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ABSTRACT 

Mitochondrial dynamics plays an important role in mitochondrial quality control and the 

adaptation of metabolic activity in response to environmental changes. The disruption of 

mitochondrial dynamics has detrimental consequences for mitochondrial and cellular 

homeostasis and leads to the activation of the mitochondrial unfolded protein response 

(UPR
mt

), a quality control mechanism that adjusts cellular metabolism and restores 

homeostasis. To identify genes involved in the induction of UPR
mt

 in response to a block in 

mitochondrial fusion, we performed a genome-wide RNAi screen in Caenorhabditis elegans 

mutants lacking the gene fzo-1, which encodes the ortholog of mammalian Mitofusin, and 

identified 299 suppressors and 86 enhancers. Approximately 90% of these 385 genes are 

conserved in humans, and one third of the conserved genes have been implicated in human 

disease. Furthermore, many have roles in developmental processes, which suggests that 

mitochondrial function and the response to stress are defined during development and 

maintained throughout life. Our dataset primarily contains mitochondrial enhancers and non-

mitochondrial suppressors of UPR
mt

, indicating that the maintenance of mitochondrial 

homeostasis has evolved as a critical cellular function, which, when disrupted, can be 

compensated for by many different cellular processes. Analysis of the subsets ‘non-

mitochondrial enhancers’ and ‘mitochondrial suppressors’ suggests that organellar contact 

sites, especially between the ER and mitochondria, are of importance for mitochondrial 

homeostasis. In addition, we identified several genes involved in IP3 signaling that modulate 

UPR
mt

 in fzo-1 mutants and found a potential link between pre-mRNA splicing and UPR
mt

 

activation. 

 (244/250 words) 
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INTRODUCTION 

Mitochondria are important for cellular adenosine triphosphate (ATP) production, iron-sulfur-

cluster biogenesis, lipid metabolism and apoptosis, and therefore, mitochondrial homeostasis 

is tightly regulated by several quality control mechanisms (Tatsuta and Langer, 2008; 

Kornmann, 2014). Moreover, mitochondria are required to respond to environmental 

challenges, which are often accompanied by alterations in energy demand  (Youle and van der 

Bliek, 2012). Mitochondrial dynamics controls mitochondrial shape and distribution, thus 

playing a central role in both mitochondrial homeostasis and the adjustment to changing 

energy demands (Yaffe, 1999; van der Bliek et al., 2013). Dynamics of mitochondrial 

membranes is controlled by large guanosine triphosphate-binding proteins (GTPases) of the 

dynamin-like family, which are conserved from yeast to humans (Hales and Fuller, 1997; 

Otsuga et al., 1998; Smirnova et al., 1998; Bleazard et al., 1999; Labrousse et al., 1999; 

Shepard and Yaffe, 1999; Chen et al., 2003; Santel et al., 2003; Ichishita et al., 2008; 

Kanazawa et al., 2008). In the nematode Caenorhabditis elegans, fusion of the outer and 

inner mitochondrial membrane (OMM and IMM) is facilitated by FZO-1
MFN1,2

 (Ichishita et 

al., 2008) and EAT-3
OPA1

 (Kanazawa et al., 2008), respectively. Conversely, fission of the 

OMM and IMM is carried out by DRP-1
DRP1

 (Labrousse et al., 1999), whose ortholog in 

Saccharomyces cerevisiae (Dnm1p) has been shown to form constricting spirals around 

mitochondria (Ingerman et al., 2005). The disruption of mitochondrial dynamics has 

detrimental consequences for mitochondrial and ultimately cellular homeostasis and is 

associated with several human diseases. Thus, mitochondrial homeostasis is controlled by 

several additional protective quality control mechanisms, including the mitochondrial 

unfolded protein response (UPR
mt

) and mitophagy (Chen and Chan, 2004; Youle and van der 

Bliek, 2012; van der Bliek et al., 2013; Kornmann, 2014). How these quality control 

mechanisms are coordinated with mitochondrial dynamics is not fully understood. Recently, 
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disruption of mitochondrial dynamics has been shown to induce UPR
mt

 (Kim and Sieburth, 

2018; Zhang et al., 2018; Rolland et al., 2019; Haeussler et al., 2020). UPR
mt

 has been 

studied extensively in the past decade using genome-wide RNAi screens in C. elegans 

(Haynes et al., 2007; Runkel et al., 2013; Bennett et al., 2014; Liu et al., 2014; Rolland et al., 

2019). Upon mitochondrial stress and the concomitant decrease in mitochondrial membrane 

potential, the master regulator of UPR
mt

, ‘activating transcription factor associated with stress 

1’ (ATFS-1
ATF4,5

), instead of being imported into mitochondria, translocates from the cytosol 

to the nucleus, where it activates a broad transcriptional program (Haynes et al., 2010; 

Nargund et al., 2012; Rolland et al., 2019). UPR
mt

 activation leads to the expression of a large 

set of cytoprotective genes including genes encoding chaperones (e.g. hsp-6
mtHSP70 

and hsp-

60
HSDP1

, whose transcription is commonly used to monitor UPR
mt

 activation (Yoneda et al., 

2004)) or proteases, and has been shown to promote mitochondrial biogenesis and coordinate 

cellular metabolism (Nargund et al., 2012; Rauthan et al., 2013; Liu et al., 2014; Ranji et al., 

2014; Nargund et al., 2015; Oks et al., 2018; Haeussler et al., 2020). (All genes that are 

specifically up- or downregulated upon induction of UPR
mt

 are referred to as UPR
mt

 

effectors.) Moreover, UPR
mt

 has been shown to act in a cell non-autonomous way, and once 

activated in a certain tissue can result in a systemic response (Durieux et al., 2011; Shao et al., 

2016; Kim and Sieburth, 2018; Zhang et al., 2018; Kim and Sieburth, 2020). 

In this study, we performed a genome-wide RNAi screen to identify regulators of UPR
mt

 in 

fzo-1(tm1133) mutants and identified 299 suppressors and 86 enhancers. We analyzed this 

dataset using bioinformatic tools, such as GO enrichment analysis, gene network analysis and 

analysis of transcription factor binding sites in promotors of candidate genes. Furthermore, we 

determined the specificities of the candidates identified with respect to their ability to 

modulate UPR
mt

 using secondary screens. Finally, we identified the C. elegans ortholog of the 

mammalian genes Miga1 and Miga2, which have been implicated in mitochondrial fusion, 
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and demonstrate that the loss of the C. elegans ortholog leads to mitochondrial fragmentation 

and the induction of UPR
mt

. 
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METHODS 

General C. elegans methods and strains 

C. elegans strains were cultured as previously described (Brenner, 1974). Bristol N2 was used 

as the wild-type strain. All experiments were carried out at 20°C and all strains were 

maintained at 20°C. The following alleles and transgenes were used: LGI: spg-7(ad2249) 

(Zubovych et al., 2010); LGII: fzo-1(tm1133) (National BioResource Project); eat-3(ad426) 

(Kanazawa et al., 2008); LGIV: drp-1(tm1108) (National BioResource Project); bcSi9 (Phsp-

6::gfp::unc-54 3’UTR) (Haeussler et al., 2020); LGV: miga-1(tm3621) (National BioResource 

Project). Additionally, the following multi-copy integrated transgenes were used: zcIs9 (Phsp-

60::gfp::unc-54 3’UTR), zcIs13 (Phsp-6::gfp::unc-54 3’UTR) (Yoneda et al., 2004); bcIs78 

(Pmyo-3::gfpmt) (Rolland et al., 2013). 

 

RNA-mediated interference 

RNAi by feeding was performed using the updated ‘Ahringer’ RNAi library (Kamath and 

Ahringer, 2003), which covers around ~87% of the currently annotated C. elegans protein 

coding genes. For the primary and secondary screens with the multi-copy zcIs13 transgene in 

the fzo-1(tm1133), drp-1(tm1108), eat-3(ad426) or spg-7(ad2249) background, RNAi clones 

were cultured overnight in 100 µL of LB containing carbenicillin (100 μg/mL) in a 96 well 

plate format at 37°C and 200 rpm. 10 µL of each RNAi culture was used to seed one well of a 

24 well RNAi plate containing 0.25% Lactose (w/v) as described previously (Rolland et al., 

2019). The plates were incubated at 20°C in the dark. 24 hours later, 3 L4 larvae of all strains 

carrying the fzo-1(tm1133) and spg-7(ad2249) allele, and 2 L4 larvae of drp-1(tm1108) were 

transferred to each well of the RNAi plates. The F1 generation was scored by eye for 

fluorescence intensity of the Phsp-6 mtHSP70gfp reporter after 4-12 days and compared to worms 

of the respective genotype on the negative control sorb-1(RNAi). 
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For double-RNAi experiments (Figure S1), RNAi clones were cultured as described above but 

experiments were conducted in three independent experiments using RNAi plates containing 

6 mM IPTG. rps-1(RNAi) was diluted 1:1 with either empty vector RNAi (L4440) or kgb-

1(RNAi). 

 

Screening procedure and sequencing of RNAi-clones 

For the primary screen, all RNAi clones of the library were tested once. Bacterial RNAi 

clones that enhanced or suppressed the Phsp-6 mtHSP70gfp reporter were picked from the wells 

and inoculated in 100 µL of LB containing carbenicillin (100 μg/mL) in a 96 well plate 

format and cultured overnight at 37°C and 200 rpm. Glycerol stocks of these overnight 

cultures were prepared the following day by adding 100 µL of LB containing 30% glycerol 

and frozen at -80°C. After all RNAi clones of the library were tested, the 657 identified 

candidates were re-tested at least three times in duplicates for verification of the observed 

phenotype. The RNAi clones that reproduced the suppression or enhancement phenotype at 

least three out of six times were considered as verified candidates. 

The 385 verified RNAi clones were sequenced. For this, colony PCRs were performed 

directly from the glycerol stocks using the primers L4440F and L4440R. To remove excessive 

primers and nucleotides, PCR products were treated with ExoSAP-IT™ (Applied Biosystems, 

Cat.no. 78200.200.UL) according to manufacturer’s protocol. After PCR clean-up, samples 

were sent for sequencing using L4440F primer. 

L4440 F 5’-TGGATAACCGTATTACCGCC-3’ 

L4440 R 5’-GTTTTCCCAGTCACGACGTT-3’ 

According to our sequencing results, seven of the RNAi clones covered two genes. These are 

indicated in column B (‘Sequence’) in Table S1. These RNAi clones were assigned to the GO 
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group of the gene, which was predominantly covered by our sequencing result and all 

subsequent analysis were carried out using this gene. 

Subsequently, the verified and sequenced clones were rescreened in technical duplicates in 

three independent experiments in the secondary screens in drp-1(tm1108), eat-3(ad426) and 

spg-7(ad2249) mutant backgrounds.  

 

Identification of human orthologs 

Human orthologs and OMIM data (Amberger et al., 2018) were extracted from wormbase.org 

using https://intermine.wormbase.org (Harris et al., 2019). Human orthologs were then 

manually verified using ‘alliancegenome.org’ (The Alliance of Genome Resources, 2019), 

‘orthodb.org’ (Kriventseva et al., 2018), ‘ensembl.org’ (Hunt et al., 2018) and ‘uniprot.org’ 

(Consortium, 2018).  

 

Prediction of mitochondrial localization and mitochondrial targeting sequences 

First, https://intermine.wormbase.org (Harris et al., 2019) was used to identify all candidate 

genes, which are related to any mitochondrial processes/pathways. To that end, we extracted 

all 698 genes currently associated with at least one of the 404 GO-terms containing 

‘mitochond’ and checked how many of our 385 candidate genes are among them. 

Additionally, we used the online platform ‘MitoProt’ (https://ihg.gsf.de/ihg/mitoprot.html) 

(Claros and Vincens, 1996) for computational prediction of mitochondrial targeting 

sequences. Proteins for which the value of a mitochondrial targeting sequence was ≥0.5 in this 

analysis were predicted to be mitochondrial. 

 

Gene ontology enrichment analysis using DAVID 
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In search of enriched gene ontology terms, we used the DAVID tool (version 6.8 (Huang et 

al., 2008, 2009)) and ran the list of candidates against all genes of the C. elegans genome as a 

background list. Using an EASE score from the modified fisher-exact test, the clustering 

algorithm groups genes based on their association in GO categories and assigns a significance 

value to the group (Huang et al., 2007). The clustered groups were then plotted using 

modified functions from the GO plot package (R version 1.0.2 (Walter et al., 2015)). 

 

Transcription factor enrichment analysis 

We searched for enriched transcription factors using the tool g:Profiler (a tool for functional 

enrichment analysis using over-representation (Raudvere et al., 2019)). The two input lists 

(suppressors and enhancers of fzo-1(tm1133)-induced UPR
mt

) with WBGene-IDs of the 

identified candidate genes were used to search in the Transfac database (annotations: 

TRANSFAC Release 2019.1 classes: v2 (Knüppel et al., 1994; Matys et al., 2006)). 

 

Construction of gene networks of FZO-1 and MFN1/2, and the UPR
mt

 

The C. elegans interactomes were compiled for FZO-1 or all 16 genes that are currently 

associated with the GO-term ‘mitochondrial unfolded protein response’ (GO:0034514) from 

scientific literature (Durinck et al., 2009; Simonis et al., 2009) and databases such as mentha 

(Calderone et al., 2013), BioGRID3.5 (Oughtred et al., 2018), IntAct (Orchard et al., 2014) 

and STRING (Szklarczyk et al., 2018) (STRING was only used to build the FZOome). The 

human orthologs of those genes were identified and were searched as well. Whenever 

possible, the interaction partners were converted back to C. elegans genes using biomaRt 

(Durinck et al., 2009) and available scientific literature (Shaye and Greenwald, 2011; Kim et 

al., 2018). The complete list of interactions was uploaded to cytoscape (v.3.7.2 (Shannon et 
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al., 2003)) and a network was calculated, highlighting both enhancers and suppressors from 

the screening results. 

 

Image acquisition, processing and analysis 

For double-RNAi experiments (Figure S1), 10-20 fzo-1(tm1133) mutants carrying bcSi9 (Phsp-

6 mtHSP70gfp) were immobilized with M9 buffer containing 10 mM levamisole on 2% agarose 

pads and imaged using a Nikon SMZ18 dissecting microscope and Nikon-Elements software. 

For each mutant in Figure S2, 10-20 animals were immobilized with M9 buffer containing 

150 mM sodium azide on 2% agarose pads and imaged using a Leica GFP dissecting 

microscope (M205 FA) and Leica Application Suite software (3.2.0.9652). 

For the analysis of mitochondrial morphology a strain carrying bcIs78 (Pmyo-3::gfp
mt

) was 

imaged using a Zeiss Axioskop 2 with a 63x objective and MetaMorph software (Molecular 

Devices). Subsequently, mitochondrial morphology was assessed using the deep learning 

algorithm MitoSegNet (Fischer et al., 2020). 
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RESULTS & DISCUSSION 

Genome-wide RNAi screen for suppressors and enhancers of fzo-1(tm1133)-induced 

UPR
mt 

identifies highly conserved set of genes with relevance to human health 

The disruption of mitochondrial dynamics in C. elegans induces the mitochondrial unfolded 

protein response (UPR
mt

) (Kim and Sieburth, 2018; Zhang et al., 2018; Rolland et al., 2019; 

Haeussler et al., 2020). To identify genes affecting mitochondrial homeostasis in animals with 

defects in mitochondrial dynamics, we used a loss-of-function mutation of fzo-1
MFN1,2

, 

tm1133, (National BioResource Project) to induce the UPR
mt

 reporter Phsp-6 mtHSP70gfp (zcIs13) 

and screened the C. elegans genome for modifiers. To that end, we used RNA-mediated 

interference (RNAi) and targeted ~87% of the currently annotated protein coding genes 

(Kamath and Ahringer, 2003) (Figure 1A). The moderate induction of the Phsp-6 mtHSP70gfp 

reporter in the fzo-1(tm1133) background allowed the identification of both suppressors and 

enhancers of
 
the response. Using a protocol in which the F1 generation is scored for Phsp-6 

mtHSP70gfp expression levels in the fourth larval stage of development (L4), we initially 

identified 657 candidate genes of which 385 reproduced. Of the 385 candidates identified, 299 

act as suppressors upon knock-down and 86 as enhancers (Figure 1B and Table S1). In 

addition, upon knock-down, many candidates result in synthetic slow growth and/or reduced 

fertility (indicated in the ‘Overview’ sheet in Table S1). In order to assess whether the 86 

identified enhancers are specific to the fzo-1(tm1133) background or if their depletion induces 

UPR
mt

 also in the absence of mitochondrial stress, we knocked them down in a wild-type 

background and tested for induction of the Phsp-6 mtHSP70gfp reporter. All except three genes 

(copd-1
ARCN1

, F25H9.6
PPCDC

, metl-17
METTL17

) induce Phsp-6 mtHSP70gfp expression when 

knocked-down in wild-type animals, suggesting that the induction of UPR
mt

 by depletion of 

these candidates is independent of the loss of fzo-1. (Candidates that  encode mitochondrial 
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proteins and that induce UPR
mt

 in a wild-type background upon knock-down were included in 

a recent publication, which reported the systematic identification of mitochondrial inducers of 

UPR
mt

 (Rolland et al., 2019)).  

 

Among the 299 suppressors, only 25 (8%) have previously been found to suppress UPR
mt

 

induced by other means upon knock-down (Haynes et al., 2007; Runkel et al., 2013; Liu et 

al., 2014). Similarly, among the 86 enhancers, only 15 (17%) have previously been shown to 

induce UPR
mt

 upon knock-down (indicated ‘Previously identified’ in the ‘Overview’ sheet of 

Table S1). This may be due to different genetic backgrounds and to differences in RNAi-

protocols. Moreover, false negatives in RNAi screens have been estimated to vary between 

10% and 30%, even if the same protocol is used by the same laboratory (Simmer et al., 2003).  

Using ‘alliancegenome.org’ (The Alliance of Genome Resources, 2019), ‘orthodb.org’ 

(Kriventseva et al., 2018), ‘ensembl.org’ (Hunt et al., 2018), ‘uniprot.org’ (Consortium, 2018) 

and ‘wormbase.org’ (Harris et al., 2019) databases, we found that approximately 90% of the 

suppressors and enhancers (348) have at least one ortholog in humans (indicated ‘Human 

ortholog’ in the ‘Overview’ sheet of Table S1). For comparison, the overall conservation of 

genes from C. elegans to humans is only about 41% (Shaye and Greenwald, 2011; Kim et al., 

2018). Moreover, we found that the orthologs of 36% (126) of the conserved candidates have 

previously been associated with human disease and are listed in the ‘Online Mendelian 

Inheritance in Man’ database (Amberger et al., 2018) (indicated ‘OMIM’ in the ‘Overview’ 

and ‘OMIM’ sheet of Table S1). In summary, we identified a set of predominantly conserved 

genes, many of them relevant to human health, which when knocked-down affect 

mitochondrial homeostasis in mutants with defects in mitochondrial fusion. 
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Genes with functions in development, receptor-mediated endocytosis and metabolism 

modulate UPR
mt

 signaling 

In order to obtain an overview of the type of processes that affect fzo-1(tm1133)-induced 

UPR
mt

, we analyzed the gene ontology (GO) terms of all 385 candidates, sorted them into 

‘functional groups’ (Figure 1B) and performed a clustered gene enrichment analysis using 

DAVID (Huang et al., 2008, 2009) (Figure 2 and Table S2). (Thirty-one suppressors and 

enhancers could not be assigned to functional groups since these genes are uncharacterized in 

C. elegans and/or lack orthologs in humans. For this reason, they were assigned to the 

functional group ‘uncharacterized’ (Figure 1B)). 

In the clustered gene enrichment analysis, we found that the majority of both suppressors and 

enhancers are associated with at least one of the following GO-terms: ‘nematode larval 

development’, ‘embryo development ending in birth or egg hatching’ or ‘reproduction’ (Table 

S2). It has been shown that reducing the functions of some genes encoding components of the 

ETC (e.g. cox-5B(RNAi)) in specific tissues and at specific times during development can lead 

to both systemic activation of UPR
mt

 and longevity (Dillin et al., 2002; Rea et al., 2007; 

Durieux et al., 2011). This indicates that the activity levels of mitochondria in an individual 

animal are ‘set’ at a specific developmental stage and, once set, are maintained throughout 

development and adult life. Our results demonstrate that disrupting development compromises 

this process, thereby affecting an animal’s ability to cope with mitochondrial stress and to 

respond to UPR
mt

 activation, which is expected to indirectly affect processes such as its 

lifespan. In support of this notion, we found that approximately 20% of the suppressors carry 

the GO-term ‘determination of adult lifespan’ (Table S2).  

Among the suppressors, the GO-term ‘receptor-mediated endocytosis’ is enriched (Figure 2A 

and Table S2). It contains many genes with roles in vesicular trafficking and vesicle budding. 

Genes required for vesicular trafficking have been shown to affect mitochondrial morphology 
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and homeostasis when inactivated, and it has been proposed that this is the result of altered 

contact sites between organelles and altered lipid transfer into mitochondria (Altmann and 

Westermann, 2005). Furthermore, we recently demonstrated that approximately half of the 

candidates in this GO-category are negative regulators of autophagy. Upon knock-down, these 

genes suppress fzo-1(tm1133)-induced UPR
mt

 most probably by inducing autophagy thereby 

causing changes in lipid metabolism (Haeussler et al., 2020). Moreover, many cellular 

signaling pathways originate at the plasma membrane and, thus, are dependent on endocytosis 

(Sorkin and von Zastrow, 2009; Di Fiore and von Zastrow, 2014). Therefore, we speculate 

that depletion of the genes associated with the GO-term ‘receptor mediated endocytosis’ may 

either cause changes in lipid metabolism thereby suppressing UPR
mt

 or disrupt cell non-

autonomous UPR
mt

 signaling.  

The functional group ‘ribosome biogenesis’ contains 78 (26%) of the suppressors (Figure 1B) 

and includes both small- and large ribosomal subunits, as well as proteins with roles in the 

maturation or transport of ribosomal subunits and rRNAs. Accordingly, in all three GO-

domains (Biological Process, Cellular Compartment, Molecular Function), we found that 

several GO-terms related to the ribosome were significantly enriched (Figure 2A and Table 

S2). (The GO-term ‘apoptotic process’ also contains many ribosomal subunits leading to its 

enrichment in our analysis.) 

Moreover, we assigned a substantial part of the suppressors to the groups ‘RNA processing’ 

(38), ‘transcription’ (35) and ‘translation’ (27) (Figure 1B). Hence, we found five GO-terms 

related to translation-, two to transcription- and one to RNA-related processes to be enriched 

in a statistically significant manner in the GO enrichment analysis (Figure 2A and Table S2). 

These results raise the question whether knock-down of the candidates involved in cytosolic 

translation specifically suppresses UPR
mt

 or simply reduces the expression of the Phsp-6 

mtHSP70gfp reporter. A previous study also identified many genes related to ribosome 
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biogenesis and cytosolic translation in a screen for suppressors of paraquat-induced UPR
mt

 

(Runkel et al., 2013). Runkel and colleagues reported reduced levels of two other reporters 

(Phsp-16.2 CRYABgfp, Phsp-4 HSPA5gfp) upon attenuation of cytosolic translation by rpl-36(RNAi). In 

contrast, they showed that Pgst-4 HPGDSgfp was slightly hyperactivated (Runkel et al., 2013), as 

previously shown for this reporter upon knock-down of several other genes related to 

cytosolic translation (Melo and Ruvkun, 2012). We recently showed that knock-down of the 

cytosolic tRNA synthetase hars-1
HARS1

, which we found to suppress Phsp-6 mtHSP70gfp 

expression in fzo-1(tm1133) and which presumably also compromises cytosolic translation, 

results in reduced expression of a control reporter that is unrelated to other stress responses, 

Pges-1 GES2gfp (Haeussler et al., 2020). Taken together, we cannot exclude the possibility that 

the knock-down of candidates related to the functional groups of transcription, RNA 

processing, ribosome biogenesis and translation may, at least to some extent, interfere with 

reporter expression per se. In addition, Runkel and colleagues showed that depletion of KGB-

1
MAPK10

, a JNK-like MAP-kinase mediating cellular surveillance-activated detoxification and 

defenses (cSADDs) in C. elegans (Melo and Ruvkun, 2012), derepresses UPR
mt

 induced by 

paraquat upon attenuation of cytosolic translation (Runkel et al., 2013). Therefore, we tested 

whether knock-down of kgb-1 also relieves the induction of UPR
mt

 upon knock-down of rps-1 

and found that Phsp-6 mtHSP70gfp expression was partially restored under these conditions 

(Figure S1). Thus, attenuation of cytosolic translation may activate cSADDs through KGB-

1
MAPK10

, thereby preventing UPR
mt

 induction in fzo-1(tm1133) mutants. 

Among the enhancers, we assigned most candidates to the functional groups ‘metabolism’ and 

‘mitochondrial ribosome biogenesis’ as well as ‘cellular trafficking’, ‘mitochondrial 

translation’ and ‘ETC assembly’ (Figure 1B). Accordingly, GO analysis of the enhancers 

shows that the cellular compartments ‘mitochondrion’, ‘mitochondrial small ribosomal 

subunit’, ‘mitochondrial large ribosomal subunit’, ‘mitochondrial inner membrane’, 
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‘mitochondrial matrix’ and ‘ribosome’ are enriched (Figure 2B and Table S2). In addition, the 

biological processes ‘translation’ (which also includes ‘mitochondrial translation’), 

‘tricarboxylic acid cycle’ and ‘receptor-mediated endocytosis’ are enriched as is the molecular 

function ‘structural constituent of ribosome’ (Figure 2B and Table S2). Among the enhancers 

carrying the GO-term ‘receptor-mediated endocytosis’, we identified many subunits of the 

mitochondrial ribosome and genes required for mitochondrial translation, which are most 

likely misannotated and therefore led to enrichment of this GO-term. In summary, we showed 

that disrupting mitochondrial translation and metabolism induces UPR
mt

 in fzo-1(tm1133). 

Disruption of these processes has also previously been shown to induce UPR
mt

 in wild type 

(Durieux et al., 2011; Houtkooper et al., 2013). Therefore, we conclude that reducing 

mitochondrial function induces UPR
mt

 independently of the genetic background. 

In summary, the GO enrichment analysis revealed that depletion of the majority of candidates 

in our dataset may modulate UPR
mt

 due to their role in development. Furthermore, we 

propose that the suppressors with roles in endocytosis modulate UPR
mt

 signaling indirectly 

and speculate that cellular signaling and/or alterations in organellar contact sites may 

influence mitochondrial metabolism and hence, UPR
mt

 signaling. Finally, we find disruption 

of mitochondrial metabolism and translation to robustly enhance UPR
mt

 signaling in fzo-

1(tm1133). 

  

Mitochondrial fitness balances cellular homeostasis 

Next, we determined which fraction of the identified enhancers and suppressors encode 

proteins that have a mitochondrial function or localize to mitochondria. We extracted all 698 

genes that are associated with at least one of the 404 GO-terms containing ‘mitochond’ using 

the ‘WormMine’ database (https://intermine.wormbase.org) (Harris et al., 2019), and then 

determined how many of our candidate genes are associated with any of these GO-terms. 
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Using this approach, we identified 11 suppressors and 59 enhancers that encode proteins that 

localize to mitochondria or play a role in mitochondrial metabolism and dynamics, 

respectively (indicated ‘GO mitochond’ in ‘Overview’ and ‘Mitochondrial’ sheet of Table 

S1). Next, we used the online platform ‘MitoProt’ (https://ihg.gsf.de/ihg/mitoprot.html) 

(Claros and Vincens, 1996) for computational prediction of mitochondrial targeting sequences 

and identified an additional 5 suppressors and 14 enhancers that are predicted to localize to 

mitochondria (cut-off value ≥ 0.5) (indicated ‘MitoProt prediction’ in ‘Mitochondrial’ sheet 

of Table S1). Third, by literature searches, we found that the orthologs of 3 enhancers localize 

to mitochondria (Shafqat et al., 2003; Spaan et al., 2005; Cambier et al., 2012). In summary, 

76 out of 86 (88%) enhancers and 16 out of 299 (5%) suppressors encode proteins that have a 

mitochondrial function. This suggests that only few processes exist outside of mitochondria 

that can perturb mitochondrial homeostasis when compromised. Conversely, many processes 

and mechanisms exist outside of mitochondria that can compensate for mitochondrial 

dysfunction, thereby ensuring mitochondrial and consequently cellular homeostasis. 

Among the 10 ‘non-mitochondrial’ enhancers of UPR
mt

 are three genes (F29B9.8, 

Y61A9LA.11, C25H3.10) with yet unknown functions, which lack orthologs in other systems. 

ORC-1
ORC1

 is a component of the origin recognition complex and plays a role in DNA 

replication (Gavin et al., 1995; Ohta et al., 2003; Tatsumi et al., 2003). The disruption of 

DNA replication or cell cycle progression has previously not been reported to lead to UPR
mt

 

induction. We speculate that disruption of DNA replication leads to developmental defects 

and therefore induces UPR
mt

. F25H9.6
PPCDC

 is the C. elegans ortholog of 

phosphopantothenoylcysteine decarboxylase, an enzyme required for biosynthesis of 

coenzyme A (CoA) (Daugherty et al., 2002). Thus, knock-down of F25H9.6
PPCDC

 may 

interfere with critical biosynthetic and metabolic pathways (including the TCA cycle) and 

therefore enhance UPR
mt

. NHR-209
HNF4A,G

 is orthologous to Hepatocyte Nuclear Factor 4α 
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(HNF4A) and belongs to the family of nuclear hormone receptors, a class of cofactor and 

ligand-inducible transcription factors (TFs) that regulate various cellular processes, including 

metabolism, development and homeostasis (Aranda and Pascual, 2001; Bolotin et al., 2010). 

Interestingly, long-chain fatty acids are ligands of HNF4A and, depending on their chain 

length and degree of saturation, activate or repress the transcriptional activity of HNF4A 

(Hertz et al., 1998; Dhe-Paganon et al., 2002; Wisely et al., 2002; Duda et al., 2004). 

Furthermore, HNF4α activity has been shown to be required for ß-oxidation of fatty acids 

both in mice and Drosophila melanogaster (Palanker et al., 2009; Chen et al., 2020). Thus, 

NHR-209
HNF4A,G

 may have a similar role in C. elegans and act as a metabolic sensor, which 

when deactivated, enhances UPR
mt

 in fzo-1(tm1133). Moreover, we identified cpna-3
CPNE5,8,9

, 

an ortholog of mammalian copine family members, a class of calcium dependent phospholipid 

binding proteins with roles in intracellular signaling and membrane trafficking (Creutz et al., 

1998; Tomsig et al., 2003; Tomsig et al., 2004; Ramsey et al., 2008). Previously, another 

gene of the copine family, gem-4
CPNE8

, has been shown to be upregulated upon UPR
mt

 

activation (Nargund et al., 2012). Therefore, we speculate that signaling via copine family 

members may be important for UPR
mt

 regulation. Another non-mitochondrial enhancer, copd-

1
ARCN1

, encodes a protein orthologous to the delta subunit of coatomer in S. cerevisiae and 

humans (RET2 and ARCN1, respectively), which is involved in the formation of coat protein 

complex I (COPI) vesicles. COPI vesicles play a central role in the secretory pathway and are 

required for the retrieval of lipids and proteins from the Golgi apparatus and the subsequent 

retrograde transport of these lipids and proteins to the ER (Lee et al., 2004; Beck et al., 2009). 

Furthermore, the trafficking to their final destination of most non-mitochondrial and non-

peroxisomal transmembrane proteins, as well as proteins required for the release of 

neurotransmitters, such as SNARE proteins, is dependent on COPI-mediated transport (Beck 

et al., 2009). Thus, disruption of the secretory pathway affects many intra- and intercellular 

signaling pathways, including the Ras and TOR signaling pathways, as well as signaling via 
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G-protein-coupled receptors (GPCRs) and receptor tyrosine kinases (Farhan and Rabouille, 

2011). Moreover, disruption of the retrograde transport system has been shown to lead to 

erroneous secretion of ER resident proteins (e.g. ER chaperones) and, consequently, to the 

activation of UPR in the ER (UPR
ER

) (Aguilera-Romero  et al., 2008; Izumi et al., 2016). 

Therefore, we speculate that the enhancement of UPR
mt

 induction in fzo-1(tm1133) animals 

upon copd-1(RNAi) may be due to alterations in one of the above-mentioned signaling 

pathways. This notion is supported by the finding that phospholipase C (PLC-1
PLCE1

), a 

GPCR associated enzyme, is among the non-mitochondrial enhancers, as well as srh-40 

(serpentine receptor class H), which is predicted to encode a GPCR. Taken together, we 

identified many genes among the ‘non-mitochondrial’ enhancers, which regulate intra- and 

intercellular signaling cascades, and we speculate that these may play a role in signaling of 

UPR
mt

, both in a cell autonomous and cell non-autonomous fashion. In addition, we identified 

‘non-mitochondrial’ enhancers that directly regulate metabolic homeostasis and, thus, 

enhance UPR
mt

 in fzo-1(tm1133) mutants. 

Among the 16 identified ‘mitochondrial suppressors’ of UPR
mt

 are candidates, such as TFG-

1
TFG

 and GBF-1
GBF1

, that encode proteins that have been shown to associate with 

mitochondria but also other organelles. GBF-1
GBF1

 is a guanine nucleotide exchange factor 

(GEF) for the small GTPase ARF-1.2
ARF1

, which in yeast recruits ARF-1.2
ARF1,3

 to ER-

mitochondria contact sites (Ackema et al., 2014). Depletion of GBF-1
GBF1

 leads to altered 

ARF-1.2
ARF1,3

 localization and changes in mitochondrial morphology both in yeast and C. 

elegans and this appears to be independent of their roles in endosomal transport (Ackema et 

al., 2014). Ackema and colleagues observed an increase in mitochondrial connectivity upon 

GBF-1
GBF1

 depletion, similar to that observed upon knock-down of miro-1
MIRO1

 and vdac-

1
VDAC

, both of which encode proteins that also localize to ER-mitochondria contact sites. 

However, the alterations in mitochondrial morphology of FZO-1
MFN1,2

 depleted animals were 
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shown to be epistatic to the changes in mitochondrial morphology observed upon gbf-1(RNAi) 

and arf-1.2(RNAi). Therefore, the suppression of UPR
mt

 observed in fzo-1(tm1133) animals 

upon gbf-1(RNAi) may not be due to a rescue of the mitochondrial morphology defect but 

rather be the consequence of changes in ER-mitochondria contact sites. This highlights the 

importance of organellar contact sites for the maintenance of mitochondrial and consequently 

cellular homeostasis. Furthermore, we identified TFG-1
TFG

, a component of the secretory 

pathway via COPII vesicles (Witte et al., 2011), as a suppressor of fzo-1(tm1133)-induced 

UPR
mt

. COPII vesicles transport newly synthesized proteins and lipids from specialized ER 

zones, so called ER exit sites (ERES), to the Golgi apparatus (Budnik and Stephens, 2009; 

Kurokawa and Nakano, 2018). Similar to what we propose for copd-1(RNAi) (see above), we 

speculate that disruption of the secretory pathway may lead to alterations in cellular signaling, 

ER-mitochondria contact sites and, depending on the context, either to suppression or 

enhancement of UPR
mt

. Taken together, we demonstrate that the perturbation of primarily 

mitochondrial processes leads to the enhancement of UPR
mt

. However, the identification of 

non-mitochondrial enhancers demonstrates that disruption of processes taking place outside of 

mitochondria can also compromise mitochondrial function and activate or enhance UPR
mt

. 

Alterations in cellular signaling pathways and/or organellar contact sites may play a role in 

this respect. Moreover, we find that the majority of suppressors of fzo-1(tm1133)-induced 

UPR
mt

 are non-mitochondrial, suggesting that many cellular pathways outside of 

mitochondria exist that can compensate for mitochondrial stress and, hence, ensure 

mitochondrial homeostasis. In line with this notion, we identified a few ‘mitochondrial 

suppressors’, most of which are involved in the maintenance of contacts to other organelles, 

especially the ER. 
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Defects in mitochondrial fusion and fission are suppressed and enhanced by the same 

pathways 

In order to define the specificity of the 299 suppressors and 86 enhancers, we carried out 

secondary screens. To identify general modifiers of UPR
mt

, we rescreened the candidates in 

the background of spg-7(ad2249), which induces UPR
mt

 (Figure S2). spg-7
AFG3L2

 encodes a 

mitochondrial matrix AAA-protease, which induces UPR
mt

 when depleted and which is 

commonly used as a positive control for UPR
mt

 activation (Yoneda et al., 2004; Haynes et al., 

2007; Haynes et al., 2010). To identify genes in our dataset that specifically modify UPR
mt

 

induced by defects in mitochondrial membrane fusion, we rescreened all candidates in the 

eat-3(ad426) background, in which IMM fusion is blocked. Finally, to identify genes that 

may modulate UPR
mt

 induced by defects in mitochondrial dynamics, we rescreened all 

candidates in the drp-1(tm1108) background, in which mitochondrial fission is blocked. In the 

drp-1(tm1108) background, of the 385 candidates, 291 suppress and 59 enhance. In the eat-

3(ad426) background, 242 suppress and, 49 enhance. Finally, in the spg-7(ad2249) 

background, 181 suppress and 54 enhance (Table S1). (Of note, there is an inverse correlation 

between the level of Phsp-6 mtHSP70gfp expression in the above-mentioned mutant background 

and the number of candidates that reproduce. Hence, the level of reporter expression may 

correlate with the number of false negatives in a given dataset of the secondary screens, for 

both suppressors and enhancers.) Since more suppressors reproduced in drp-1(tm1108) and 

eat-3(ad426) compared to spg-7(ad2249), we conclude that defects in mitochondrial 

dynamics, to some extent, are suppressed or enhanced by the same pathways. Moreover, the 

suppressors of fzo-1(tm1133)-induced UPR
mt

 that were sorted into the functional groups 

‘ribosome biogenesis’, ‘RNA processing’ and ‘translation’, reproduced comparably well in all 

secondary screens. Thus, attenuation of cytosolic translation may either be a general 

mechanism to suppress UPR
mt

 or, as discussed above, interfere with reporter expression. 
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Among the enhancers, genes that sorted into the functional groups ‘ETC assembly factors’, 

‘mitochondrial ribosome biogenesis’ and ‘mitochondrial translation’ showed the highest 

overlap among the secondary screens (Table S1), which demonstrates that disruption of 

mitochondrial translation robustly enhances UPR
mt

, independent of genetic background. 

While we did not identify any suppressors that act exclusively in the fzo-1(tm1133) 

background, we found six enhancers (slc-25A26
SLC25A26

, frh-1
FXN

, sdha-1
SDHA

, sucg-1
SUCLG2

, 

metl-17
METTL17

, K03B4.1) that did not reproduce in any of the secondary screens. Among 

these, metl-17
METTL17

, a methyltransferase required for mitochondrial ribosome assembly and 

mitochondrial translation in mice (Shi et al., 2019), also did not induce UPR
mt

 expression in 

wild type and, thus, specifically enhances fzo-1(tm1133)-induced UPR
mt

. 

Twelve candidates that suppressed UPR
mt

 in the primary screen using fzo-1(tm1133), 

enhanced UPR
mt

 in one or more of the secondary screens. Conversely, ten enhancers of fzo-

1(tm1133)-induced UPR
mt

 suppress UPR
mt

 in at least one of the mutants in the secondary 

screens (listed in the ‘Opposing UPR
mt

 phenotypes’ sheet in Table S1). For example, knock-

down of icd-1
βNAC

 suppresses Phsp-6 mtHSP70gfp in all mitochondrial dynamics-related 

backgrounds, but enhances spg-7(ad22449)-induced UPR
mt

. Knock-down of icd-1
βNAC

 in C. 

elegans has been reported to induce UPR
ER

 in wild-type embryos (Arsenovic et al., 2012). 

Furthermore, icd-1
βNAC

 has been described as a cytosolic stress sensor, which in the absence 

of stress associates with ribosomes to promote cytosolic translation, and which acts as a 

chaperone in the cytosol upon heat stress (Kirstein-Miles et al., 2013). We recently showed 

that icd-1
βNAC

 is a negative regulator of autophagy and that increased autophagic flux fuels 

mitochondria with certain triacylglycerols, thereby suppressing UPR
mt

 in fzo-1(tm1133) and 

drp-1(tm1108) mutants (Haeussler et al., 2020). Thus, blocking mitochondrial dynamics may 

reduce the flux of lipids into mitochondria, which can be compensated for by the induction of 

autophagy and we speculate that this mechanism may also apply to eat-3(ad426) mutants. 
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Conversely, we speculate that defects in mitochondrial homeostasis induced by a point 

mutation in spg-7, may exert stress to the cytosol and that this is normally compensated for by 

factors, such as icd-1
βNAC

. Knocking-down icd-1
βNAC

 may therefore increase cytosolic stress, 

which in turn enhances UPR
mt

 in spg-7(ad2249) mutants. Taking the candidates into account 

that have opposing UPR
mt

 phenotypes in the secondary screens, 95% of the suppressors and 

66% of the enhancers reproduce in drp-1(tm1108), while 79% of the suppressors and 57% of 

the enhancers reproduce in eat-3(ad426). We found the lowest overlap of candidate genes in 

spg-7(ad2249) mutants, with 59% of the suppressors and 60% of the enhancers reproducing 

in this background. Taken together, the results of the secondary screens show that there are 

candidates that, when depleted, act to influence UPR
mt

 signaling in general whereas others are 

specific to a certain type of UPR
mt

 induction, such as the disruption of mitochondrial 

dynamics.  

 

Transcription factor enrichment analysis identifies factors with roles in development, 

metabolism and oxidative stress response 

Next, we identified TF binding sites in the promoters of our candidates using ChIP-seq 

datasets from the modENCODE project (Celniker et al., 2009) in order to test for enrichment 

of TFs that bind to these sites. To that end, we used g:Profiler, a tool for functional 

enrichment analysis using over-representation (Raudvere et al., 2019), which utilizes 

TRANSFAC resources (Knüppel et al., 1994; Matys et al., 2006). Using this approach, we 

found 15 TFs to be enriched in a statistically significant manner (Figure 3 and Table S3). Ten 

of these TFs only bind promotor regions of suppressors (7) or enhancers (3) (‘suppressor- or 

enhancer specific’). The remaining five TFs bind to promotor regions of both suppressors and 

enhancers (‘shared’). The ‘shared’ TFs have previously been implicated in cell fate 

determination or developmental timing. Five out of seven ‘suppressor specific’ TFs have been 
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shown to exclusively control developmental processes. The remaining two ‘suppressor-

specific’ TFs are ELT-3
GATA3,4

 and HLH-11
TFAP4

, which have been shown to play a role in 

development, ageing and the response to oxidative stress (Gilleard et al., 1999; Budovskaya et 

al., 2008; Hu et al., 2017) and to act as a dietary sensor that regulates metabolic gene 

expression, respectively (Soo-Ung et al., 2009; Watson et al., 2013). 

Three TFs (SKN-1
NFE2,NFE2L1,2,3

, HLH-29 and VAB-7
EVX2

) were identified to be ‘enhancer-

specific’ (Figure 3 and Table S3). VAB-7
EVX2

 and HLH-29 are both required for certain 

aspects of development (Ahringer, 1996; Esmaeili et al., 2002; Pocock et al., 2004; Neves and 

Priess, 2005; McMiller et al., 2007; Grove et al., 2009) and HLH-29 has additional roles in 

fatty acid metabolism and energy homeostasis (McMiller et al., 2007; Quach et al., 2013). 

Furthermore, HLH-29 and SKN-1
NFE2,NFE2L1,2,3

 are regulators of the oxidative stress response 

(An and Blackwell, 2003; An et al., 2005; Inoue et al., 2005; Quach et al., 2013) and SKN-

1
NFE2,NFE2L1,2,3

 has previously been implicated in the UPR
mt

 pathway in C. elegans (Nargund 

et al., 2012; Nargund et al., 2015; Wu et al., 2018). In summary, we identified several TFs 

that bind to promotors of our candidate genes, which have previously been implicated in 

oxidative stress response, cellular metabolism and development in C. elegans. Interestingly, 

fzo-1(tm1133) mutants have previously been shown to be slightly sensitive to oxidative stress 

and have increased levels of carbonylated proteins, a measure for oxidative damage (Yasuda 

et al., 2011). Moreover, in isp-1(qm150) and clk-1(qm30) mutants, both of which have 

increased levels of reactive oxygen species (ROS) (Van Raamsdonk et al., 2010; Yang and 

Hekimi, 2010; Dues et al., 2017), UPR
mt

 activation has been shown to lead to ATFS-1
ATF4,5

-

dependent expression of genes required for detoxification of reactive oxygen species (Wu et 

al., 2018). This induction is orchestrated by ATFS-1
ATF4,5

 but may, to some extent, 

additionally be facilitated through activation of ELT-3
GATA3,4

 and HLH-29, as it has 

previously been shown for SKN-1
NFE2,NFE2L1,2,3

 (Nargund et al., 2012; Nargund et al., 2015; 
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Wu et al., 2018). The identification of many TFs controlling developmental processes is in 

agreement with our finding that GO-terms related to developmental processes are enriched 

among our dataset. This again highlights that the activity levels of critical cellular processes 

and responses in somatic tissues appear to be set during development. Finally, we previously 

found that the induction of autophagy suppresses UPR
mt

 in fzo-1(tm1133) mutants most likely 

through increased metabolic activity (Haeussler et al., 2020). In our analysis, we identified 

two TFs, which regulate energy homeostasis and metabolic gene expression. This supports the 

notion that UPR
mt

 in fzo-1(tm1133) mutants acts to compensate for metabolic defects. In 

summary, we identified several TFs with roles in development, oxidative stress response and 

metabolism that previously have not been connected to UPR
mt

 signaling. These TFs may be 

specific to UPR
mt

 in fzo-1(tm1133) but some may generally be involved in UPR
mt

 signaling. 

 

Interactome of UPR
mt 

reveals potential new regulators 

In order to determine whether any of the suppressors or enhancers that we identified have 

previously been shown to interact with fzo-1
MFN1,2

 or its mammalian orthologs MFN1 or 

MFN2, we built a gene network containing all known interactions of fzo-1
MFN1,2

 and its 

mammalian orthologs MFN1 and MFN2. Using the interaction databases ‘string-db.org’, 

‘IntAct’, ‘BioGRID3.5’, ‘Genemania’, ‘CCSB’ and ‘mentha’ (Warde-Farley et al., 2010; 

Calderone et al., 2013; Orchard et al., 2014; Rolland et al., 2014; Oughtred et al., 2018; 

Szklarczyk et al., 2018), we included genetic and physical interactions (but not predicted 

interactions or co-expression data) and uploaded them to the cytoscape software (Shannon et 

al., 2003) to calculate a complete interaction network. The resulting network contains 38 

genes and 67 interactions (Figure S3). None of the 10 interactors of fzo-1
MFN1,2

 in C. elegans 

was identified in our screen (turquois dots in Figure S3). Next, we manually annotated the C. 

elegans orthologs of 24 interactors of Mfn1 or Mfn2 in mammals (except FAF2, MAVS, 
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TCHP, SLC25A38 for which we did not find any orthologs in C. elegans, indicated in dark 

blue in Figure S3) but again did not find any overlap between the gene network and our 

screen dataset (orange dots in Figure S3). In summary, in our screen for modifiers of fzo-

1(tm1133)-induced UPR
mt

, we did not find any previously known interactors of fzo-1
MFN1,2

. 

These could either have been missed in the RNAi screen, be essential in the fzo-1(tm1133) 

background or not have a function in mitochondrial homeostasis and, hence, UPR
mt

 signaling. 

Similar to the approach described above, we used the 16 C. elegans genes currently associated 

with the GO-term ‘mitochondrial unfolded protein response’ (GO:0034514) (referred to as 

‘input genes’), identified their human orthologs and included known physical and genetic 

interactors from the interaction databases ‘BioGRID3.5’, ‘IntAct’ and ‘mentha’ (Calderone et 

al., 2013; Orchard et al., 2014; Oughtred et al., 2018) to calculate an interaction network 

containing 2603 genes and 4655 interactions (Figures S4, Figure S5, Figure S6). In this 

‘UPR
mt

ome’, we identified 129 genes (including the 16 ‘input genes’), 36 of which are 

enhancers and 77 of which are suppressors of fzo-1(tm1133)-induced UPR
mt

, with a total of 

213 interactions (Figure 4 and Table S4). For the ‘input gene’ atfs-1
ATF4,5

 , we found five 

interactors (gtf-2F2
GTF2F2

, lin-54
LIN54

, rps-6
RPS6

, spr-2
SET

, tbp-1
TBP

) that suppress fzo-

1(tm1133)-induced UPR
mt

 and the gene products of four of these localize to the nucleus 

(Sopta et al., 1989; Lichtsteiner and Tjian, 1993; Wen et al., 2000; Thomas et al., 2003; 

Harrison et al., 2006; Tabuchi et al., 2011). These could potentially facilitate or directly be 

involved in the transcription of UPR
mt

 effectors upon activation of the UPR
mt

 response. 

Moreover, for the ‘input gene’ ubl-5
UBL5

, we found four interactors that overlap with our 

dataset of suppressors, three of which are splicing factors (pqbp-1.2
PQBP1

, sfa-1
SF1

, snr-

3
SNRPD1

) (Thomas et al., 1988; Krämer, 1992; Arning et al., 1996; Imafuku et al., 1998; 

Kambach et al., 1999; Mazroui et al., 1999; Waragai et al., 1999). Of note, HUB1, the 

ortholog of UBL-5
UBL5

 in Saccharomyces pombe, has been shown to interact with 
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components of the spliceosome. Furthermore, the loss of HUB1 results in reduced splicing 

efficiency of a variety of mRNAs (Wilkinson et al., 2004). However, in C. elegans, ubl-

5(RNAi) has previously been reported to not cause splicing defects (Haynes et al., 2007). 

Thus, the identification of the splicing factor genes pqbp-1.2
PQBP1

, sfa-1
SF1

, snr-3
SNRPD1

 in our 

dataset presents an interesting potential link between UPR
mt

 activation and pre-mRNA 

splicing via UBL-5
UBL5

. In addition, we identified taf-4
TAF4

, which encodes an associated 

factor of transcription factor TFIID, to interact with the ‘input gene’ sphk-1
SPHK1,2

 and to 

suppress fzo-1(tm1133)-induced UPR
mt

 upon knock-down. taf-4
TAF4

 has previously been 

shown to be required for life span extension in isp-1(qm150), clk-1(qm30) and tpk-1(qm162) 

mutants, (Walker et al., 2001; Walker et al., 2004; Khan et al., 2013). Finally, we identified 

many genes interacting with the ‘input gene’ bar-1
JUP,CTNNB1

, which has previously been 

shown to be involved in cell non-autonomous propagation of UPR
mt

 signaling (Zhang et al., 

2018). Among these interactors is phospholipase C (plc-1
PLCE

), which enhances fzo-

1(tm1133)-induced UPR
mt

 and plays a central role in the inositol triphosphate (IP3) signaling 

pathway (Clandinin et al., 1998; Kariya et al., 2004). In summary, we identified several genes 

in our dataset using gene network analysis that have previously not been identified to play a 

role in UPR
mt

 signaling in C. elegans. The genes with roles in pre-mRNA splicing and IP3 

signaling may be particularly interesting in this respect. Furthermore, we propose that these 

genes may directly influence UPR
mt

 signaling through interactions with known players of the 

UPR
mt

 pathway.  

 

Interactome analysis reveals involvement of IP3 signaling pathway in UPR
mt

 regulation 

in fzo-1(tm1133) 

In our gene network analysis, we identified plc-1
PLCE

, which encodes phospholipase C, as an 

interactor of bar-1
β-catenin

 (Byrne et al., 2007). Interestingly, we and others found several genes 
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that play a role in inositol triphosphate (IP3) signaling (Figure 5) (Liu et al., 2014). The IP3 

pathway is well known for its role in the regulation of intracellular calcium levels and 

transmits signals from the extracellular space via GPCRs and second messengers to the ER 

(Berridge, 2009). Thus, this signaling pathway may have a role in cell non-autonomous 

propagation of UPR
mt

. We identified the enzyme CDGS-1
CDS1

, which is essential for the 

production of phosphatidylinositol (PI) (Wu et al., 1995; Vance, 1998), and EFR-3
EFR3B

, 

which targets PI-4-kinase (PI4K) to the plasma membrane (Nakatsu et al., 2012). 

Furthermore, we identified the sole type I PIP kinase in C. elegans, PPK-1
PIP5K1A

 (Weinkove 

et al., 2008), which phosphorylates PI4P to form PI(4,5)P2 (Ishihara et al., 1996; Loijens and 

Anderson, 1996). PLC-1
PLCE

 is activated via GPCR and hydrolyzes PI(4,5)P2 to generate the 

second messengers DAG and IP3, known regulators of several signal transduction pathways 

(Clandinin et al., 1998; Kariya et al., 2004). One mechanism that is dependent on IP3-

signaling is the release of calcium from the ER (Clandinin et al., 1998; Kariya et al., 2004; 

Kovacevic et al., 2013). Interestingly, the IP3 receptor at the ER, ITR-1
ITPR1

, has previously 

also been identified as a suppressor of antimycin-induced UPR
mt

 (Liu et al., 2014). Thus, it is 

tempting to speculate that altering IP3 signaling influences cellular calcium signaling in fzo-

1(tm1133), thereby affecting mitochondrial homeostasis and consequently UPR
mt

 signaling. 

Moreover, we propose that the effect on UPR
mt

 signaling may be indirect since we previously 

showed that knock-down of mitochondrial genes controlling calcium homeostasis does not 

induce UPR
mt

 in wild type (Rolland et al., 2019). Furthermore, we propose that fzo-(tm1133) 

mutants may be more prone to changes in IP3 signaling and, consequently, calcium signaling 

since these mutants may have altered ER-mitochondria contact sites, as shown in tissue 

culture cells lacking the mammalian ortholog MFN2 (de Brito and Scorrano, 2008; Cosson et 

al., 2012; Filadi et al., 2015, 2016; Leal et al., 2016; Naon et al., 2016; Basso et al., 2018). 
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miga-1(tm3621) mutants show mitochondrial fragmentation and induce UPR
mt

 

One of the enhancers we identified is K01D12.6, which is conserved from C. elegans to 

humans. The D. melanogaster ortholog of this gene has previously been identified in a screen 

for genes, which when knocked-down induce photoreceptor cell neurodegeneration. 

Furthermore, it was shown to be required for the maintenance of mitochondrial morphology 

and hence, named ‘Mitoguardin’ (Zhang et al., 2016). Moreover, the two orthologs of this 

gene in mammals (MIGA1, MIGA2) were found to regulate mitochondrial fusion and to be 

critical for mitochondrial function in human tissue culture cells and in mice (Liu et al., 2016; 

Zhang et al., 2016; Liu et al., 2017). Therefore, we named K01D12.6 ‘mitoguardin homolog-

1 (miga-1)’. We verified UPR
mt

 induction using the Phsp-60 HSPD1gfp (zcIs9) reporter in the 

miga-1(tm3621) mutant background (Figure 6A). On average, the induction of Phsp-60 HSPD1gfp 

is higher in miga-1(tm3621) animals compared to fzo-1(tm1133) animals. Moreover, we tested 

the effects of miga-1(tm3621) on steady-state mitochondrial morphology, which, in C. 

elegans, is carried out using a mitochondrial matrix-targeted GFP under a promoter that 

expresses the transgene in body wall muscle cells (Pmyo-3 MYHgfp
mt

 ) (Labrousse et al., 1999; 

Ichishita et al., 2008; Rolland et al., 2013). While wild-type worms show a tubular network of 

mitochondria, miga-1(tm3621) mutants have a ‘fragmented mitochondria’ phenotype, which 

is less severe than that caused by the loss of fzo-1 (Figure 6B). In addition, we analyzed 

mitochondrial morphology using the MitoSegNet algorithm (Fischer et al., 2020) and 

confirmed the ‘fragmented mitochondria’ phenotype of miga-1(tm3621) mutants. 

Specifically, for most of the shape descriptors analyzed, miga-1(tm3621) mutants were 

statistically different from wild type but distinct from fzo-1(tm1133) mutants (Figure 6C). In 

summary and in line with previous observations in other organisms, we see drastic changes in 

mitochondrial morphology in miga-1(tm3621) mutants, which are accompanied by the 

induction of UPR
mt

. 
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Data Availability 

Strains are available upon request. Figure S1 contains data about involvement of the cSADDs 

response in suppression of UPRmt upon attenuation of cytosolic translation. Figure S2 shows different 

mutants inducing the UPRmt reporter. Figure S3 shows the FZOome. Figure S4 contains a subset of the 

UPRmtome coming from direct interactions in C. elegans. Figure S5 depicts a subset of the UPRmtome 

coming from interactions of human orthologs. Figure S6 shows the complete UPRmtome. Table S1 

contains all suppressors and enhancers of fzo-1(tm1133)-induced UPRmt identified in a genome-wide 

RNAi screen in C. elegans. Table S2 contains the gene ontology enrichment analysis of suppressors 

and enhancers of fzo-1(tm1133)-induced UPRmt. Table S3 contains transcription factor enrichment 

analysis of suppressors and enhancers of fzo-1(tm1133)-induced UPR
mt

. Table S4 contains the results 

of the interactome analysis (UPRmtome). The authors affirm that all data necessary for confirming the 

conclusions of the article are present within the article, figures, and tables. The supplemental material 

is available at figshare: https://doi.org/10.25387/g3.14262425. 
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FIGURE LEGENDS 

Figure 1: Overview of genome-wide RNAi screen for suppressors and enhancers of fzo-

1(tm1133)-induced UPR
mt

. (A) Schematic overview of the RNAi screening procedure using 

the RNAi feeding library (Kamath and Ahringer, 2003) in fzo-1(tm1133) mutants that express 

the UPR
mt

 reporter Phsp-6 mtHSP70gfp (zcIs13) . The moderate induction of the reporter in the 

fzo-1(tm1133) background allowed screening for both suppressors and enhancers of
 
the 

response. (B) The screen resulted in identification of 299 suppressors and 86 enhancers of fzo-

1(tm1133)-induced UPR
mt

, which were sorted into categories that we defined according to 

their function. ETC: electron transport chain. 

 

Figure 2: Gene ontology enrichment analysis of suppressors and enhancers of fzo-

1(tm1133)-induced UPR
mt

 using DAVID. (A) Results of the clustered gene ontology 

enrichment analysis of suppressors of fzo-1(tm1133)-induced UPR
mt

 using DAVID (Huang et 

al., 2008, 2009). (B) Results of the clustered gene ontology enrichment analysis of enhancers 

of fzo-1(tm1133)-induced UPR
mt

 using DAVID. (A) & (B) Statistically significant (P >0.05) 

enriched GO-terms, except the nematode specific GO-terms, of fzo-1(tm1133)-induced UPR
mt

 

are depicted. Circle size correlates with the number of genes associated with a specific GO-

term. 

 

Figure 3: Enrichment analysis of transcription factors binding to promotors of 

candidate genes that suppress or enhance fzo-1(tm1133)-induced UPR
mt

. (A) 

Transcription factor (TF) binding sites were identified using the modENCODE database 

(Celniker et al., 2009) and enrichment analysis was performed separately for suppressors and 

enhancers of fzo-1(tm1133)-induced UPR
mt

 using g:profiler (Knüppel et al., 1994; Raudvere 
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et al., 2019). TFs that are statistically enriched among the candidate genes are shown. 

References: [1] (Grove et al., 2009), [2] (Hallam et al., 2000), [3] (Horn et al., 2014), [4] 

(Huang et al., 2014), [5] (Armakola and Ruvkun, 2019), [6] (Ceol and Horvitz, 2001), [7] 

(Garbe et al., 2004), [8] (Chi and Reinke, 2006), [9] (Miller et al., 2016), [10] (Baugh et al., 

2005), [11] (Maduro et al., 2005), [12] (Lei et al., 2009), [13] (Schwarz et al., 2012), [14] 

(Gilleard et al., 1999), [15] (Budovskaya et al., 2008), [16] (Hu et al., 2017), [17] (Soo-Ung 

et al., 2009), [18] (Watson et al., 2013), [19] (An and Blackwell, 2003), [20] (An et al., 

2005), [21] (Inoue et al., 2005), [22] (Nargund et al., 2012), [23] (Nargund et al., 2015), [24] 

(Kim and Sieburth, 2018), [25] (Wu et al., 2018) [26] (Neves and Priess, 2005), [27] 

(McMiller et al., 2007), [28] (Quach et al., 2013), [29] (Ahringer, 1996), [30] (Esmaeili et al., 

2002), [31] (Pocock et al., 2004), [32] (Jacquemin et al., 2003), [33] (Furuno et al., 2008), 

[34] (Klimova et al., 2015), [35] (Ambros and Horvitz, 1984), [36] (Chang et al., 2003), [37] 

(Uchida et al., 2003), [38] (Etchberger et al., 2007), [39] (Rahe and Hobert, 2019), [40] 

(Huang et al., 1995), [41] (Wilanowski et al., 2002), [42] (Venkatesan et al., 2003), [43] 

(Pradel et al., 2007), [44] (Kim et al., 2015). (B) Graphical representation of enriched TFs and 

the cellular processes they control. ‘Suppressor specific’ TFs are indicated in blue, ‘enhancer 

specific’ TFs in orange and ‘shared’ TFs in green. The number of candidate genes controlled 

by a certain group of TFs is indicated in each circle below the functional group name. 

 

Figure 4: Analysis of a gene network – the UPR
mt

ome. Interactors of all genes that are 

currently associated with the GO-term ‘mitochondrial unfolded protein response’ and of their 

human orthologs were identified to build the complete UPR
mt

ome using ‘IntAct’, 

‘BioGRID3.5’ and ‘mentha’ databases (Calderone et al., 2013; Orchard et al., 2014; Oughtred 

et al., 2018). 129 genes are depicted, which overlapped between the complete UPR
mt

ome and 

the candidate list of our screen in fzo-1(tm1133) mutants. Turquois circles: ‘input genes’ 
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currently associated with GO-term ‘mitochondrial unfolded protein response’, red 

arrowheads: suppressors of fzo-1(tm1133)-induced UPR
mt

 that overlap with the complete 

UPR
mt

ome, green triangles: enhancers of fzo-1(tm1133)-induced UPR
mt

 that overlap with the 

complete UPR
mt

ome. Interactions of two genes that were identified for C. elegans genes are 

indicated with green lines, interactions that were identified in human orthologs are indicated 

with blue lines.  

 

Figure 5: Candidate genes with roles in IP3 signaling. We identified four genes in our 

dataset that either play a direct role in the IP3 signaling pathway or are crucial for the 

synthesis of phosphatidylinositol-4,5-biphosphate (PI(4,5)P2). The IP3 receptor has previously 

been identified (Liu et al., 2014). Suppressors are shown in yellow boxes, enhancers in green 

boxes. PA phosphatidic acid, CDP-DAG cytidine biphosphate-diacylglycerol, PI 

phosphatidylinositol, PI(4)P phosphatidylinositol-4-phosphate, IP3 inositol triphosphate, ER 

endoplasmic reticulum, GPCR G-protein coupled receptor. 

 

Figure 6: miga-1(tm3621) mutants induce UPR
mt

 and have altered mitochondrial 

morphology. (A) Fluorescence images of L4 larvae expressing Phsp-60 mtHSPD1gfp (zcIs9) in 

wild type (+/+), miga-1(tm3621) or fzo-1(tm1133) mutants. Scale bar: 200 µm (B) 

Fluorescence images of L4 larvae expressing mitochondrial targeted gfp (Pmyo-3gfp
mt

) in wild 

type (+/+), miga-1(tm3621) or fzo-1(tm1133) mutants. Representative images are shown. 

Scale bar: 10 µm. (C) Fluorescence images of L4 larvae expressing mitochondrial targeted 

gfp (Pmyo-3gfp
mt

) in wild type (+/+), miga-1(tm3621) or fzo-1(tm1133) mutants were quantified 

using the MitoSegNet algorithm (Fischer et al., 2020). ns: not significant, *P<0.05, **P<0.01, 

***P<0.001, ****P<0.0001 using Kruskal-Wallis test with Dunn’s post hoc test for multiple 

comparison among all three genotypes, n ≥ 15. px: pixel. 
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