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Abstract. We develop a fully diagrammatic approach to finite-state au-
tomata, based on reinterpreting their usual state-transition graphical rep-
resentation as a two-dimensional syntax of string diagrams. In this set-
ting, we are able to provide a complete equational theory for language
equivalence, with two notable features. First, the proposed axiomatisation
is finite— a result which is provably impossible for the one-dimensional
syntax of regular expressions. Second, the Kleene star is a derived con-
cept, as it can be decomposed into more primitive algebraic blocks.
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1 Introduction

Finite-state automata are one of the most studied structures in theoretical com-
puter science, with an illustrious history and roots reaching far beyond, in the
work of biologists, psychologists, engineers and mathematicians. Kleene [25]
introduced regular expressions to give finite-state automata an algebraic pre-
sentation, motivated by the study of (biological) neural networks [31]. They are
the terms freely generated by the following grammar:

e, f ::= e + f | e f | e∗ | 0 | 1 | a ∈ A (1)

Equational properties of regular expressions were studied by Conway [14] who
introduced the term Kleene algebra: this is an idempotent semiring with an oper-
ation (−)∗ for iteration, called the (Kleene) star. The equational theory of Kleene
algebra is now well-understood, and multiple complete axiomatisations, both
for language and relational models, have been given. Crucially, Kleene alge-
bra is not finitely-based: no finite equational theory can appropriately capture
the behaviour of the star [35]. Instead, there are purely equational infinitary
axiomatisations [28,4] and Kozen’s finitary implicational theory [26].

Since then, much research has been devoted to extending Kleene algebra
with operations capturing richer patterns of behaviour, useful in program veri-
fication. Examples include conditional branching (Kleene algebra with tests [27],
and its recent guarded version [37]), concurrent computation (CKA [19,23]),
and specification of message-passing behaviour in networks (NetKAT [1]).
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The meta-theory of the formalisms above essentially rests on the same three
ingredients: (1) given an operational model (e.g., finite-state automata), (2) de-
vise a syntax (regular expressions) that is sufficiently expressive to capture the
class of behaviours of the operational model (regular languages), and (3) find a
complete axiomatisation (Kleene algebra) for the given semantics.

In this paper, we open up a direct path from (1) to (3). Instead of thinking
of automata as a combinatorial model, we formalise them as a bona-fide (two-
dimensional) syntax, using the well-established mathematical theory of string
diagrams and monoidal categories [36]. This approach lets us axiomatise the
behaviour of automata directly, freeing us from the necessity of compressing
them down to a one-dimensional notation like regular expressions.

This perspective not only sheds new light on a venerable topic, but has sig-
nificant consequences. First, as our most important contribution, we are able to
provide a finite and purely equational axiomatisation of finite-state automata, up
to language equivalence. Intriguingly, this does not contradict the impossibility
of finding a finite basis for Kleene algebra, as the algebraic setting is different:
our result gives a finite presentation as a symmetric monoidal category, while
the impossibility result prevents any such presentation to exist as an algebraic
theory (in the standard sense). In other words, there is no finite axiomatisation
based on terms (tree-like structures), but we demonstrate that there is one based
on string diagrams (graph-like structures).

Secondly, embracing the two-dimensional nature of automata guarantees a
strong form of compositionality that the one-dimensional syntax of regular ex-
pressions does not have. In the string diagrammatic setting, automata may have
multiple inputs and outputs and, as a result, can be decomposed into subcom-
ponents that retain a meaningful interpretation. For example, if we split the
automata below left, the resulting components are still valid string diagrams
within our syntax, below right:

a

a

b a
7→

b
a

a

a
(2)

In line with the compositional approach, it is significant that the Kleene star can
be decomposed into more elementary building blocks (which come together to
form a feedback loop):

e∗ 7→ e (3)

This opens up for interesting possibilities when studying extensions of Kleene
algebra within the same approach— we elaborate on this in Section 6.

Finally, we believe our proof of completeness is of independent interest, as it
relies on fully diagrammatic reformulation of Brzozowski’s minimisation algo-
rithm [12]. In the string diagrammatic setting, the symmetries of the equational
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theory give this procedure a particularly elegant and simple form. Because all
of the axioms involved in the determinisation procedure come with a dual, a co-
determinisation procedure can be defined immediately by simply reversing the
former. This reduces the proof of completeness to a proof that determinisation
can be performed diagrammatically.

We should also note that this is not the first time that automata and regular
languages are recast into a categorical mould. The iteration theories [5] of Bloom
and Ésik, sharing graphs [17] of Hasegawa or network algebras [39] of Stefanescu
are all categorical frameworks designed to reason about iteration or recursion,
that have found fruitful applications in this domain. They are based on a no-
tion of parameterised fixed-point which defines a categorical trace in the sense
of [22]. While our proposal bears resemblance to (and is inspired by) this prior
work, it goes beyond in one fundamental aspect: it is the first to give a finite
complete axiomatisation of automata up to language equivalence.

A second difference is methodological: our syntax (4) does not feature any
primitive for iteration or recursion. In particular, the star is a derived concept,
in the sense that it is decomposable into more elementary operations (3). Cate-
gorically, our starting point is a compact-closed rather than traced category.

We elaborate on the relation between ours and existing work in Section 6.
Omitted proofs can be found in [33].

2 Syntax and semantics

Syntax. We fix an alphabet Σ of letters a ∈ Σ. We call AutΣ the symmetric strict
monoidal category freely generated by the following objects and morphisms:

– three generating objectsI (‘action’),I (‘right’) andJ (‘left’) with their iden-
tity morphisms depicted respectively as , and .

– the following generating morphisms, depicted as string diagrams [36]:
a

(a ∈ Σ)
(4)

Freely generating AutΣ from these data (usually called a symmetric monoidal the-
ory [42,11]) means that morphisms of AutΣ will be the string diagrams obtained
by pasting together (by sequential composition and monoidal product in AutΣ)
the basic components in (4), and then quotienting by the laws of symmetric
monoidal categories. For instance, (3) is a morphism of AutΣ of type I→I, and

is one of type II I→ I.

Semantics. We first define the semantics for string diagrams simply as a func-
tion, and then discuss how to extend it to a functor from AutΣ to another cate-
gory. Our interpretation maps generating morphisms to relations between reg-
ular expressions and languages over Σ:

J K = {((e, e) | e ∈ RegExp} J K = {(e, e∗) | e ∈ RegExp}
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q y
=
{(

e, (e, e)
)
| e ∈ RegExp

}
J K = {(e, •) | e ∈ RegExp}

q y
= {((e, f ), e f ) | e, f ∈ RegExp} J K = {(•, 1)}

r a z
=
{
(•, a)

}
q y

= {((e, f ), e + f ) | e, f ∈ RegExp} J K = {(•, 0)}
r z

=
{(

L, (K1, K2)
)
| L ⊆ Ki, i = 1, 2 and L, K1, K2 ⊆ Σ?

}
r z

=
{(

(L1, L2), K
)
| Li ⊆ K, i = 1, 2 and L1, L2, K ⊆ Σ?

}
J K = {(L, •) | L ⊆ Σ?}

r z
= {(•, (L, K)) | L ⊆ K | L, K ⊆ Σ?}

J K = {(•, K) | K ⊆ Σ?}
r z

= {((L, K), •) | K ⊆ L | L, K ⊆ Σ?}

J K = {((L, K), L ⊆ K) | L, K ⊆ Σ?}
J K = {((L, K), K ⊆ L) | L, K ⊆ Σ?}

s {
= {((e, L), K) | L JeKR ⊆ K and e ∈ RegExp, L, K ⊆ Σ?} (5)

In (5), the semantics JeKR ∈ 2A∗ of a regular expression e ∈ RegExp is defined
inductively on e (see (1)), in the standard way:

Je + f KR = JeKR ∪ J f KR Je f KR = {vw | v ∈ JeKR , w ∈ J f KR}
J1KR = {ε} J0KR = ∅ JaKR = {a} Je∗KR =

⋃
n∈N

JenKR

where en+1 := een and e0 := 1. The semantics highlights the different roles
played by red1 and black generators. In a nutshell, red generators stand for
regular expressions ( the sum, is 0, the product, is 1,
the Kleene star, and

a
the letters of Σ), and black generators for operations

on the set of languages ( is copy, is delete, and feed back out-
puts into inputs, in a way made more precise later). These two perspectives,
which are usually merged, are kept distinct in our approach and only allowed

to communicate via , which represents the product action of regular
expressions (the red wire) on languages via concatenation on the right.

In order for this mapping to be functorial from AutΣ, we now introduce
a suitable target semantic category. Interestingly, this will not be the category
Rel of sets and relations: indeed, the identity morphisms and are
not interpreted as identities of Rel. Instead, the semantic domain will be the
category ProfB of Boolean(-enriched) profunctors [15] (also called in the literature
relational profunctors [20] or weakening relations [32]).

Definition 1. Given two preorders (X,≤X) and (Y,≤Y), a Boolean profunctor R :
X → Y is a relation R ⊆ X × Y such that if (x, y) ∈ R and x′ ≤X x, y ≤Y
y′ then (x′, y′) ∈ R.

1 The reader with a greyscale version of the paper should see light grey generators
instead.
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Preorders and Boolean profunctors form a symmetric monoidal category ProfB with
composition given by relational composition. The identity for an object (X,≤X) is the
order relation ≤X itself. The monoidal product is the usual product of preorders.

The rich features of our diagrammatic language are reflected in the profunc-
tor interpretation. Indeed, the order relation is built into the wires and

. The two possible directions represent the identities on the ordered set of
languages and the same set with the reversed order, respectively. The additional
red wire represents the set RegExp of regular expressions, with equality as
the associated order relation.2 It is clear that all monochromatic generators sat-

isfy the condition of Definition 1. Similarly, the action generator is a
Boolean profunctor: if ((e, L), K) are such that L JeKR ⊆ K and L′ ⊆ L, K ⊆ K′

then we have L′ JeKR ⊆ L JeKR ⊆ K ⊆ K′ by monotony of the product of lan-
guages. We can conclude that

Proposition 1. J·K defines a symmetric monoidal functor of type AutΣ → ProfB.

In particular, because AutΣ is free, we can unambiguously assign meaning to
any composite diagram from the semantics of its components using composi-
tion and the monoidal product in ProfB:

q
c d

y
=
{
(L, K) | ∃M (L, M) ∈

q
c

y
, (M, K) ∈

q
d

y}
s

c1

c2

{
=
{(

(L1, L2), (K1, K2)
)
| (Li, Ki) ∈

q
ci

y
, i = 1, 2

}
Example 1. We include here a worked out example to show how to compute the
behaviour of a composite diagram which, as we will see, represents the action
by concatenation of the regular language a∗. We assign variable names to each
wire: O to the top wire of the feedback loop, N to the output wire of the action
node, and M to the middle wire joining to so that we can compute:
u

v

a }

~
= {(L, K) | ∃M, N, O, L, N ⊆ M, O JaKR ⊆ N, M ⊆ O, K}
= {(L, K) | ∃N, O, L, N ⊆ O, L, N ⊆ K Oa ⊆ N}
= {(L, K) | ∃O, Oa ⊆ O, L ⊆ O, L, O ⊆ K}.

Call this diagram d. Since Oa ⊆ O and L ⊆ O is equivalent to L ∪Oa ⊆ O,
JdK = {(L, K) | ∃O s.t. L ∪Oa ⊆ O, L, O ⊆ K}. Finally, by Arden’s lemma [2],
La∗ is the least solution of the language inequality L ∪ Xa ⊆ X; thus JdK =
{(L, K) | ∃O s.t. La∗ ⊆ O, L, O ⊆ K} = {(L, K) | La∗ ⊆ K}.

3 Equational theory

In Figure 1 we introduce =KDA, the (finite) equational theory of Kleene Diagram
Algebra, on AutΣ. It will be later shown to be complete for the given semantics.
We explain some salient features of =KDA below.

2 Note that we can always consider any set with equality as a poset and that, therefore,
Rel is a subcategory of ProfB, but not vice-versa, for the simple reason that the identity
relation of an arbitrary poset in ProfB is not mapped to the identity relation in Rel.
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(A1)
=

(A2)
=

(A3)
=

(B1)
=

(B2)
=

(B3)
=

(B4)
=

(B5)
=

(B6)
=

(B7)
=

(B8)
=

(B9)
=

(B10)
=

(B11)
=

(B12)
=

(C1)
=

(C2)
=

(C3)
=

(C4)
=

(C5)
=

(D1)
=

(D2)
=

(D3)
=

(D4)
=

(E1)
=

(E2l)
=

(E2r)
=

(E3)
=

(E4)
=

(E5)
=

a (E6)
=

a
a

a (E7)
=

(E8)
=

(E9)
=

(E10)
=

(E11)
=

(E14)
=

(E13)
=

(E15)
=

(E14)
=

Fig. 1. Equational theory =KDA of Kleene Diagram Algebra.
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– (A1)-(A2) relate and , allowing us to bend and straighten wires at will.
This makes the full subcategory of AutΣ on I and J, modulo (A1)-(A2),
compact closed [24]. (A3) allows us to eliminate isolated loops. Note that the
whole category is not compact closed because I has no dual.

– The B block states that , forms a cocommutative comonoid (B1)-

(B3), while , form a commutative monoid (B4)-(B6). Moreover,

, , , form an idempotent bimonoid (B7)-(B11). (B12) al-
lows us to eliminate trivial feedback loops.

– The C block axiomatises the action of regular expressions on languages.
These laws mimic the usual definition of the action of a semiring on a set,
except for (C5) which is novel and captures the interaction with the Kleene
star. Here lies a distinctive feature of our theory: the behaviour of the star is
derived from its decomposition as the feedback loop on the right of (C5).

– The D block forces the action to be a comonoid ((D1)-(D2)) and monoid
((D1)-(D2)) homomorphism.

– The E block axiomatises the purely red fragment. Remarkably, these ax-
ioms do not describe any of the actual Kleene algebra structure: they just
state that and form a commutative comonoid ((E1)-(E3)) and that
all other red generators are comonoid homomorphisms ((E4)-(E15)). This
means that the red fragment is actually the free (cartesian) algebraic theory
(cf. [42,11]) on generators , , , , ,

a
(a ∈ Σ), where

the remaining generators and act as copy and discard of vari-
ables.

Let =KDA be the smallest equational theory containing all equations in Fig. 1.
Their soundness for the chosen semantics is not difficult to show and, for space
reasons, we omit the proof. We now state our completeness result, whose proof
will be discussed in Section 5.

Theorem 1 (Completeness). For morphisms d, e in AutΣ , d =KDA e iff JdK = JeK.

Remark 1. In the usual approach to the theory of regular languages (e.g. [26]), a
completeness result like Theorem 1 is typically proven by first defining a class
of models for the algebraic theory, and showing that the standard semantics
constitutes the initial/free model. Our proof is different in flavour, but equiva-
lent: taking advantage of the categorical formulation of our diagrammatic syn-
tax and its semantics, we construct an equivalence of categories between our
model and the diagrams quotiented by the equations of KDA.

Remark 2. Some axiomatisations of Kleene algebra use a partial order between
terms, which can be defined from the idempotent monoid structure: f ≤ e iff
e + f = e. At the semantic level, it corresponds to inclusion of languages. Simi-
larly, using the idempotent bimonoid structure of our equational theory, we can

define a partial order on I→I diagrams: f ≤ e iff
e

f
= e . This

partial order structure can also be extended to all morphisms In→Im by using
the vertical composition of n copies of and m copies of instead.
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Remark 3. There are no specific equations relating the atomic actions
a

(a ∈
Σ). This is because, as we study automata, we are interested in the free monoid
Σ∗ over Σ. However, nothing would prevent us from modelling other struc-
tures. Free commutative monoids (powers of N), whose rational subsets corre-
spond to semilinear sets [14, Chapter 11] would be of particular interest.

4 Encoding regular expressions and automata

A major appeal of our approach is that both regular expressions and automata
can be uniformly represented in the graphical language of string diagrams, and
the translation of one into the other becomes an equational derivation in =KDA.
In fact, we will see there is a close resemblance between automata and the shape
of the string diagrams interpreting them — the main difference being that string
diagrams are composable structures.

In this section we describe how regular expressions (resp. automata) can be
encoded as string diagrams, such that their semantics corresponds in a precise
way to the languages that they describe (resp. recognise).

In a sense, regular expressions are already part of the graphical syntax, as
the red generators: for any regular expression e, one may always construct a
‘red’ string diagram e : 0 → I such that J e K = {(•, e)}. However, these
alone are meaningless, since their image under the semantics is simply the free
term algebra RegExp (see (7)) . They acquire meaning as they act on the set of
languages over Σ, represented by the black wire.

4.1 From regular expressions to string diagrams

To define these encodings, it is convenient to introduce the following syntactic
sugar. We will write e for the composite of e with the action, as defined
below left, with the particular case of a letter a ∈ Σ on the right:

e :=
e

a :=

a

(6)

Using this action, we can inductively define an encoding 〈−〉 of regular expres-
sions into string diagrams of AutΣ, as the rightmost diagram for each expression
below:

〈e + f 〉 =
f

e

(C4)
=KDA

e

f
〈0〉 =

(C3)
=KDA

〈e f 〉 =
f

e

(C1)
=KDA e f 〈1〉 =

(C2)
=KDA

〈e∗〉 =
e

(C5)
=KDA

e 〈a〉 =

a

=: a (7)
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For example, 〈ab(a + ab)∗〉 =

a

b

=KDA a b

a

a b
(8)

As expected, the translation preserves the language interpretation of regular
expressions in a sense that the following proposition makes precise.

Proposition 2. For any regular expression e, J〈e〉K = {(L, K) | JeKR L ⊆ K}.

4.2 From automata to string diagrams...

Example (8) suggests that the string diagram 〈e〉 corresponding to a regular
expression e looks a lot like a nondeterministic finite-state automaton (NFA)
for e. In fact, the translation 〈−〉 can be seen as the diagrammatic counterpart
of Thompson’s construction [40] that builds an NFA from a regular expression.

We can generalise the encoding of regular expressions and translate NFA
directly into string diagrams, in at least two ways. The first is to encode an
NFA as the diagrammatic counterpart of its transition relation. The second is to
translate directly its graph representation into the diagrammatic syntax.

Encoding the transition relation. This is a simple variant of the translation of ma-
trices over semirings that has appeared in several places in the literature [29,42].

Let A be an NFA with set of states Q, initial state q0 ∈ Q, accepting states
F ⊆ Q and transition relation δ ⊆ Q × Σ × Q. We can represent δ as a string
diagram d with |Q| incoming wires on the left and |Q| outgoing wires on the
right.The left jth port of d is connected to the ith port on the right through
an a whenever (qi, a, qj) ∈ δ. To accommodate nondeterminism, when the
same two ports are connected by several different letters of Σ, we join these
using and . When (qi, ε, qj) ∈ δ, the two ports are simply
connected via a plain identity wire. If there is no tuple in δ such that (qi, a, qj) ∈
δ for any a, the two corresponding ports are disconnected.
For example, the transition relation of
an NFA with three states and δ =
{((q0, a, q1), (q1, b, q2), (q2, a, q1), (q2, a, q2))} (dis-
regarding the initial and accepting states for the
moment) is depicted on the right. Conversely, given
such a diagram, we can recover δ by collecting
Σ-weighted paths from left to right ports.

d =

a

b

a

a

To deal with the initial state, we add an additional incoming wire connected
to the right port corresponding to the initial state of the automaton. Similarly,
for accepting states we add an additional outgoing wire, connected to the left
ports corresponding to each accepting state, via if there is more than
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one. Finally, we trace out the |Q| wires of the di-
agrammatic transition relation to obtain the asso-
ciated string diagram. In other words, for a NFA
with initial state q0, set of accepting states F, transi-
tion relation δ, we obtain the string diagram on the
right, where d is the diagrammatic counterpart of

d

fe0

|Q| |Q|

δ as defined above, e0 is the injection of a single wire as the first amongst |Q|
wires, and f deletes all wires that are not associated to states in F with , and
applies to merge them into a single outgoing wire.

For example, if A with δ as above has initial state q0 and accepting state {q2},
we get the diagram below left; instead, if all states are accepting, we obtain the
diagram below right:

a

b

a

a

a

b

a

a

The correctness of this simple translation is justified by a semantic correspon-
dence between the language recognised by a given NFA A and the denotation
of the corresponding string diagram.

Proposition 3. Given an NFA A which recognises the language L, let dA be its asso-
ciated string diagram, constructed as above. Then JdAK = {(K, K′) | LK ⊆ K′}.

From graphs to string diagrams. The second way of translating automata into
string diagrams mimics more directly the combinatorial representation of au-
tomata. The idea (which should be sufficiently intuitive to not need to be made
formal here) is, for each state, to use to represent incoming edges,

and to represent outgoing edges. As above, labels a ∈ A will be mod-
elled using a . For example, the graph and the associated string diagram
corresponding with the NFA above are

a

a

b a
7→

a

b a
a (9)

Note the initial state of the automaton corresponds to the left interface of the
string diagram, and the accepting state to the right interface. As before, when
there are multiple accepting states, they all connect to a single right interface,
via . For example, if we make all states accepting in the automaton above,
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we get the following diagrammatic representation:

a

a

b a
7→

a

b aa

4.3 ...and back

The previous discussion shows how NFAs can be seen as string diagrams of
type I→I. The converse is also true: we now show how to extract an automa-
ton from any string diagram d : I→I, such that the language the automaton
recognises matches the denotation of d.

In order to phrase this correspondence formally, we need to introduce some
terminology. We call left-to-right those string diagrams whose domain and co-
domain contain only I, i.e. their type is of the form In→Im. The idea is that,
in any such string diagram, the n left interfaces act as inputs of the computa-
tion, and the m right interfaces act as outputs. For instance, (9) is a left-to-right
diagram I→I.

A string diagram d is atomic if the only red generators occurring in d are of
the form

a
. By unfolding all red components e in any left-to-right diagram,

using axioms (C1)-(C5), we can prove the following statement.

Proposition 4. Any left-to-right diagram is =KDA-equivalent to an atomic one.

For instance, the string diagram on the left of (8) is =KDA-equivalent to the
atomic one on the right.

We call block of a certain subset of generators a vertical composite of these
generators followed by some permutations of the wires.

Definition 2. A matrix-diagram (resp. generalised matrix-diagram) is a left-to-
right diagram that factors as a block of , , followed by a block of a for

a ∈ Σ (resp. e for e ∈ RegExp) and finally, a block of , .

To each matrix-diagram d we can associate a unique transition relation δ by
gathering paths from each input to each output: (qi, a, qj) ∈ δ if there is a

joining the ith input to the jth output.
A transition relation is ε-free if it does not contain the
empty word. It is deterministic if it is ε-free and, for
each i and each a ∈ Σ there is at most one j such
that (qi, a, qj) ∈ δ. We will apply these terms to matrix-
diagrams and the associated transition relation inter-

a

b

a

a

changeably. The example of Section 4.2 above, with the three blocks highlighted,
is a matrix-diagram. It is ε-free but not deterministic since there are two a-
labelled transitions starting from the third input.

Given a matrix-diagram d :Il+n→Ip+m, we will write dij, with i = l, n and
j = p, m, for the subdiagrams corresponding to the appropriate submatrices.
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Definition 3. For any left-to-right diagram d :In→Im, a representation is a matrix-

diagram d̂ :Il+n→Il+m, such that d
mn

= d̂ mn

l

and d̂ll , d̂nl are

ε-free. It is a deterministic representation if moreover d̂ll is deterministic.
For example, given the string diagram below on the left, the one on the right is
a representation for it, whose highlighted matrix-diagram is the same as above.

a

b a
a =KDA

a

b

a

a

(10)

We will refer to the associated matrix-diagram d̂ as the transition matrix of a
given representation. From aI→I diagram with representation d̂ :Il+1→Il+1

we can construct an NFA from its transition matrix d̂ as follows:
– its state set is Q = {q1, . . . , ql}, i.e., there is one state for each wire of d̂ll ;
– its transition relation built from d̂ll as described above;
– its initial states Q0 are those qi for which there exists an index j such that

the ijth coefficient of d̂1l is non-zero (and therefore ε);
– its final states F are those qj for which there exists an index i such that the

ijth coefficient of d̂l1 is non-zero (and therefore ε);

The construction above is the inverse of that of Section 4.2. The link between
the constructed automaton and the original string diagram is summarised in
the following statement, which is a straightforward corollary of Proposition 3.

Proposition 5. For a diagram d :I→I with a representation d̂, let Ad̂ be the asso-
ciated automaton, constructed as above. Then L̂ is the language recognised by Ad̂ iff
JdK =

{
(K, K′) | L̂K ⊆ K′

}
.

The next proposition states that a representation can be extracted from any
string diagram.
Proposition 6. Any left-to-right diagram has a representation.
We established a correspondence between I→I diagrams and automata. What
about arbitrary left-to-right diagrams In→Im? To characterise the precise re-
lationship between our syntax and regular expressions we can prove a Kleene
theorem for AutΣ. Recall, from Definition 2 that a generalised matrix-diagram is the
diagrammatic counterpart of a matrix whose coefficients are regular expres-
sions. It turns out that every left-to-right diagram can be put in this form.
Proposition 7 (Kleene’s for AutΣ). Any left-to-right diagram is equal to a gener-
alised matrix diagram.
As a result, the semantics of a given In→Im diagram is fully characterised by
an m× n array of regular languages.
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4.4 Interlude: from regular to context-free languages

It is worth pointing out how a simple modification of the diagrammatic syn-
tax takes us one notch up the Chomsky hierarchy, leaving the realm of regular
languages for that of context-free grammars and languages.

Our syntax allows to specify systems of language equations of the form
aX ⊆ Y. In this context, feedback loops can be interpreted as fixed-points. For
example, the automaton below left, and its corresponding string diagram, be-
low right, translate to the system of equations at the center:

a

a

b a
7→



ε ⊆ X0

X0a ⊆ X1

X1b ⊆ X2

X2a ⊆ X1

X2a ⊆ X2

← [
a

b a
a (11)

This translation can be obtained by simply labelling each state with a variable
and adding one inequality of the form Xia ⊆ Xj for each a-transition from state
i to state j. The system we obtain corresponds very closely to the J−K-semantics
of the associated string diagram.

The distinction between red and black wires can be understood as a type
discipline that only allows linear uses of the product of languages. It is legiti-
mate and enlightening to ask what would happen if we forgot about red wires
and interpreted the action directly as the product. We would replace the action
by a new generator with semantics

r z
= {

(
(M, L), K

)
| ML ⊆ K}.

This would allow us to specify systems of language equations with unre-
stricted uses of the product on the left of inclusions, e.g. UVW ⊆ X. Equations
of this form are similar to the production rules (e.g. X → UVW) of context-free
grammars and it is well-known that the least solutions of this class of systems
are precisely context-free languages [14, Chapter 10].

For example we could encode the language
X → XX | (X) | ε of properly matched
parentheses as least solution of the system
ε ⊆ X, (X) ⊆ X, XX ⊆ X which gives the
diagram displayed on the right.

)

(

5 Completeness and Determinisation

This section is devoted to prove our completeness result, Theorem 1. We use
a normal form argument: more specifically we mimic automata-theoretic re-
sults to rewrite every string diagram to a normal form corresponding to a mini-
mal deterministic finite automaton (DFA). We achieve it by implementing Brzo-
zowski’s algorithm [12] through diagrammatic equational reasoning. The proof
proceeds in three distinct steps.
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1. We first show (Section 5.1) how to determinise (the representation of) a dia-
gram: this step consists in eliminating all subdiagrams that correspond to
nondeterministic transitions in the associated automaton.

2. We use the previous step to implement a minimisation procedure (Section
5.2) from which we obtain a minimal representation for a given diagram:
this is a representation whose associated automaton is minimal—with the
fewest number of states—amongst DFAs that recognise the same language.
To do this, we show how the four steps of Brzozowski’s minimisation algo-
rithm (reverse; determinise; reverse; determinise) translate into diagram-
matic equational reasoning. Note that the first three steps taken together
simply amount to applying in reverse the determinisation procedure we
have already devised. That this is possible will be a consequence of the
symmetry of =KDA.

3. Finally, from the uniqueness of minimal DFAs, any two diagrams that have
the same denotation are both equal to the same minimal representation and
we can derive completeness of =KDA.

We will now write equations in =KDA simply as = to simplify notation and
say that diagrams c and d are equal when c =KDA d.

First, we use the symmetries of the equational theory to make simplifying
assumptions about the diagrams to consider in the completeness proof.

A few simplifying assumptions. Without loss of generality, the proof we give
is restricted to string diagrams with no I in their domain as well as in their
codomain. This is simply a matter of convenience: the same proof would work
for more general diagrams, that may contain I in their (co)domain, at the cost
of significantly cluttering diagrams. Henceforth, one can simply think of the
labels for the action x as uniquely identifying one open red wire in a dia-
gram. With this convention, two or more occurrences of the same x in a diagram
can be seen as connected to the same red wire on the left, via . That we
can safely do so is a consequence of the completeness of =KDA restricted to the
monochromatic red fragment, itself a consequence of [11, Theorem 6.1].

Arbitrary objects in AutΣ are lists of the three generating objects. We have
already motivated focusing on string diagrams with no open red wires so that
the objects we care about are lists of I and J. The following proposition implies
that, without loss of generality, for the proof of completeness we can restrict
further to left-to-right diagrams (Section 4.2).

Proposition 8. There is a natural bijection between sets of string diagrams of the form

A1 B1

A2 B2 ↔
A1 B1

A2 B2 where Ai, Bi represent lists of I and J.

Proposition 8 tell us that we can always bend the incoming wires to the left and
outgoing wires to the right before applying some equations, and recover the
original orientation of the wires by bending them into their original place later.
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5.1 Determinisation

In diagrammatic terms, a nondeterministic transition of the automaton asso-
ciated to (a representation of) a given diagram, corresponds to a subdiagram

of the form
a

a
for some a ∈ Σ. Clearly, using the definition of a :=

a

in (6) and the axiom (D1)
= , we have

a

a
=

a , which will prove to be the engine of our determinisation procedure,
along with the fact that any red expression can be copied and deleted. The next
two theorems generalise the ability to copy and delete to arbitrary left-to-right
diagrams.

Theorem 2. For any left-to-right diagram d :Im→In, we have

d
m

n

n
(cpy)
=

d
m

n

d
n

d
m n (del)

=
m

d
m

n

d
m

(co-cpy)
= d

m
n

m
n (co-del)

= d
m n

For d :Im→In, let dij be the string diagram of type I→I obtained by compos-
ing every input with except the ith one, and every output with except
the jth one. Theorem 2 implies that string diagrams are fully characterised by
their I→I subdiagrams.

Corollary 1. Given d, e :Im→In, d =KDA e iff dij =KDA eij, for all 1 ≤ i ≤ m and
1 ≤ j ≤ n.

Thus, we can restrict our focus further to left-to-right I→I diagrams, without
loss of generality. We are now able to devise a determinisation procedure for
representation of diagrams, which we illustrate below on a simple example.

Proposition 9 (Determinisation). Any diagram I→I has a deterministic repre-
sentation.

Example 2.

a
a

a
a

b

c

7→

a

ba

a

ca
=

a

b

a

c

a

a

(D1)
=

a

b

a

c
a

=:
b

c
a

a∗

a∗

(cpy)
=

b

c
a a∗
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:=
b

c
a

a

← [
a

a c

b

Dealing with useless states. Notice that our deterministic form is partial and that
the determinisation procedure disregards useless states, i.e., parts of a string di-
agram that do not reach an output wire. None of these contribute to the seman-
tics of the diagram and can be safely eliminated using Theorem 2 (del)-(co-del).

5.2 Minimisation and completeness

As explained above, our proof of completeness is a diagrammatic reformulation
of Brzozowski’s algorithm which proceeds in four steps: determinise, reverse,
determinise, reverse. We already know how to determinise a given diagram.
The other three steps are simply a matter of looking at string diagrams differ-
ently and showing that all the equations that we needed to determinise them,
can be performed in reverse.

We say that a matrix-diagram is co-deterministic if the converse of its associ-
ated transition relation is deterministic.

Proof (Theorem 1 (Completeness)). We have a procedure to show that, if JdK = JeK,
then there exists a string diagram f in normal form such that d = f = e. This
normal form is the diagrammatic counterpart of the minimal automaton asso-
ciated to d and e. In our setting, it is the deterministic representation equal to
d and e with the smallest number of states. This is unique because we can ob-
tain from it the corresponding minimal automaton, which is well-known to be
unique. First, given any string diagram we can obtain a representation for it
by Proposition 6. Then we obtain a minimal representation by splitting Brzo-
zowski’s algorithm in two steps.

1. Reverse; determinise; reverse. A close look at the determinisation procedure
shows that, at each step, the required laws all hold in reverse. For example,
we can replace every instance of (cpy) with (co-cpy). We can thus define,
in a completely analogous manner, a co-determinisation procedure which
takes care of the first three steps of Brzozowski’s algorithm, and obtain a
co-deterministic representation for the given diagram.

2. Determinise. By applying Proposition 9, we can obtain a deterministic rep-
resentation for the co-deterministic representation of the previous step. The
result is the desired minimal representation and normal form.

6 Discussion

In this paper, we have given a fully diagrammatic treatment of finite-state au-
tomata, with a finite equational theory that axiomatises them up to language
equivalence. We have seen that this allows us to decompose the regular opera-
tions of Kleene algebra, like the star, into more primitive components, resulting
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in greater modularity. In this section, we compare our contributions with re-
lated work, and outline directions for future research.

Traditionally, computer scientists have used syntax or railroad diagrams to
visualise regular expressions and context-free grammars [41]. These diagrams
resemble our very closely but have remained mostly informal More recently,
Hinze has treated the single input-output case rigorously as a pedagogical tool
to teach the correspondence between finite-state automata and regular expres-
sions [18]. He did not, however, study their equational properties.

Bloom and Ésik’s iteration theories provide a general categorical setting in
which to study the equational properties of iteration for a broad range of struc-
tures that appear in programming languages semantics [5]. They are cartesian
categories equipped with a parameterised fixed-point operation closely related
to the feedback notion we have used to represent the Kleene star. However, the
monoidal category of interest in this paper is compact-closed (only the full sub-
category over I and J to be precise), a property that is incompatible with the
existence of categorical products (any category that has both collapses to a pre-
order [30]). Nevertheless, the subcategory of left-to-right diagrams (Section 4.2)
is a (matrix) iteration theory [6], a structure that Bloom and Ésik have used to
give an (infinitary) axiomatisation of regular languages [4].

Similarly, Stefanescu’s work on network algebra provides a unified algebraic
treatment of various types of networks, including finite-state automata [39]. In
general, network algebras are traced monoidal categories where the product is
not necessarily cartesian, and therefore more general than iteration theories. In
both settings however, the trace is a global operation, that cannot be decom-
posed further into simpler components. In our work, on the other hand, the
trace can be defined from the compact-closed structure, as was depicted in (3).

Note that the compact closed subcategory in this paper can be recovered
from the traced monoidal category of left-to-right diagrams, via the Int construc-
tion [22]. Therefore, as far as mathematical expressiveness is concerned, the two
approaches are equivalent. However, from a methodological point of view, tak-
ing the compact closed structure as primitive allows for improved composition-
ality, as example (2) in the introduction illustrates. Furthermore, the compact
closed structure can be finitely presented relative to the theory of symmetric
monoidal categories, whereas the trace operation cannot. This matters greatly
in this paper, where finding a finite axiomatisation is our main concern.

Finally, the idea of treating regular expressions as a free structure acting on
a second algebraic structure also appeared in Pratt’s dynamic algebras, which
axiomatise the propositional fragment of dynamic modal logic [34]. Like our
formalism, the variety of dynamic algebras is finitely-based. But they assume
more structure: the second algebraic structure is a Boolean algebra.

In all the formalisms we have mentioned, the difficulty typically lies in cap-
turing the behaviour of iteration—whether as the star in Kleene algebra [26,4],
or a trace operator [5] in iteration theory and network algebra [39]. The axioms
should be coercive enough to force it to be the least fixed-point of the language
map L 7→ {ε} ∪ LK. In Kozen’s axiomatisation of Kleene algebra [26] for exam-
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ple, this is through (a) the axiom 1+ ee∗ ≤ e∗ (star is a fixpoint) and (b) the Horn
clause f + ex ≤ x ⇒ e∗ f ≤ x (star is the least fixpoint). In our work, (a) is a con-
sequence of the unfolding of the star into a feedback loop and can be derived
from the other axioms. (b) is more subtle, but can be seen as a consequence
of (D1)-(D4) axioms. These allows us to (co)copy and (co)delete arbitrary di-
agrams (Theorem 2) and we conjecture that this is what forces the star to be
a single definite value, not just any fixed-point, but the least one. Making this
statement precise is the subject of future work.

The difficulty in capturing the behaviour of fixed-points is also the reason
why we decided to work with an additional red wire, to encode the action of
regular expressions on the set of languages—without it, global (co)copying and
(co)deleting (Theorem 2) cannot be reduced to the local (D1)-(D4) axioms. There
is another route, that leads to an infinitary axiomatisation: we could dispense
with the red generators altogether and take a (for a ∈ Σ) as primitive in-
stead, with global axioms to (co)copy and (co)delete arbitrary diagrams. This
would pave the way for a reformulation of our work in the context of iteration
(matrix) theories, where the ability to (co)copy and (co)delete arbitrary expres-
sions is already built-in. We leave this for future work.

There is an intriguing parallel between our case study and the positive frag-
ment of relation algebra (also known as allegories [16]). Indeed, allegories, like
Kleene algebra, do not admit a finite axiomatisation [16]. However, this result
holds for standard algebraic theories. It has been shown recently that a structure
equivalent to allegories can be given a finite axiomatisation when formulated
in terms of string diagrams in monoidal categories [9]. It seems like the greater
generality of the monoidal setting—algebraic theories correspond precisely to
the particular case of cartesian monoidal categories [11]—allows for simpler
axiomatisations in some specific cases. In the future we would like to under-
stand whether this phenomenon, of which now we have two instances, can be
understood in a general context.

Lastly, extensions of Kleene Algebra, such as Concurrent Kleene Algebra
(CKA) [19,23] and NetKAT [1], are increasingly relevant in current research.
Enhancing our theory =KDA to encompass these extensions seems a promis-
ing research direction, for two main reasons. First, the two-dimensional na-
ture of string diagrams has been proven particularly suitable to reason about
concurrency (see e.g. [7,38]), and more generally about resource exchange be-
tween processes (see e.g. [10,13,21,3,8]). Second, when trying to transfer the
good meta-theoretical properties of Kleene Algebra (like completeness and de-
cidability) to extensions such as CKA and NetKAT, the cleanest way to proceed
is usually in a modular fashion. The interaction between the new operators of
the extension and the Kleene star usually represents the greatest challenge to
this methodology. Now, in =KDA, the Kleene star is decomposable into simpler
components (see (3)) and there is only one specific axiom (C5) governing its
behaviour. We believe this is a particularly favourable starting point to modu-
larise a meta-theoretic study of CKA and NetKAT with string diagrams, taking
advantage of the results we presented in this paper for finite-state automata.
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