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A B S T R A C T   

To achieve a resilient society, the reliability of core engineering systems should be evaluated accurately. How
ever, this remains challenging due to the complexity and large scale of real-world systems. Such complexity can 
be efficiently modelled by Bayesian network (BN), which formulates the probability distribution through a 
graph-based representation. On the other hand, the scale issue can be addressed by the matrix-based Bayesian 
network (MBN), which allows for efficient quantification and flexible inference of discrete BN. However, the 
MBN applications have been limited to binary-state systems, despite the essential role of multi-state engineering 
systems. Therefore, this paper generalizes the MBN to multi-state systems by introducing the concept of composite 
state. The definitions and inference operations developed for MBN are modified to accommodate the composite 
state, while formulations for the parameter sensitivity are also developed for the MBN. To facilitate applications 
of the generalized MBN, three commonly used techniques for decomposing an event space are employed to 
quantify the MBN, i.e. utilizing event definition, branch and bound (BnB), and decision diagram (DD), each being 
accompanied by an example system. The numerical examples demonstrate the efficiency and applicability of the 
generalized MBN. The supporting source code and data can be download at https://github.com/jieunbyun/ 
Generalized-MBN-multi-state.   

1. Introduction 

The modern society relies on various types of complex engineering 
systems, which are characterized by their complex mechanisms and 
large scales, e.g. power systems, transportation networks, and oil dis
tribution systems. Despite the importance of securing their functionality 
in normal and disaster situations, accurate evaluation of the reliability of 
those systems still remains a challenging task as system events call for 
collective consideration of the components, rather than conventional 
component-wise evaluations. To this end, researchers developed 
advanced system reliability methods that can identify and utilize the 
characteristics of the system event definitions [1,2,3]. However, these 
methods mostly focus on evaluating the marginal distribution of the 
system event, while taking into account only the component and system 
events. Furthermore, they often require specialized data structures and 
inference algorithms. As a result, they are not congenial either to 
incorporating additional variables, e.g. hazards and deterioration, or to 
deriving other inference tasks, e.g. conditional probability and param
eter sensitivity. 

Bayesian network (BN) can provide an efficient probabilistic model 
of multiple variables using its graph-based representation that can 
translate their real-world causal relationships into mathematical for
mulations [4]. In BN, the variables are represented by nodes, and each 
directed arrow stands for the causal relationship between a pair of 
variables. This strategy makes it straightforward to formulate the in
fluence of the external factors on the component events. In addition, the 
dependence of a system event upon the component events can be 
explained simply by introducing arrows that head from the component 
nodes to the system node. Once a BN is modeled and quantified, BN 
inference algorithms can be applied to address various types of inference 
tasks. Especially for discrete BNs, i.e. BNs whose variables are all 
discrete, general-purpose inference algorithms are well-developed to 
facilitate the development of off-the-shelf software programs. 

However, the conventional BN cannot handle large-scale systems 
effectively as the approach requires specifying the probability values for 
all possible joint states of the components. Since the number of such 
states exponentially increases with that of components, the computer 
memory demand quickly becomes insurmountable when one attempts 

* Corresponding author. 
E-mail address: junhosong@snu.ac.kr (J. Song).   

1 formerly, Department of Civil and Environmental Engineering, Seoul National University, Seoul, S. Korea. 

Contents lists available at ScienceDirect 

Reliability Engineering and System Safety 

journal homepage: www.elsevier.com/locate/ress 

https://doi.org/10.1016/j.ress.2021.107468 
Received 28 June 2020; Received in revised form 15 November 2020; Accepted 13 January 2021   

https://github.com/jieunbyun/Generalized-MBN-multi-state
https://github.com/jieunbyun/Generalized-MBN-multi-state
mailto:junhosong@snu.ac.kr
www.sciencedirect.com/science/journal/09518320
https://www.elsevier.com/locate/ress
https://doi.org/10.1016/j.ress.2021.107468
https://doi.org/10.1016/j.ress.2021.107468
https://doi.org/10.1016/j.ress.2021.107468
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ress.2021.107468&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Reliability Engineering and System Safety 211 (2021) 107468

2

to quantify the probability mass function (PMF) of the system event. In 
order to avoid such exhaustive quantification, and thereby, to analyze 
large-scale systems within the BN methodology, the matrix-based 
Bayesian network (MBN) was developed by proposing a new matrix- 
based quantification of PMFs [5]. Thereby, the MBN can facilitate not 
only exploiting the regularities in the definition of the system event to 
achieve memory-efficiency, but also if necessary, performing approxi
mate inference in the framework of BN to handle even larger systems 
that exact methods cannot address. 

Despite its general applicability, the MBN has been applied only to 
binary-state systems so far [5,6], leaving its applicability to multi-state 
systems unexplored. The previously defined states in the MBN are not 
general enough to handle more than two states. Still, the reliability 
analysis of multi-state systems is essential as they cover a wide class of 
real-world systems, including mechanical systems [2], transportation 
networks [7], and utility distribution networks [8]. Although various 
methods have been proposed to efficiently quantify and inference 
multi-state systems [2,8], their complicated procedures makes it chal
lenging for them to be combined with BN, which hampers performing 
comprehensive reliability analysis of those systems. 

While multi-state systems show more rapid increase in memory de
mand than binary ones, both types of systems suffer the same issue, i.e. 
exponentially increasing memory demand with regard to the number of 
components, and therefore, can be addressed by similar approaches. 
Accordingly, this paper aims to generalize the MBN for multi-state sys
tems by proposing the concept of composite states in contrast to the 
conventional states, namely basic states. The definitions and inference 
operations that were previously developed for the MBN are thus modi
fied to be compatible with the proposed composite state. In addition, the 
MBN can also be employed for computing parameter sensitivity using 
the formulations newly developed in this paper. 

On the other hand, while the MBN enables efficient quantification, 
the methodology itself does not suggest a specific way of practical 
implementation for given systems and inference tasks. While there is no 
general rule for this, this paper aims to provide insight for such devel
opment by presenting concrete applications of the MBN. For quantifi
cation, three most commonly used techniques are employed to 
deterministically decompose the event space, i.e. decomposition based 
on event definition, branch and bound (BnB), and decision-diagram 
(DD). The applications are demonstrated in detail by the example sys
tem events accompanying each approach, i.e. multi-state series-parallel 
(MS-SP) system, flow network, and multi-state k-out-of-N:G (MS-kN:G) 
system. For inference, various tasks are addressed in the numerical ex
amples, which include system failure probability, component impor
tance measure, parameter sensitivity, and distribution update. The 
applications also illustrate the approximate inference using the MBN. 

The paper is organized as follows. Section 2 provides the theoretical 
background of BN. Then, Section 3 presents the proposed MBN meth
odology, including the previous development, generalized definitions 
and inference operations for multi-state systems, and formulations for 
parameter sensitivity. Section 4 illustrates how the MBN can be quan
tified using the existing techniques for decomposing event space. The 
discussions are illustrated by the numerical examples in Section 5 and 
summarized in Section 6. 

In the following discussions, the upper and lower cases, e.g. X and x, 
denote the random variables (r.v.’s) and the assigned values over them, 
respectively, while the particular assignment X = k is abbreviated as xk. 
The bolded letters are used when referring to a set of variables, and the 
cardinality of a set X is denoted as |X|. Also, the subtraction of sets, X − Y 
indicates X ∩ Yc.

2. Bayesian network 

Bayesian network (BN) formulates a probability distribution based 
on a directed acyclic graph (DAG). In a BN, the random variables (r.v.’s) 

are represented by circular nodes while their statistical dependence is 
indicated by directed arrows [4]. In this paper, the terms node and 
variable are used synonymously. The nodes connected to the tails and the 
heads of the arrows are respectively called parent and child nodes. Each 
node X is quantified by a probability distribution conditioned on the set 
of its parent nodes, PaX, i.e. P(X|PaX). Thereby, the joint distribution 
P(X) over the variables X in a BN can be described as the product of 
those conditional probability distributions, i.e. 

P(X) =
∏

X∈X
P(X|PaX) (1)  

where P(X|PaX) becomes a marginal distribution if PaX = ∅. Such 
graphical representation facilitates BN to exploit intuitive causal re
lationships between variables for formulating complex and high- 
dimensional joint probability distributions. Although Eq. (1) holds for 
both continuous and discrete distributions, the scope of this paper is 
limited to discrete ones. Therefore, in the following discussions, the 
notation P(⋅) refers to only a probability mass function (PMF). 

For instance, consider the flow capacity of a (physical) network in 
Fig. 1(a) where the uncertain flow capacities of the arcs are represented 
by the r.v.’s XN = {X1,⋯,XN} where N = 4. Fig. 1(b) shows the corre
sponding BN in which the r.v.’s in XN have H as their parent node. The r. 
v. H represents the hazard scenario of interest, while the arrows from H 
towards XN indicate that H affects the states of the component events 
XN. On the other hand, the system event XN+1 (= X5) survives if the 
states of XN are large enough to deliver the target demand d from nodes 
1 to 4. Accordingly, the dependency of XN+1 on XN is reflected in the BN 
by the converging arrows from XN to XN+1.

As also observed in Fig. 1(b), system events are characterized by the 
converging structure between component events and a system event in 
Fig. 2, which arises from their inherent dependency. Such structure 
makes it challenging for BN to handle large-scale systems because the 
PMF P(XN+1|XN) has an exponentially increasing number of possible 
assignments over {XN+1} ∪ XN as that of components, N increases. As a 
result, while it is conventional to store the probabilities of all assign
ments using table-based data structure, namely conditional probability 
table (CPT), such conventional approach becomes infeasible even for a 
modest value of N. This raises the need for a new data structure that can 
make BN applicable for large-scale systems. 

3. Matrix-based Bayesian network 

3.1. Background, advantages, and limitation of previous development 

To address the issue of exponential increase discussed in Section 2, 
Byun et al. [5] proposed the matrix-based Bayesian network (MBN) as an 
alternative data structure of BN. The key strategy is to introduce a 
matrix-based data structure for quantifying the conditional PMFs of a BN 
– namely, conditional probability matrices (CPMs). This approach is 
inspired by the matrix-based system reliability (MSR) method which 
separately stores the assignments and the probabilities using matrices so 
as to facilitate complicated probability computations [9]. Similarly, 
given a conditional PMF of a node, a CPM utilizes two matrices to store 
the assignments and the probabilities separately, namely event matrix C 
and probability vector p. In C and p, each row quantifies each of given 
instances, while each column of C stands for each of the variables by 
storing the assignments over the corresponding variables. This strategy 

Fig. 1. (a) Topology of an example physical network, and (b) the corre
sponding BN 

J.-E. Byun and J. Song                                                                                                                                                                                                                        



Reliability Engineering and System Safety 211 (2021) 107468

3

allows for memory-efficient quantification and flexible BN inference, 
remaining insensitive to the BN graph such as converging structure [5]. 

The MBN achieves memory efficiency in two perspectives. First, the 
separate representation of assignments allows for defining the assign
ments more flexibly, which facilitates encoding the regularity in the 
definition of a system event. For instance, it is observed in the example 
network of Fig. 1 that the system fails (being disconnected) if arcs 1 and 
2 are disabled, regardless of the states of arcs 3 and 4. Using the MBN, 
this observation can be quantified by a single row by introducing a state 
that stands for all states of X3 and X4, e.g. defined as “− 1” state in Byun et 
al. [5]. If X3 and X4 have three possible states each, then the single row 
can represent 32 = 9 instances that a conventional CPT would specify 
and store individually. Second, the row-wise storage allows the CPM to 
include only the instances of interest, e.g. those with positive proba
bilities and in case of optimization, those with positive utilities. For 
example, in the aforementioned event, i.e. the joint failures of arcs 1 and 
2 result in the system failure, the system survival event is not stored in 
the CPM as it has a zero probability. 

Moreover, the row-wise storage also exempts the MBN from quan
tifying the entire event space, i.e. the probabilities of the instances in 
CPM sum to less than one. This feature is essential for making the BN- 
based inferences applicable for approximate inference as well, which 
is inevitable as the number of components increases. Byun et al. [5] 
showed that the existing BN inference algorithms remain applicable 
even for such CPMs by developing the basic inference operations in 
terms of MBN, i.e. conditioning, sum, and product. These operations can 
be utilized to apply the existing algorithms such as variable elimination 
and clique trees [4]. In the paper, the formulations for error estimation 
were also provided for both cases where the instances are selected 
deterministically or stochastically. 

Despite the potentially wide applicability of the MBN, the previous 
studies investigated only binary-state systems [5,6]. This is mainly due 
to the limitation of the previously introduced “− 1” state, which can 
represent only the set of all states but not a subset of them. However, a 
wide class of real-world systems require modelling as multi-state sys
tems for effective representations. Therefore, Sections 3.2 and 3.3 
extend the MBN to multi-state systems by modifying the definitions and 
operations introduced in Byun et al. [5]. For completeness, the discus
sions also include the definitions and algorithms that do not require 
modifications. Thereafter, Section 3.4 develops formulations so as to 
apply the MBN to compute parameter sensitivity. 

3.2. Generalized definitions for multi-state systems 

As illustrated in Section 3.1, the MBN allows for flexibly defining the 
states of variables. In other words, one can collectively represent a 
subset of original states, namely basic states, by introducing some arti
ficial state, namely composite state. In the followings, for a variable X, the 
set of basic states and that of all states (i.e. both basic and composite 
states) are respectively denoted as BS(X) and Val(X). On the other hand, 
the set of basic states represented by a state xk is denoted by BX(k). For 
illustrative purpose, the physical quantity that is represented by a basic 
state xk is denoted as v(xk).

For instance, suppose in the BN of Fig. 1, the component events Xn ∈

XN have three possible states x1
n , x2

n , and x3
n that represent the n-th arc 

having the flow capacity of 0, 20, and 30, respectively, i.e. v(x1
n) = 0,

v(x2
n) = 20, and v(x3

n) = 30. Meanwhile, the system event XN+1 reflects 

whether the arc capacities are large enough to deliver the target flow d =

50 from nodes 1 to 4, which leads XN+1 to take a binary-state of survival 
x1

N+1 and failure x0
N+1. This setting results in the sets BS(Xn) = {1,2,3}

for Xn ∈ XN and BS(XN+1) = {0,1}. In addition, for efficient quantifi
cation, composite states are introduced for Xn ∈ XN as BXn (4) = {1,2},
BXn (5) = {2,3}, and BXn (6) = {1,2,3}, resulting in Val(Xn) = {1,2,⋯,6}

To enable such extended definition of states, the rows of the CPM are 
utilized as the quantification unit in the MBN, instead of the individual 
basic instances that the conventional approach utilizes. This distinctive 
unit is referred to as rules μ = 〈c; p〉 where assignments c and probability 
p respectively stand for the corresponding rows of C and p. The set of 
variables over which the given PMF is defined, i.e. those represented by 
the columns of C, is called scope which is denoted by Scope[μ]. The formal 
definition of a rule is as follows 

Definition 1. (Rule in the MBN): A “rule” in the MBN, μ is a pair 〈c; p〉
where c is a vector representing an assignment over a set of variables X,

and p ∈ [0, 1] is the corresponding probability. Inversely, X is defined as 
the scope of μ, denoted by Scope[μ]. 

Then, a rule μ = 〈c; p〉 defined over a PMF P(X) implies that 

P(x) = p for any assignment x such that B(x〈X〉)⊆B(c〈X〉), ∀X ∈ X  

where c〈X〉 denotes the assignment to X in c. For instance, in the 
aforementioned example, consider the event where the system fails, i.e. 
x0

N+1, given the arcs 1 and 2 having zero capacity, i.e. x1
1 and x1

2. In this 
case, the system always fails regardless of the states of X3 and X4, which 
can be encoded by the states x6

3 and x6
4. This produces the rule μ = 〈c; p〉

= 〈(0,1,1, 6, 6);1〉 where the elements of c denote the states of XN+1 and 
X1,⋯,X4 in sequence; and p = 1 due to the deterministic definition of 
the system event. Inversely, the rule indicates that P(x0

N+1, x1
1, x1

2, xk
3, xl

4)

= 1 for any k, l ∈ {1,2, 3} The scope of the rule is Scope[μ] = {XN+1,X1,⋯ 
,X4}

In order to make the rules coherent with the existing BN methods, the 
compatibility between two assignments having composite states should 
be defined. Two assignments are regarded being compatible if they 
indicate some common events. When the assignments consist only of 
basic states, the inspection is straightforward as the compatibility holds 
only when the assignments are identical for all variables in the common 
scope. However, composite states require some extra consideration since 
they can represent more than one instance: In this case, two assignments 
are compatible if and only if for all variables in their mutual scope, the 
assignments share at least one basic state. The formal definition is as 
follows: 

Definition 2. (Compatibility in the MBN): An assignment c1 to X is 
compatible with an assignment c2 to Y if it holds that for all Z ∈ X ∩ Y, 

BZ(c1〈Z〉) ∩ BZ(c2〈Z〉) ∕= ∅ 
If c1 is compatible with c2, it is denoted by c1 ∼ c2. 

For example, consider the two assignments c1 = (0, 1,1, 6, 6) over 
{X5,X1,⋯,X4} and c2 = (1, 4) over {X2,X3} Then, in regards to their 
mutual scope {X2,X3}, it is observed that BX2 (1) ∩ BX2 (1) = {1} and 
BX3 (6) ∩ BX3 (4) = {1,2}; and it is concluded that c1 ∼ c2. On the other 
hand, c3 = (2,4) over {X2,X3} is not compatible with c1 for BX2 (1) ∩
BX2 (2) = ∅.

The formal definition of CPM, which is the main data structure of 
PMFs in the MBN, can be established based on Definitions 1 and 2. As 
illustrated in Section 3.1, a CPM M = 〈C;p〉 quantifies a given PMF 
P(X|U) by using the matrices C and p: The rows of the two matrices 
represent each rule, while the columns of C stand for each variable in the 
scope X ∪ U. This leads to the following mathematical definition: 

Definition 3. (Conditional probability matrix): A CPM of PMF P(X|U)

is a set of k rules M = {〈c1; p1〉, 〈c2; p2〉,⋯, 〈ck; pk〉} introduced such that:  
• Each rule μ ∈ M has Scope[μ] = X ∪ U, which is also defined as 

Scope[M ]. 

Fig. 2. Converging structure between component events and system event  
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• For any assignment (x, u) to X ∪ U with only basic states, i.e. no 
composite states, there is either only one rule 〈c; p〉 ∈ M such that c ∼

(x,u), in which case P(x|u) = p; or no rule in M , in which case it is 
considered P(x|u) = 0.  

• CPM M is represented as a pair 〈C;p〉 where the rows of the matrix C 
and the corresponding elements in the vector p are respectively c and 
p of the rules 〈c; p〉 ∈ M . 

It is noted that while a CPM is a set of rules in the mathematical point 
of view, it is a pair of matrices in the implementation point of view. In 
the followings, the subscript of a CPM denotes the child node being 
quantified, i.e. M X = 〈CX;pX〉 quantifies P(X|PaX). For simplicity, when 
there is no confusion, the CPM is quoted without the tuple representa
tion, i.e. 〈C;p〉 for the two matrices always inherit the subscript of the 
CPM. 

In Definition 3, the only necessary condition for a valid CPM is the 
second bullet which requires all pairs of rules to be incompatible. Such 
condition is intuitive since any pair of compatible rules in a CPM would 
result in double-counting their common events. The only way to confirm 
this important condition for a given CPM is to check every pair of rules, 
which is not practical. A more efficient approach would be to ensure the 
condition while quantifying the CPM in the first place. This can be 
achieved by designing the quantification procedure in a way to generate 
disjoint sets, which is discussed in details in Section 4. 

It should be also noted that Definition 3 does not require a CPM to 
include the exhaustive set of instances, i.e. the sum of the probabilities of 
the rules may be less than one, which allows for non-exhaustive CPMs. 
This is particularly useful when the number of components is so large 
that the exhaustive quantification is unaffordable. In this case, a non- 
exhaustive CPM can be utilized to implement approximate inference 
into a BN. While the subset of rules can be selected either determinis
tically or stochastically depending on the employed methods, the way of 
selection determines the formulation of error bounds, for which the 
comprehensive illustrations can be found in Byun et al. [5]. 

As an example of quantifying a CPM, M XN+1 that represents the PMF 
P(XN+1|XN) in Fig. 1(b) can be quantified using the two rules 〈
(0, 1, 1,6, 6);1〉 and 〈(1,3,5, 3, 5);1〉 over {XN+1,X1,⋯,XN} as 

CXN+1 =

[
0 1 1 6 6
1 3 5 3 5

]

and pXN+1
=

[
1
1

]

(2)  

where the columns of CXN+1 sequentially denote the states of XN+1 and 
X1,⋯,X4. Although the rules are not representative of the complete set 
of the event {XN+1} ∪ XN, the CPM is still valid for they are not 
compatible with each other. 

3.3. Generalized inference operations for multi-state systems 

In this section, the basic operations of BN inference, i.e. conditioning, 
sum, and product, are developed for the MBN so that the existing BN 
inference algorithms, e.g. variable elimination, clique trees, and condi
tioning [4,5] can be applied to CPMs. To this end, given two assignments 
c1 and c2, the intersection assignment c = c1 ∩ c2 that represents their 
mutual instances, needs to be computed as follows: 

Definition 4. (Intersection assignment): Consider an assignment c1 to 
X and an assignment c2 to Y. Then, the intersection assignment of c1 and 
c2, denoted as c = c1 ∩ c2, has the scope X ∪ Y, and the assigned values 
are computed for each Z ∈ Scope[c] as 

c〈Z〉 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c1〈Z〉, Z ∈ X − Y

c2〈Z〉, Z ∈ Y − X

B− 1
Z (BZ(c1〈Z〉) ∩ BZ(c2〈Z〉)), Z ∈ X ∩ Y

where the inverse operation B− 1
Z (B) = z such that BZ(z) = B for 

some B⊆BS(Z) and z ∈ Val(Z).

If c1 and c2 are not compatible, i.e. there is some Z ∈ X ∩ Y such that 
BZ(c1〈Z〉) ∩ BZ(c2〈Z〉) = ∅, above operation returns a null assignment. A 
null assignment implies that the rule is not included in the CPM. 

For example, consider the assignments c1 = (0,1, 1,6, 6) over {X5,

X1,⋯,X4} and c2 = (1,4) over {X2,X3} Then, the intersection assign
ment c = c1 ∩ c2 has the scope {X5,X1,⋯,X4} = {X5,X1,⋯,X4} ∪

{X2,X3} For the variables {X5,X1,X4} = {X5,X1,⋯,X4} − {X2,X3}, the 
intersection c inherits the assignments in c1; on the other hand, for the 
variables {X2,X3} = {X5,X1,⋯,X4} ∩ {X2,X3}, c has the assignments 
identified as B− 1

X2
({1} ∩ {1}) = 1 over X2 and B− 1

X3
({1,2, 3} ∩ {1,2}) = 4 

over X3. Accordingly, the intersection is obtained as c = (0, 1,1, 4,6)
over {X5,X1,⋯,X4}

Then, the first BN operation to be defined is conditioning which 
conditions a BN on a given assignment. In other words, this operation 
leaves in the CPM only the instances that are compatible with a given 
context e, being defined as follows: 

Definition 5. (Conditioning operation in the MBN): Consider a CPM 
M = 〈C;p〉 with Scope[M ] = X and a context E = e. Then, M is condi
tioned on E = e, by setting 

M [e] = {〈c*〈X〉; p〉 : c* = c ∩ e for 〈c; p〉 ∈ M }

The sum operation aims to marginalize a variable out from a distri
bution. To this end, given a set of rules that are compatible over all 
variables but the variable to be summed out, the operation unifies these 
rules into a single rule with the probability being the sum of their 
probabilities. Although the definition has not been modified from the 
one proposed in Byun et al. [5], it is presented for completeness: 

Definition 6. (Sum operation in the MBN): Let Y be a variable and μi,

i = 1,2,⋯, k, be the k rules of the form μi = 〈c,Y = yi; pi〉. Then for M =

{μ1, μ2,⋯, μk}, the sum is defined as 
∑

YM = 〈c;
∑k

i=1pi〉.

This definition leads to Algorithm 1 for sum operation [4,5]. 
Finally, the product operation computes the product of two rules, i.e. 

the intersection of the two events. In other words, this operation returns 
a rule whose assignment and probability are respectively the intersec
tion assignment and the product of the two given probabilities. The 
formal definition is as follows: 

Definition 7. (Product operation in the MBN): Let μ1 = 〈c1; p1〉 and 
μ2 = 〈c2; p2〉 be two rules respectively with scopes X and Y. Then, their 
product 

μ* = μ1⋅μ2 = 〈c1 ∩ c2; p1⋅p2〉 with Scope[μ*] = X ∪ Y 

This definition leads to Algorithm 2 for the product operation. 
The inference using the MBN requires the overheads, compared to 

the conventional CPT approach, of identifying the compatibility be
tween the rules that may include composite states. However, when 
handling large-scale systems, the major bottleneck for BN analysis is not 
the computational cost for inference, but rather the memory required to 
store the individual instances whose number exponentially increases 
with that of component events. Moreover, the MBN has another 
advantage of making BN applicable for approximate inference, which 
allows for handling even larger systems. 

3.4. Parameter sensitivity 

Parameter sensitivity of probability can be computed using the MBN 
by replacing the elements of p with the derivatives of interest [9]. 
Specifically, consider a parameter θ and variables Xθ ∈ Xθ for which the 
probabilities P(Xθ|PaXθ ) are the functions of θ. Then, the sensitivity with 
regard to the parameter θ can be computed by replacing the CPM M Xθ =

〈CXθ ; pXθ
〉 with M Xθ ,θ = 〈CXθ ; ∂pXθ

/∂θ〉. Since in BN, the joint distribution 
P(X) is the product of the distributions over the individual nodes as in 
Eq. (1), its derivative is derived as 
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∂P(X)

∂θ
=
∑

Xθ∈Xθ

(
∂P(Xθ|PaXθ )

∂θ
⋅
∏

X∈X− {Xθ}

P(X|PaX)

)

(3) 

The equation is different from Eq. (1) only for the derivative term, 
which can be accounted for by the replaced CPM M Xθ ,θ. As indicated by 
the summation in the equation, if there is more than one Xθ, the infer
ence should be performed by replacing M Xθ with M Xθ ,θ for each Xθ ∈ Xθ 

at a time, whereby the final result can be computed by summing up 
those individual evaluations. 

4. Deterministic MBN quantification for system events 

The MBN provides an efficient means to encoding the system event 
P(XN+1|XN) that is illustrated in Fig. 2. However, to this end, a specific 
method should be developed based on the characteristics of a given 
system event each time. This issue is particularly relevant to the case of 
deterministic quantification where the instances are identified deter
ministically in contrast to the sampling techniques that make random 
selection. In general, the quantification process is two-fold: First, it de
composes the event space XN into disjoint subsets consisting of the in
stances that lead to the same system state; then, each subset can be 
translated into a rule by using composite states of the component events. 
The smaller the number of the disjoint subsets is, the more the method is 
considered efficient. 

For a concrete illustration of MBN quantification, in this section, the 
three most commonly used decomposition techniques of the event space 
are employed for MBN, each being accompanied by an example system 
type. During the implementation, it is noted that since CPMs do not need 
to include the exhaustive set of events, the quantification can be 
terminated without identifying all instances but only after achieving the 
desired precision. For such premature termination, the subsequent 
inference provides bounds on the query instead of the exact value, in 

which case, the convergence of the bounds can be accelerated by 
decomposing the sets with larger probabilities with a priority. It is 
noteworthy that while, in this paper, only deterministic system events (i. 
e. where a combination of components states leads to a single system 
event with probability of one) are considered, the MBN can also be 
utilized for probabilistic system events (i.e. where a joint state of com
ponents may lead to several system states with certain probabilities) as 
long as a subset of component events lead to the same system event with 
the same probability. 

4.1. Decomposition based on system event definition 

4.1.1. Framework 
Decomposing an event space can be facilitated by using the verbal 

definition of a given system event. For example, consider an event of 
reading the number on the upper face of a dice. Then, the decomposition 
becomes straightforward by describing the events in terms of such 
numbers, e.g. decomposition into three events by the numbers on the 
upper face such that {1,2}, {3,4}, and {5,6}

4.1.2. Example quantification: multi-state series-parallel system 
A series-parallel system, illustrated in Fig. 3, is a series system of 

subsystems, each of which is a parallel system of components. This type 
of systems is representative of modular systems such as power systems 
and software programs. In order to allow the subsystems and the system 
to have multiple states, the system definition can be extended to a multi- 
state series-parallel (MS-SP) system [2]. In an MS-SP system, each 
component serves some specific capacity and takes a binary-state of 
fulfilling either the full or zero capacity. Then, each subsystem, as a 
parallel system, has the capacity equal to the sum of the capacities of the 
surviving components. The system event, on the other hand, being a 
series system, has the capacity as the minimum capacity of the 

Algorithm 1 
Sum using CPMs.  

Algorithm 2 
Product using CPMs.  
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subsystems. In this section, a decomposition algorithm is developed for 
an MS-SP system event where in each subsystem, the components have 
the same capacity. The algorithm decomposes the event space based on 
verbal definitions. 

In the followings, N and Mn, n = 1,⋯,N, respectively denote the 
number of subsystems and that of components in the n-th subsystem. 
Then, the state of the m-th component in the n-th subsystem, m = 1,⋯,

Mn and n = 1,⋯,N, is represented by the r.v. Ynm, where the survival 
and the failure of the component event are respectively denoted by y1

nm 
and y0

nm. Finally, the capacities of the n-th subsystem and the system are 
represented by the r.v.’s Xn ∈ XN and XN+1.

The event of an MS-SP system can be decomposed by defining the 
disjoint subsets as the events where “the n-th subsystem has the smallest 
capacity of C.” Then, the events are disjoint to each other for different n 
and C. In order to make the generated subsets strictly disjoint, though, 
the definition needs elaboration as “the n-th subsystem has the capacity 
C which is smaller than the capacities of the 1,⋯,(n − 1)-th subsystems 
and smaller than or equal to the capacities of the (n + 1),⋯,N-th sub
systems.” By considering all possible combinations of n and C, this 
definition can lead to quantifying the exhaustive set of the event. Since 
there are at most |BS(Xn)| possible values of C for the n-th subsystem, the 
maximum number of such combinations is 

∑N
n=1|BS(Xn)|. In contrast, it 

is noted that the conventional CPT would specify 
∏N

n=1
|BS(Xn)| instances. 

For the event corresponding to a pair of n and C, the subsystems other 
than the n-th one should have the capacities greater than (or equal to, 
depending on the index) C. Therefore, by utilizing the proper composite 
states that collectively represent such states, each event can be quanti
fied by a rule. Algorithm 3 summarizes the quantification procedure. In 
the algorithm, the function v(⋅) for the states of Xn ∈ XN (XN+1) denote 
the corresponding capacity of the subsystem (system). 

As an illustrative example, consider an MS-SP system with N = 3,
M1 = 3, M2 = 2, and M3 = 1. The capacities of a single component in the 
subsystems 1, 2, and 3 are 10, 15, and 20 respectively, while the ca
pacities of the surviving components are summed up to determine the 
capacities of the subsystems as summarized in Table 1. Then, following 
Algorithm 3, the rules for M XN+1 are created by going through n = 1, 2,3 
and each k ∈ BS(Xn). For example, for n = 1 and k = 2, i.e. x2

1 with v(x2
1)

= 10, a rule is created over the assignments {x2
2, x3

2} and {x2
3}, where the 

assignments indicate the capacities equal to or greater than 10. This 
leads to the rule in M XN+1 

〈(2, 2, 4, 2); 1〉 (4)  

where the assignments sequentially stand for the r.v.’s XN+1 and X1,⋯,

XN; and the system state x2
N+1 denotes the system having the capacity of 

10. In the equation, the composite state x4
2 is introduced to represent the 

assignments {x2
2, x3

2}, i.e. BX2 (4) = {2,3}. In contrast, consider the 
assignment x3

2 where v(x3
2) = 30. This assignment does not create any 

rule for there is no state of X1 corresponding to a greater capacity than 

Fig. 3. Series-parallel system  

Algorithm 3 
MBN quantification of MS-SP system.  

Table 1 
BS(Xn) and vXn (⋅), n = 1, 2,3, in the MS-SP system with N = 3  

n  1 2 3 

BS(Xn) {1,2,3,4} {1,2,3} {1,2}
v(⋅) v(x1

1) = 0;

v(x2
1) = 10; v(x1

2) = 0;

v(x3
1) = 20; v(x2

2) = 15; v(x1
3) = 0;

v(x4
1) = 30  v(x3

2) = 30  v(x2
3) = 20   
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30. Upon the completion of the algorithm, the MBN M XN+1 = 〈CXN+1 ;

pXN+1
〉 is quantified as 

CXN+1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 5 3
2 2 4 2
4 3 3 2
1 6 1 3
3 5 2 2
1 6 4 1
4 4 3 2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and pXN+1
=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
1
1
1
1
1
1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(5) 

Table 2 summarizes the composite states of XN and the states of XN+1 

introduced for the quantification. 

4.2. Decomposition by branch and bound 

4.2.1. Framework 
Branch and bound (BnB) is a decomposition technique whose pro

cedure can be illustrated by a directed tree, i.e. for any node, there is 
exactly one path from the root node. In such graphical representation, 
the root node stands for the universal set of a given event, while other 
nodes correspond to the subset events created by the decomposition. In 
the process, decomposing a node is denoted by the directed arrows 
heading from the node to the next generated nodes (see Fig. 4 for an 
example). For a node, the decomposition is terminated if it is specified, i. 
e. the corresponding event consists of the instances that lead to the same 
state of the system. By construction, the final subsets are the end nodes 
of all branches. 

After terminating the decomposition, while there can be some un
specified nodes, the specified ones among the end nodes can be used to 
generate the rules of M XN+1 , i.e. M XN+1 consists of as many rules as the 
number of the specified nodes. Such translation into rules would require 
introducing proper composite states. 

4.2.2. Example quantification: flow network 
This section illustrates quantifying a flow network where the 

component events XN represent the flow capacities of the N arcs, e.g. the 
example network in Fig. 1(a). While the events XN can have multiple 
states, the system event XN+1 takes a binary state of survival (x1

N+1) if XN 

have flow capacities large enough to deliver the target demand d from 
the source node s to the terminal node t; and of failure (x0

N+1) otherwise.
In the following illustrations, v(xk

n) for Xn ∈ XN denotes the corre
sponding arc capacity. It is also assumed without loss of generality that a 
higher state of Xn ∈ XN indicates a larger capacity. 

In the BnB, the decomposed sets are denoted by the upper and lower 
bounds of the component states, u = (u1,⋯, uN) and l = (l1,⋯, lN).
Thereby, if a set has u that cannot deliver d, the set is specified as a 
failure set; or else if it has l that can deliver the target flow d, it is 
specified as a survival set. On the other hand, an unspecified set can be 
efficiently decomposed by utilizing a d-flow fd = (fd

1 ,⋯, fd
N) [1]. A d-flow 

is a vector of flow values on the arcs when exactly the target flow d takes 
place from s to t. Such flow can be computed by introducing a new 
terminal node t′ and an arrow with capacity d that heads from t to t′ , to 
the (physical) network having the arc capacities as u. With this modified 
network, fd can be computed by performing maximum flow analysis 
from s to t′ . For detailed discussion, readers are referred to Jane and Laih 

[1]. 
The decomposition utilizes the fact that the subset with lower bound 

l equal to or greater than fd can be specified as a survival set, aiming to 
arrive at this survival set at the end of the process (see Lines 5-28 in 
Algorithm 5). Specifically, let Xn′

1
,⋯,Xn′

m 
be the decomposition 

ordering of Xn ∈ XN. Following the order, the process separates out a set 
with the capacity of Xn′ smaller than fd

n′ , retaining the set with the ca
pacities equal to or greater than the d-flow value; then, it moves on to 
the next arc to further decompose the remaining set. This procedure 
leads the final remaining set to be specified as a survival set, while other 
sets produced during the decomposition require further flow analysis 
with their u and l to determine whether they can be specified. The nu
merical experiments suggest that the decomposition can become effi
cient by first considering the arcs with larger difference between the 
capacities corresponding to the lower bounds and the reference states 
for decomposition. 

For instance, recall the network in Fig. 1(a) where the target demand 
d = 50 from nodes 1 to 4; for Xn ∈ XN, v(x1

n) = 0, v(x2
n) = 20, and v(x3

n) =

30; and BXn (4) = {1,2}, BXn (5) = {2,3}, and BXn (6) = {1,2,3}. As 
illustrated in Fig. 4, the BnB starts with the universal set with upper 
bound (3,3, 3, 3) and lower bound (1, 1,1, 1). While fd is not unique, 
suppose a d-flow has been obtained as (30,20,30,20). Then, the refer
ence states for decomposition are evaluated as x3

1, x2
2, x3

3, and x2
4. Since 

v(xn) − v(ln) is 30, 20, 30, and 20 for n = 1,⋯,4, the decomposition 
ordering is set as X1, X3, X2, and X4.

Consequently, as illustrated in the figure, the set is decomposed into 
the five disjoint sets with bounds 〈u; l〉 such that 〈(2,3, 3,3); (1,1, 1,1)〉,
〈(3,3,2, 3); (3, 1, 1,1)〉, 〈(3,1, 3,3); (3, 1,3, 1)〉, 〈(3,3, 3,1); (3,2, 3,1)〉,
and 〈(3,3, 3, 3); (3, 2,3, 2)〉. While the last set is a survival set by con
struction, the maximum flow analysis over the upper bounds of the other 
sets reveals that the third and fourth sets are failure sets as their upper 
bounds show the maximum flow smaller than d = 50. Therefore, there 
are now two unspecified sets. In the figure, the further decomposition is 
made on the first set using the d-flow fd = (20,30,20,30). While there 
remains one unspecified set, one may continue or terminate the 
decomposition process depending on the desired level of precision and 
computational cost/memory. If one decides to terminate the process, the 
CPM M XN+1 is quantified as 

CXN+1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 3 1 3 6
0 3 5 3 1
1 3 5 3 5
0 4 4 6 6
0 4 3 6 4
0 1 3 6 3
0 2 3 1 3
1 2 3 5 3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and pXN+1
=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
1
1
1
1
1
1
1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(6)  

where the columns of CXN+1 stand for the states of XN+1 and X1,⋯,X4, in 
sequence. For instance, the survival set with 〈u; l〉 = 〈(3,3,3, 3); (3, 2,3,
2)〉 identified by the first decomposition is quantified by the rule 〈
(1, 3,5, 3,5); 1〉, which is in the third row of the CPM. 

Algorithm 4 summarizes the BnB-based MBN quantification of a flow 
network. In the algorithm, P(B) denotes the probability 

∑
b∈BP(b) where 

B and P(b) are respectively a set of decomposed events b and the 
probability of b.

Table 2 
Composite states of XN and states of XN+1 in the MS-SP system with N = 3  

n  1 2 3 

BXn (⋅) BX1 (5) = {3,4}; BX2 (4) = {2,3}; BX3 (3) = {1,2}
BX1 (6) = {2,3,4} BX2 (5) = {1,2,3}

v(⋅) v(x1
N+1) = 0; v(x2

N+1) = 10; v(x3
N+1) = 15; v(x4

N+1) = 20     

J.-E. Byun and J. Song                                                                                                                                                                                                                        



Reliability Engineering and System Safety 211 (2021) 107468

8

4.3. Decomposition by decision diagram 

4.3.1. Framework 
Similar to BnB, decision diagram (DD) procedure can be represented 

by a graph where the nodes and the arrows respectively stand for the 
decomposed subsets and the process of decomposition. Then, a node 
stops being decomposed when the node is specified, while the specified 
end nodes constitute the rules in M XN+1 . However, DD is distinguished 
from BnB in that it allows the paths to converge, i.e. a node can have 
more than one incoming arrow (for example, see Fig. 7 that illustrates an 
example DD procedure). Accordingly, in contrast to BnB which can be 
illustrated by a directed tree, DD is represented by a DAG [10]. 

As a trade-off of the converging paths, the DD-based decomposition 
requires the BN to introduce additional r.v.’s that account for the in
termediate nodes on the paths in DD. As an example, Fig. 5 illustrates the 
modified BN from the one in Fig. 2 where the sequential counting of the 
component events X1,⋯,XN produces the intermediate nodes X1,⋯,

XN− 1. Then, each arrow heading to the next intermediate stage (the final 
stage) produces a rule in the CPMs M Xn 

(M XN+1 ). Accordingly, DD is 
preferred when the intermediate quantification results can be efficiently 
summarized into a handful of cases. When there is no such way of 
effective summary, BnB should be preferred for it does not require 
modification on BN. 

4.3.2. Example quantification: multi-state k-out-of-N:G system 
In this section, a k-out-of-N:G system is quantified where the system 

survives given that there are equal to or more than k surviving compo
nents among a total of N components. In order to extend this definition 
so that the component events can have multiple states, Huang and Zuo 
[8] proposed a multi-state k-out-of-N:G (MS-kN:G) system by intro
ducing additional properties such that: (1) given M component states, 
each component state is associated with a demand k, which brings about 
k values as many as component states, i.e. km, m = 1,⋯,M; and (2) the 
system survives given that for all m, there are at least km component 
events whose states are equal to or greater than m. Accordingly, the 
component events Xn, n = 1,⋯,N, have basic states BS(Xn) =

{0,1,⋯,M} where x0
n indicates that none of the M states is achievable. 

On the other hand, the system event XN+1 takes the binary-state of either 
survival (x1

N+1) or failure (x0
N+1). An MS-kN:G system is representative of 

systems where the component states have some hierarchy. For instance, 
consider the oil distribution network in Fig. 6 where the component 
state is defined as the index of the farthest station that a pipeline can 

reach [8]. Such definition creates a hierarchy between the states for a 
farther station can be reached only once all of the closer stations have 
been reached. 

In order to quantify an MS-kN:G system, a DD-based approach can be 
employed where the component events Xn, n = 1,⋯,N, are sequentially 
counted, producing the intermediate nodes Xn, n = 1,⋯, (N − 1), that 
represent the fulfilled demands by X1,⋯,Xn [3]. During the quantifi
cation, the states x1

n and x0
n are reserved to represent the system survival 

and failure, respectively, for the case where the system event can be 
specified at the intermediate stage without counting the remaining 
component events. 

As an illustrative example, consider an MS-kN:G system with N = 4,
M = 2, and k = (3,2). The DD for quantifying this system is given in 
Fig. 7. In the DD, each node stands for an assignment of Xn,

n = 1,⋯, (N − 1), which can be specified by the two vectors q and q. In 
the figure, the upper vector q = (q1,⋯, qM) denotes the number of 
components, among the counted ones, whose states are equal to or 
greater than m, m = 1,⋯,M. On the other hand, the lower vector q =

(q1,⋯, qM) indicates the number of components that are additionally 
required to meet the demand at the state m, i.e. qm = km − qm. By defi
nition, the sum of the two vectors is equal to the demand k, i.e. q + q =

k. The two vectors can be utilized as a reference for the decomposition. 
For a node xn, if q is observed such that q ≥ k, i.e. qm ≥ km for all m, the 
state xn is specified as x1

n for the node always leads to the system survival 
event regardless of the states of the uncounted component events. In 
contrast, when a node has some m for which qm is greater than the 
number of remaining components, the node is specified as x0

n since it can 
never fulfill the demand km.

In Fig. 7, the DD starts with the universal set Ω with q = (0, 0). Then, 
the set is decomposed into three subsets by the three states of X1, where 
the subsets are represented by the states x2

1, x3
1, and x4

1. For example, by 
the state x0

1, Ω is decomposed into the event of x2
1 where q = (0, 0) + (0,

0) = (0, 0) for X1 cannot satisfy any of the states. On the other hand, 
given x1

1, the event is decomposed to that of x3
1 where q = (0,0) + (1,0)

= (1, 0). This process is continued until all component events are 
counted. 

In the figure, it is noted that the intermediate result, i.e. the number 
of components that fulfill each state, can be summarized into a few states 
of Xn, which makes the DD efficient for this type of systems. Further
more, a number of subsets can be specified in the middle of the quan
tification, which makes the quantification even more efficient by 
eliminating the need for counting the remaining components. This is 

Fig. 4. BnB procedure for example flow network in Section 4.2.2  
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indicated by the arrows connected to x1
n and x0

n , n = 1,⋯,N − 1. For 
instance, x6

2 has only one remaining demand at m = 1, by which the 
node can be specified as a system survival event given that the state of X3 

is equal to or greater than 1, i.e. x1
3 and x2

3. On the other hand, x2
2 has to 

fulfill two more demands for m = 2 while there are only two remaining 
components. Accordingly, if the state of X3 is smaller than 2, i.e. x0

3 and 
x1

3, the subsequent event becomes a system failure event. 
To quantify the MBN using the DD result, the first step is to quantify 

Algorithm 4 
MBN quantification of a flow network.  

Fig. 5. Modified BN for DD-based quantification  
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the intermediate nodes Xn, n = 1,⋯, (N − 1). For example, the left col
umn of nodes in Fig. 7 leads to the MBN M X1

= 〈CX1
;pX1

〉 for P(X1|X1)

such that 

CX1
=

⎡

⎣
2 0
3 1
4 2

⎤

⎦ and pX1
=

⎡

⎣
1
1
1

⎤

⎦ (7)  

where the first and the second columns of CX1 
respectively represent the 

states of X1 and X1. Then, the middle column of nodes quantifies M X2 
=

〈CX2
; pX2

〉 for P(X2|X2,X1) as 

CX2
=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 2
2 1 2
3 2 2
2 0 3
4 1 3
5 2 3
3 0 4
5 1 4
6 2 4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and pX2
=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
1
1
1
1
1
1
1
1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(8)  

where the columns of CX2 
represent the states of X2, X2, and X1 in order. 

Thereafter, the right column leads to M X3
= 〈CX3

;pX3
〉 such that 

CX3
=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 5 0
0 3 2
2 2 2
0 0 3
2 1 3
3 2 3
0 3 4
4 2 4
2 0 5
4 1 5
1 2 5
3 0 6
1 4 6

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and pX2
=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
1
1
1
1
1
1
1
1
1
1
1
1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(9)  

where the columns of CX3 
sequentially denote the states of X3, X3, and 

X2. For the quantification, the composite states of component events are 
set up as BXn (3) = {0,1}, BXn (4) = {1,2}, and BXn (5) = {0,1,2}. Finally, 
the system event XN+1 is quantified by the CPM M XN+1 = 〈CXN+1 ; pXN+1

〉

that represents P(XN+1|XN,XN− 1) as 

CXN+1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 5 0
0 3 2
1 2 2
0 0 3
1 4 3
0 3 4
1 2 4
1 5 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and pXN+1
=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
1
1
1
1
1
1
1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(10)  

where the columns of CXN+1 sequentially stand for XN+1, XN, and XN− 1.

Algorithm 5 summarizes the quantification process for the general 
MS-kN:G system. In the algorithm, the vector 1M,k denotes the M- 
dimensional vector where the first,⋯,k-th elements are 1 while the (k +

Fig. 6. Oil distribution network adopted from Huang and Zuo [8]  

Fig. 7. DD procedure for example kN-MS:G system in Section 4.3.2  
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Algorithm 5 
MBN quantification of a MS-kN:G system.  
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1)-th,⋯,M-th elements are 0. 

5. Numerical examples: probabilistic inference of multi-state 
systems by MBN 

In the following examples, the MBN has been inferenced using 
standard BN algorithms such as conditioning, variable elimination, and 
junction tree algorithm [11,4]. While the MBN quantification is illus
trated in detail in the following subsections, the reader who is interested 
in the MBN inference is referred to the shared source code (which can be 
downloaded at https://github.com/jieunbyun/Generalized-MBN-multi 
-state) and the preceding study [5]. 

5.1. Four-subsystem power system 

Consider a power system that can be described as a series system of 
different subsystems (modules) where the subsystem capacities are 
equivalent to the sum of the surviving components [2], i.e. the system is 
an MS-SP system described in Section 4.1.2. There are four subsystems, 
i.e. N = 4, each of which consists of 5, 7, 10, and 3 components. In the 
n-th subsystem, n = 1,⋯,N, the components have the identical reli
ability rn and the capacity value qn; in addition, they are subject to a 
common cause failure with the probability pf ,n, which may arise from 
environmental loads, maintenance errors, and design flaws [12]. The 
assumed values of parameters are summarized in Table 3. 

The graphical structure of BN is illustrated in Fig. 8 where the box 
represents the individual subsystems. In the box, the r.v. Cn, n = 1,⋯,N,

represents the number of surviving components, whereby the event is 
equivalent to a (binary-state) k-out-of-N:G system [13]. Accordingly, 
P(Cn) can be computed by the binomial distribution, producing the rules 
〈(cn); pn〉 for the CPM M Cn as 

pn =

(
Mn
cn

)

⋅rcn
n (1 − rn)

Mn − cn for cn = 0, 1,⋯,Mn (11) 

On the other hand, Fn describes whether in the n-th subsystem, the 
common cause failure takes place (f1

n ) or not (f0
n ). The CPM M Fn can be 

quantified using the parameters pf ,n in Table 3. 
Then, as illustrated in Section 4.1.2, the r.v. Xn ∈ XN represents the 

capacity of the n-th subsystem, which, in this example, has Fn and Cn as 
parent nodes. The CPM M Xn for P(Xn|Fn,Cn) can be quantified based on 
the setting such that given f1

n , the capacity is zero for all states of Cn 

while for f0
n , the capacity is cn⋅qn for each cn ∈ BS(Cn). It is noted that 

such deterministic relationship leads pXn 
to have all elements being one. 

For instance, the CPM M X1 is quantified as 

CX1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 6
0 0 0
1 0 1
2 0 2
3 0 3
4 0 4
5 0 5

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and pX1
=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
1
1
1
1
1
1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(12)  

where the columns of CX1 stand for X1, F1, and C1 from the left to right; 
the state c1 ∈ BS(C1) denotes that there are cn surviving components, 

while the composite state c6
1 is introduced as BC1 (6) = {0,1,⋯,5}; and 

the states x0
1, x1

1,⋯, x5
1 represent the subsystem capacities of 0, 10, ⋯, 50, 

respectively. Finally, the distribution of the system event, P(XN+1|XN)

can be quantified by Algorithm 3. It is noted that to quantify the dis

tribution, the naïve approach would quantify 
∏N

n=1
(Mn +1) = 2,112 in

stances, while the MBN requires only 20 rules for M XN+1 . 
Using the CPMs quantified over the BN in Fig. 8, the marginal 

probability of the system event, P(XN+1) has been computed using var
iable elimination algorithm. Thereby, the cumulative distribution 
function (CDF) of P(XN+1) can be computed as shown in Fig. 9. By 
defining the system failure event as the system capacity being smaller 
than 10, the system failure probability is computed as 3.74 × 10− 2 from 
the result in the figure. 

The importance of components can be also measured by calculating 
parameter sensitivity of probability using the quantified CPMs. First, the 
sensitivity of the system failure probability with respect to the compo
nent reliability rn, n = 1,⋯,N, is computed using the proposed method. 
Since the values of rn determine the probabilities of P(Cn) (see Eq, (11)), 
the CPM M Cn is replaced by M Cn ,rn whose rules 〈cn; ∂pn/∂rn〉 are derived 
as 

Table 3 
Parameters of example MS-SP power system  

n  1 2 3 4 

Number of components, Mn  5 7 10 3 
Component reliability, rn  0.8 0.6 0.5 0.9 
Component capacity, qn  10 8 6 12 

Probability of common cause failure, pf ,n (× 10− 3)  1 3 2 1  

Fig. 8. BN for example power system  

Fig. 9. CDF of P(XN+1) in example power system  

Table 4 
Parameters and results of sensitivity analysis of example power system  

n  1 2 3 4 

Variation by unit cost, Δrn  0.05 0.07 0.10 0.30 

Derivative, ∂Pf/∂rn (× 10− 1)  − 3.79 − 5.75 − 7.49 − 2.48 

Upgrade worth, IPf ,rn (× 10− 2)  1.89 4.02 7.49 0.743  
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Next, based on the parameter sensitivity, the “upgrade worth” is 
computed to quantify the importance of components [9,14]. This mea
sure quantifies the worth of fixed cost upgrade of the corresponding 
component by 

Iθ = −

[
∂Pf

∂θ

]

Δθ (14)  

where θ(= rn in this example), Δθ, and Pf respectively denote the 
parameter of interest, the variation in θ that can be achieved by a unit 
cost increment, and the system failure probability. The assumed values 
of Δrn are summarized in Table 4. Thereby, the values of ∂Pf /∂rn and 
IPf ,rn are computed as shown in Table 4. The result suggests that the 
greatest worth is expected for upgrading the component reliability of the 
third subsystem. 

5.2. Sioux Falls benchmark transportation network 

This section investigates the Sioux Falls benchmark transportation 
network consisting of 38 arcs (roads) and 24 nodes as illustrated in 
Fig. 10, assumed subject to seismic hazard [15]. In this example, the 
system event XN+1 survives if the target flow d = 4 can be delivered from 
the nodes s to t that are marked in the figure. As illustrated in Section 
4.2.2, the flow capacities of the arcs are represented by the component 
events Xn ∈ XN, while Xn can take three states x1

n , x2
n , and x3

n that 
respectively correspond to the flow capacity of 0, 2, and 3. 

The BN in Fig. 11 is constructed to represent the system where the 
seismic hazard is represented by the r.v.’s M and L that respectively 
stand for the moment magnitude and the epicenter location. On the 
other hand, the box represents the individual arcs, in which Dn, In, and 
Xn respectively represent the deterioration, the inspection result, and the 
flow capacity of the n-th arc, n = 1,⋯,N. Specifically, Dn takes a binary 
state of being either deteriorated (d1

n) or not (d0
n). Similarly, the binary 

state of In denotes the inspection result of being deteriorated (i1n) or not 
(i0n). This setting leads Xn to have parent nodes of M, L, and Dn, while Dn 

is also the parent node of In.
For quantification, the magnitude M is assumed to follow the trun

cated exponential distribution [16] with the probability density function 
(PDF) 

fM(m)= {

βexp
[
− β
(
mp − m0

)]

1 − exp
[
− β
(
mp − m0

)], for m0 ≤ m ≤ mp

0 otherwise
(15)  

where β = 0.76, m0 = 6.0, and mp = 8.5. To quantify the CPM M M, the 
values of M are uniformly discretized into 5 intervals such that [6.0,6.5),
[6.5, 7.0), [7.0, 7.5), [7.5,8.0), and [8.0, 8.5] whose representative values 
are set as the midpoint values during subsequent analysis. On the other 
hand, the location L is set to follow the uniform distribution over the five 
locations (− 2, − 2), (− 1, − 3), (0, − 4), (1, − 5), and (2, − 6) km. All arcs 
are assumed to have the probability of deterioration as 0.05, i.e. P(d1

n) =

0.05, while the inspection has the rates of false positive and false 
negative as 0.05 and 0.2, respectively, i.e. P(i1n |d0

n) = 0.05 and P(i0n |d1
n) =

0.2.
To quantify the distribution of Xn, the intensity measure (IM) of 

seismic hazards is defined as the peak ground accelerations (PGA) 
experienced at the centroids of the roads, which can be computed as 

ln(PGA) = μlnPGA + ε
where μlnPGA = − 3.512 + 0.904m − 1.328ln

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

r2 + [0.149exp(0.647m)]
2

√

+[0.440 − 0.171lnr]SSR + [0.405 − 0.222lnr]SHR
+[1.125 − 0.112lnr − 0.0957m]F

(16) 

In the equation, PGA has the unit g; μlnPGA and ε are respectively the 
mean value and the error term of the logarithm of the PGA; m and r 
respectively denote the magnitude and the distance between the 
epicenter and the centroid of the road; and the parameters SSR, SHR, and F 
are set to zero by assuming firm soil and strike-slip type faulting [17]. 
The error term ε follows the normal distribution with zero mean and the 
standard deviation σ given as 

σ =

⎧
⎨

⎩

0.55, AH < 0.068g
0.173 − 0.140ln(AH), 0.068g ≤ AH ≤ 0.21g

0.39, AH > 0.21g
(17) 

Fig. 10. Topology of Sioux Falls benchmark network and hypothetical in
spection scenario 

Fig. 11. BN for Sioux Falls benchmark network under seismic hazards  

Table 5 
PGA capacity (g) of roads to maintain the flow capacity  

Flow capacity 2 (c2) 3 (c3)

d0
n  1.20 1.00 

d1
n  1.00 0.85  

∂pn

∂rn
=

(
Mn

cn

)

⋅
(
cn⋅rcn − 1

n (1 − rn)
Mn − cn + (Mn − cn)⋅rcn

n (1 − rn)
Mn − cn − 1)

=

(
Mn

cn

)

⋅rcn − 1
n (1 − rn)

Mn − cn − 1
(cn(1 − rn) + (Mn − cn)rn),

cn = 0, 1,⋯,Mn

(13)   
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On the other hand, the seismic capacity of the roads described in 
terms of PGA is considered deterministic. Accordingly, the probabilities 
of Xn ∈ XN are derived as 

P
(
x1

n

)
= Φ

(
−

c2 − μlnPGA

σ

)
,

P
(
x2

n

)
= Φ

(c2 − μlnPGA

σ

)
− Φ

(c3 − μlnPGA

σ

)
,

and P
(
x3

n

)
= Φ

(c3 − μlnPGA

σ

)

(18)  

where μlnPGA and σ can be evaluated respectively from Eqs. (16) and 
(17). The parameters c2 and c3 are the threshold values of PGA capacities 
for the flow capacity being 2 and 3, respectively, being dependent on Dn 
as illustrated in Table 5. 

Finally, the CPM M XN+1 for the system event P(XN+1|XN) can be 
quantified by Algorithm 4. It is noted that the algorithm requires the 
joint PMF P(XN) as an input, whose exact computation is expensive. 
Therefore, an alternative PMF Q(XN) =

∏N
n=1P(Xn

⃒
⃒m5) is used where the 

state m5 corresponds to the last interval m ∈ [8.0,8.5]. Such conditioning 
is found to be effective in most numerical experiments, having an effect 
analogous to the importance sampling (IS). Since the event space is too 
large for exhaustive quantification, the algorithm has been terminated 
when the probability of the unspecified sets becomes less than 10− 3, i.e. 
p = 1 × 10− 3 in Algorithm 4. As a result, the subsequent inference does 
not provide the exact results, but deterministic bounds. 

For inference using the BN, the r.v.’s M and L are marginalized by 
conditioning, while other variables are marginalized by sum-product 
variable elimination algorithm (for details of conditioning, readers are 
referred to Chapter 9.5 of Koller and Friedman [4]). By performing the 
inference using the non-exhaustive CPM M XN+1 , the bounds on the sys
tem failure probability P(x0

N+1) can be computed as 

P̃
(
x0

N+1

)
≤ P

(
x0

N+1

)
≤ 1 − P̃

(
x1

N+1

)
(19)  

where ̃P(⋅) denotes the probability whose computation involves any non- 
exhaustive CPMs. The inference result is summarized in Table 6 along 
with that by Monte Carlo Simulation (MCS). While the two results agree 
with each other, it is noted that the BnB-based decomposition quantifies 
M XN+1 with 1,007 rules (606 survival sets and 401 failure sets) while the 
MCS results in 38,670 rules in the CPM to attain the coefficient of 
variance (c.o.v.) of 0.03. This demonstrates that analytical decomposi
tion methods are in general more efficient than sampling methods if 
there is an available method for a given system. 

The BN in Fig. 11 can also be used to evaluate the relative importance 
of the components (roads). For instance, one can employ the conditional 
probability based importance measure (CPIM) proposed by Song and 
Kang [9], where the measure is defined as the component failure 
probability conditioned on the system failure. Since a component can 
have more than two states, the component failure event is regarded as 
the arc having capacity less than the greatest capacity it can have, i.e. x4

n 
where BXn (4) = {1,2}. To compute the CPIM, the bounds of the joint 
probability P(x4

n , x0
N+1), n = 1,⋯,N, are computed as 

P̃
(
x4

n, x
0
N+1

)
≤ P

(
x4

n, x0
N+1

)
≤ 1 − P̃

( {
x4

n, x0
N+1

}c) (20)  

where {x4
n , x0

N+1}
c is the set of states such that Val(Xn,XN+1) − {x4

n , x0
N+1}

Accordingly, the bounds on the CPIMs of Xn, i.e. P(x4
n |x0

N+1) are 

computed from Eqs. (19) and (20) as 

P̃
(
x4

n, x0
N+1

)

1 − P̃(x1
N+1)

≤ P
(
x4

n|x
0
N+1

)
≤

1 − P̃
( {

x4
n, x0

N+1

}c)

P̃(x0
N+1)

(21) 

In Fig. 12, the deterministic bounds of the five largest CPIMs are 
illustrated along with the 99% confidence intervals evaluated using the 
MCS samples. While the results by the two approaches agree with each 
other, it is noted that the deterministic decomposition provides much 
narrower intervals. On the other hand, the list of the five roads with the 
highest CPIMs is as expected for they constitute the major routes from s 
to t. The CPIMs of other roads do not show a notable difference, all 
having the upper bounds less than 0.05. 

Another advantage of BN is that it is straightforward to update the 
probability distribution to reflect new information. To demonstrate this, a 
hypothetical inspection scenario is assumed as illustrated in Fig. 10. The 
blue solid and red dotted lines respectively indicate that the roads are 
inspected to be intact (i0n) and deteriorated (i1n). The scenario has been 
generated with the probability 0.5 for both assignments, which puts a 
higher probability of deterioration than the originally given P(Dn).

Consequently, the system failure probability rises by around 45% as 
illustrated in Table 6. The CPIMs can be also updated as illustrated in 
Fig. 12 which suggests that the inspection result of being deteriorated in
creases the CPIM. The stable bounds widths of the updated information 
suggest that approximate inference by deterministic decomposition is in 
general more robust against varying configurations compared to sampling 
approaches, which often shows unstable performance in such conditions. 

Table 6 
System failure probability of Sioux Falls benchmark network   

Bounds by BnB [upper, lower] 99% confidence interval by MCS Bounds by BnB given iN  

System failure probability (× 10− 2)  [2.69, 2.70] [2.58, 3.01] [3.89, 3.93]

Fig. 12. Top five CPIMs of roads  

Fig. 13. BN for example oil distribution system  
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5.3. Three-station oil distribution system 

Consider the oil distribution system in Fig. 6 with N = 20 and M = 3,
i.e. 20 pipelines and 3 stations. In addition to the component events and 
the system event, the r.v.’s Dnm, n = 1,⋯,N and m = 1, 2,3, are intro
duced to account for the deterioration of the m-th segment of the n-th 
pipeline where the m-th segment is the part that connects the m-th sta
tion from the previous one. This leads to the BN in Fig. 13 where the 
boxes represent the individual segments. As indicated by the BN, the 
component event Xn depends on Dnm, m = 1,2, 3, while the system event 
XN+1 and the intermediate nodes X1⋯, XN− 1, can be quantified by Al
gorithm 4. 

The r.v. Dnm takes a binary state for being deteriorated (d1
nm) and 

being intact (d0
nm), respectively with the probabilities of 0.2 and 0.8. The 

state of Dnm affects the failure likelihood of the corresponding segment 
as given d1

nm, the segment fails with probability 0.3 while given d0
nm, it 

fails with probability 0.1. These parameters can be used to quantify the 
PMF P(Xn|Dn3,Dn2,Dn1) (recall from Section 4.2.2 that the r.v. Xn rep
resents the farthest station that the n-th pipeline can reach).

To evaluate the system reliability, three target demands are consid
ered: k1 = (10,7, 4), k2 = (5, 11,5), and k3 = (4, 7,10). The system 
failure probability P(x0

N+1) has been computed by the junction tree al
gorithm, which is obtained as 7.36 × 10− 5, 1.85 × 10− 2, and 6.94 ×
10− 2 respectively for k1, k2, and k3. As expected, the more demand the 
farther station requires, the larger the failure probability becomes. It is 
noted that while the event XN ∪ {XN+1} consists of (M + 1)N⋅2 ≈ 2.20 ×
1012 instances, the numbers of rules used to quantify the CPMs M XN+1 

and M X1
,⋯,M Xn− 1 

are 15,662, 14,250, and 10,140 respectively for k1,

k2, and k3.

6. Conclusions 

The matrix-based Bayesian network (MBN [5]), an alternative data 
structure of discrete Bayesian network (BN) recently proposed to handle 
large-scale systems, was generalized in this paper to handle multi-state 
systems representing a wide range of real-world systems. To achieve 
this goal, the concept of composite state was proposed to represent a 
subset of states collectively, as a generalization of “− 1” state introduced 
in Byun et al. [5]. 

The definitions of the MBN and the basic probability operations 
(conditioning, sum, and product) were renewed so that the composite 
state can be consistent with the existing BN inference algorithms. In 
addition, an MBN-based formulation was proposed to compute param
eter sensitivity of probabilities of interest. The paper also presents 
concrete illustrations of MBN applications. To this end, the MBN was 
quantified using three commonly used techniques that deterministically 
decompose event space, i.e. utilization of verbal definition of events, 
branch and bound (BnB), and decision diagram (DD), each being 
accompanied by an example system, i.e. multi-state series parallel (MS- 
SP) system, flow network, and multi-state k-out-of-N:G (MS-kN:G) sys
tem, respectively. Furthermore, various inference tasks were demon
strated in the numerical examples, which includes evaluating system 
failure probability and component importance measure, sensitivity 
analysis, and updating distributions. The approximate inference using 
the MBN was also explored, which suggests that the approximation 
based on deterministic quantification tends to show better performance 
in terms of efficiency and robustness, given that there exists an available 
method for a given type of system. The supporting source code of the 
MBN application and the data of the numerical examples can be 
download at https://github.com/jieunbyun/Generalized-MBN-multi 
-state. 

The MBN quantification can be further developed to advance the 
system reliability analysis based on BN. To this end, MBN quantification 
methods can be developed for the systems whose efficient quantification 

has not been addressed yet. Such framework can be developed even for 
general systems so that any arbitrary systems can be efficiently quanti
fied. Another type of systems worth investigating is probabilistic system 
events where a combination of component states may lead to several 
system states with certain probabilities. Moreover, the MBN can be 
extended for dynamic systems, in which the presence of time variables 
can make the quantification and inference more challenging. 
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