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Abstract. Prostate cancer remains as a major healthcare issue. Limitations in current diagnosis 

and treatment monitoring techniques imply that there is still a need for improvements. The 

efficacy of prostate cancer diagnosis is still low, generating under and over diagnoses. High 

intensity focused ultrasound ablation is an emerging treatment modality, which enables the non-

invasive ablation of pathogenic tissue. Clinical trials are being carried out to evaluate its long-

term efficacy as a focal treatment for prostate cancer. Successful treatment of prostate cancer 

using non-invasive modalities is critically dependent on accurate diagnostic means and is greatly 

benefited by a real-time monitoring system. While magnetic resonance imaging remains the gold 

standard for prostate imaging, its wider implementation for prostate cancer diagnosis remains 

prohibitively expensive. Conventional ultrasound is currently limited to guiding biopsy. 

Elastography techniques are emerging as a promising real-time imaging method, as cancer 

nodules are usually stiffer than adjacent healthy prostatic tissue. In this paper, a new transurethral 

approach is proposed, using shear waves for diagnosis and ablation monitoring of prostate 

cancer. A finite-difference time domain model is developed for studying the feasibility of the 

method, and an inverse problem technique based on genetic algorithms is proposed for 

reconstructing the location, size and stiffness parameters of the tumour. Preliminary results 

indicate that the use of shear waves for diagnosis and monitoring ablation of prostate cancer is 

feasible. 

1.  Background 

Prostate Cancer (PCa) is the most common cancer in men in the UK. It is also the second cause of cancer 

death after lung cancer. It represents around 13% of all cases of cancer and accounts for 7% of all UK 

cancer deaths [1]. The incidence of PCa increases with age, affecting mainly men over 50 years of age 

[2]. The increase in longevity and awareness of the disease will lead to more men requesting screening, 

which will in turn increase the number of patients diagnosed with PCa in the future [3]. 

Prostate carcinoma is often suspected when the serum Prostate-Specific Antigen (PSA) is elevated 

or an abnormal digital rectal examination is noted. However, PSA screening leads to a substantial 

number of unnecessary biopsies in patients with no or indolent cancer, who do not need immediate 

treatment [4]. Histopathological evaluation of systematic biopsy cores is used to confirm or rule out 

cancer, and is normally carried out with conventional transrectal ultrasound as a guidance tool. Despite 
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the low specificity of PSA testing and the uncertainty after negative systematic biopsies, these 

techniques remain the standard for PCa diagnosis. 

Current research is investigating whether modern imaging techniques can identify the site of the 

tumour. There are two main streams that are showing promising preliminary results: Magnetic 

Resonance Imaging (MRI) and Elastography techniques. 

Multi-parametric MRI (mpMRI) combines T2-weighted imaging with functional sequences. It has 

become an important modality for tumour detection and staging [5,6], however, mpMRI performance 

varies depending on which combination of features is selected [7]. Additional limitations include cost, 

limited availability, contra-indication to MRI and contrast agents, and the fact that the very large 

majority of biopsies are ultrasound guided [8]. 

Prostate Elastography is an emerging imaging modality, which consists of the evaluation of prostate 

stiffness. Analogous to the cellular processes of wound repair, it is generally believed that normal tissue 

stroma responds in an effort to repair damage due to carcinoma cell invasion [9]. It has been concluded 

that the stromal reaction is also characterized by elevated collagen deposition [10]. Since increasing 

collagen deposition leads to an increase in the tumour rigidity, this suggests that quantitative stiffness 

estimations may prove to be an effective biomarker for assessing PCa grade and identification of more 

aggressive cancers [11]. 

Real-Time Elastography is available on some ultrasound systems for prostate imaging [12,13] and a 

few other techniques are currently being developed [13]. There are two main approaches commercially 

available:   

 Quasi-Static (or Strain) Elastography (SE); 

 Shear Wave Elastography (SWE).  

SE of the prostate is based on the comparative analysis of tissue deformation before and after 

applying a slight static mechanical compression through the rectal wall. Stiffer tissue experiences less 

deformation than normal tissue. No quantitative elasticity analysis is available. Relative changes in the 

strain rate between zones work as a guide to suspect pathologic nodules existence [14]. This technique 

is commercially available for many clinical ultrasonic platforms [12]. SE limitations include:  

 The lack of uniform compression over the entire gland;  

 The intra and inter-operator dependency; 

 Penetration issues in large prostate glands; 

 Artefacts due to slippage of the compression plane.  

SWE in PCa detection has been tested mainly by the Aixplorer ultrasound system transrectally 

(SuperSonic Imagine, Aix-en-Provence, France). In Transrectal-SWE (TR-SWE) by the Aixplorer 

system, acoustic radiation force produces a shear wave in the shape of a cone with a small inclination, 

which travels away from the pushing beam. An ultrafast scanner allows shear waves to be followed in 

real time in 2D, and echo tracking produces a displacement recording from which a small map of 

elasticity can be created [15]. Spatial resolution is worse than in SE imaging but the elastograms are 

quantitative.  

Recent studies on PCa diagnosis using TR-SWE have shown very promising results [16–20]. The 

use of a 35 kPa threshold for Young’s modulus to separate lesions from normal tissue in the Peripheral 

Zone may provide additional information for PCa detection and biopsy guidance, enabling a substantial 

reduction in the number of biopsies [16,17]. TR-SWE limitations include:  

 The pressure artefacts induced by the transducer, as the end-fire design of the probe requires 

bending to image the mid prostate and apex; 

 The slow frame rate, i.e. one image per second; 

 The limited size of the region of interest (concretely only half of the prostate is covered); 

 The delay to stabilize the signals at each acquisition plane; 

 The signal attenuation in large prostates making the evaluation of the anterior Transitional 

Zone difficult or impossible [8]. 
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The aim of this study is to evaluate the feasibility of using a Transurethral-SWE (TU-SWE) approach 

for diagnosis and High Intensity Focused Ultrasound (HIFU) ablation monitoring of PCa. This approach 

encompasses both the transmission and the detection of the shear wave propagation. Shear waves are 

propagated into the prostate as the result of applying torsional stress on the urethra wall at a localized 

point. If stiff lesions are presented in the prostate, the wavefront would suffer reflections due to the 

change in acoustic impedance. This reflection would travel back to the urethra where it could be detected 

(Figure 1). The parameters which define the tumour (location, size and stiffness) can be reconstructed 

from those recovered signals. 

 

 

Figure 1. Conceptual idealization of the TU-SWE approach for 

diagnosis and ablation monitoring of PCa 

 

The capability of transmitting shear waves into the prostate by mechanical contact through the 

urethra wall was evaluated in phantoms and in vivo canine experiments, by using a mechanical 

transurethral actuator as excitation force and MRI Elastography for measuring the displacement [21,22]. 

HIFU ablation is a promising focused technique for treating PCa, currently under clinical evaluation 

in several clinics around the world. As with other focused therapies it requires that the treated region be 

controlled and monitored to avoid damage of the surrounding healthy tissue. The TU-SWE approach 

allows the monitoring of HIFU ablation from the rectum, since the ultrasonic beam itself generates an 

alteration of the stiffness at the focal point and surroundings as the temperature increases during the 

surgery [23,24]. 

Inherent advantages of the TU-SWE approach proposed are listed below:   

 The Transitional Zone and the Central Zone of the prostate (Figure 2) remain less accessible 

when using techniques that operate from the rectal passage. The urethral approach makes 

these zones more reachable. The Central Zone presents the lowest rate of PCa, but these 

cancers tend to be more aggressive and more likely to invade the seminal vesicles [25]. The 

TR-SWE studies are limited to the Peripheral Zone since this approach makes it difficult to 

reach the anterior zones of the prostate [16]. On the other hand, the reduction of tissue path 

is directly connected to the diminution of attenuation, which is a crucial matter in shear wave 

propagation.  

 The possibility of using higher frequencies (above 500 Hz) than other techniques. This fact 

is related to the reduction in attenuation, which allows a slight increase of the excitation 

frequency, and therefore the spatial resolution, thus improving the imaging quality and the 

capacity of detecting smaller cancer nodules.  

 Current techniques present difficulties in scanning the whole gland in a short time. TR-SWE 

covers only half of the prostate for every 2D scan. Although SE can cover complete 2D 

sections of the prostate, it presents problems covering the whole gland due to the challenge 

of keeping the pressure constant at every scan. Due to the geometrical configuration of the 

proposed TU-SWE approach, the whole gland volume may be covered simultaneously, 

permitting the opportunity of 3D real-time monitoring technique.  
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 In comparison with techniques that use acoustic radiation force, lower levels of energy are 

expected, and therefore lower ultrasound thermal and mechanical indices. 

 The use of the urethra as a channel for diagnosis keeps the rectal passage free for transrectal 

therapies such as HIFU ablation. 

 

 

Figure 2. McNeal’s anatomic division of the prostate. Source: Mayo Foundation for Medical 

Education and Research [26]. 

 

In this paper, a prostate-like medium is modelled using the Finite-Difference Time Domain (FDTD) 

method to investigate the PCa detection sensitivity of the proposed approach. An Inverse Problem (IP) 

based on genetic algorithms was developed for reconstructing the parameters that locate and size 

prostate nodules. Finally, the results from the reconstruction were analyzed to demonstrate the feasibility 

of the TU-SWE approach for diagnosis of PCa. 

2.  Methodology 

2.1.  Finite-Difference Time Domain model 

A FDTD method is developed for simulating the propagation of shear waves into the prostate from the 

urethra. The FDTD method has been extensively used for modelling different physics phenomena in 

solid materials, mainly in electromagnetism and geophysics, but also for wave propagation in elastic 

and viscoelastic media [27,28]. Two aims are pursued with this model. One is to study, in a simple way, 

the feasibility of reflection detection in the PCa application. The other is to feed the reconstruction 

method, obtaining potential solutions which are tested iteratively in the inverse procedure. 

The mechanical response of soft tissues is well known for a viscoelastic behaviour. In this study, an 

elastic model has been considered sufficient due to the absence of consensus about mechanical models 

and values for viscous parameters of prostatic tissue. 

A cylindrical coordinate system is selected for establishing the discretization grid. The simplified 

prostate-like model is defined geometrically as a hollow cylinder, where the inner passage corresponds 

to the urethra (Figure 3).  

Although the equations of motion can be formulated in several ways, a velocity-stress formulation 

was chosen [29], where time distributions of velocity and stress at spatial points are propagated along a 

regular grid to which material properties and the excitation source are assigned. Generally, a system of 

nine first-order hyperbolic equations are needed. Shear waves are generated by the application of 

torsional forces in the urethra wall in an axisymmetric configuration, and thus, together with the 

simplification of using a two dimensional approach, reduces the complexity to only one velocity 

component v . The plane selected (in red colour Figure 3) contains the axis. The remaining three first-

order hyperbolic equations (1-3) are expressed in terms of the stress tensor σ and velocity vθ for an elastic 

medium. As a result of the simplification, the circular tumour in the plane becomes a torus in 3D. 
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Although this geometrical distribution is not representative of PCa, it can be considered acceptable for 

a proof of principle approach. 

 

 

 

 

  

 

Figure 3. Simplified 

geometry for the model. 2D 

section of study in red. 

Spherical tumour. 

 Figure 4. Diagram of the 

staggered grid discretization 

with positions of the 

variables. 

 Figure 5. Spatial distribution 

of the model. Main domain in 

red. PML surrounding it. 

Urethra at left side. 
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The mass density ρ and the shear modulus µ vary depending on whether they belong to the 

background tissue or to the cancer nodule. Spatial discretization is achieved with the staggered grid 

illustrated in Figure 4, i.e., the velocity component is specified at grid positions that are offset by a half-

step from the corresponding stress components. Time is uniformly sampled via t=nΔt for an integer n 
and interval Δt. Similarly, space is uniformly sampled, with r=iΔr and z=jΔz for integers i, j. 

 To propagate spatial quantities in time, the classical time-staggering approach is often used to 

estimate stress and velocity in alternating time intervals. In this case, an alternative method has been 

chosen, computing both magnitudes at each time interval starting from an initial situation at rest [27].  

All temporal and spatial derivatives in equations (1), (2) and (3) are discretized using the following 

differencing schemes: 
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To reduce numerical dispersion we choose a minimum rate of 20 spatial intervals per wavelength λ 
as described in equation (6) although lower rates can be found in the literature. The temporal interval 

satisfies the stability condition (7) obtained from the Von Neumann condition [30]. 
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The rotational excitation is introduced in the model by setting vθ at the corresponding points in the 
grid within the urethra wall where the torsion is applied. 

In order to avoid reflections at outer boundaries of the domain, a Perfectly Matched Layer (PML) 

absorber is incorporated surrounding the main domain, excepting the urethra wall (Figure 5), using an 

adaptation for cylindrical coordinates [31]. 

2.2.  Inverse Problem based on Genetic Algorithms 

A way to solve an IP is to use the forward problem to find a solution for a set of parameters that 

minimizes the difference between the predicted and the actual measurements by using an optimization 

algorithm [32]. For this study a genetic algorithm is proposed for the optimization. The tumour 

parameters are contained in a vector named pc. These parameters are: the radial rc and depth zc 
coordinates of the centroid of the nodule, the diameter øc and the stiffness µc of the tumour. 

Considering that this work is at a preliminary stage, experimental results are not yet available. To 
study the suitability of the proposed reconstruction method, pseudo-experimental signals uexp were 
generated by adding white noise to signals simulated using the FDTD model. 

The optimization algorithm will minimize the discrepancy between uexp and the numerically 

predicted trial response u(pc), which is a function of the four-dimensional hyperspace formed by the four 

tumour parameters. To quantify the discrepancy, a cost functional f is designed, defined as the squared 

Euclidean distance between both measurements (8) [33]. 

 
2

exp 2
( ) ( )c cf p u u p   (8) 

3.  Results 

3.1.  Numerical model results 

A numerical simulation was carried out by using the FDTD method described in Section 2.1. Figure 6 

depicts the selected set-up. Note that the problem has been simplified after taking advantage of the 

axisymmetry of the cylindrical system shown in Figure 3.  

The values corresponding to the labeled variables in Figure 6 are listed in Table 1. Those values and 

proportions are in agreement with those that can be found in a real human prostate. A rounded shape is 

selected to represent the cancerous nodule using an arbitrary, but realistic, value of 4 mm of diameter. 

The excitation source is located on the urethra wall, at centered depth. A set of 18 receivers is uniformly 

distributed for recording the signals coming from the interior of the domain.  

Table 2 shows the values for mechanical parameters of both healthy and cancerous prostate, as well 

as the settings of the excitation source, which is implemented as a Gaussian modulated wave with central 

frequency of 1 kHz. Shear modulus values have been chosen in agreement with those found in the 

literature [16,17]. 

Table 3 lists the parameters for the numerical discretization. In order to guarantee an adequate visual 

resolution of the simulation, the discrete spatial values go beyond the stability condition described by 

equation (6), resulting in a total of 731,600 elements. The Von Neumann condition defined by equation 

(7) is applied to calculate the temporal discretization interval. 

The simulation was performed using MATLAB® in conjunction with the Parallel Computing 

Toolbox™ (Release 2014b, MathWorks, Natick, United States). Run times lasted 406 seconds on a quad-

core 3.60 GHz, 16 GB RAM, desktop computer. 
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Figure 6. Schematic of set-up for 

numerical simulation. Tumour in red. 

Dimensions are described in Table 1. 

Table 1. Dimension values for set-up of 

the numerical simulation. 

Variable Description Value 

(mm) 

rd Radial dimension of the domain 23.50 

zd Depth dimension of the domain 50.00 

ru Radius of urethra 3.25 

ze Depth coordinate of excitation source 25.00 

se Thickness of excitation source 1.00 

rc Radial coordinate of the tumour 14.00 

zc Depth coordinate of the tumour 35.00 

øc Diameter of the tumour 4.00 

Δzr Distance between receivers 2.38 

 
 

 

 

 

 

Table 2. Values for mechanical parameters and 

excitation [16,17] 

Variable Description Value 

ρh Density of healthy tissue 1000 kg m-3 

µh Shear modulus of healthy tissue 6.00 kPa 

ρc Density of cancerous tissue 1000 kg m-3 

µc Shear modulus of cancerous tissue 18.00 kPa 

fc Central frequency 1.00 kHz 

tT Total time of simulation 25 ms 

a Source amplitude 10.00 µm 

Table 3. Discretization parameters for FDTD 

simulation 

Variable Description Value 

Δr Radial dimension interval 50 µm 

Δz Depth dimension interval 50 µm 

Δt Time interval 8.33 µs 
nPML Number of PML elements 120 

 
 

 

Figure 7 shows four snapshots of the simulated transient propagation of shear waves in a prostate-

like medium containing a cancerous lesion, at different times when the wavefront hits and propagates 

across the tumour. It can be clearly seen how the reflections are generated traveling back to the urethra 

wall, as well as the ongoing wavefront accelerates while propagating across the tumour due to the higher 

velocity of the shear waves, 4.24 ms-1 against 2.45 ms-1 in the healthy tissue. A second reflection coming 

from the bottom of the tumour can be also visualized. The recordings at the receivers during the 
simulation are displayed in Figure 8.  

3.2.  Reconstruction IP-AG method results 

In order to obtain a proof of feasibility for the IP-GA method, an example reconstruction is shown in 

this section.  

As mentioned in Section 2.2, a simulated signal generated by the FDTD model with added white 

noise was used as an experimental signal to be reconstructed by the IP-GA method. The amplitude of 

the white noise signal corresponded to 10% of the root-mean-square of the simulated signal amplitude. 

The set-up for the pseudo-experimental signal was the same as the one in Section 2.1 (see Figure 6 and 

Tables 1 and 2). Table 4 shows the values of the parametrization. In this case, a coarser grid was chosen 

in order to speed up the iteration process and reduce the computational time. The pseudo-experimental 
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signal was detected by a receiver located 12.5 mm below the source on the urethra wall. The 

reconstruction algorithm was implemented using MATLAB® and the Parallel Computing Toolbox™ 

(Release 2014b, MathWorks, Natick, United States), lasting for 1204 seconds on the computer 

mentioned above. A population of 10 candidate solutions was selected, to be updated during 13 

generations. 

 

 

Figure 7. Snapshots of the FDTD simulation at 7.2, 8.7, 9.8 and 11.3 ms. The colour bar represents 

the amplitude of the displacement. The 4 mm rounded tumour is highlighted. 

 

 

Figure 8. Recovered displacement signals at the 18 receivers. Distance between receivers 2.38 

mm, with a 7.14 mm gap between receiver 9 and 10, where the excitation source is positioned. 

 

Figure 9 depicts the reconstructed signal over the pseudo-experimental one. Recovered values for 

the tumour parameters and reconstruction errors are shown in Table 5. The errors were calculated over 

the search range established for each parameter. The algorithm showed good agreement between the 

reconstruction and the pseudo-experimental measurement. 
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Table 4. Discretization parameters for IP-AG testing 

Variable Description Value 

Δr Radial dimension interval 150 µm 

Δz Depth dimension interval 150 µm 

Δt Time interval 17.32 µs 

nPML Number of PML elements 40 

 

 

Figure 9. Reconstructed signal by using the IP-AG method (blue solid line) over the 

pseudo-experimental signal (black dotted line). 

 

4.  Conclusion 

A novel TU-SWE approach for diagnosis and ablation monitoring of PCa has been presented in this 

paper. It is based on the emission, detection and computational treatment of shear waves propagated into 

the prostate.  

In order to study the feasibility of this approach, a FDTD model was developed to analyze the 

behavior of shear waves in a medium representative of prostatic tissue. Although the medium was 

assumed to be homogeneous and elastic, this was considered sufficient to simulate the mechanical 

behavior of the human prostate to a first approximation. The presence of cancerous nodules, which are 

usually stiffer than the surrounding healthy tissue, was also modelled. Reflections were generated when 

the wavefront hit the tumour, traveling back to the urethra where they were detected, demonstrating 

proof of principle and warranting further studies.  

Table 5. Reconstructed values for the tumour parameters and reconstruction errors. 

Parameter Description Original 

value 

Reconstructed 

Value 

Search  

Range 

Error 

rc Radial coordinate of the tumour 14.00 mm 13.7 mm 4 - 24 mm 3.10 % 

zc Depth coordinate of the tumour 35.00 mm 36.98 mm 26 - 44 mm 3.96 % 

øc Diameter of the tumour 4.00 mm 3.63 mm 2 - 8 mm 6.16 % 
µc Shear modulus of cancerous tissue 18.00 kPa 16.61 kPa 16 - 21 kPa 9.56 % 
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The IP-AG reconstruction method was tested by using the FDTD model for generating a pseudo-

experimental signal and also as a forward model for searching the solutions within the IP algorithm. The 

results from the test showed good agreement between the pseudo-experimental signal and the 

reconstructed one, with an admissible level of error in the recovery of tumour parameters. 

In further studies, a more realistic 3D model will be required, taking into account the heterogeneity 

and mechanical complexity of the human prostate. Experimental tests in prostate phantoms will be also 

required. In the IP ambit, it is of interest to study the probability of producing a false positive diagnosis, 

as well as how the response of the system changes with increasing levels of noise. 
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