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A Hierarchical Attractor Network Model of
perceptual versus intentional decision updates
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Changes of Mind are a striking example of our ability to flexibly reverse decisions and change

our own actions. Previous studies largely focused on Changes of Mind in decisions about

perceptual information. Here we report reversals of decisions that require integrating multiple

classes of information: 1) Perceptual evidence, 2) higher-order, voluntary intentions, and 3)

motor costs. In an adapted version of the random-dot motion task, participants moved to a

target that matched both the external (exogenous) evidence about dot-motion direction and

a preceding internally-generated (endogenous) intention about which colour to paint the

dots. Movement trajectories revealed whether and when participants changed their mind

about the dot-motion direction, or additionally changed their mind about which colour to

choose. Our results show that decision reversals about colour intentions are less frequent in

participants with stronger intentions (Exp. 1) and when motor costs of intention pursuit are

lower (Exp. 2). We further show that these findings can be explained by a hierarchical,

multimodal Attractor Network Model that continuously integrates higher-order voluntary

intentions with perceptual evidence and motor costs. Our model thus provides a unifying

framework in which voluntary actions emerge from a dynamic combination of internal

action tendencies and external environmental factors, each of which can be subject to

Change of Mind.
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People frequently change their minds about what to do. We
may plan to go to the gym but end up watching TV, or we
may cancel dinner plans after a tiring day at work. Initial

action decisions are followed by continuous evaluation processes
during which additional information is acquired and integrated
with the initial intention. This updating can result in Changes of
Mind (CoM), i.e., reversals of an initial decision. Most studies
investigating CoM focussed on action choices driven by external,
perceptual information1–10. For example, in the random-dot
motion task, participants judge the direction of moving dots by
reaching for a target that corresponds to the observed dot motion.
When the perceptual evidence is noisy, movement trajectories
occasionally indicate a CoM, e.g., the response is initiated towards
the left, but is then redirected and ends in the right target (e.g.,
ref. 1). This suggests that decision making continues after action
initiation, allowing for updates of action decisions during ongoing
movement execution.

However, few studies have considered CoM in the context of
voluntary actions. Voluntary actions may be defined as actions in
which people endogenously (internally) generate an intention
regarding which of several actions to make11. Yet, in many cases,
voluntary intentions need to be combined with external sensory
inputs providing contextual information about how to act12,13.
For example, if you want to go to a Japanese restaurant for dinner
(endogenous intention), you will need to find the restaurant on a
map (perceptual information) in order to know which way to go
(motor action). We propose that Changes of Mind can occur with
regard to both the perceptual and intentional components of
voluntary action. This suggests two dissociable types of CoM. In
the first type of CoM, decisions about external evidence may
change, as in the random-dot motion task. For example, if you get
lost on your way to the restaurant, you may ask someone for
directions, thus obtaining new external information on how to
act. In the second type of CoM, the action intention, or goal, may
itself change—a process sometimes called goal-shifting14. For
example, if you realise the Japanese restaurant is far away, you
may decide to go to a nearby Italian restaurant instead.

Hence, voluntary actions rely on dynamic integration of mul-
tiple (internal and external) decision components, each of which
can be subject to Change of Mind. In addition, voluntary actions
are characterised by a hierarchal structure in which voluntary
intentions are represented on a hierarchically higher level than
sensorimotor information. Pacherie’s hierarchical theory of
intention15 differentiates between higher-order distal intentions
and lower-level motor intentions. Distal intentions specify the
overarching goal of an action, i.e., what to do (e.g., going to a
Japanese vs. Italian restaurant), whereas motor intentions specify
how to implement the abstract intention into a specific motor
action (e.g., turning left vs. right to get to the chosen restaurant).
Flexible updates of lower-level motor intentions have been stu-
died extensively. In double-step paradigms, for example, aimed
movements must be rapidly updated based on changes in target
locations16–18. By contrast, little is known about how and when
people decide to pursue or abandon distal action goals that are
generated internally instead of being instructed by external sti-
muli (but see ref. 13 for a recent study on goal reversals). This is
surprising given that the decision to pursue vs. abandon one’s
own goals (e.g., to quit smoking) can have wide-ranging personal
and social consequences19.

In the current study, we tested the hypotheses that CoM about
voluntary intentions depend on the strength of the initial inten-
tion and the cost associated with intention pursuit. For instance, a
person should be more likely to pursue the intention of having
sushi, the stronger that intention is17,20,21. Intentional strength in
turn might depend on confidence regarding an internal decision22

or choice values23, e.g., a strong preference for sushi over pizza.

Yet, few goals are worth pursuing at any cost. Therefore, time-
and effort-related movement costs might induce Changes of
Intention, or at least make them more likely to occur24,25. In
addition, we hypothesised that CoM may not only be accom-
panied by changes in objective action characteristics (e.g., chan-
ging movement trajectories), but may also shape our Sense of
Agency (SoA)—the subjective experience of exerting control over
actions and their outcomes15,26. Specifically, changing an ongoing
movement could reduce SoA by making actions feel
dysfluent27,28. Whether changing an endogenous intention would
affect SoA is less clear. Previous research suggests that strong
distal action goals boost SoA29,30. Consequently, deviations from
initial intentions might decrease SoA31. In contrast, reconstruc-
tive theories view conscious intentions as retrospective
confabulations32. People appear to experience actions as inten-
tional, even when they were not part of an initial plan, or are not
even their own33,34. On this view, reversals of endogenous
intentions should not affect SoA.

Finally, we propose a new computational framework for CoM
in voluntary action that successfully captured our experimental
findings. Previous computational accounts of CoM have either
used bounded accumulator models1,7,8 or Attractor Network
Models2,3,5,6,35. However, the existing models have been limited
to decisions that are purely perception, and also unidimensional,
in that they only rely on a single source of (sensory) evidence. By
contrast, here we extend previous work by introducing a multi-
modal, hierarchically organised Attractor Network Model that
continuously integrates multiple factors relevant to decision-
making, namely: (1) higher-order, internal intentions, (2) external
perceptual evidence, and (3) motor costs. Although some pre-
vious studies have considered how costs or rewards affect per-
ceptual decisions, these studies treated reward/cost information as
a static decision variable that simply biases choices or shifts
decision thresholds across trials8,36,37. By contrast, in our model,
each source of information provides independent information
and needs to be integrated continuously and dynamically during
the evolving decision process. Finally, our model accounts for the
hierarchical organisation of voluntary actions15,38,39 by combin-
ing an Attractor Network approach with noise reduction
mechanisms derived from Hierarchical Gaussian Filters40,41.
Specifically, we propose that higher-order intentions exert top-
down noise control over lower-level sensorimotor processes. In
line with this, previous studies have proposed that neural noise
reduction may be a neurobiological marker of endogenous action
control42. More broadly, others have proposed that higher-order
brain areas representing abstract information (e.g., goals) may
exert top-down control over lower-level sensorimotor areas by
gating noisy inputs43,44. Thus, our model provides a
neurobiologically-plausible framework through which higher-
order endogenous intentions and lower-level sensorimotor
information are flexibly and dynamically integrated over time,
which can lead to different types of (intentional vs.
perceptual) CoM.

Results
In the current study, participants performed an adapted version
of the random-dot motion task in which they had to integrate the
perceptual decision about dot-motion direction (left/right) with
an endogenous choice about which colour to paint the dots. Based
on previous studies1–8, we expected to observe perceptual CoM
regarding the dot-motion direction. Importantly, the current
paradigm allowed us to differentiate between trials with mere
“perceptual Changes of Mind” (CoMP) from trials with both a
“perceptual+ intentional Change of Mind” (CoMP+I). In two
experiments, we tested the hypotheses that CoM regarding the
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initial intention is more frequent when intentions are weak (Exp.
1) and when the motor cost of intention pursuit is high (Exp. 2).
In addition, in both experiments, subjective reports of Sense of
Agency were obtained to investigate the effect of CoM on the
phenomenology of action. Finally, a hierarchical Attractor Net-
work Model is introduced that captures the dynamic decision
processes underlying CoM in voluntary action.

Experiment 1: Behavioural task. Participants performed an
adapted version of the random-dot motion task (Fig. 1). At the
beginning of each trial, they freely chose between two colours
(e.g., blue vs. green). Participants were instructed to say the
chosen colour in their head, and on 10% of trials, were prompted
to say their choice out loud. A random-dot motion stimulus and 4
targets, 2 of each colour, then appeared in pseudo-random
locations. Targets appeared either 700–1000 ms before the dot-
motion onset (early targets; 50% of trials), or at the same time as
the dot-motion stimulus (late targets; 50% of trials). Using a
touch pad, participants had to move the cursor to the target that
matched both the perceived dot-motion direction and their
endogenous colour choice (e.g., left-blue target). They were
instructed to respond as fast and accurately as possible. The dot-
motion stimulus disappeared as soon as participants initiated a
response. However, due to sensorimotor delays, we expected to
observe Changes of Mind about the dot-motion direction on
some trials1–4,7,8. Once participants reached the target, 25/50/75/
100% of dots were presented in the colour of the chosen target
and participants were then asked how much control they
experienced over the colour of the dots (SoA judgement) or what
percentage of dots was painted in the colour they chose (%
outcome estimate).

In the main condition of interest—test trials (70%)—targets of
the same colour were presented in diagonally opposite locations
(e.g., blue in top-right and bottom-left corner). Furthermore,
motion coherence was low in test trials, with the precise value
being determined individually prior to the experiment to ensure
~60% perceptual choice accuracy (see “Methods”). By contrast,

easy trials (10%) served as a baseline condition with high motion
coherence (80% coherence). As expected, perceptual choice
accuracy was significantly worse in test trials (M= 56.6%,
SD= 9.1%) than in easy trials (M= 93.4%, SD= 7.0%, t(16)=
20.13, p < 0.001, d= 4.88) and RTs were significantly slower in
test (M= 570.5 ms, SD= 58.3 ms) than in easy trials (M= 534.2
ms, SD= 41.5 ms, t(16)= 3.99, p= 0.001, d= 0.97).

Changes of Mind. Next, we checked whether difficulty of per-
ceptual decisions in test trials resulted in perceptual CoM. In
analogy to the original random-dot motion task, CoM was
defined as a decision reversal regarding the dot-motion direction
(e.g., initial response towards a target on the right followed by a
switch to a left target). As expected, such perceptual changes were
significantly more frequent in test (M= 7.64%, SD= 6.74%)
compared to easy trials (M= 1.28%, SD= 2.33%; b= 1.84, 95%
CI [1.19–2.63], OR= 6.27, χ2(1)= 45.69, p < 0.001). Further-
more, in line with previous findings (e.g., ref. 1), the majority of
CoM in test trials (M= 60.9%, SD= 16.5%, t(16)= 2.72, p=
0.015, d= 0.66) corrected an initial perceptual error (i.e., the
response would have been an error had no CoM occurred). This
suggests that perceptual CoM in our task was driven by con-
tinuous integration of sensory evidence after an initial response
had already been initiated.

More importantly, the current paradigm allowed us to
differentiate between trials in which difficult perceptual decisions
only resulted in (1) a “perceptual CoM” (CoMP) while the initial
colour intention was pursued (e.g., switch from right-blue to left-
blue target), or (2) a “perceptual+ intentional CoM” (CoMP+I)
that additionally involved a change with respect to the initial
intention (e.g., switch from right-blue to left-green target). Given
the diagonal target arrangement, intention pursuit (CoMP

without change of intention) was associated with longer move-
ment paths than switching to the neighbouring target of different
colour (CoMP+I). Hence, when participants changed their mind
about the dot-motion direction, they could save motor costs by
switching to the target that did not match their initial colour

Fig. 1 Behavioural task. Participants generated an endogenous colour intention (1) that had to be integrated with the sensory input of the dot-motion
stimulus (2). Responses were indicated by moving the cursor to the target that matched both the colour intention and dot-motion direction (3). Continuous
movement trajectories were measured during response execution allowing for online classification of perceptual Changes of Mind (CoMP) and
perceptual+ intentional Changes of Mind (CoMP+I). Once participants reached the target, 25/50/75/100% of the dots were painted in the colour of the
hit target (4). On some trials, participants were asked to provide Sense of Agency (SoA) judgements (5a) or to estimate the percentage of dots that
matched their initial colour intention (5b).
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choice. Supplementary Figure 1 shows single-trial movement
trajectories for CoMP and CoMP+I of an individual participant.
The average frequency of each type of CoM in test vs. easy trials is
shown in Fig. 2A.

In order to investigate the relative frequency of CoMP vs.
CoMP+I, only trials with CoM were included in a mixed-effects
logistic regression analysis with CoMP (0) vs. CoMP+I (1) as
outcome variable and trial condition (easy/test) as a fixed effect.
The effect of trial condition was not significant (b=−0.13, 95%
CI [−1.93 to 1.67], OR= 0.88, χ2(1)= 0.02, p= .890), suggesting
that perceptual uncertainty only affected whether or not a
perceptual CoM occurred, but did not affect whether participants
changed their mind about their colour intention. Interestingly, in
test trials, CoMP was more frequent (M= 5.9%, SD= 5.5%) than
CoMP+I (M= 1.7%, SD= 2.2%), as indicated by an intercept that
was significantly lower than 0 (b0=−1.56, 95% CI [−2.47 to
−0.89], OR= 0.2, z=−4.42, p < 0.001). Hence, when changing a
perceptual decision based on new sensory evidence, participants
pursued their colour intention more often than switching to the
target of different colour, despite the extra motor costs of
diagonal compared to horizontal movement adjustments. A
similar trend was observed in easy trials, although overall CoM
frequency was low in this condition and the intercept was not
significantly different from 0 (b0=−1.43, 95% CI [−3.30 to
0.43], OR= 0.24, z=−1.50, p= 0.132).

Did participants generate initial colour intentions? As men-
tioned above, in 90% of trials, participants were not asked to
verbalise their colour choice at trial start, and instead, colour
choices were inferred from movement trajectories (e.g., move-
ments initiated toward green target reflect colour choice of green).
This minimised demand characteristics that might discourage
participants from changing their initial colour choice when
having to say it out loud. Yet, it raises the question whether
participants indeed chose a colour at trial start (frame 1, Fig. 1),
or instead, delayed their decision to stimulus onset (frame 2,
Fig. 1). The fact that, overall, participants were reluctant to giving
up their colour intentions suggests that they assigned a relatively

high importance to colour choices in the task. In addition, we
included conflict trials (20%) to further investigate whether par-
ticipants indeed generated colour intentions at trial start, even on
trials where they did not have to verbalise their choice. In conflict
trials, motion coherence was as high as in easy trials (80%
coherence), but both targets of the same colour were on the same
side of the screen. Consequently, in roughly 50% of conflict trials,
there was a mismatch between intentional colour choice and dot-
motion direction (e.g., a participant had chosen blue, both blue
targets appeared on the right side, but the dots moved to the left).
In this case, participants were instructed to respond according to
the dot motion, and hence, move to a target that did not match
their own colour choice. If participants did indeed generate initial
colour intentions, colour-motion mismatches would induce
response conflict. Consequently, reaction times (RTs) and error
rates would, on average, be higher in conflict than easy trials even
though the perceptual decision was equally easy in both condi-
tions. These performance costs would be driven by trials in which
conflict occurred. However, the inference is based on mean per-
formance, and does not require explicitly identifying which spe-
cific trials involved conflict and which did not. Note that no
response costs would be observed if participants did not make
colour choices at trial start since, in that case, participants would
simply respond based on dot motion direction without any
conflict induced by colour choices.

We found that in conflict trials, RTs were indeed significantly
slower (M= 549.7 ms, SD= 45.8 ms) and perceptual choice
accuracy was descriptively lower (M= 90.5%, SD= 7.2%) than
in easy trials (RTs: M= 534.2 ms, SD= 41.5 ms, t(16)= 2.51,
p= 0.023, d= 0.61; accuracy: M= 94.1%, SD= 6.8%, t(16)=
2.11, p= 0.051, d= 0.51). These response costs were present even
in early-target trials (RT cost: MΔ= 29.7 ms, SDΔ= 32.7 ms,
t(16)= 3.74, p= 0.002, d= 0.91; accuracy cost: MΔ= 3.63%,
SDΔ= 7.27, t(16)= 2.06, p= 0.056, d= 0.50). This suggests that
response costs in conflict trials were not simply driven by
participants being surprised about the uncommon target config-
uration. Instead, participants seemed to generate initial colour
intentions, which on some conflict trials did not match the dot-
motion direction, hence inducing response costs.

Fig. 2 Changes of Mind (CoM) in Exp. 1 (n= 17 participants). A Percentage of trials classified as perceptual CoM (CoMP; blue) and perceptual+
intentional CoM (CoMP+I; green) in test and easy trials. B Percentage of conflict trials with diagonal (blue) and horizontal (green) movement corrections of
partial errors that were induced by mismatches between colour intentions and dot-motion direction. In both A and B, data are presented as mean values ± 1
SEM (**p < 0.001). Dots represent data points from individual participants. Statistical significance was obtained using likelihood ratio tests to compare
logistic mixed-effects regression models with vs. without the fixed effects of interest (see “Methods”). No correction for multiple comparisons was
performed since all comparisons are orthogonal and were planned prior to data collection. C Correlation across participants between RT costs in conflict
trials and frequency of CoMP+I (relative to overall percentage of all CoM), ρ(15)=−0.50, p= 0.043, two-tailed. Source data are provided as a Source
Data file.
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In addition to errors and slowing of RTs, movement
trajectories in conflict trials indicated that participants occasion-
ally initiated a response towards one target, but then adjusted the
movement to end in another target, similar to CoM in test/easy
trials (Fig. 2B). However, note that CoM in conflict trials were not
interpreted in the same way as CoM in test/easy trials, given the
differences in target configuration and instructions. Instead, in
conflict trials, movement adjustments presumably reflect partial
errors in colour-motion mismatch trials. That is, participants
initiated responses toward their chosen colour, but then corrected
themselves to respond according to the dot motion as instructed.
In line with this, we found that corrective movements in conflict
trials occurred significantly more often than perceptual CoM in
easy trials, despite dot-motion coherence being matched in both
conditions (b= 1.09, 95% CI [0.39–1.92], OR= 2.97, χ2(1)=
9.93, p= 0.002). This confirms that corrections in conflict trials
were not induced by perceptual noise, but instead, can be
attributed to conflict induced by mismatches between colour
intention and perceptual input.

Finally, in conflict trials, participants could correct ongoing
movements in two ways (Fig. 2B) by either switching to the
diagonally opposite target, or the horizontally neighbouring
target. A mixed-effects logistic regression showed that partici-
pants overall preferred horizontal over diagonal movement
corrections in conflict trials (b0= 1.74, 95% CI [0.97–3.24],
OR= 5.71, z= 3.46, p < 0.001). This suggests that participants
were sensitive to the higher motor costs of diagonal movement
corrections and preferred less costly horizontal corrections in
conflict trials. The fact that, in test trials, participants preferred
diagonal (CoMP) over horizontal (CoMP+I) movements showed
that most participants were willing to overcome these motor costs
to pursue their colour intentions when possible. However, the
frequency of CoMP relative to all CoM in test trials varied across
participants (M= 77.4%, SD= 22.1%). Thus, participants may
have differed in how much weight they assigned to the colour
choice relative to the perceptual task, and hence, how strong their
colour intentions were.

Effect of intentional strength on changes of intention. While
participants were instructed to generate colour intentions at trial
start, they were not explicitly told that they had to maintain their
initial colour choice throughout the trial. In particular, partici-
pants did not receive any instructions as to whether they should
stick with their initial colour intention when they changed their
mind about the dot-motion direction. Instead, in trials with
perceptual CoM, the decision between (a) switching to the other
target of the same colour or (b) switching to the nearby target of
different colour was endogenous. This enabled us to capture
spontaneous changes with regard to the initial intention. Fur-
thermore, the importance of pursuing colour choices was
ambiguous on purpose to allow us to capture inter-individual
differences in intentional strength—that is, the importance, or
weight, a given participant assigned to the colour choice relative
to the perceptual choice. For example, a participant who con-
sidered colour choices to have little task relevance, would generate
weaker intentions, and should be less likely to stick with an initial
colour choice when facing the higher cost of colour pursuit in
CoM trials.

We tested whether participants with stronger colour intentions
showed fewer changes of intention (CoMP+I) relative to purely
perceptual CoM (CoMP). Individuals’ average response costs in
conflict compared to easy trials served as an indicator of the
strength of colour intention, with higher response costs indicating
stronger intentions. Since only 9/17 participants made errors in
conflict trials, we focused on RT costs as an indicator of the

strength of colour intention. As predicted, we found that, across
participants, higher RT costs in conflict trials were indeed
associated with a lower frequency of CoMP+I out of all

CoM %CoMPþI
%CoMPþ%CoMPþI

� �
in test trials (Spearman’s ρ(15)=−0.50,

p= 0.043, 95% CI: [−0.07 to −0.76]; Fig. 2C). This suggests that
participants with stronger colour intentions (and thus higher
conflict costs) were less likely to change their intentions in test
trials.

Potential effect of target confusion. One potential alternative
interpretation of trials classified as CoMP+I needs to be addressed.
It is possible that participants switched to a target of different
colour because their initial movement was erroneously directed
towards a target that did not match their colour choice due to
difficulties in target detection. In that case, curved trajectories
would not represent a genuine change of the initial intention, but
rather a correction of an initial response selection error. However,
a significant number of CoMP+I was observed even in test trials
with early target onset in which participants had 700–1000 ms to
identify target-colour locations (M= 1.37%, SD= 1.85%, t(16)=
3.06, p= 0.008, d= 0.74), thus rendering it unlikely that these
CoMP+I were caused by target confusion. Moreover, participants
were rewarded based on perceptual choice only, and hence,
switching between horizontal targets merely based on colour
would result in a potential monetary loss. Instead, if target con-
fusion occurred, participants should switch to the target of dif-
ferent colour on the same side of the screen (rather than to the
horizontally neighbouring target). Importantly, these vertical
movement corrections were not classified as CoMP+I (see Section
“Vertical movement corrections” below). However, vertical
movement corrections were indeed observed on 3.24% of test
trials (SD= 2.56%) and occurred significantly more often in late-
than early-target onset test trials (b= 1.18, 95% CI [0.79–1.59],
OR= 3.25, χ2(1)= 38.76, p < 0.001). This suggests that, when
participants confused target colours due to difficulties in target
detection (e.g., due to late target onset), they switched to the
target of different colour that was on the same side of the screen.
By contrast, switches to the horizontally neighbouring target
(CoMP+I) presumably represent genuine decision reversals with
respect to the initial intention that were caused by a perceptual
CoM about the dot-motion direction, rather than target
confusion.

Vertical movement corrections. We had not initially predicted
any vertical movement corrections since our hypotheses focused
on CoM that were induced by noise in the random-dot motion
stimulus, which in our task involved only the left-right dimen-
sion. The fact that vertical movement corrections occurred more
often in late than early targets suggests that they may reflect a
type of lower-level motor CoM where movements were updated
after an initial response selection error caused by difficulty in
target selection. Alternatively, vertical movement corrections may
reflect true changes in the initial colour intention in the absence
of a perceptual CoM. While this is possible, it seems unlikely that
this is true for the majority of vertical movement corrections
given that 1) initial colour choices were not made under time
pressure, 2) participants’ colour intentions appeared to be strong
on average, and 3) vertical movement corrections incurred a cost
without increasing rewards (as opposed to CoMP+I, which
increases rewards by increasing perceptual accuracy). Moreover,
if vertical changes reflected real changes of colour intentions, one
would expect the frequency of these changes to be negatively
correlated with RT costs in conflict trials, similarly to the negative
correlation of CoMP+I with RT costs. That is, the stronger par-
ticipants’ colour intentions are, the higher their performance
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costs in conflict trials would be, and the less likely they should be
to change their mind about the initial colour intention. However,
as opposed to CoMP+I, we did not find any negative correlations
between individuals’ RT costs in conflict trials and the frequency
of vertical changes in test trials (Exp. 1: rS= 0.199, p= 0.445; Exp.
2: rS= 0.238, p= 0.374) nor in easy trials (Exp. 1: rS=−0.257,
p= 0.319; Exp. 2: rS= 0.359, p= 0.172). Thus, while it is possible
that some vertical changes reflected true changes of intention, we
do not have any evidence to suggest that this is true for the
majority of vertical movement corrections. Instead, we propose
that they largely reflect a lower-level motor CoM in which the
initial response was erroneously directed to a target that did not
correspond to participants’ colour intention.

Summary and discussion Exp. 1. In our paradigm, two types of
Changes of Mind in voluntary action were dissociated based on
movement trajectories: (1) “perceptual CoM” in which partici-
pants changed decisions about exogenous stimuli, requiring
sensorimotor updates while the initial endogenous intention was
maintained and (2) “perceptual+ intentional CoM” where
movement updates did not only reflect decision reversals about
exogenous stimuli, but additionally, a change of the initial
endogenous intention. Although the overall frequency of CoM
was relatively low, the observed 7.6% CoM in test trials is clearly
comparable with previous studies reporting 2–15% CoM in trials
with similar motion coherences1,4,7. Further, several areas of
cognitive theory, e.g., memory research, rely strongly on data
from infrequent errors—no doubt because errors are highly
informative about the processes generating performance45.
Finally, the frequency of CoM varied systematically across trial
conditions. Specifically, in line with previous studies on percep-
tual decision reversals (e.g., ref. 1), we found that CoM was more
frequent when sensory noise was high and when the initial
perceptual decision was erroneous. Crucially, we found that
the need to update an ongoing movement based on new
sensory information occasionally induced a change in the higher-
order goal intention regarding colour choice, suggesting that
sensorimotor reprogramming triggered a re-evaluation of the
initial goal itself.

Overall, the frequency of intention reversals was lower than
that of perceptual decision reversals, suggesting that, within the
context of the current task, the endogenous action goal occupied a
primary place in the informational hierarchy, relative to the
secondary place occupied by the sensory dot-motion stimulus.
However, we further showed that the degree of such prioritisation
of endogenous goals over sensory evidence varied across
participants. Specifically, the frequency of changes of intention
was inversely related to the strength of participants’ initial
intentions. That is, some participants generated stronger colour
intentions as indicated by a high performance cost under
endogenous-exogenous conflict. These participants were more
likely to pursue their initial intention when adjusting an ongoing
movement due to perceptual CoM. Inter-individual differences in
intentional strength reflected the importance, or weight, partici-
pants assigned to colour choices in the task, relative to the dot-
motion judgement. These differences in turn were presumably
caused by differences in demand characteristics based on
individuals’ interpretation of the instructions46, or the subjective
value participants assigned to the colours23, e.g., based on
preferences for certain colours. Note that our design did not allow
us to capture variability in intentional strength on a trial-by-trial
basis, but rather, the strength of the colour choices throughout
the task. However, intentions can vary in strength within people,
and it is likely that this would affect the likelihood of a person
changing an intention in a given situation17,47.

In a second experiment, we manipulated the trade-off between
intentions and their associated motor costs on a trial-by-trial
basis by varying target distances within participants. We
hypothesised that the frequency of intention reversals increases
when the cost of pursuing the initial intention is high. This would
provide more direct evidence that CoM regarding higher-order
intentions can be caused by motor costs associated with such
intentions over time. Furthermore, it would establish a means to
experimentally induce a higher frequency of CoM about
voluntary intentions.

Experiment 2: effect of motor costs on intention reversals. The
task was identical to Exp. 1 with the following exceptions (Fig. 3):
Target distance varied on a trial-by-trial basis within participants
in order to manipulate the relative motor cost of intention pursuit
after a perceptual CoM (Fig. 3A). Specifically, longer travel dis-
tances incur higher motor costs due to higher effort and/or longer
movement duration. In 50% of trials of each condition, the targets
of different colour were far (18°; i.e., far horizontal distance),
whereas in the other 50% of trials, the targets of different colour
were close (6°; i.e., close horizontal distance). To eliminate visual
differences in target detection, the distance of targets from the
centre was constant across conditions, i.e., for close horizontal
targets, vertical distance was far and vice versa. Importantly, in
the far-target condition, path lengths for CoMP and CoMP+I were
roughly equal. Conversely, in the close-target condition, path
length was substantially shorter for CoMP+I (Fig. 3B). Hence, in
the close-target condition, switching to the neighbouring target of
different colour allowed participants to save motor costs, ren-
dering intention pursuit relatively more costly than in the far-
target condition. This should increase the frequency of changes of
intention in the close- compared to the far-target condition. In
order to enhance the differences in motor costs between target-
distance conditions, the cursor speed was 1.8 times slower than in
Exp. 1, increasing overall travel distance of movements. In
addition, target onset was early (700–1000 ms before dot motion
onset) in 80% of trials in Exp. 2 in order to reduce the likelihood
of target selection errors.

Overall, behavioural performance in Exp. 2 was comparable to
Exp. 1 (see Supplementary Note 1). In order to investigate the
effect of target distance on the frequency of CoMP vs. CoMP+I, a
mixed-effects logistic regression with target distance as a fixed
effect (far/close, dummy-coded with far distance as reference
level) was conducted for test trials. It revealed a significant effect
of target distance (χ2(1)= 15.47, p < 0.001), with CoMP+I

occurring more often in the close- (M= 2.59%, SD= 0.44%)
than far-target condition (M= 1.48%, SD= 0.68%; b= 0.76, 95%
CI [0.38–1.16], OR= 2.15, Fig. 3C). Interestingly, target distance
did not have a significant effect in a model with no-CoM vs. CoM
as outcome variable (b= 0.06, 95% CI [−0.08 to 0.20], OR=
1.06, χ2(1)= 0.70, p= 0.404). Hence, target distance did not
affect whether or not participants changed their mind about the
dot-motion direction, but affected whether or not participants
pursued their initial colour choice when a perceptual CoM
occurred. That is, cost of goal pursuit was relevant to decisions
about goals, but was not relevant to decisions driven by current
perceptual input.

Finally, we checked whether the effect of target distance on
CoMP+I depended on target onset time, and hence, the degree to
which action cost associated with a potential future change could
be anticipated prior to action onset. Including target onset (early/
late) in the model revealed no significant main effect of target
onset on CoMP vs. CoMP+I (b=−0.05, 95% CI [−0.82 to 0.67],
OR= 0.95, χ2(1)= 0.02, p= 0.902). There was a trend for an
interaction between target distance and target-onset time, due to
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the effect of target distance being somewhat larger when target
onset was late than when it was early. However, this effect was not
significant (b= 0.78, 95% CI [−0.14 to 1.74], OR= 2.19, χ2(1)=
2.75, p= 0.097).

Effect of changes of mind on sense of agency (Exp. 1 and 2). In
both experiments, participants were occasionally asked to judge
how much control they experienced over the colour of the dots
presented at the end of the trial. Participants provided Sense of
Agency (SoA) judgements on a visual analogue scale ranging
from 0 (no control) to 100 (a lot of control) after every trial with
CoM and in 33% of no-CoM trials. We manipulated the per-
centage of dots that was coloured in the chosen target in order to
increase variance in SoA judgements. Specifically, we predicted
that SoA would be higher the more dots matched participants’
initial colour intention48–50. More importantly, we assumed that
in addition to the match between intended and obtained action
outcome, SoA ratings would be modulated by whether or not a
CoM occurred. In order to test this, the percentage of dots
painted in the chosen colour was always 50% in trials with CoM,
allowing us to investigate whether and how different types of

CoM affected SoA while keeping the action outcome (colour
percentage) constant. For trials without CoM, outcome percen-
tages were assigned randomly for each trial.

For analyses of SoA judgements, the data were collapsed
across both experiments to increase power (N= 33). First, we
checked whether SoA was sensitive to action outcomes. In test
trials without CoM, SoA ratings increased linearly with the
percentage of dots matching the colour of the hit target (linear
contrast: F(1, 32)= 164.91, p < 0.001, ηp2= 0.837). When
including experiment as a factor, no significant main effect of
experiment, nor any interaction were observed (both F < 1).
Hence, in both experiments, SoA ratings were sensitive to action
outcomes showing that participants made appropriate use of the
rating scale.

Next, we analysed the effect of CoM on SoA. Variability in trial
numbers with CoM was high across participants [nCoMP: M=
29.8, SD= 37.5, range: 1–159; nCoMP+I: M= 7.3, SD= 9.0, range:
0–43] and 5/33 participants did not show any CoMP+I. Therefore,
linear mixed-effect models were used since they are recommended
for analysing unbalanced and missing data51. Furthermore, they
allowed us to include continuous predictors that varied on a trial-
by-trial level, e.g., movement times. Participants were modelled as

Fig. 3 Experiment 2: manipulation of horizontal target distance. A Target locations in Exp. 1 and 2. BMotor costs for each type of Change of Mind (CoM)
as measured by the distance from the diagonal vs. horizontal target as a function of travelled distance (assuming straight movement trajectories towards
targets). In the far-target condition, costs associated with each target were roughly equal, whereas in the close-target condition, the target of different
colour was closer, hence rendering intention pursuit relatively more costly. C Effect of target distance on frequency of CoMP (blue) and CoMP+I (green) in
Exp. 2 (n= 16 participants). Data are presented as mean values ± 1 SEM (**p < 0.001). Dots represent data points from individual participants. (likelihood
ratio test for logistic mixed-effects models: **p < 0.001; no correction for multiple comparisons).
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random intercepts. For no-CoM, only trials with 50% outcome
were included. A model was specified that included CoM as a fixed
effect (no-CoM/CoMP/CoMP+I; dummy coded with no-CoM
trials serving as baseline) and SoA ratings as a continuous
outcome variable. This model performed significantly better than a
model without CoM as a predictor (χ(2)= 13.75, p= 0.001). Post
hoc pairwise comparisons with a Bonferroni-corrected α-level of
0.05/3= 0.017 revealed that the effect of CoM on SoA ratings was
driven by a significant decrease of SoA in CoMP (Fig. 4A; M=
43.8%, SD= 9.6%) compared to no-CoM (M= 47.1%, SD= 8.1%;
b=−3.02, 95% CI [−4.62 to −1.42], t(2169.9)= 3.70, p < 0.001),
whereas CoMP+I (M= 44.1%, SD= 11.0%) did not differ
significantly from no-CoM trials (b=−1.10, 95% CI [−3.49 to
1.29], t(2161.2)= 0.91, p= 0.366). The difference between CoMP

and CoMP+I was not significant (b= 1.92, 95% CI [−0.48 to 1.42],
t(2162.2)= 1.57, p= 0.118). When adding experiment as a
predictor, no main effect of experiment (χ(1) < 0.01, p= 0.924),
nor an interaction with CoM (χ(2)= 0.33, p= 0.847) was found,
suggesting that the effect of Changes of Mind on Sense of Agency
was comparable across both experiments.

As Changes of Mind were classified based on movement
trajectories, trials differed in terms of pure motor aspects. More
specifically, movement times (MTs; i.e., time between response
initiation and target hit) were shorter in no-CoM trials (M=
480.3 ms, SD= 246.8 ms) than in trials with CoMP+I (M= 975.8
ms, SD= 365.6 ms, t(27)= 10.19, p < 0.001, d= 1.93) and CoMP

(M= 1089.5 ms, SD= 354.9 ms, t(32)= 18.92, p < 0.001, d=
3.29). To investigate if differences in MTs accounted for
differences in Sense of Agency ratings, individuals’ z-standardised
MTs were included as a covariate in the model (Fig. 4B). This
revealed a significant main effect of MTs (χ(1)= 24.32, p < 0.001)
driven by lower SoA ratings for longer MTs (b=−1.81, 95% CI
[−2.58 to −1.14]). Furthermore, the effect of CoM on SoA
disappeared (χ(2)= 1.51, p= 0.470), and the decrease of SoA
ratings in CoMP compared to no-CoM trials was not significant
in the model including MTs (t(2160.0)= 0.04, p= 0.970). This
suggests that the effect of CoMP on SoA was accounted for by
differences in movement duration. Finally, there was no
significant interaction between CoM and MTs (χ(2)= 2.22, p=
0.330). In fact, longer MTs significantly reduced SoA judgements
even when only no-CoM trials were considered (b=−2.15, 95%
CI [−3.58 to −0.72], χ(1)= 8.65, p= 0.003), suggesting that MTs

affected Sense of Agency judgements regardless of whether or not
a CoM occurred.

Summary and discussion Exp. 2. In Exp. 2, the relative motor
cost associated with intention pursuit was manipulated by varying
target distances. When the distance to the alternative target col-
our was short compared to the initially-chosen colour, movement
costs for perceptual+ intentional CoM were low relative to a
mere perceptual CoM where the initial intention was pursued.
This caused an increased frequency of intention reversals com-
pared to a condition where targets of both colours were roughly
equally distant. Hence, motor costs influenced whether perceptual
CoM caused a change in the movement required to realise an
intention, or additionally, a change in the intention itself. This
effect was present even when targets were presented late, sug-
gesting that integration of motor costs occurred rapidly and
dynamically as actions evolved. That is, even when participants
could not anticipate action costs before dot-motion onset (late
targets), motor costs affected decision making. Thus, action
selection does not rely on full anticipation of motor costs4, but
instead, costs may be updated continuously as actions evolve52–54.
Interestingly, in contrast to previous studies4,8,37, we did not
observe an overall increase in perceptual CoM in close compared
to far targets. Hence, in our study, motor costs did not affect
whether or not participants changed an ongoing action. However,
motor costs did influence which aspects of action selection were
changed (higher-order goals vs. lower-level sensorimotor deci-
sions). It is possible that in the current study, participants were
willing to correct their perceptual choices regardless of motor
costs, given that they obtained additional monetary rewards for
correct perceptual choices. By contrast, voluntary decisions were
not associated with monetary incentives, and hence, differences in
motor costs may have had a stronger impact on intention
reversals than perceptual CoM per se.

Finally, across both experiments, reduced SoA was observed
after perceptual CoM. However, this effect was statistically
accounted for by differences in MTs between trials with and
without movement updates. Participants may have used MTs as a
proxy of (in)efficient motor performance or difficulty of action
selection, which reduces SoA27,28. SoA was not modulated when
participants changed their initial action goal. These findings are
broadly in line with reconstructive accounts of conscious

Fig. 4 Effect of Changes of Mind (CoM) on Sense of Agency (SoA) ratings in Exp. 1 and 2 (n= 33 participants). A Mean SoA ratings for each type of
CoM (grey= no CoM; blue= perceptual CoM; green= perceptual+ intentional CoM) in test trials. In both (A) and (B), data are presented as mean
values ± 1 SEM. Dots represent data points from individual participants. Post hoc tests in a linear mixed-effects regression model revealed that SoA ratings
were lower in CoMP than no-CoM trials (**p < 0.001; Bonferroni-corrected α-level of 0.05/3= 0.017). B) Predicted SoA ratings (marginal effects) for a
mixed-effects model with CoM (no-CoM/CoMP/CoMP+I) and movement times (MT) as predictors, based on collapsed data from Exp. 1 and 2 (M ±
95% CI).
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intention, which state that SoA is independent of the actual initial
intention and instead relies on retrospective inference32–34.
Indeed, as action goals are updated, predictions about action
outcomes may be rapidly adjusted during action55 without any
consequences for subsequent inferences informing SoA. However,
the absence of any significant effect of intention reversals on SoA
in our study should be interpreted with caution since it is a null
result based on low trial numbers. In particular, we cannot rule
out that strong and sustained intentions may contribute to SoA.

Hierarchical Attractor Network Model of CoM in voluntary
action. To model the detailed neurocognitive mechanisms
underlying CoM in voluntary action, we explored a computa-
tional approach that could account for the dynamic integration of
endogenous intentions with sensory evidence and motor costs.
We propose an Attractor Network Model that consists of several
nodes. Each node represents a population of neurons encoding
different modalities of decision-relevant information (Fig. 5): (1)
neural populations encoding the endogenous colour intention
(e.g., blue vs. green; I1 and I2), (2) neurons that selectively
respond to sensory information about left/right dot-motion (S1
and S2), and (3) neurons that calculate the movement cost
according to the distance to each of the four target locations
(C1–C4). Information from these neural populations is combined

by action nodes (A1–A4) that integrate all sources of information
and specify the motor output, i.e., initiation of a movement
towards the chosen target location. For example, action A1 is
selected for execution if the intention is blue (I1 fires at a high
rate), if the dots move left (S1 fires at a high rate), and if the cost
of moving to the left-blue target is relatively low (C1 fires at a low
rate). In other words, the firing rate of each action node reflects
the strength of evidence in favour of a given action based on the
combined information encoded in a distributed network.

The network is further characterised by a hierarchical structure
that is based on hierarchical theories of intentional action15,38,39

and decision-making56. Specifically, colour intentions are repre-
sented on a hierarchically higher level than sensorimotor
information. That is, colour intentions reflect abstract, distal
action goals with respect to the action outcome (coloured dots).
By contrast, sensorimotor information about perceptual inputs
(dot-motion stimulus) and movement-related costs inform how
that goal can be achieved. Hence, hierarchy in the current model
corresponds to the distinction between what goal to pursue vs.
how to pursue it, and hence, the distinction between distal vs.
motor intentions15. Hierarchy is implemented as top-down noise
regulation in action selection through the intention nodes I1 and
I2. Specifically, stronger intentions cause a decrease in noise, and
thus, decreased variability in firing rates of the action nodes A1–
A4. This is in line with previous studies showing that voluntary

Fig. 5 Hierarchical Attractor Network Model of Changes of Mind in voluntary action. The network consists of 12 neural nodes that encode different
pieces of information. Nodes are connected through excitatory (black) or inhibitory (red) connections. The action nodes A1–A4 compete against each other
to determine which one of the four choice targets is selected. This competition takes into account information about (1) endogenous intentions (blue/
green represented by nodes I1 and I2), (2) sensory information (left/right encoded by sensory nodes S1 and S2) and action costs (C1–C4) that depend on the
distance d to each target location. Intention nodes are represented on a hierarchically higher level than sensorimotor nodes, allowing for top-down
regulation of the degree of variability in firing rates of the action nodes. All firing rates are updated continuously and can change dynamically. Hence, CoM
can occur when one action node crosses the threshold for movement execution first, but later on, another action wins the competition. Different types of
CoM can be dissociated based on which action the network switches to when a decision reversal occurs (e.g., perceptual CoM: switch from A1 to A2;
perceptual+ intentional CoM: switch from A1 to A4).
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intentions are associated with noise reduction in motor-related
neural activity42. In addition, the implementation of hierarchy
through noise regulation was inspired by Hierarchical Gaussian
Filters, where the degree of noise (or volatility) of a hierarchically-
lower variable can change over time, depending on the current
state of a hierarchically higher variable40,41. Although Hierarch-
ical Gaussian Filters were initially developed within the context of
more abstract Bayesian inference models, a recent study showed
that volatility estimates in these models were directly linked to
neural activity in prefrontal cortex, which in turn predicted
choice volatility (i.e., switching rate)57. Thus, we propose that
neural noise regulation may be a valid candidate mechanism of
top-down control that can be readily applied to biologically
plausible Attractor Network Models. On a neuronal level, such
changes in neural/behavioural volatility may be mediated by the
dopaminergic system. Specifically, the dual-state theory proposes
that the balance between D1 and D2 receptor activation affects
signal-to-noise ratio of neural activity, and hence, may be crucial
for the balance between stability and flexibility of actions58.

Finally, at each level of the hierarchy, competition between
neighbouring network nodes is implemented through lateral
inhibition (e.g., S1 vs. S2, I1 vs. I2, etc.), resulting in a winner-take-
all mechanism that determines the final behavioural outcome.
Connections across the two hierarchical levels allow for
integration of information. Specifically, action representations
receive input from higher-order intentions and lower-level
sensory evidence as well as information about motor costs.
Hence, in the current model, decisions are made through a
distributed consensus across different hierarchically organised
neural populations56.

Once one of the action nodes reaches a fixed firing rate
threshold of θ= 40 Hz, a movement towards the corresponding
target location is initiated with a motor delay of 180 ms.
Crucially, firing rates continue to be updated for 380 ms after
initial threshold crossing due to a non-decision time consisting
of sensory delays of 200 ms and motor delays of 180 ms (see
ref. 2). This allows for CoM after action initiation. In the model,
a trial is considered to be a CoM if one action node crosses the
firing rate threshold first, but later on a different action node
crosses the threshold (and also surpassed all other nodes by
10 Hz to ensure a clear winning action). For example, the model
may switch from action A1 to A2, reflecting perceptual CoM
(CoMP), i.e., a switch between actions that correspond to
different sensory states (S1→ S2) but the same colour intention
(I1→ I1). Alternatively, the network might switch from A1 to
A4, reflecting perceptual+ intentional CoM (CoMP+I), and
hence, a change in both the sensory state (S1→ S2) as well as
the colour intention (I1→ I2). Finally, the model may switch
between actions associated with different intentions but the
same sensory state (e.g., A1→ A3). Note that these (vertical)
movement switches were considered to be a type of lower-level
motor CoM in the behavioural task, which may reflect target
selection errors where participants erroneously initiated a
movement towards a target that did not correspond to their
actual initial colour intention (e.g., due to difficulty in target
detection). This assumption can be tested in the current model.
That is, by defining the true colour intention on a given trial, we
can analyse to what extent initial colour errors account for
CoMP+I and vertical movement corrections, respectively.
Finally, note that SoA results were not included in our
computational model, given that our model focuses on the
cognitive processes driving CoM about endogenous/exogenous
decisions. Yet, our experimental results indicated that SoA was
not directly related to these decision-making processes, but
instead, largely depended on % action outcomes and movement
times regardless of CoM.

Model implementation and fitting. Details of model imple-
mentation and fitting are provided in the “Methods” section.
Briefly, firing rates of each neural population were modelled over
time using a simplified version of a mean-field approach59,60.
Updates in firing rates depended on (1) how strongly a given
node was stimulated (based on external inputs and excitatory/
inhibitory inputs from other nodes), (2) the node’s firing rate on
the previous time step, and (3) neural noise, which was initially
set to 2 Hz in all nodes, but in action nodes, changed over time
according to hierarchical noise control through voluntary inten-
tions. The model was optimised to behavioural results from test
trials of Exp. 1. The resulting model was then tested on far/close
targets to check whether it could correctly reproduce the effect of
target distance on intention reversals that we observed in test
trials of Exp. 2. Model fitting was performed using a Covariance
Matrix Adaptation Evolution Strategy (CMA-ES) algorithm.

CoM in Attractor Network Model. Simulations confirmed that
the average outcomes produced by the fitted model closely mat-
ched participants’ overall performance in Exp. 1 (see Supple-
mentary Table 2). In addition, we showed that the full model
proposed above performed better than alternative models with
fewer parameters—e.g., models without cost nodes or without
hierarchical noise control (see “Methods”). Most importantly, the
model produced CoM on some trials. Figure 6A shows trial-
averaged neural firing rates of action nodes A1–A4 for different
trial types, time-locked to the onset of the first choice (i.e., first
time the action threshold was crossed). Note that since CoM can
occur at different points in time with respect to the first choice,
averaging cancels out some of the fine-grained details of the
second threshold crossing associated with CoM. For example, for
CoMP+I, action A3 seems to stay below the action threshold on
average. However, crucially, on a single trial classified as CoMP+I,
this action node—by definition—always crosses the threshold.
This is further illustrated in Fig. 6B, which shows single-trial
examples of action node firing rates and the resulting movement
trajectories (see Supplementary Figs. 3–6 for additional exam-
ples). Both the single-trial and averaged firing rates show evidence
of competition between action nodes when a CoM occurs. This is
particularly pronounced between A1 and A3, thus illustrating the
competition between whether to pursue the original colour
intention, or instead, switch to the alternative colour.

Average frequencies of CoMP (M= 6.33%) and CoMP+I (M=
1.41%) in the model were highly comparable to CoM observed in
Exp. 1 (CoMP: M= 5.93%, CoMP+I: M= 1.71%). The model also
produced vertical movement corrections on 3.6% of trials (3.24%
in Exp. 1). Simulations confirmed that 77.6% of these vertical
switches corrected initial colour errors. This is in line with our
interpretation of these vertical switches as target selection errors
(motor CoM) in which the initial response was erroneously
directed towards the wrong colour target, but was later corrected
according to the actual underlying colour intention. By contrast,
only 28.4% of CoMP+I were associated with an initial colour
error. Instead, most CoMP+I produced by the model (56.6%) were
associated with a correct initial colour choice, followed by a
correction of a perceptual error that additionally involved a switch
to the alternative colour. This suggests that, as opposed to vertical
CoM, CoMP+I reflected a true change with respect to the initial
colour intention, which was presumably driven by motor costs
associated with intention pursuit.

Next, we tested whether the model could reproduce our
behavioural findings showing that the frequency of changes in
colour intentions depend on intentional strength and motor costs
associated with intention pursuit. Indeed, the model was able to
capture the effect of intentional strength on intention pursuit
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Fig. 6 Changes of Mind (CoM) in attractor network model. A Average firing rates of action nodes A1 to A4 (M ± 1 SD; n= 30,000 simulated trials) in trials
without CoM (no-CoM), perceptual CoM (CoMP), perceptual+ intentional CoM (CoMP+I), and vertical CoM. Firing rates were locked to time of first
threshold crossing (first choice). For illustration purposes, only trials where the final choice was left-blue were included, except for CoMP+I where a change
with respect to the colour intention resulted in a final left-green choice. B Single-trial simulations showing firing rates of action nodes (upper row) and the
resulting movement trajectories (bottom row) for no-CoM, CoMP, CoMP+I and vertical CoM. Dotted trajectories indicate completion of movements after
the non-decision time of 380ms (i.e., after the time period during which CoM can occur). C Effect of intentional strength on CoMP (blue) and CoMP+I

(green). Stronger intentions result in lower frequency of intention reversals. D Stronger intentions increase RT costs in conflict trials (relative to RTs in easy
trials). E Effect of target distance on CoMP (blue) and CoMP+I (green). Higher motor cost of intention pursuit increases frequency of intention reversals.
Grey dashed lines in C and D indicate strength of intention in the model that was optimised to the results obtained in Exp. 1. In C–E, data are presented as
the mean ± 1 SD from n= 30 model simulations with 1000 trials each. Black data points in E represent behavioural results from Exp. 2 (n= 16; M ± 1 SEM).
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observed in Exp.1. That is, when increasing the strength of colour
intentions while keeping all other model parameters fixed, a
decrease in the frequency changes of intention was observed,
while the frequency of perceptual CoM without intention reversal
increased (Fig. 6C). At the same time, stronger colour intentions
also caused the model to produce larger RT costs in conflict trials
relative to easy trials (Fig. 6D; see Supplementary Note 2 for more
details). Thus, in line with our interpretation of the results from
Exp. 1, inter-individual differences in the strength of colour
intentions may have been the causal factor driving the observed
correlation between the frequency of intention reversals in test
trials and RT costs in conflict trials. Finally, the model fitted to
data from Exp. 1 was also able to replicate the effect of target
distance observed in Exp. 2. Specifically, when changing
horizontal target distance (and hence, the relative cost associated
with each action), the model correctly predicted an increase of
changes of intention (CoMP+I) in close compared to far
horizontal targets. Although this increase was numerically small,
it was robust and highly similar to the increase observed in the
actual experiment (Fig. 6E). The model further predicted a slight
decrease in CoMP for far compared to close targets, which was
descriptively present in Exp. 2. Importantly, we further showed
that the effects of strength of intention and motor costs on
CoMP+I in the model were not mediated by potential changes in
the rate of initial colour errors. That is, model predictions
remained the same when we excluded trials where the model
initially chose a target of the wrong colour (see Supplementary
Figs. 7 and 8).

In summary, the current Attractor Network Model provides a
biologically plausible neuro-computational mechanism through
which dynamically changing information from different endo-
genous and exogenous sources is integrated by a network of
neural populations that guide actions in a continuous manner,
allowing for rapid CoM with respect to perceptual and/or
intentional aspects of voluntary actions as they unfold. Our
modelling results confirmed that the majority of CoM about
colour intentions did not reflect corrections of initial colour
errors, but instead, reflected a change in the colour intention that
occurred after a correct colour target was initially selected. The
frequency of such changes of intention in the model in turn
depended on the strength of intentions and their associated
motor costs, thus replicating the pattern of results observed in the
behavioural experiments.

Discussion
Previous studies of CoM have largely focused on updating of
stimulus-driven actions based on new external evidence1–10 (but
see ref. 13 for a recent study on endogenous CoM). By contrast,
the current study investigated changes of voluntary action deci-
sions. Based on previous research on perceptual CoM, we
developed a task where perceptual updates occasionally resulted
in an additional change in a higher-order goal intention. In Exp.
1, we showed that the frequency of changes of intention was
inversely related to the strength of participants’ initial intentions.
In Exp. 2, we found that higher motor costs induced more
switches to a target that did not match the initial endogenous
intention. Note that our study focused on intention reversals that
were triggered by a CoM about external, perceptual information,
which subsequently caused a re-evaluation of the initial intention
based on its trade-off with motor costs. Even though we observed
some changes between colour targets in the absence of perceptual
CoM (vertical movement corrections), these changes appeared to
largely reflect lower-level motor CoM that were caused by initial
colour errors due to target uncertainty, instead of reflecting
genuine changes in higher-order colour intentions. An intriguing

possibility for future studies may be to capture intentional CoM
that are completely independent of any external changes, in order
to further elucidate the processes through which endogenous
decisions are updated continuously.

Finally, we propose that the cognitive mechanisms underlying
the flexible nature of voluntary actions can be captured through
dynamics in a Hierarchical Attractor Network Model that con-
tinuously integrates multiple sources of endogenous and exo-
genous information. Past computational accounts of CoM largely
neglected such integrative processes, and instead, focused on
decisions that are purely driven by a single source of (perceptual)
evidence (e.g., refs. 1,2). The current model provides an extension
of this work by introducing a unified framework for different
types of CoM in voluntary actions, which are guided by several
pieces of not just weighted decision variables, but of hierarchically
organised endogenous and exogenous information. In addition,
in contrast to previous models of CoM, the current model
explicitly allowed for an active role of action representations
during the evolving decision-making process. That is, action
nodes in the current model were not simply a mere output system
of higher-order decision-making areas, but instead, played an
essential role in determining the final action outcome by inte-
grating various sources of decision-relevant information to guide
action selection in a gradual and continuous manner. Thus,
instead of a serial, feedforward hierarchy from decision to action,
our model proposes an interactive hierarchy, in which informa-
tion related to action can itself feed back to modify the decision.
This is in line with recent theories that view decisions and
movements as highly integrated processes, which evolve con-
tinuously and gradually over time, instead of representing strictly
serial and segregated processes56,61–63 (for a recent review, see
ref. 64). Moreover, in line with previous studies, our model
assumes that multiple action representations evolve in
parallel and that action selection is determined through a winner-
take-all competition between these multiple co-existing
affordances61,65–67. Finally, motor outcomes of the model (i.e.,
simulated movement trajectories) affected subsequent decision
updates by causing dynamic changes in motor costs (i.e., changes
in distance to each target). Thus, our model provides a common
framework for decision making and action selection, and
accounts for their reciprocal relation, instead of assuming strictly
separate and serial processing of decisions and actions. In this
context, the model makes further predictions that can be directly
tested in future studies. For example, it is plausible that firing
rates of action nodes (i.e., the strength of decision evidence in
favour of an action) are directly linked to more fine-grained,
gradually varying details of motor policies, such as movement
speed or vigour, rather than mere categorical choices between
action alternatives.

Finally, the current model implemented a hierarchical orga-
nisation. While previous work has largely focused on higher-
order mechanisms related to meta-cognitive processes, e.g.,
uncertainty about sensory information5,6, our model introduces
top-down control through endogenous intentions that are inde-
pendent from the sensory information itself. That is, we propose
that abstract action goals that are generated internally can affect
processing of external information on a lower, sensorimotor level.
In line with this, previous studies have shown that within the
frontal cortex, more anterior regions representing abstract
information (e.g., goals) exert top-down control over more pos-
terior regions involved in lower-level sensorimotor control43,44.
Moreover, our current model proposes that noise control plays a
crucial role in such top-down control. It has previously been
suggested that higher-order areas exert top-down control by
gating inputs/outputs of lower-level areas44. The noise reduction
mechanisms implemented in the current model may be
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fundamental to such gating of information: That is, noise
reduction can enhance action-relevant information, thus allowing
voluntary actions to be shielded from noisy sensory
distractions68.

One limitation of the current model is that CoM is largely
driven by neural noise within the network. Noise in the input
sources (e.g., sensory evidence) is disregarded. Yet, previous
studies have shown that, in addition to the (constant) coherence
level of a trial, moment-by-moment fluctuations of sensory evi-
dence affect decision-making and can drive CoM1,2. Our model
does not account for such within-trial fluctuations in the sensory
stimulus, given that it was optimised to fit participants’ average
behaviour across trials, and thus, momentary fluctuations in
evidence will average out. Similarly, we assumed that inputs into
intention nodes were constant. However, it is possible that
intentional strength fluctuates both within and across trials.
Finally, cost inputs may be noisy given that they rely on (noisy)
estimates of one’s current distance from each alternative target.
Future studies might extend the current model by accounting for
variability in each model input both within and across trials, and
thus, consider alternative sources of noise in addition to
neural noise.

We propose that by studying when, why and how voluntary
intentions are maintained vs. changed can provide important
insights into the functional role and nature of intentions.
Voluntary intentions have previously been conceptualised either
as strong determining tendencies69, or instead, as weak and labile
plans17,47,70. Rigorous experimental methods to quantify the
strength of any given intention have been lacking. Our results
suggest that intentions vary gradually in strength, are evaluated
continuously, and can be reversed even when an action has
already been initiated. Our methods further show that these
various features of intention rigidity/flexibility can be quantified
and compared within and between individuals. Reversibility of
intentions can be highly advantageous in that it allows people to
flexibly adjust their behaviour to the current context. On the
other hand, an important concept of the voluntary control of
behaviour is the need for intention pursuit over long periods of
time—e.g., when intending to quit smoking or lose weight. People
may give up on these intentions because of new stimuli that can
trigger decision reversals. For example, addiction relapse is often
caused by exposure to drug-related external stimuli, in particular
in individuals with high sensitivity to incentive cues71. More
generally, disturbances in the balance between goal-shielding vs.
goal-switching may be linked to a large range of psychiatric and
neurological conditions, and hence, understanding the processes
underlying this balance is crucial to well-being and mental
health19.

In conclusion, voluntary actions are shaped by continuous
decision-making processes that integrate external information
with endogenous intentions. The flexible nature of action selec-
tion allows agents to dynamically decide which intention to
pursue and how to pursue it. Our study introduces a quantitative
laboratory approach and computational model that can capture
the neurocognitive processes underlying flexible goal-directed
actions. This provides important insights into the nature of
voluntary intentions, and the mechanisms underlying goal pur-
suit and its disturbances, with important social and personal
implications.

Methods
Participants. The study was approved by the UCL Research Ethics Committee.
Participants provided written informed consent prior to the study. For Exp. 1, 21
right-handed participants were recruited through the ICN subject database. One
participant did not reach the performance criterion in the training session (see
below) and another participant withdrew after training. Two further participants

were excluded, one due to technical issues during data collection and one due to
strategic decision delay in the task (see below). The final sample consisted of 17
participants (13 female, age: M= 22.6 yr, SD= 3.1). For Exp. 2, 21 right-handed
participants were initially invited for the experiment. Three participants did not
reach the performance criterion during training (see below) and two further par-
ticipants were excluded due to poor performance in the test session (>15% errors or
misses in easy trials), resulting in a final sample of 16 participants (11 female, age:
M= 23.2 yr, SD= 2.9). Participants received £7.50/h and a performance-based
reward.

Apparatus and stimuli. The experiment was programmed in Matlab R2014a and
the Psychophysics Toolbox72. Motion stimuli were generated using the Variable
Coherence Random-Dot Motion code (https://shadlenlab.columbia.edu/resources/
VCRDM.html). The stimuli were presented in a central aperture (4.5° diameter)
with a stimulus density of 15.6 dots deg−2 s−1, at a screen refresh rate of 60 Hz. The
percentage of dots that were displaced in the same direction determined the motion
coherence and motion direction (left/right) was assigned randomly for each trial.
In Exp. 1, target circles of 1.8° diameter were located at a distance of 9.6° from the
centre of the screen (x= 6.0°, y= 7.5°). In Exp. 2, target distance varied on a trial-
by-trial basis (far targets: x= 18°, y= 6°; close targets: x= 6°, y= 18°). Target
colours were random pairs of blue, green, pink, and orange of comparable lumi-
nance. Participants were seated approximately 60 cm from a computer screen and
moved a cursor to the targets using a Wacom Intuos Pro pen tablet. Movement
trajectories were recorded at a sampling frequency of 125 Hz.

Trial procedure. Participants made endogenous choices between random pairs of
4 target colours (blue/green/pink/orange). Once they had chosen a colour, parti-
cipants clicked on a central fixation cross and after a random delay of 700–1000 ms,
the motion stimulus and 4 targets, 2 of each colour, appeared. In 50% of trials (80%
in Exp. 2), targets were presented immediately after colour choice (early targets),
whereas in the remaining trials, they appeared 700–1000 ms after colour choice, i.e.,
at the same time as the dot-motion stimulus (late targets). 500 ms after participants
reached a target, 25/50/75/100% of the dots from the last 3 video frames were
presented in the colour of the hit target (1 s). On 1/3 of trials, and after every CoM,
participants were then asked to provide Sense of Agency (SoA) judgements on a
visual analogue scale ranging from “none” to “a lot”. On 1/5 of the remaining trials
(~13% of trials overall), participants were asked to provide an estimate of the
percentage of dots that matched their initial colour intention. Note that outcome
judgements were included to motivate participants to pay attention to the action
outcomes, and hence, render colour choices more meaningful within the context of
the task. However, given that outcome judgements never appeared after CoM
(which was always followed by SoA ratings), we did not further analyse them.

Training session. Participants had to pass a training session the day before the
actual experiment. They were trained on the original two-choice motion dis-
crimination task until they reached 70% accuracy in trials with 35% motion
coherence. One participant failed to reach the criterion and was not invited for the
experimental session. All other participants performed 160 additional trials with
randomly varying motion strength (5–65% coherence) in order to obtain stable
performance. Finally, an alternating staircase procedure was administered (see
ref. 4 for details) to determine the motion coherence at which a participant’s
accuracy was ~60% (coherence: M= 11.8% SD= 4.1%). This level was chosen to
maximise the frequency of perceptual CoM1. During training, trial-by-trial error
feedback (red dots) was provided.

Experimental session. After a short practice block, participants were given 1 h to
complete as many trials as possible (M= 358.2, SD= 37.5) in Exp. 1. In Exp. 2,
participants completed two identical experimental sessions in which they were
given 1.25 h each to complete as many trials as possible (M= 815.6, SD= 57.2).
The duration of Exp. 2 was increased compared to Exp. 1 in order to obtain a
sufficient number of CoMP and CoMP+I for each target distance condition. To
motivate participants to be fast and accurate, they won 1 p for every correct
perceptual choice. After each block of 30 trials, participants received feedback
about their perceptual choice accuracy. There was no trial-by-trial error feedback,
but a “too early!” message was shown when participants initiated a response before
stimulus onset. Furthermore, a “too slow!” message was shown if response initia-
tion exceeded a certain deadline or if the target was not reached within 3 s after
response initiation. All trials with warning messages were repeated later on, at a
randomly selected trial. In order to induce fast response initiation, the response
deadline was initially 1000 ms, but decreased by 50 ms after every block if a par-
ticipant had less than 10% trials with CoM and less than 15% misses. RTs were
defined as the point in time at which the cursor left a central circle of 1.1° diameter,
at which point the motion stimulus disappeared. Previous studies showed that, due
to sensorimotor delays, CoM occurs even when the external stimulus is removed at
action onset1.

In both the training and test session, participants were instructed to fixate the
central cross throughout each trial. Electrooculography was used to monitor eye
movements and, whenever necessary, participants were reminded to keep fixation.
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Classification of CoM. Trials with CoM were classified online based on movement
trajectories: If the cursor position exceeded 10% of both the x- and y-distance
towards a given target, but then ended in the diagonally opposite target (of the
same colour), the trial was classified as CoMP. If it ended in the horizontally
neighbouring target (of different colour), it was classified as a CoMP+I. In Exp. 2.
the absolute coordinates that had to be exceeded differed between target distance
conditions (Fig. 3A), due to the different target locations. Using relative rather than
absolute coordinates in Exp. 2 ensured that CoM classification was not biased by
differences in movement angles across target distance conditions. Importantly,
CoM typically occurred much later than the applied classification criteria. On
average, CoM occurred roughly halfway through the movement, i.e., when 44.99%
(SD= 7.73%) of the total distance towards the initial target had been completed.

All main analyses of perceptual CoM (CoMP and CoMP+I) focused on test and
easy trials only. By contrast, movement corrections in conflict trials were
interpreted in a slightly different manner due to differences in target arrangement
and instructions (see “Results”).

Movement analysis. Movement trajectories were analysed in Matlab R2014b. All
trials that had been classified as CoM during the task were inspected individually.
Trials with double CoM (i.e., trials in which participants changed their mind more
than once in a single trial) were excluded from all analyses (Exp. 1: 0.93% of all
trials; Exp. 2: 0.83%). In addition, trials in which initial movement trajectories were
not clearly directed towards one of the targets (e.g., circular trajectories or vertical
movement initiation; Exp. 1: 0.13%; Exp. 2: 0.47%) were excluded. Furthermore,
velocity profiles of reaching movements were analysed. Note that participants
might have initiated a response in any direction in order to comply with the short
response deadline, subsequently choosing a target only after having left the home
position. In that case, curvature away from the initial trajectory would not be a
CoM, as the initial trajectory would not reflect commitment to a specific target.
Completely excluding any element of strategic delay for individual trials is difficult.
However, frequent stopping shortly after movement initiation (i.e., velocity= 0 at
some point after movement initiation) even in trials with straight trajectories would
clearly indicate strategic decision delay. In Exp. 1, one participant stopped in 28.6%
of straight trajectories, with an average stopping duration of 351.2 ms and was
therefore excluded from all analyses. Such stopping was rare in all other partici-
pants (stop frequency: M= 7.4%, SD= 5.2%; stop duration: M= 157.9 ms, SD=
40.8 ms). Note that this percentage of trials with stopping is highly comparable to
the percentage of trials with CoM, and hence, can be attributed to decision
uncertainty and vacillation, rather than strategic decision delay. In Exp. 2, move-
ment velocities indicated that none of the participants showed strategic
decision delay.

Statistical analyses. Given the small percentage of trials with CoM, mixed-
effects logistic regression models were used for analyses of CoM frequency51.
Model fitting was performed using Maximum-likelihood estimation with the
lme4 package73 in R74. Binomial models with a logit link were specified. To
investigate CoM, two types of binary outcome variables were analysed: Either
no-CoM (0) vs. CoM (1) for analyses of overall frequency of perceptual CoM
(regardless of type of CoM), or CoMP (0) vs. CoMP+I (1) for analyses of different
types of CoM within CoM trials. Participants were modelled as random inter-
cepts. Including random slopes did not change any of the results and only one of
the models performed significantly better when random slopes were added.
Hence, all models reported contain random intercepts only. Parameter estimates
b and 95% profile confidence intervals are reported in log-odds space, and odds
ratios are reported to facilitate interpretation. Statistical inference was performed
by comparing models with vs. without a given fixed effect using likelihood-ratio
tests. Satterthwaite approximation for degrees of freedom was used75. All other
analyses (comparison of means with ANOVAs/t tests; two-tailed) were per-
formed in IBM SPSS Statistics for Windows, version 2176. For RT analyses, only
correct trials within ±3 SD of the individual’s average RT in each condition were
included. No differences in RTs were found between trials with vs. without CoM
(see Supplementary Fig. 2). Hence, RT analyses included all correct trials
regardless of whether or not CoM occurred.

Statistics and reproducibility. Each experiment was only conducted once and was
not replicated independently. However, the overall behavioural results in Exp. 2
were consistent with the main findings from Exp. 1 (e.g., overall rate of CoM; see
Supplementary Note 1), despite a slightly different task design.

Attractor Network Model. The model was implemented and fitted in Python 3.7.
All model code is available on GitHub, including a Matlab implementation of the
model that can be used to run simulations and plot single-trial model outcomes
(https://github.com/AnneLoffler/AttractorNetwork-CoM).

Network architecture. The Attractor Network Model consists of 12 neural nodes
that are grouped into different modules according to the source of information they
represent (Fig. 5):

1. Two intention nodes (I1, I2) that encode the voluntary intention (blue/
green)

2. Two sensory nodes (S1, S2) that selectively respond to dot-motion direction
(left/right)

3. Four cost nodes (C1–C4) that calculate the cost associated with each action
based on distance to each target location

4. Four action nodes (A1–A4) that correspond to the 4 possible action
alternatives, and hence, location of the choice targets (left/right top/bottom)

Each node represents a population of neurons whose firing rates change
dynamically over time. The firing rates of intention nodes (I1, I2) and sensory
nodes (S1, S2) depend on model inputs whose intensities corresponded to the
strength of intention and strength of sensory evidence (i.e., motion coherence),
respectively. Firing rates of cost nodes (C1–C4) depend on the distance d to each
target location. Hence, intention, sensory and cost nodes are input nodes that
receive direct model inputs. Action nodes do not receive any direct external inputs,
but instead, integrate information from all other network nodes to determine the
behavioural outcome (i.e., movement trajectory towards one of the four targets).
Integration of information is achieved through neural connectivity. Colour
intentions and sensory inputs have excitatory effects on action nodes, whereas costs
have inhibitory effects. Furthermore, neurons that encode the same modality of
information, e.g., sensory nodes S1 and S2, but respond selectively to a specific
input (e.g., left vs. right dot motion), compete against each other through lateral
inhibition. This ensures that over time, a single choice option is selected through a
winner-take-all mechanism that supresses competing choice alternatives.

Due to considerations of parsimony, network connections were assumed to be
symmetric. For example, I1 and I2 had equally strong connections onto their
corresponding action nodes (and similar for S1 and S2, etc.). Additionally,
inhibitory competition between action nodes associated with the same colour
intention (i.e., A1 vs. A2 and A3 vs. A4) was assumed to be stronger than
competition between action nodes associated with different colour intentions (e.g.,
A1 vs. A3). This was because actions associated with the same colour intention
corresponded to diagonally opposite targets, respectively, and hence, movements in
either direction were mutually exclusive (i.e., competition is stronger). Moreover,
the effects of costs on intention nodes were assumed to be weaker than the effects
of costs on action nodes. Note that this assumption was necessary since action costs
would otherwise completely suppress intentions at trial start. Due to considerations
of parsimony, we chose to fix the weight from costs to intention nodes to be 0.5 of
the weight from costs to action nodes, instead of fitting two separate weights for
each cost parameter. Finally, sensory nodes had self-excitatory connections,
representing temporal integration of sensory evidence from the dot-motion
stimulus2,59.

Modelling firing rates. In order to compute the firing rates of each neural node
over time, a simplified version of the mean-field approach introduced by Wong
and Wang59 was used (see ref. 60). That is, instead of modelling individual spiking
neurons, the overall firing rate of a given neural population (node) was calculated
for each point in time. Firing rates of each node were updated in time steps of 1 ms
and depended on (1) how strongly a given node was stimulated (based on external
model inputs and excitatory/inhibitory inputs from other nodes), (2) the node’s
firing rate on the previous time step, and (3) neural noise. Hence, the following
equations were used to determine the firing rate r of a given node i at time point t.

First, the total stimulation that each node received at time t was calculated
according to Eq. 1. Stimulation depended on direct external inputs into that node
(if any), plus the sum of neural inputs from all other nodes (and itself in case of
auto-connections). The neural input that node i received from node j depended on
the firing rate of j at the previous time step weighted by its connectivity to i as
defined by the weight matrix W

stimi;t ¼ ini;t þ∑12
j¼1 rj;t�1Wi;j ð1Þ

Recurrent updates in firing rates were then computed as a function of the node’s
previous firing rate and the current stimulation stimi;t it received. While our mean-
field approach did not rely on explicit modelling of synaptic mechanisms, we
introduced a base time constant τ of 100 ms for all neural nodes, imitating the
effect of slow NMDA receptors, which have been shown to be the primary
contributor to slow temporal integration of evidence59. Using the Euler–Maruyama
approximation for differential equations60,77, the firing rate of node i at time t was
calculated then as follows

ri;t ¼ ri;t�1 þ ðstimi;t � ri;t�1Þτ�1 ð2Þ
Finally, random Gaussian noise s was added to the firing rate of each node

ri;t ¼ ri;t þ si;t with si;t � Nð0; σ2i;tÞ and σ2i;t ≥ 0 ð3Þ
The degree of neural noise varied according to σ2, which was initially set to 2 Hz

for all nodes. However, according to the assumption of top-down noise regulation
through higher-order intentions, σ2 of each action node A1 to A4 varied as a
function of the state of intention nodes I1 and I2. Specifically, similarly to the
original formulation of Hierarchical Gaussian Filters40,41, increased firing rates in
higher-order intentions caused a reduction of noise in the corresponding, lower-
level action nodes. That is, higher firing of I1 caused a reduction of noise in its
associated action nodes A1 and A2 (Eq. 4a) and I2 caused noise reduction in action
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nodes A3 and A4 (Eq. 4b). Noise reduction in action nodes was directly
proportional to firing rates of intention nodes, where h is a factor that indicates the
degree of hierarchical noise reduction. For example, if h ¼ 1 and I1 fires at 50% of
its maximum firing rate, noise in A1 and A2 is reduced by 50%

σ2A1;t=A2;t ¼ σ20 � h
rI1;t�1

100
σ20 ð4aÞ

σ2A3;t=A4;t ¼ σ20 � h
rI2;t�1

100
σ20 ð4bÞ

Firing rates were restricted to a range of 0–100 Hz. Firing rates of all neural
nodes were set to an initial starting value of 10 Hz at the beginning of each trial.
Once one of the action nodes reached a fixed firing rate threshold of θ= 40 Hz
(and surpassed all other action nodes by at least 10 Hz to ensure a single winning
action), a movement was initiated with a motor delay of 180 ms. Movement
direction corresponded to the chosen target location (according to the winning
action node) and movement speed was constant at 0.7 pixels/ms, resulting in a
movement duration of ~450 ms for no-CoM trials, in line with movement times
measured in Exp. 1. For simplicity, movements were simulated with straight
trajectories towards the chosen target, without additional motor noise. While this
does not result in realistic trajectory shapes observed in reaching tasks, it provided
us with sufficient detail to approximate motor costs by calculating the Euclidean
distance between the current cursor location and each of the 4 targets. As cursor
position changes, motor costs associated with each target change according to the
relative distance to each target at a given point in time (see Fig. 3B).

Movement execution towards a chosen target continued even if the action node
dropped below the threshold, unless another action node reached the firing rate
threshold, in which case the movement was redirected towards the new target
choice. Firing rates continued to be updated for 380 ms after initial threshold
crossing due to a non-decision time consisting of sensory delays of 200 ms and
motor delays of 180 ms (see ref. 2). This allowed for decision updates even after
initial action onset1,2. In line with previous models (e.g., ref. 1,2), firing rate updates
were stopped after the non-decision time (i.e., no more CoM could occur since no
more new evidence was obtained) and the movement was completed according to
the final target choice.

Model inputs. External model inputs were simulated at a rate of fin= 60 Hz.
Inputs into sensory nodes were presented after the sensory delay of 200 ms. The
respective strength of inputs into S1 and S2 corresponded to the strength of sensory
evidence, i.e., dot-motion coherence, and was calculated as

inS1;S2 ¼ fin 1 ±
coh
100

� �
; ð5Þ

with coh corresponding to the % coherence and +/– indicating whether or not
motion direction corresponded to the neurons’ preferred motion direction. By
analogy, inputs into intention nodes depended on the strength of the endogenous
colour intention col, i.e., the relative endogenous evidence in favour of a given
colour

inI1;I2 ¼ fin 1 ±
col
100

� �
ð6Þ

Equations 5 and 6 ensured that model inputs were normalised. Hence, the total
input into the network was constant across different levels of sensory/endogenous
strength. Similarly, the input into cost nodes was set to an equal value of 60 Hz at
trial start. Once a movement was initiated, costs were updated relative to changes
in Euclidean distance between the current position and each target location.
Consequently, the total external model inputs (sensory, endogenous, and costs)
were balanced, and thus, only the relative strength of evidence from each source
affected action selection.

Model fitting. Eight model parameters were fitted, relating to the connectivity
weights between neural nodes, the strength of decision evidence, and the degree of
top-down noise modulation through intentions:

Network connectivity weights

1. Intentional nodes to action nodes (e.g., wI1!A1)
2. Sensory nodes to action nodes (e.g., ws1!A1)
3. Cost nodes to action nodes (e.g., wC1!A1) and intention nodes (e.g., wC1!I1)
4. Sensory auto-connections (e.g., wS1!S1)
5. Lateral inhibition (e.g., wI1!I2)

Decision evidence
6. Strength of sensory evidence (dot motion coherence)
7. Intentional strength (colour intention)

Hierarchical control
8. Degree of hierarchical noise control

To reduce the number of free parameters, the strength of connectivity weights
was assumed to be symmetrical (e.g., wI1!A1 ¼ wI1!A2). A covariance matrix
adaptation evolution strategy (CMA-ES) algorithm with maximum likelihood
updates was used to fit model parameters78,79. CMA-ES is a randomised search
algorithm suited to explore our parameter space about which initial knowledge is
constrained. We first informally explored different sets of parameters to

approximate values that would yield reasonable behavioural outcomes (i.e., RTs
within 500–1000 ms, perceptual error rates of ~40%, CoM of ~10% with more
CoMP than CoMP+I, and low rates of missed/early responses). We then performed
a global optimisation test with single- and multi-objective CMA-ES, which
validated that one of the convergence regions was on the intuitively preferable
parameter values. Finally, this convergence region was used to initialise a set of
local optimisation runs to fine-tune parameters. A multi-objective CMA-ES was
applied80,81 to minimise the error of model predictions from actual behavioural
outcomes in Exp. 1. Specifically, the model was optimised according to the
following behavioural outcomes: RTs, % perceptual choice accuracy, % CoMP, %
CoMP+I, and % colour changes that occurred without a perceptual change (vertical
switches). In addition, the model was fitted to minimise early responses (i.e.,
responses before stimulus onset), misses (RTs > 1 s), and maximise colour choice
accuracy (e.g., the true intention was blue and an action node associated with blue
was selected). Note that for colour accuracy, only initial choices were considered
since final colour errors after a CoM may reflect CoMP+I, and hence, a change in
the colour intention rather than an error with respect to the initially chosen target.

Each optimisation run consisted of 10000 trials. Powell’s method was used to
obtain local minima82. Supplementary Table 1 summarises the initial parameter
values and step sizes that were used for the optimisation as well as the final, fine-
tuned parameters obtained with the CMA-ES approach. Using the fitted model
parameters, 30 simulations of 1000 trials each were then conducted to derive model
predictions for a given experimental condition (e.g., simulation of effect of target
distance). Model predictions strongly overlapped with participants’ actual
behaviour in Exp. 1 (Supplementary Table 2) and Exp. 2 (see “Results” section and
Supplementary Fig. 8).

Finally, we checked whether the network maintained a stable steady state in the
absence of external inputs. We ran additional simulations where all external model
inputs were set to 0. These simulations confirmed that the network maintained a
stable steady state with below-threshold background activity (average firing rates of
action nodes A1–A4: M= 7.73 Hz).

Model comparisons. The model obtained through the CMA-ES procedure yielded
a good fit to the behaviour observed in test trials of Exp. 1. To check whether this
model performed better than simpler versions of the network, we compared the full
model to two alternative models with fewer parameters: (1) a model without
hierarchical noise control (i.e., when h was fixed to 0 and (2) a model without
action cost parameter (i.e., when wC!A was fixed to 0). The Akaike Information
Criterion (AIC) was used to evaluate model fits, and the relative likelihood of the
respective models was then obtained as follows

L ¼ exp
AICfull model � AICaltmodel

2

� �
ð7Þ

Model comparisons revealed that the model without hierarchical noise control
was only 0.139 times as probable (AIC= 35.58) as the full model with 8 parameters
(AIC= 31.64). Furthermore, the model without an action costs was only 0.0005
times as likely (AIC= 47.05) as the full model. Thus, the attractor network model
we proposed here (Fig. 5) was the model that best accounted for the behavioural
results observed in Exp. 1.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The datasets generated during and/or analysed during the current study are publicly
available on the Open Science Framework, https://osf.io/wbex8/ (https://doi.org/
10.17605/OSF.IO/WBEX8). Source data are provided with this paper.

Code availability
All model code is publicly available on GitHub, https://github.com/AnneLoffler/
AttractorNetwork-CoM.
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