different entropy pattern. The insight was
that polymorphic and metamorphic payload hiding generate regions in a malware binary
with high entropy relative to benign-ware. This family of detection techniques extracts
entropy signatures from binaries and uses them to distinguish malware from benign-ware.
To hothouse EnTS, we built EEE, an adversarial packer that controls binaries’ entropy
signature. EEE easily defeated EnTS and other state of the art detectors based on machine
learning by using incremental moves. This section presents the evolution from UPX to
EEE [2], summarized in Table 1, and the design and work-flow of the evolutionary packer
at the point where we broke off its coevolution with VirusTotal.

3.1. Evolving UPX to EEE

Normally, we would report only on the final version of the packer, but since we found
ourselves in an arms race with VirusTotal, we must mention the five versions of UPX and
EEE used in the experiments (Table 1). Our first step was the application of the original
UPX, use of which corresponds to point B in Figure 1. After, we create the first attempt
of MUPX-I, including XOR encryption after the compression process. It corresponds to
point C in Figure 1. MUPX-II updated with controlled entropy regions (CERs) that have



Entropy 2021, 23, 395 5 of 19

fixed length, fixed (low) entropy, and start positions sampled from a uniform distribution.
Experimental results using MUPX-II correspond to points D and E in Figure 1. MUPX-
III updated with a more sophisticated ability to vary the configurations of its CERs. It
uses CER descriptors and samples the initial positions from one of a family of Gaussian
distributions. Experiments using MUPX-III correspond to points F and G in Figure 1. EEE
added the genetic search algorithm that uses detection frequency as a fitness function. It
also includes the protections described in Section 3.2. Experiments with EEE correspond to
point H in Figure 1.

Table 1. Evolution from UPX to EEE and its attributes connecting it with the different versions
presented in Figure 1.

Version Compress Encrypt CERs Search Protect Points

UPX Yes - - - - B
MUPX-I Yes XOR - - - C
MUPX-II Yes XOR Fixed - - D-E
MUPX-III Yes XOR Variable Random Delay F-G

EEE Yes XOR Variable Evolutionary Delay & Oli H

3.2. EEE Protections

Since unpacking could remove the CERs that EEE inserts into the packed binary, we
needed to take measures to force the AV engines to consider the packed mode as much as
possible by resisting dynamic analysis. This resistance took two forms: encryption and the
addition of an execution delay.

UPX is sufficiently widespread and well-known that anti-virus engines can detect
signatures in its compressed code. In order to forestall this, we added simple XOR en-
cryption. It is important that the encryption does not modify entropy. If the encryption
significantly increases a binary’s entropy, the binary will be less compressible, reducing
the space available for CERs to occupy. XOR encryption modifies neither the size nor
the entropy of a file, since, when a byte key is used, XOR permutates the file bytes. The
decryption code is packed into the stub along with the key. We provide the stub with
the virtual memory positions of the encrypted sections to ensure it can find them in real
time. The decryption is performed after the uncompression and before reconstructing the
PE imports.

Protection against dynamic analysis is technically challenging. As an initial, simple
measure against dynamic analysis for EEE, we introduced a (mutable) time delay before
the beginning of the unpacking process, controlled by the input parameters (and therefore
by the genetic algorithm).

The chief focus of our modifications to UPX to produce EEE is the stub. The modifica-
tions increase the size of the stub and make it different from the stub of the original UPX,
and hence a potential attack surface for detecting EEE. To resist the detection of the stub as
a signature for the packer long enough to do the experiments, we divided all the code that
is not original to UPX into 12 small parts. We generate 4 different semantically equivalent
versions for each of these 12 parts. Selecting and combining them oligomorphically as part
of the genetic algorithm allows the packer to generate around 10,000 different versions of
the stub.

3.3. EEE Final Version

EEE architecture is divided into a packer that incorporates all the protections attributes
mentioned above and a genetic algorithm that decides how these protections are applied
depending on the response of VirusTotal (Figure 2). In the figure, we can see how the whole
process works from a malware instance to the generation of multiple malware variants.
EEE starts with the original malware and a set of parameters that determine different
aspects, such as the position of the CERs, the delay, and the version of the stub. This
goes into EEE that generates a population configurations related to these parameters. This



Entropy 2021, 23, 395 6 of 19

population, combined with the original malware, creates a set of variants that are sent to
the detection technique, in this case VirusTotal. VirusTotal provides some feedback, used
as a fitness function and EEE uses this feedback to readjust the configurations and create
new variants. This process goes on until the detection rate for the variants is close to zero.

In order to optimise the effect of injecting CERs, selecting a stub and the time delay,
EEE uses a genetic algorithm that manages the size, density and position of these CERs
within the binary. The population of the algorithm are different possible parametrizations,
represented as a vector of real numbers (Figure 3). The initial population sets these values
uniformly at random.

Every element of the population is a chromosome. They define the search space used
to generate variants. Figure 3 shows the components of a chromosome: STUB, delimiter
(DEL), DELAY, and CER descriptors. CER descriptors describe the properties of different
groups of CERs. There is a limited number of descriptors to bound the search space while
still allowing sufficient variation on CERs inside a program. For each descriptor, the search
optimizes: DENSITY, SIZE, position (µ, σ) and number of regions (NUM). STUB identifies
an oligomorphic version of the stub.

Malware EEE Parameters

Configuration File

Packer

Variant Detection Feedback

Variant Features

VirusTotal

Population

Genetic Search

Fitness

EEE

Detector

Initialization

Figure 2. The architecture of EEE, the Evolutionary Packer, showing the initialization of the packer
and the GA at top, the interactions among the components of EEE and the interaction with the
malware detector at bottom.

The algorithm makes decisions according to the feedback provided by the detection
system, which works as a fitness function. For each configuration, or chromosome, EEE
generates a variant and submits it to VirusTotal to get feedback. This feedback is the
percentage of VirusTotal AV engines that detect each submitted variant. This percentage is
the fitness value. To select individuals for survival, it retains some elite individuals, then
applies a tournament operator to chose individuals for reproduction via crossover. Finally,
a mutation operator is applied to all individuals and the search continues, creating new
variants from each individual of the new generation. If, after a fixed number of generations,
the algorithm finds no improvements in the detection probability, it stops. The fittest
variant (i.e., the one with the lowest detection probability) is chosen as the best individual
of the search.



Entropy 2021, 23, 395 7 of 19

STUB DEL DELAY CER Descriptors (Ds)

D1 D2
. . . DN

Di = NUMi SIZEi DENSITYi µi σi

Chromosome

Per Descriptor

Figure 3. EEE Chromosome scheme. A chomosome is a vector where the first coordinates correspond
to the stub, followed by the delimiters and the delay; then follows the types of CER, where the
information for each descriptor is the number of CERs for that descriptor, the SIZE, the DENSITY, and
the parameters for the position distribution.

Although UPX, being a packer, preserves the prepacking program semantics after
packing and unpacking, our modifications to UPX always ran the risk that they would
break this semantic invariance. In response we introduced a check that the invariance
held that generates reports from the software execution. This system is called Zero Wine
Tryouts [15]. We generated reports for both the original binary and the packed one and
compare their traces. We also compare memory dumps after unpacking. If the traces and
memory are identical, after the EEE variant finishes its unpacking process, we consider
that semantics of a program to be unchanged by EEE-packing.

For more details about the algorithm, please refer to [2] (EEE is open source and
available at https://github.com/hdg7/EEE (accessed on 20 March 2021)

4. Experiments

EEE uses search to adapt to its adversaries. Here, we hothouse it against VirusTotal
to learn how well entropy-aware evasion, which is an incremental and automatic move,
works against the state of the art anti-viruses. Our main research questions are:

• How much does this modified version of UPX reduce the detection rate for real
antivirus? (Section 4.1)

• How quickly does VirusTotal learn from the programs submitted to it? As we de-
tect false positives, we also asked, How quickly does VirusTotal recover from false
positives? (Section 4.2)

• How much does automated search using a genetic algorithm allow EEE to reduce
VirusTotal’s detection rate? (Section 4.3)

• Which antivirus tools are more resistant and what are they detecting? (Section 4.4)

The aim of all these questions is to learn the arm race evasion form the black hats
perspective. Our central finding shows unsuprisingly that AV focuses on the packer loader
(stub). When we masked it with random bits and restirct AVs to consider the rest of the
binary, EEE utterly defeats current AVs (Section 4.4). Figure 4 shows the timeline of our
experiment pictorially. We begin with our experimental setup and corpus.

https://github.com/hdg7/EEE


Entropy 2021, 23, 395 8 of 19

EEE Evolution

Months

VirusTotal Evolution

First Steps Learning evidences Final EEE

0

Collected
malware

No packer

0.5

UPX
+XOR

1

UPX
XOR

Fixed CER

2 3 3.5

Variable CER
Delay

4 4.25 5

Ev. Search
Oligo. Stub

6

82.1% 51.8%

30.4%

12.3% 29.8% 27.1%

32.5%

FPs 1.8%

19.6%

Figure 4. Chronology of VirusTotal and EEE evolution (time in months).

Experimental Setup. We ran our experiments on a cluster of 6 computers equipped
with 24 cores and 128 Gb of RAM memory each. The state of the art in malware detection
is VirusTotal, a web service comprising 56 anti-virus tools. To manage its traffic, VirusTotal
throttles to 4 submissions per minute and originating IP address. Our six machines
submitted candidate malware to VirusTotal. To accelerate queries, we issued requests to
VirusTotal from multiple accounts on different IPs in parallel. Unusually, we do not evaluate
EEE on train and test data, because VirusTotal, at a rate that we quantify below, learns and
changes its response, violating the assumption on which machine learning rests that train
and test share the same distribution [16]. Unless stated otherwise, experimental outcomes
are reported as a percentage detection rate. The detection rate should be interpreted as
follows: for each individual variant we calculate the percentage of VirusTotal engines that
detect that variant. Then we report the median rate for all variants submitted to VirusTotal
during the experiment.

The Dataset. We collected malware from a public malware database named VirusShare
(http://virusshare.com (accessed on 31 January 2016) ), from June 2015 to January 2016.
The corpus has 4677 PE32 (Windows binary executables for 32 bits) malware compatible
with UPX. Table 2 shows statistics about the size of our dataset in KB.

Table 2. Size distribution in KB of the malicious software corpus.

Median Mean Min Max

Malware 392 717 4 17,972

4.1. Initial Steps

Our first prototype, which covers the first two months of Figure 4, adds XOR encryp-
tion and fixed CERs to UPX. To measure the contribution of these features we first ask:
“How much does this modified version of UPX reduce the detection rate for real antivirus?”.

For this experiment, we construct and submit four malware variants to VirusTotal: (1)
the original malware, (2) packed with UPX, (3) packed with MUPX-I, and (4) packed with
MUPX-II. We performed this experiment on 200 malware.

Figure 5 shows how the detection drops from left to right. The figure contains four
violin plots, which combine a box plot with a kernel density plot, a nonparameteric
estimation of a probability density functon [17]. Intuitively, the width shows where most
events occur. The leftmost violin plot shows VirusTotal’s detection rate dropping from
81.2% on the “Original” malware to 51.8% for “UPX” packed malware. Since virus-checkers
can recognize UPX-packed binaries and use UPX to analyse their unpacked contents, the
first feature we added to UPX extends UPX with XOR encryption to produce MUPX-I.
Figure 5 shows that the addition of “XOR” reduces the median detection rate to 30.4%.

http://virusshare.com


Entropy 2021, 23, 395 9 of 19

On the MUPX-I experiment, VirusTotal’s output labelled most of our variants as Yoda
Protector [18] variants. Investigation revealed that Yoda Protector originally used XOR
encryption, so many detectors handle it which probably explains why this rate does not
fall further. Finally, we added CERs to MUPX-I to produce MUPX-II. (the rightmost violin
plot in Figure 5). CERs significantly reduced the detection to a median of 12.3%. However,
this initial success did not last long.

0
20

40
60

80
10

0

ORIGINAL UPX MUPX−I MUPX−II

●

●

●

●

P
er

ce
nt

ag
e

Figure 5. Initial performance of EEE. From left to right: detection on the original malware; detection
after applying UPX; detection after applying MUPX-I; and detection after applying MUPX-II.

4.2. VirusTotal is a Fast Learner

To drive VirusTotal’s detection rate still lower, we hypothesised that some of Virus-
Total’s constituent antivirus tools were defeating MUPX-II in two ways: by detecting (1)
the size or anomalous entropy of the CERs that MUPX-II injects or (2) via removal of
CERs and XOR decryption during reconstruction of the binary under dynamic analysis. To
impede dynamic analysis, we built a new version of MUPX, MUPX-III, that implemented
the common tactic of delaying action; to prevent the incorporation of CERs into a malware
signature, MUPX-III had the ability to vary their size and entropy. This covers the months
3 and 4 of Figure 4. When we first tested these features, we were surprised to see our
performance degrade from 12.3% to 29.8%. We expected VirusTotal to improve—indeed
our aim is to study the malware arms race itself—just not so quickly. Thus, this experiment
asks “How quickly does VirusTotal learn from the programs submitted to it?”

To ensure that VirusTotal did not simply over-fit the initial malware corpus, we
resampled the data. The new corpus contained 500 malware. MUPX-III’s parameters
were delay, delimiter, and for CER descriptor, their number, length, entropy, and position.
We fixed delimiter length to 8, then set delay uniformly over [0, 300] seconds, delimiter
characters uniformly over [0, 255], the number of CERs per descriptor over [1, 20], and the



Entropy 2021, 23, 395 10 of 19

rest uniformly over [0, 1]. We used these settings to create 20, 000 variants per day (40 per
malware and day).

Figure 6 (left) shows VirusTotal’s performance on this corpus, queried three time
over a week, each query separated by three days. VirusTotal detects only 27.15% of the
variants on the first day, then only three days later improves by 5 points to 32.55% on
the fourth day. This shows the speed at which VirusTotal learns. The queries on the 7th
day detection did not continue to increase. Looking at the data in detail, we discovered
that three antivirus tools account for all of the improvement between the first and second
queries (they improved 21.6, 45.1 and 13.0 points, respectively), and no additional anti-
virus tools joined them at the third query. In short, VirusTotal learned from EEE in just
three days.

●

●

●

●

●

●

●

First Fourth Seventh

0
20

40
60

80
P

er
ce

nt
ag

e

(a) VirusTotal’s improved detection
due to learning.

●

●

●

Original UPX 1st Day UPX 3rd Day
0

5
10

15
20

P
er

ce
nt

ag
e

(b) VirusTotal’s false positive rate
over three days.

Figure 6. Learning and unlearning in VirusTotal.

VirusTotal’s improved detection of EEE packed malware had a side-effect: it caused
anti-virus software to incorrectly classify UPX-packed benign-ware as malware. We discov-
ered this fact when the anti-virus software running on the PC of one of the authors flagged
UPX-packed benign-ware. VirusTotal had paid the price of incurring false positives to
detect EEE-packed malware. Users are intolerant of false positives, so we asked: “How
quickly does VirusTotal recover from false positives?”.

Under the assumption that VirusTotal had learned an incorrect signature, we collected
200 samples of benign-ware from download.com (accessed on 1 February 2016) . First, we
submitted them to VirusTotal to guarantee that none of them was considered malware, then
we packed them with UPX and immediately resubmitted them before VirusTotal could
consider them malware. Figure 6 (right) shows that the median malware classification
rate was 2%, with the 3rd quartile at 7%. Two days later, we resubmitted the same set
of UPX-packed benign variants. The median detection rate did not change significantly,
but 3rd quartile dropped from 7% to 5%: some of the anti-virus tools in VirusTotal had
removed the signature of these variants in 2 days.

4.3. Automatically Adapting to VirusTotal

Since, as we have shown, VirusTotal rapidly adapts to its inputs, our final modification
of UPX updated MUPX-III to EEE, a version that incorporates an evolutionary algorithm
to automatically learn from VirusTotal’s response. Together, VirusTotal and EEE reprise the
malware arms race as the coevolutionary interplay of white and black hats. This last part
covers the last two months of Figure 4. In addition to enabling EEE to evolve automatically,
we hypothesised that VirusTotal was detecting the stub that MUPX-III embeds in its output,
so in EEE we protected the stub oligomorphically, as previously discussed (Section 3) and
made this protection evolvable by the genetic algorithm. This section measures how well

download.com


Entropy 2021, 23, 395 11 of 19

EEE’s learning version performs against VirusTotal and asks “How much does automated
search using a genetic algorithm allow EEE to reduce VirusTotal’s detection rate?”.

For this experiment, we re-sampled and chose a corpus of 1000 malware. We were
not able to optimize the configuration of the genetic algorithm, since any parameter
evaluation experiments would influence detection rates for VirusTotal and affect what
followed, providing no useful conclusions about parameter configurations. Therefore, we
selected them by trying to keep a compromise between diversity, in terms of population
and reproduction, and learning in terms of generations and crossover.

We configured the evolutionary algorithm to contain 50 individuals. In each gener-
ation, we select 30 individuals for reproduction. We passed the ten fittest individuals of
each generation to the next generation. The crossover probability was 0.8; the mutation
probability was 0.1. The algorithm terminated either after 20 generations or once fitness
failed to improve for 5 consecutive generations. The aim was to reduce the number of
queries to VirusTotal. The parameter search space is the same as that used in Section 4.2,
except the part for the stub, which we introduced in this experiment. The search combines
stub components under the constraints detailed in Section 3. With these parameters, EEE
produces at most 50 (individuals) ×20 (generations) = 1000 variants per malware.

Figure 7 compares VirusTotal’s detection rate across 3 collections of variants. The first
(FIRSTGEN) is the first generation and is equivalent to a random search due to initialization;
the second (LASTGEN) is aggregate performance of the last generation; the third (BEST)
contains the most evasive individuals for each malware. Figure 7 shows a drop in the
median detection rate from 21.8% to 19.6%.

10
20

30
40

50
60

FIRSTGEN LASTGEN BEST

●

●

●

P
er

ce
nt

ag
e

Detection Starting Point

Figure 7. VirusTotal’s detection rate as EEE evolves to resist it, where FIRSTGEN is EEE’s first genera-
tion, LASTGEN is the last generation, and BEST contains the best individuals in the last generation.

In fact, the violin plots show that the distributions are becoming narrower with
the interquartile range shrinking from [30, 90] to [5, 55] and more skewed. While their



Entropy 2021, 23, 395 12 of 19

medians are close, FIRSTGEN and LASTGEN represent different distributions. To confirm
it, we applied the Wilcoxon statistical test, normally used for non-normal distributions,
with a p-value limit of 0.05 for the null hypothesis. The p-value comparing these two
distributions is 9.8 · 10−3. This is lower than 0.05, hence, they are significantly different.
For instance, FIRSTGEN’s interquartile range is [18, 65] and LASTGEN’s is [15, 60]. This
effect is more striking when we consider the most evasive individuals EEE produces across
all generations for each malware in the corpus. Black hats using EEE could pick out and
store these individuals. VirusTotal’s performance on BEST drops to a median detection
rate of 19.6%. We also applied the Wilcoxon test to comparisons of BEST with FIRSTGEN,
and BEST with LASTGEN. The p-values were 2.2 · 10−16 and 2.1 · 10−12, respectively,
therefore, they are also significantly different distributions. As a sanity check, we compared
VirusTotal’s performance on BEST with its performance on the corpus after UPX packing
and found that VirusTotal’s detection rate was 20 percentage points higher on the UPX-
based variants. The oligomorphic hiding of the stub parameters was evolvable via the
genetic algorithm so the introduction of this stub protection was folded into the automated
evolution. As the results show, employing the new capabilities of EEE effectively and
substantially reduces VirusTotal’s detection rate, dropping it from 32.5% before applying
EEE to 19.6% afterwards.

4.4. VirusTotal’s Resilience in Depth

In the previous experiment, EEE did not drive VirusTotal’s detection rate to zero.
Clearly, some anti-virus tools are defeating EEE. Which ones?

Figure 8 shows the detection rates of the most EEE-resistant anti-virus engines in Virus-
Total over all the variants generated during EEE’s variant search. This figure anonymises
the anti-virus engines’ names, following the terms and conditions of VirusTotal. Four
of VirusTotal’s 56 anti-viru —Av16, Av17, Av18 and Av19—correctly classified EEE vari-
ants in more than 90% of the trials. How are these successful anti-virus tools detecting
EEE-protected variants?

We studied the sections of the packed files that EEE generated and their similarities.
The first section, UPX0, was identical in all cases, because it is physically empty, since it is a
virtual section into which the binary is unpacked at execution time [19]. UPX1 contains
the packed code and the stub. The packed code was quite dissimilar across variants. The
stub, however, did exhibit similarities across the variants. Inside it, the CER and the XOR
handlers provide two attack surfaces. Because we induced false positive in VirusTotal
in our learning experiments (Section 4.2), we hypothesised that some engines had found
signatures inside the UPX stub, so we also considered the rest of the stub as an attack
surface. Finally, we identified two attack surfaces in section UPX2: the imports list and
the overlay of the program. Executables use the overlay section, which is not read into
memory, to read themselves as a file. UPX keeps this section untouched to preserve the
execution semantics. We selected 1000 of the most easily detected variants EEE produced
and eliminated the potential detection areas (using the dd command and setting their bytes
to 0). We then submitted them to VirusTotal.

Figure 9 shows how the detection rate varied per modification. On the left, it shows
VirusTotal’s detection rate on the unaltered variants ORI; this serves as the baseline. The
rest of the boxplots show the detection after zeroing: the CER and XOR handlers, the
entire stub STUB, the imports IMP, the overlay (OVE), UPX2 section and ALL of these six
areas. The relationships among the six areas follow:



Entropy 2021, 23, 395 13 of 19

0
2
0

4
0

6
0

8
0

1
0
0

P
e
rc
e
n
ta
g
e

A
v
1

A
v
2

A
v
3

A
v
4

A
v
5

A
v
6

A
v
7

A
v
8

A
v
9

A
v
1
0

A
v
1
1

A
v
1
2

A
v
1
3

A
v
1
4

A
v
1
5

A
v
1
6

A
v
1
7

A
v1
8

A
v
1
9

Figure 8. VirusTotal’s anti-virus engines that perform best against EEE.

CER ∩ XOR = ∅

CER ∪ XOR ⊂ STUB

OVE ∩ IMP = ∅

OVE ∪ IMP ⊂ UPX2

UPX2 ∩ STUB = ∅

UPX2 ∪ STUB = ALL

Zeroing the IMP, OVE, UPX2, and XOR all had roughly the same effect, dropping
VirusTotal’s detection rate from 57.1% into [35.9, 38.7]%. The CER handler was the most
detected area of the stub. Its zeroing dropped VirusTotal’s detection rate to 32.1%. We
added oligomorphism to EEE to protect the CER and XOR handlers, as discussed in
Section 3. Clearly, these handlers need stronger protection. Eliminating the stub entirely
dropped the detection rate to 20.5% by restricting VirusTotal to considering only UPX2.
Zeroing all six areas (ALL) dropped the detection to 0. These results show that the EEE-
resistant anti-virus engines are concentrating on the stub and ignoring the CERs, at this
stage of the arms race with EEE.



Entropy 2021, 23, 395 14 of 19

●
●●
●
●

●●●●●●●●
●●
●●

●

●
●

●

ORI IMP OVE UPX2 XOR CER STUB ALL

0
20

40
60

80
P

er
ce

nt
ag

e

Figure 9. Detection boxplots for highly detected EEE-produced variants produced by zeroing specific
parts of them: the leftmost boxplot is the original variant; in the middle are variants produced by
zeroing each named region in isolation; the rightmost boxplot zeros all the named regions.

From the 56 engines, only 46 generated detections during the whole experiment, the
rest activate less often. 39 engines started with a detection rate over 60% of detection and 34
over 80%. After the the CERs improvement only 3 of them stayed over the 60% threshold,
these 3 are Av15 (62.5%), Av2 (72.7%) and Av19 (73.5%). During the month when all the
tools were learning, and before the resubmission of the variants, 7 engines reduced their
signatures, reducing, as a side effect, their detection abilities. 39 engines incremented the
number of signatures during this period of time, making their evasion harder. The second
improvement of EEE was relevant against 20 engines, the rest stayed or improved their
detection. Finally, the introduction of the evolutionary learning process was useful against
36 but 5 of them start to become resistant. At the end of the experiment, 25 engines were in
range [0, 20]%, 14 in [20, 40]%, 3 in [40, 60]% and 4 between [60, 65]%.

Completing the previous information, we back-tracked the detection of the four
top anti-virus during the whole period (those in the [60,65] range). Figure 10 measures
detection percentage in terms of the number of variants detected (unlike all the other
experiments in which detection percentage means percentage of VirusTotal AV tools) and
shows that all of them were affected by the introduction of XOR and CERs, but Av19. Av18
and Av19 became the strongest techniques during the month and a half when UPX became
MUPX-II was improved for the first time, achieving detection rates over 85%. Av16 and
Av17 became stronger during this period, but not as strong as Av18 and Av19. The version
with variable CERs did not affect Av17, Av18 and Av19 but Av16 dropped from 31.1% to
10.9% detection rate. However, in seven days Av16 improved its detection rate to 52.3%.
The best variants of EEE combined with the search dropped the detection for Av18 and
Av19 to the range [60,65]%, but Av16 and Av17 improved their detection to 60.0% and



Entropy 2021, 23, 395 15 of 19

60.9%, respectively. The tendency of all the anti-virus detecting the same percentage of
malware at this stage suggested that they are sharing a specific signature that, following
the previous experiments, was part of UPX2 or the STUB. Moreover, there were two main
tendencies in the detection evolution: Av16-Av17 and Av18-Av19 tendencies. This suggests
that these tools were sharing information.

0 1 2 3 4 5 6

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

Month

●

●
● ●

● ●
●

●

●

Av17
Av18
Av16
Av19

Figure 10. Detection rates over time for the anti-virus against EEE.

5. Related Work

This section summarizes work that leverages adversarial machine learning in the arms
race coevolution and entropy-based methods in malware detection.

5.1. Coevolutionary and Adversary Learning Models

The arms race is constantly evolving. Black hats discover new vulnerabilities almost
every day that white hats aim to prevent. This clearly defines a coevolution in both sides
of cybersecurity as Somayaji described in [5]. Although Somayaji never formalized the
phenomenon, Guerra et al. [9] made strong efforts on understanding it from both sides, in
the context of spam filters for e-mails. Their study, corresponding to 12 years of an spam
filter evolution, shows clear evidence on how both, the spammers as black hats and the
filters as white hats, were learning from each other. However, the authors did not introduce
themselves in this arms race, as we have done with EEE. In our case, we did not (and
were not in a position to) directly access different versions of VirusTotal anti-virus tools, as
Guerra et al. did with spam filters. Moreover, as a consequence of the anti-virus learning



Entropy 2021, 23, 395 16 of 19

process, we were not able to repeat the experimental setup of the experiments. We were
limited by working in a real-time scenario, while Guerra et al. were working offline.

Some tools like EvadeML [4] or IagoDroid [1] work in a similar direction to EEE, as
they use the detection probability as a guidance for the quality of their variants. However,
in these cases there is no evolution on the learner’s side, after the attack. In adversarial
machine learning there are some examples where the learner aims to respond to the attack.
These examples are Globerson and Roweis [20] that manipulate features from samples
to attack a Support Vector Machine classifier or Zhou et al. [21] that concretely define
attack strategies against a Support Vector Machine. Similar adversarial machine learning
scenarios are the work of Kantarcioglu et al. [22], where the classifier adapts its cut-off to
the attacks in order to find an equilibrium between the attacker and the detection, and the
work of Lui and Chawla [23], where they apply the Nash equilibrium between the attacker
and the classifier.

Our step into the current arms race required a deeper understanding of learning
methods, as they are currently the state of the art for both dynamic and static analysis [24].
This motivated us to apply adversarial machine learning, a field whose aim is to exploit
vulnerabilities in machine learning models [25]. In our original work of EEE [2], we
attacked machine learning algorithms using CERs, and we demonstrated the effectiveness
of the approach defeating algorithms that can reach more than a 95% of accuracy detecting
malware. Although this version of the algorithm was effective against machine learning, it
could not deal with anti-virus as it leaked clear signatures. For that reasons we included
dynamic and static analysis protectors, as described in Section 3.2. With these protectors,
we were able to introduce EEE in the malware arms race against VirusTotal.

VirusTotal is indeed an interesting attack surface for black hats, as it contains several
AV engines and it is in constant development. In the literature, there are several works
leveraging VirusTotal as a comparison framework [26] or as ground truth for malware
detection [27]. An interesting application of VirusTotal is AVClass, a tool whose aim is to
identify the ground truth on the malware family classification problem by averaging the
opinion of the different engines of VirusTotal [28]. There are also tools like MimickAV [29]
that prove the predictability of VirusTotal and auditing studies that show how obfuscation
changes the outcome of anti-viruses [30]. Nevertheless, from our current knowledge, no
author has used it to study the malware arms race coevolution.

As adversaries of VirusTotal, we face a difficult scenario because we do not have any
information about the strategies and features that the engines are using to detect malware.
According of the taxonomy of evasion scenarios introduced by Srndic and Laskov [14], in
this scenario, the adversary needs to deduce features by observation, for this reason we
introduced our genetic evolution, in order to discover those features that make the detector
vulnerable. Perturbation methods were originally succeded against spam detectors [31],
where different alterations on emails defeated filters based on machine learning. Modern
works, like Xu et al. [4], show the effectiveness on these alterations on malware misclassifi-
cation, in their case, applied to well-knonw PDF malware detectors [32,33]. In contrast to
evadeML, EEE knows nothing about the training data or the anti-virus features it attempts
to attack, and it had no knowledge of nor any direct access to the workings of the anti-virus
tools in VirusTotal. Moreover, our variants are based on Windows binary executable mal-
ware that uses protections against disassembly or reassemble, while evadeML manipulates
PDF malware. Furthermore, UPX makes our tool compatible with several architectures,
giving us the opportunity to adapt EEE to other platforms [19].

Adversarial machine learning is consolidating itself as one of the strongest fields in
cybersecurity as it is a clear countermesuare to the machine learning peak [13]. It has
studied concrete algorithms, as the work of Biggio et al. understanding the vulnerabilities
of Support Vector Machines [34], and it is classfied into different generalization frameworks,
depending on the adversary knowledge [35], and it is becoming a treath even for modern
machine learning application as those based on manifolds [36] and those applied to the
design of new technologies [37]. Other modern techniques on the area of adversarial



Entropy 2021, 23, 395 17 of 19

machine learning for malware evasion has focused on attacking malware triage [1] of
classification [2].

5.2. Entropy in Malware Detection

Our attack is based on an application of Shannon entropy [38], the fundamental
concept in information theory, widely used in many sciences, from physics to biology and
communications engineering. Several authors have employed this concept in the context
of malware detection, using it as a measure of redundancy in bytes [39,40], program
traces [41], program compression [42,43] and n-grams [44,45], among others. It is also a
relevant feature for machine learning based malware detection [46–48].

Detection of malware via entropy measures is an obscure game. Entropy analysis
activates detection flags in terms of compression and encryption, due to the altering of the
entropy of binary files—usually by increasing it. Lyda and Hamrock used this approach to
detect encrypted and packed malware [39]. However, their detection process was based on
entropy ranges, which is easily manipulated. Jacob et al. used a similar methodology for
detecting packed malware [49]. They produced four tests to determine whether the file is
malware or not, starting by examining whether it is packed. This test measures the average
entropy of the file and checks whether it is higher than a threshold. These two examples
are strong motivation for attacking executable file entropy by reducing or manipulating it
over a specific range.

A recent technique, named structural entropy, defines an entropy based similarity met-
ric based on the Levenshtein distance and producing an entropy profile of the program [50].
This entropy profile consists of local entropy values for blocks of bytes of the binary. Bayse
et al. leveraged this technique for malware detection [51]. Altering the entropy profiles at
the file level would introduce noise into the detection, another motivation for introducing
attacks on detection via controlled entropy regions.

6. Conclusions

We tracked and analysed the behaviour of VirusTotal malware detectors in a coevo-
lutionary contest with EEE. Hothousing anti-virus engines accelerates the malware arms
race, reducing black hats’ scope for leveraging incremental moves. After the hothousing
experiments we conducted, evolutionary search algorithms reduced the median detection
rate for the state of the art in malware detection by over a third. Over six months of
experimentation, we witnessed VirusTotal’s learning behaviour; in particular, we saw it
learn to detect EEE-packed malware via EEE’s loader (stub). Initially, our experiment
caused VirusTotal to generate false positives on benign-ware packed with UPX; an error,
from which VirusTotal recovered, after 2 days. At the end of the experimental run, only
four of the 56 VirusTotal AV engines were effectively resisting EEE. Hothousing promises
to automate evolution on both sides of the coevolutionary malware detection arms race,
using detection and evasion techniques other than those based on entropy, so white hats
can stay a step ahead of black hats.

7. Availability

EEE has been published and it is available in the following URL: https://github.com/
hdg7/EEE (accessed on 20 March 2021) . Use it only for academic and benign purposes.

Author Contributions: All authors have contributed in a complementary way to the whole develop-
ment of this work. All authors have read and agreed to the published version of the manuscript.

Funding: This work has been supported by the next research projects: SeMaMatch EP/K032623/1,
DAASE EP/J017515/1, LUCID EP/P005659/1 and InfoTestSS EP/P005888/1 from EPSRC. We
gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan V GPU
used for this research.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

https://github.com/hdg7/EEE
https://github.com/hdg7/EEE


Entropy 2021, 23, 395 18 of 19

Data Availability Statement: Data is contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Calleja, A.; Martín, A.; Menéndez, H.D.; Tapiador, J.; Clark, D. Picking on the family: Disrupting android malware triage by

forcing misclassification. Expert Syst. Appl. 2018, 95, 113–126. [CrossRef]
2. Menéndez, H.D.; Bhattacharya, S.; Clark, D.; Barr, E.T. The arms race: Adversarial search defeats entropy used to detect malware.

Expert Syst. Appl. 2019, 118, 246–260. [CrossRef]
3. Preda, M.D.; Christodorescu, M.; Jha, S.; Debray, S. A semantics-based approach to malware detection. ACM Trans. Program.

Lang. Syst. 2008, 30, 25. [CrossRef]
4. Xu, W.; Qi, Y.; Evans, D. Automatically evading classifiers. In Proceedings of the 2016 Network and Distributed Systems

Symposium, New Delhi, India, 25–27 February 2016.
5. Somayaji, A. How to win an evolutionary arms race. IEEE Secur. Priv. 2004, 2, 70–72. [CrossRef]
6. Man, K.F.; Tang, K.S.; Kwong, S. Genetic Algorithms: Concepts and Designs; Springer Science & Business Media: Berlin/Heidelberg,

Germany, 2012.
7. Total, V. VirusTotal-Free Online Virus, Malware and URL Scanner. 2017. Available online: https://www.virustotal.com (accessed

on 31 January 2016)
8. Schrittwieser, S.; Katzenbeisser, S.; Kinder, J.; Merzdovnik, G.; Weippl, E. Protecting software through obfuscation: Can it keep

pace with progress in code analysis? ACM Comput. Surv. 2016, 49, 4. [CrossRef]
9. Guerra, P.H.C.; Guedes, D.; Meira, J.W.; Hoepers, C.; Chaves, M.; Steding-Jessen, K. Exploring the spam arms race to characterize

spam evolution. In Proceedings of the 7th Collaboration, Electronic messaging, Anti-Abuse and Spam Conference (CEAS),
Redmond, WA, USA, 13–14 July 2010.

10. Marsden, C.T. Net Neutrality: Towards a Co-Regulatory Solution; A&C Black: London, UK 2010.
11. Zhou, Y.; Kantarcioglu, M.; Xi, B. A survey of game theoretic approach for adversarial machine learning. Wiley Interdiscip. Rev.

Data Min. Knowl. Discov. 2019, 9, e1259. [CrossRef]
12. Gibbons, R. A primer in Game Theory; Harvester Wheatsheaf: London, UK 1992.
13. Gardiner, J.; Nagaraja, S. On the Security of Machine Learning in Malware C& C Detection: A Survey. ACM Comput. Surv. 2016,

49, 59:1–59:39. [CrossRef]
14. Srndic, N.; Laskov, P. Practical Evasion of a Learning-Based Classifier: A Case Study. In Proceedings of the 2014 IEEE Symposium

on Security and Privacy, Berkeley, CA, USA, 18–21 May 2014; pp. 197–211. [CrossRef]
15. Malin, C.H.; Casey, E.; Aquilina, J.M. Malware Forensics Field Guide for Linux Systems: Digital Forensics Field Guides; Newnes:

London, UK 2013.
16. Bifet, A.; Holmes, G.; Kirkby, R.; Pfahringer, B. Moa: Massive online analysis. J. Mach. Learn. Res. 2010, 11, 1601–1604.
17. Hintze, J.L.; Nelson, R.D. Violin plots: a box plot-density trace synergism. Am. Stat. 1998, 52, 181–184.
18. Yason, M.V. The art of unpacking. Retrieved Feb 2007, 12, 2008.
19. Oberhumer, M.; Molnár, L.; Reiser, J.F. UPX: the Ultimate Packer for eXecutables. 2004. Available online: http://upx.sourceforge.

net/ (accessed on 1 June 2015)
20. Globerson, A.; Roweis, S. Nightmare at test time: robust learning by feature deletion. In Proceedings of the 23rd International

Conference on Machine Learning, San Jose, CA, USA, 18–21 May 2006; pp. 353–360.
21. Zhou, Y.; Kantarcioglu, M.; Thuraisingham, B.; Xi, B. Adversarial support vector machine learning. In Proceedings of the

18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Beijing, China, 12–16 August 2012;
pp. 1059–1067.

22. Kantarcıoğlu, M.; Xi, B.; Clifton, C. Classifier evaluation and attribute selection against active adversaries. Data Min. Knowl.
Discov. 2011, 22, 291–335. [CrossRef]

23. Liu, W.; Chawla, S. Mining adversarial patterns via regularized loss minimization. Mach. Learn. 2010, 81, 69–83. [CrossRef]
24. Dua, S.; Du, X. Data Mining and Machine Learning in Cybersecurity; Auerbach Publications: Boca Raton, FL, USA 2016.
25. Moreno-Torres, J.G.; Raeder, T.; Alaiz-RodríGuez, R.; Chawla, N.V.; Herrera, F. A unifying view on dataset shift in classification.

Pattern Recognit. 2012, 45, 521–530. [CrossRef]
26. Martín, A.; Menéndez, H.D.; Camacho, D. MOCDroid: multi-objective evolutionary classifier for Android malware detection.

Soft Comput. 2017, 21, 7405–7415. [CrossRef]
27. Feng, Y.; Anand, S.; Dillig, I.; Aiken, A. Apposcopy: Semantics-based Detection of Android Malware Through Static Analysis. In

Proceedings of the 22Nd ACM SIGSOFT International Symposium on Foundations of Software Engineering, Hong Kong, China,
16–22 November 2014; pp. 576–587. [CrossRef]

28. Sebastián, M.; Rivera, R.; Kotzias, P.; Caballero, J. Avclass: A tool for massive malware labeling. In Proceedings of the International
Symposium on Research in Attacks, Intrusions, and Defenses, Heraklion, Greece, 10–12 September 2016; pp. 230–253.

29. Menéndez, H.D.; Llorente, J.L. Mimicking Anti-Viruses with Machine Learning and Entropy Profiles. Entropy 2019, 21, 513.
[CrossRef]

http://doi.org/10.1016/j.eswa.2017.11.032
http://dx.doi.org/10.1016/j.eswa.2018.10.011
http://dx.doi.org/10.1145/1387673.1387674
http://dx.doi.org/10.1109/MSP.2004.100
https://www.virustotal.com
http://dx.doi.org/10.1145/2886012
http://dx.doi.org/10.1002/widm.1259
http://dx.doi.org/10.1145/3003816
http://dx.doi.org/10.1109/SP.2014.20
http://upx. sourceforge.net/
http://upx. sourceforge.net/
http://dx.doi.org/10.1007/s10618-010-0197-3
http://dx.doi.org/10.1007/s10994-010-5199-2
http://dx.doi.org/10.1016/j.patcog.2011.06.019
http://dx.doi.org/10.1007/s00500-016-2283-y
http://dx.doi.org/10.1145/2635868.2635869
http://dx.doi.org/10.3390/e21050513


Entropy 2021, 23, 395 19 of 19

30. Hammad, M.; Garcia, J.; Malek, S. A large-scale empirical study on the effects of code obfuscations on Android apps and
anti-malware products. In Proceedings of the 40th International Conference on Software Engineering, Gothenburg, Sweden, 27
May–3 June 2018; pp. 421–431.

31. Chinavle, D.; Kolari, P.; Oates, T.; Finin, T. Ensembles in adversarial classification for spam. In Proceedings of the 18th ACM
Conference on Information and Knowledge Management, Hong Kong, China, 2–6 November 2009; pp. 2015–2018.

32. Smutz, C.; Stavrou, A. Malicious PDF detection using metadata and structural features. In Proceedings of the 28th Annual
Computer Security Applications Conference, Orlando, FL, USA, 3–7 December 2012; pp. 239–248.

33. Šrndic, N.; Laskov, P. Detection of malicious pdf files based on hierarchical document structure. In Proceedings of the 20th
Annual Network & Distributed System Security Symposium, San Diego, CA, USA, 24–27 February 2013.

34. Biggio, B.; Nelson, B.; Laskov, P. Poisoning Attacks against Support Vector Machines. In Proceedings of the 29th International
Conference on Machine Learning, Edinburgh, Scotland, 26 June–1 July 2012.

35. Biggio, B.; Fumera, G.; Roli, F. Security evaluation of pattern classifiers under attack. IEEE Trans. Knowl. Data Eng. 2014,
26, 984–996. [CrossRef]

36. Ménendez, H.D. VARMOG: A Co-Evolutionary Algorithm to Identify Manifolds on Large Data. In Proceedings of the 2019 IEEE
Congress on Evolutionary Computation (CEC), Wellington, New Zealand, 10–13 June 2019; pp. 3300–3307.

37. Garcia-Cobo, I.; Menéndez, H.D. Designing large quantum key distribution networks via medoid-based algorithms. Future
Gener. Comput. Syst. 2020, 115, 814–824. [CrossRef]

38. Shannon, C.E. A mathematical theory of communication. ACM Sigmobile Mob. Comput. Commun. Rev. 2001, 5, 3–55. [CrossRef]
39. Lyda, R.; Hamrock, J. Using entropy analysis to find encrypted and packed malware. IEEE Secur. Priv. 2007, 5, 40–45. [CrossRef]
40. Shafiq, M.Z.; Tabish, S.; Farooq, M. PE-probe: leveraging packer detection and structural information to detect malicious portable

executables. In Proceedings of the Virus Bulletin Conference (VB), Citeseer, Switzerland, 23–25 September 2009; pp. 29–33.
41. McMillan, C.; Garman, J. System and Method for Determining Data Entropy to Identify Malware. US Patent 8,069,484, 29

November 2011.
42. Alshahwan, N.; T Barr, E.; Clark, D.; Danezis, G.; D Menéndez, H. Detecting malware with information complexity. Entropy 2020,

22, 575. [CrossRef] [PubMed]
43. Zhou, Y.; Inge, W.M. Malware Detection Using Adaptive Data Compression. In Proceedings of the 1st ACM Workshop on

Workshop on AISec, Alexandria, VA, USA, 27–31 October 2008; pp. 53–60. [CrossRef]
44. Martín, A.; Calleja, A.; Menéndez, H.D.; Tapiador, J.; Camacho, D. ADROIT: Android malware detection using meta-information.

In Proceedings of the 2016 IEEE Symposium Series on Computational Intelligence (SSCI), Athens, Greece, 6–9 December 2016;
pp. 1–8.

45. Shafiq, M.Z.; Khayam, S.A.; Farooq, M. Embedded malware detection using markov n-grams. In Proceedings of the International
Conference on Detection of Intrusions and Malware, and Vulnerability Assessment, Lisbon, Portugal, 10–11 July 2008; pp. 88–107.

46. Perdisci, R.; Lanzi, A.; Lee, W. McBoost: Boosting scalability in malware collection and analysis using statistical classification of
executables. In Proceedings of the Annual Computer Security Applications Conference, Anaheim, CA, USA, 8–12 December
2008; pp. 301–310.

47. Tabish, S.M.; Shafiq, M.Z.; Farooq, M. Malware Detection Using Statistical Analysis of Byte-level File Content. In Proceedings of
the ACM SIGKDD Workshop on CyberSecurity and Intelligence Informatics, Paris, France, 28 June 2009; pp. 23–31. [CrossRef]

48. Ugarte-Pedrero, X.; Santos, I.; Sanz, B.; Laorden, C.; Bringas, P.G. Countering entropy measure attacks on packed software
detection. In Proceedings of the Consumer Communications and Networking Conference (CCNC), Las Vegas, NV, USA, 14–17
January 2012; pp. 164–168.

49. Jacob, G.; Comparetti, P.M.; Neugschwandtner, M.; Kruegel, C.; Vigna, G. A static, packer-agnostic filter to detect similar malware
samples. In Proceedings of the International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment,
Heraklion, Greece, 26–27 July 2012; pp. 102–122.

50. Sorokin, I. Comparing files using structural entropy. J. Comput. Virol. 2011, 7, 259–265. [CrossRef]
51. Baysa, D.; Low, R.M.; Stamp, M. Structural entropy and metamorphic malware. J. Comput. Virol. Hacking Tech. 2013, 9, 179–192.

[CrossRef]

http://dx.doi.org/10.1109/TKDE.2013.57
http://dx.doi.org/10.1016/j.future.2020.09.037
http://dx.doi.org/10.1145/584091.584093
http://dx.doi.org/10.1109/MSP.2007.48
http://dx.doi.org/10.3390/e22050575
http://www.ncbi.nlm.nih.gov/pubmed/33286347
http://dx.doi.org/10.1145/1456377.1456393
http://dx.doi.org/10.1145/1599272.1599278
http://dx.doi.org/10.1007/s11416-011-0153-9
http://dx.doi.org/10.1007/s11416-013-0185-4

	Introduction
	Hothousing the Coevolution
	EEE: The Evolutionary Packer
	Evolving UPX to EEE
	EEE Protections
	EEE Final Version

	Experiments
	Initial Steps
	VirusTotal is a Fast Learner
	Automatically Adapting to VirusTotal
	VirusTotal's Resilience in Depth

	Related Work
	Coevolutionary and Adversary Learning Models
	Entropy in Malware Detection

	Conclusions
	Availability
	References

