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Abstract 

This study examined the effect of neurodegeneration, and its interaction with Alzheimer's disease 

(AD) cerebrospinal fluid biomarkers, on longitudinal verbal learning and memory performance 

in cognitively unimpaired (CU) late middle-aged adults. Three hundred and forty-two CU adults 

(cognitive baseline mean age = 58.4), with cerebrospinal fluid and structural MRI, completed 2-

10 (median = 5) cognitive assessments. Learning and memory were assessed using the Rey 

Auditory Verbal Learning Test (RAVLT). We used sequential comparison of nested linear 

mixed effects models to analyze the data. Model selection preserved a significant ptau181/Aβ42 

× global atrophy × age interaction; individuals with less global atrophy and lower ptau181/Aβ42 

levels had less learning and delayed recall decline than individuals with more global atrophy 

and/or higher levels of ptau181/Aβ42. The hippocampal volume × age × ptau181/Aβ42 

interaction was not significant. Findings suggest that in a sample of CU late middle-aged adults, 

individuals with AD biomarkers, global atrophy, or both evidence greater verbal learning and 

memory decline than individuals without either risk factor. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Considering that Alzheimer’s disease (AD)-related pathological changes occur long 

before the development of clinical symptoms (Price et al., 2009; Price & Morris, 1999), 
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biomarkers capable of measuring AD pathophysiology in vivo are necessary for examining the 

pre-symptomatic phase of the disease. Two classes of biomarkers shown to be sensitive and 

specific to AD are those reflecting beta-amyloid deposition and the formation of neurofibrillary 

tangles (NFTs) (Betthauser et al., 2018; Betthauser et al., 2019; Brier et al., 2016; Jack et al., 

2018; Klunk et al., 2004; Roe et al., 2013; Strozyk, Blennow, White, & Launer, 2003; Tapiola et 

al., 2009; Villemagne, Doré, Burnham, Masters, & Rowe, 2018). Several studies also focus 

on measures of neurodegeneration as another category of biomarkers important for defining 

abnormal pathophysiology across the AD spectrum, particularly during preclinical AD (Jack et 

al., 2018, 2016, 2015; Vos et al., 2016).  

A number of methods exist for detecting neurodegeneration in vivo, including MRI-based 

morphometric estimates. In terms of the specific brain regions impacted early during the course 

of AD, previous cross-sectional and longitudinal structural MRI studies indicate that individuals 

in the preclinical phase possess greater atrophy in a number of regions, including the 

medial temporal lobe (e.g., entorhinal cortex and hippocampus), anterior cingulate, posterior 

cingulate/precuneus, and inferior parietal lobe (Chételat et al., 2012, 2010; Frisoni, Fox, Jack, 

Scheltens, & Thompson, 2010; Pettigrew et al., 2017; Storandt, Mintun, Head, & Morris, 2009; 

Susanto, Pua, & Zhou, 2015; Tondelli et al., 2012; Wang et al., 2015). There is also some 

evidence from cross-sectional and longitudinal research to suggest that individuals with 

preclinical AD have greater whole brain atrophy (Allison et al., in press; Fagan et al., 2009; 

Fotenos et al., 2008; Fox, Warrington, & Rossor, 1999; Schott, Bartlett, Fox, & Barnes, 2010). 

Unlike biomarkers reflecting beta-amyloid deposition and the formation of NFTs, 

measures of brain atrophy are sensitive, but not necessarily specific to AD. For 

example, individuals who have suffered anoxic brain injury, those with dementia due to Lewy 



bodies (DLB) or Parkinson’s disease, and those with hippocampal sclerosis demonstrate 

hippocampal atrophy (Barber et al., 1999; Camicioli et al., 2003; Di Paola et al., 2008; Jack et 

al., 2002). Furthermore, schizophrenia and frontotemporal lobar degeneration are both associated 

with atrophy in the anterior cingulate (Baiano et al., 2007; Rosen et al., 2002), and previous 

research indicates that atrophy of the precuneus is found in DLB and posterior cortical atrophy 

(Burton et al., 2002; Lehmann et al., 2011). These findings indicate that measures of 

neurodegeneration may reflect neuronal loss due to a number of different etiologies, one of 

which may be AD. Despite this lack of specificity, prior work suggests that the use of abnormal 

MRI markers of neurodegeneration, in combination with biomarkers reflecting beta-amyloid 

deposition and NFTs, improves the prediction of future cognitive decline and progression to a 

clinical diagnosis of dementia due to probable AD in individuals with preclinical AD and mild 

cognitive impairment (MCI) at baseline (Aschenbrenner, Gordon, Benzinger, Morris, & 

Hassenstab, 2018; Bouwman et al., 2007; Davatzikos, Bhatt, Shaw, Batmanghelich, & 

Trojanowski, 2011; Jack et al., 2017; Soldan et al., 2019; van Maurik et al., 2017; van Rossum et 

al., 2012; Vemuri et al., 2009). These results highlight the need to incorporate measures of 

neurodegeneration when examining cognitive decline in preclinical and prodromal AD.  

Previous work by our group suggests that individuals with preclinical AD demonstrate 

greater verbal learning and memory decline than late middle-aged adults without evidence of AD 

pathophysiology (defined using biomarkers of beta-amyloid deposition) (Clark et al., 2018); 

however, less is known about the relationship between measures of neurodegeneration and 

verbal learning and memory decline in this group. Therefore, the purpose of this study was to 

examine the effect of neurodegeneration, and its interaction with AD pathophysiology as indexed 

by CSF biomarkers, on longitudinal verbal learning and memory performance in late middle age. 



We defined neurodegeneration using estimates of hippocampal volume and global atrophy based 

on recent work by our group suggesting that these two MRI-based metrics are automated, robust, 

and computationally efficient for defining neurodegeneration across the AD continuum (Allison 

et al., 2019). We hypothesized that hippocampal and global atrophy would be related to declines 

in both verbal learning and memory performance, and that individuals with atrophy on structural 

MRI and abnormal AD biomarkers (low CSF levels of Aβ42/Aβ40, high levels of ptau181/Aβ42 or 

ptau181) would evidence the greatest amount of decline on these cognitive measures. 

2. Methods 

2.1 Participants. 

Participants included 342 late middle-aged and older adults (see Table 1 for demographic 

information) from the Wisconsin Registry for Alzheimer’s disease Prevention (WRAP) or the 

Wisconsin Alzheimer’s Disease Research Center (WADRC). These cohorts consist of 

participants enriched with a parental family history of AD (Johnson et al., 2018). Participants 

from WRAP and WADRC complete a baseline cognitive assessment. For the WRAP 

participants, a second cognitive assessment occurs four years after the baseline evaluation, and 

then subsequent visits occur every two years. The WADRC participants complete annual or 

biennial cognitive assessments. Participants in the current study completed a median of 5 

(range=2-10) cognitive assessments. 

To qualify for the current analysis, participants needed to have at least one structural MRI 

scan and one visit in which CSF levels of ptau181, Aβ42, and Aβ40 were collected within 1.5 years 

of each other. All participants also needed to be classified as cognitively unimpaired at baseline 

(i.e., no clinical diagnosis of dementia or MCI) based on the National Institute on Aging-

Alzheimer’s Association’s consensus conference criteria (Albert et al., 2011; McKhann et al., 



2011) by a team of clinicians (neuropsychologists, physician dementia specialists, and nurse 

practitioners) blind to biomarker data (e.g., PET or CSF data). Exclusion criteria included 

completion of only one study visit, as well as a history of neurological conditions (e.g., multiple 

sclerosis, stroke/TIA, Parkinson’s disease, epilepsy) or a significant psychiatric condition (e.g., 

bipolar disorder or schizophrenia). The inclusion of human participants was supported by the 

University of Wisconsin-Madison Institutional Review Board. All participants provided 

informed consent for this study.  

2.2 Structural MRI. 

 MRI images were acquired in one scanning session using two identical GE 3.0 Tesla 

MR750 scanners (Waukesha, WI, USA) with an 8-channel head coil (Excite HD Brain Coil; GE 

Healthcare). T1-weighted brain volumes were acquired in the axial plane with a 3-D inversion-

recovery prepared fast spoiled gradient-echo sequence using the following parameters: inversion 

time (TI) = 450 ms; repetition time (TR) = 8.2 ms; echo time (TE) = 3.2 ms; flip angle = 12°; 

acquisition matrix = 256 × 256 × 156 mm; field of view (FOV) = 256 mm; slice thickness = 1.0 

mm. Additionally, 14 subjects were scanned with the same parameters, except TR = 8.1 ms. 

Finally, 1 subject was scanned with a shorter sequence that was less susceptible to motion 

artifacts, after it was determined their first scan would likely be unusable. The shorter sequence 

parameters were: TI = 450 ms; TR = 6.0 ms; TE = 2.2 ms; flip angle = 12°; acquisition matrix = 

256 x 256 x 130 mm; FOV = 256 mm; slice thickness = 1.2 mm. Cushions helped reduce head 

movement during scanning. A radiologist (H.A.R.) reviewed all scans for abnormalities.  

Measures of neurodegeneration included global brain atrophy and hippocampal volume. 

An estimate of global brain atrophy (i.e., CSF/(total gray + total white matter volumes)) was 

derived from the T1-weighted IRSPGR sequence by segmenting tissue types into CSF, as well as 



gray and white matter volumes, using SPM12 (www.fil.ion.ucl.ac.uk/spm). Hippocampal volume 

was calculated using FSL-FIRST (Patenaude, Smith, Kennedy, & Jenkinson, 2011), and 

corrected for intracranial volume (ICV) derived using the reverse brain mask method in SPM12 

(i.e., hippocampal volume/ICV) (Keihaninejad et al., 2010). One image failed based on visual 

inspection of the images by S.L.A. Structural MRI data were collected, on average, 3.28 years 

(SD=3.67 years) from the baseline cognitive assessment. Other information about the relative 

timing of the assessments is located in Table 1. 

2.3 Cerebrospinal fluid levels of Alzheimer’s disease biomarkers. 

CSF levels of Aβ42 and ptau181 were obtained via a lumbar puncture in which twenty-two 

mL of CSF were removed from the L3-L4 or L4-L5 vertebral interspace. CSF samples (sent in 

batches at two time points) were analyzed at the Clinical Neurochemistry Laboratory at the 

Sahlgrenska Academy of the University of Gothenburg, Sweden using commercially available 

enzyme-linked immunosorbent assay methods (INNOTEST assays, Fujirebio, Ghent, Belgium; 

Triplex assays, MSD Human Aβ peptide ultra-sensitive kit, Meso Scale Discovery, Gaithersburg, 

MD). CSF samples were assayed for Aβ42 and ptau181. Because of widely reported batch effects 

in analysis of CSF data (CITE), analyte values from the second batch were converted to the 

space of the first batch based on generalized linear models. Details of this modeling process are 

reported elsewhere (CITE).  

2.4 Cognitive assessment. 

We utilized the learning and delayed recall phases from the Rey Auditory Verbal 

Learning Test (RAVLT) (Rey, 1941) on the basis of prior meta-analyses demonstrating a 

significant relationship between measures of learning and memory and AD biomarkers 

(Bäckman, Jones, Berger, Laukka, & Small, 2005; Baker et al., 2017; Han, Nguyen, Stricker, & 
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Nation, 2017; Hedden, Oh, Younger, & Patel, 2013), along with the fact that these measures 

were available at all study visits for both the WRAP and WADRC participants. Learning 

performance was defined as the number of words recalled across trials 1-5 (Total: 0-75). Delayed 

recall performance was defined as the number of words recalled after a thirty-minute delay 

(Total: 0-15).  

2.5 Statistical analyses. 

Statistical analyses were conducted in R version 3.4.4 (R Core Team, 2017) using the 

lmerTest package (Kuznetsova, Brockhoff, & Christensen, 2017), which uses the Satterthwaite 

approximation to compute degrees of freedom. We used sequential comparison of nested linear 

mixed effects models to test our hypotheses that hippocampal or global atrophy would be related 

to declines in RAVLT learning and memory outcomes, and that those with atrophy on structural 

MRI and abnormal CSF biomarkers would evidence the greatest RAVLT declines. Maximum 

likelihood estimation was used for model fitting. The predictors (i.e., neurodegeneration 

measures and CSF biomarkers) were standardized (unadjusted z-scored) prior to conducting 

analyses. Higher CSF levels of ptau181/Aβ42 reflect a greater degree of AD-related 

pathophysiology, whereas higher global atrophy and smaller hippocampi are indicative of 

structural changes linked to aging and disease (Jack et al., 2018). For each outcome (RAVLT 

verbal learning or delayed recall), the full model included: random intercept and age-related 

slopes; fixed effects covariates of sex, years of education, and prior exposure to the cognitive 

battery (“practice”, visit number – 1, coded categorically); and hypothesis-related fixed effects of 

interest including age (centered at the mean baseline age), ptau181/Aβ42, hippocampal volume, 

global atrophy, and interactions between ptau181/Aβ42, each brain measure, and age. A 

preliminary analysis treated outcome (learning vs recall) as a fourth interacting variable to test 



whether the effects of any predictors differed meaningfully between the two outcomes; following 

a significant four-way interaction between outcome variable, ptau181/Aβ42, hippocampal volume, 

and age, the two were outcomes separately (Supplementary Table S1). The four-way interaction 

was not significant for global atrophy.   

Model selection was performed as follows. First, the relative contribution of age and 

practice on longitudinal trajectories was considered by comparing four simple models: linear 

age, no practice; quadratic age, no practice; linear age plus practice; and quadratic age plus 

practice. After this, the effects of the predictors of interest were examined by comparing a fully 

saturated model to smaller nested models on the basis of Akaike’s information criterion (AIC), 

and in the case of ties, the Bayesian information criterion (Schwarz, 1978). The saturated model 

(with all interactions of interest) was run first and compared to a model with all of the two-way 

interactions. If the smaller model improved the fit, two-way interaction terms were removed by 

order of decreasing p-value until removing further terms did not improve model fit. All main 

effect terms were retained. If the AICs were the same for the compared models, the model with 

the lower Bayesian information criterion was selected (BIC). 

2.5.2 Hypothesis tests. Reported p-values represent nominal probability under the null 

hypothesis. No adjustments were made for multiplicity due to model selection or incorporation 

of reviewer-suggested changes. 

3. Results 

3.1 Primary analysis: The effects of CSF ptau181/Aβ42, global atrophy, and hippocampal 

volume on RAVLT learning and delayed recall. The initial mixed effects model treating 

cognitive outcome as a fixed effect resulted in a significant four-way interaction, indicating that 

the three-way interaction between ptau181/Aβ42, hippocampal volume, and age differed for the 



learning and delayed recall outcomes. Model fit statistics are displayed in Table 2. Therefore, 

follow-up models were fit separately for these two outcomes. 

3.1.1. RAVLT Learning: Model selection preserved a significant ptau181/Aβ42 × global 

atrophy × age interaction, indicating that age trajectories in RAVLT learning depended both on 

CSF markers of AD and on global atrophy. A significant hippocampal volume × age interaction 

was also retained. Simple slopes for three levels each of global atrophy (columns), hippocampal 

volume (rows), and ptau181/Aβ42 (lines) are plotted in Figure 1. Briefly, the deleterious effect of 

ptau181/Aβ42 is most pronounced in those with larger global brain volumes (i.e., lower levels of 

global atrophy; left column of panels), whereas those with higher levels of atrophy evidence 

similar decline regardless of ptau181/Aβ42. Those with larger hippocampal volumes (bottom row 

of panels) showed slightly less steep age-related cognitive decline than those with smaller 

hippocampal volumes (top row of panels). Model parameters and fit statistics are displayed in 

Table 3A-B. 

3.1.2. RAVLT Delayed Recall: In the initial model fit, the two highest-order interactions 

had p-values < .10; therefore, no further selection was performed. Results suggested both a 

significant ptau181/Aβ42 × global atrophy × age interaction, indicating that age trajectories in 

RAVLT delayed recall depended both on CSF markers of AD and on global atrophy, and a 

nonsignificant ptau181/Aβ42 × hippocampal volume × age interaction, indicating a weaker 

dependence between these variables. Simple slopes for three levels each of global atrophy 

(columns), hippocampal volume (rows), and ptau181/Aβ42 (lines) are plotted in Figure 1. Briefly, 

the deleterious effect of ptau181/Aβ42 is most pronounced in those with lower levels of global 

atrophy (left column of panels), and to a weaker degree, those with smaller hippocampal 

volumes (top row of panels). Model parameters are displayed in Table 4. 



4. Discussion 

The current study examined the effect of neurodegeneration (as assessed with volumetric 

indices of hippocampal volume and global atrophy) and its interaction with CSF AD biomarkers 

on longitudinal verbal learning and memory performance in late middle age. Previous research 

by our group indicates that CU late middle-aged individuals with evidence of beta-amyloid 

deposition (defined using available PET and/or CSF data) exhibit greater rates of decline on 

tasks of verbal learning and memory than their counterparts without biomarker evidence of AD 

(Clark et al., 2018), which is consistent with the larger literature examining these relationships in 

older adults (Bäckman et al., 2005; Baker et al., 2017; Han et al., 2017; Hedden et al., 2013). Of 

note, our prior study found that amyloid deposition was associated with greater rates of cognitive 

decline regardless of whether individuals also had elevated levels of CSF tau.  

The present study adds to our prior work by demonstrating that the deleterious effects of 

AD-related pathophysiology (i.e., higher levels of CSF ptau181/Aβ42) on verbal learning and 

memory performance depend on the degree of global atrophy present. More specifically, 

individuals with a greater degree of global atrophy evidenced similar rates of decline regardless 

of the degree of AD pathophysiology present. In contrast, in individuals with larger global brain 

volumes, the presence of preclinical Alzheimer’s disease was associated with steeper declines in 

verbal learning and memory. These findings suggest that the presence of AD biomarkers, global 

atrophy, or both global atrophy and AD biomarkers are all associated with greater verbal 

learning and memory decline in a sample of late middle-aged adults. 

In contrast to the global atrophy findings, the ptau181/Aβ42 × hippocampal volume × age 

interaction was not a significant predictor of either outcome, although it was retained in the 

model of delayed recall (p<.10). This discrepancy may be due to methodological reasons. More 



specifically, in contrast to global atrophy, the estimation of hippocampal volume requires 

differentiation of gray from white matter structures. This difference may result in less accurate 

estimates for hippocampal volumes than those obtained for global atrophy measures, which do 

not necessitate segmentation of white from gray matter volumes (Fischl et al., 2002). This is 

particularly relevant when examining a population consisting of late middle-aged and older 

adults given that white matter signal intensity declines with age (Salat et al., 2009). This 

difference in reliability may have accounted for the discrepant findings for hippocampal volume 

vs global atrophy in the current investigation. 

Another reason for the discrepant findings in the current study may be that global atrophy 

is a better metric of brain reserve than hippocampal volume. The concept behind brain reserve 

suggests that some individuals evidence less cognitive decline than their peers, and that this may 

be due to differences in brain structure or function (Stern, 2018). Previous investigations have 

used a number of neuroimaging methods for defining brain reserve, including cortical thickness, 

gray matter volume, white matter hyperintensity burden, resting cerebral blood flow, as well as 

both total brain volume and hippocampal volume (for reviews on both cognitive reserve and 

brain reserve, see: Fratiglioni & Wang, 2007; Stern, 2018). A measure of global atrophy may be 

more reflective of neuronal loss due to a number of different etiologies, whereas hippocampal 

volume loss may be more related to changes due to AD (e.g., Henneman et al., 2009; Jack et al., 

2000). Additional research is needed, but this may have accounted for the fact that only 

individuals with less global atrophy and lower levels of AD biomarkers demonstrated less steep 

decline over time on measures of verbal learning and memory in the current study.  

The findings from the current study are similar to previous research in that we too 

observed a three-way interaction (i.e., neurodegeneration x AD biomarker x age); however, the 
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existing literature has found that the greatest degree of decline in cognition is observed in 

individuals with both atrophy and the presence of AD pathophysiology (Aschenbrenner et al., 

2018; Bilgel et al., 2018; Mormino et al., 2014; Soldan et al., 2016). In contrast, the present work 

found that AD biomarkers interacted with a measure of global atrophy such that trajectories were 

fairly similar in those carrying at least one of these risk factors (i.e., global atrophy, presence of 

AD biomarkers, or both global atrophy and AD biomarkers), whereas less verbal learning and 

memory decline was evident in those with both normal AD biomarker levels and larger brain 

volumes. The average age of participants in these past investigations was at least 70 years old at 

baseline (Aschenbrenner et al., 2018; Bilgel et al., 2018; Mormino et al., 2014), with the 

exception that the Soldan et al. (2016) subsample with the presence of both neurodegeneration 

and AD biomarkers was 64. In contrast, the average baseline age in the current study was 58. 

This difference in age may have accounted for the discrepant findings.  

Our conclusions here should be considered in light of a few design limitations. First, our 

analyses were limited to a single episodic learning and memory neuropsychological test because 

of the in-common availability of the RAVLT. To limit the analytical complexity of our analyses, 

as well as the inferential problems associated with multiple testing (Gelman & Geurts, 2017), we 

also considered only a subset of the possible measures of neurodegeneration (Frisoni et al., 2010) 

and CSF biomarkers (Merluzzi et al., 2019; Olsson et al., 2016). Future analyses in other cohorts 

should examine the conceptual replicability of these findings using different measures. The 

homogeneity of the sample is also a weakness, as both cohorts consisted largely of late middle-

aged adults with a relatively high level of education (average of 16 years). Our center is currently 

recruiting a more diverse sample to establish the robustness of our findings to differences in 

demographic background. 



Conclusions. This study joins a growing body of research that is empirically 

characterizing the pre-symptomatic biomarker profile in AD. Our results suggest that AD 

biomarkers are associated with verbal learning and memory decline, and that the impact of AD 

biomarkers on verbal learning and memory performance is greatest in those with larger total 

brain volumes. Future research would benefit from following this cohort overtime, as well as 

examining the interaction between additional measures of neurodegeneration (e.g., CSF NfL or 

neurogranin) and AD pathophysiology (e.g., PET measures of beta-amyloid and neurofibrillary 

tangles) on cognitive performance, defined using verbal learning and memory measures, as well 

as measures of other cognitive functions (e.g., executive function). 
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8. Figure Captions 

Figure 1: Immediate recall (sum of learning trials 1 through 5) from the Rey Auditory Verbal 

Learning Test. Lines depict model-predicted age trajectories for three values of ptau181/Aβ42: red 

represents -1 standard deviation from the mean; gray represents the mean value; blue represents 

+1 standard deviation from the mean. Each panel reflects the model fit at a particular value of 

global atrophy (columns; -1, 0, +1 SD from the mean) and hippocampal volume (rows; sim.). 

Model predictions were made assuming a male participant with 16.15 years of education (the 

mean level) and no prior exposure to the battery. Confidence bands reflect the standard error of 

prediction for each line. The overlaid scatter represents raw individual test score measurements 

within nine predictor value bins, grouped such that Zpredictor ≤ -0.5 (top/left), -0.5 < Zpredictor ≤ 0.5 

(center/center), and Zpredictor > 0.5 (bottom/right).  

 

 

Figure 2: Delayed recall from the Rey Auditory Verbal Learning Test. Lines depict model-

predicted age trajectories for three values of ptau181/Aβ42: red represents -1 standard deviation 

from the mean; gray represents the mean value; blue represents +1 standard deviation from the 

mean. Each panel reflects the model fit at a particular value of global atrophy (columns; -1, 0, +1 

SD from the mean) and hippocampal volume (rows; sim.). Model predictions were made 

assuming a male participant with 16.15 years of education (the mean level) and no prior 

exposure to the battery. Confidence bands reflect the standard error of prediction for each line. 

The overlaid scatter represents raw individual test score measurements within nine predictor 

value bins, grouped such that Zpredictor ≤ -0.5 (top/left), -0.5 < Zpredictor ≤ 0.5 (center/center), and 

Zpredictor > 0.5 (bottom/right).  

 


