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Vibrational mechanics in higher dimension: Tuning potential landscapes
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This work extends the domain of vibrational mechanics to higher dimensions, with fast vibrations applied to
different directions. In particular, the presented analysis considers the case of a split biharmonic drive, where
harmonics of frequency ω and 2ω are applied to orthogonal directions in a two-dimensional setting. It is shown,
both numerically and with analytic calculations, that this determines a highly tunable effective potential with the
same symmetry as the original one. The driving allows one not only to tune the amplitude of the potential, but
also to introduce an arbitrary spatial translation in the direction corresponding to the 2ω driving. The setup allows
for generalization to implement translations in an arbitrary direction within the two-dimensional landscapes. The
same principles also apply to three-dimensional periodic potentials.
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I. INTRODUCTION

Vibrational mechanics is the branch of mechanics which
deals with the renormalization of potentials via the application
of fast and large-amplitude vibrations. The field started in
1951 with the works by Kapitza [1,2], who demonstrated the
stabilization of an inverted pendulum via the fast vibration of
its pivot point. More recent development included the renor-
malization of bistable [3] and periodic [4,5] potentials to tune
their diffusion properties and their response to weak external
fields, as well as the study of a Kapitza pendulum with finite
stiffness and dissipation [6]. In all these works, vibrational
mechanics focused on one-dimensional systems, and the re-
sulting overall renormalization of the potential strength.

In this work we examine theoretically vibrational me-
chanics in two-dimensional (2D) periodic systems, with fast
vibrations of different frequencies applied along orthogonal
directions. We demonstrate that in this case the renormaliza-
tion of the potential is in general not limited to a remodulation
of the overall amplitude. The nonlinear coupling between dif-
ferent spatial dimensions leads to mixing of the fast vibrations
applied along these directions; this allows for additional con-
trol of the potential renormalization, introducing in particular
the possibility of controlled spatial translations in arbitrary
directions. This brings in an additional level of control of the
system with respect to previously examined renormalization
schemes based on single-harmonic driving.

This work is organized as follows. In Sec. II the
model is defined, distinguishing between underdamped and
overdamped systems, and introducing the split biharmonic
high-frequency driving leading to the renormalization of the
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potential. Section III discusses the renormalization produced
by the split biharmonic drive and details the derivation of the
effective potential. Section IV validates the analytic derivation
of the effective potential via numerical simulations. Finally,
Sec. V presents the conclusions of this work.

II. MODEL

We consider a classical Brownian particle in a two-
dimensional periodic potential in the presence of additional
applied homogeneous and unbiased oscillating forces. The
particle’s dynamics is described by the Langevin equation

mr̈ = −αṙ − ∇U (r) + F(t ) + ξ (t ), (1)

where r = (x, y) is the coordinate vector of the particle, m
is its mass, α the friction coefficient, ξ = (ξx, ξy) a fluc-
tuating force modeled by two independent Gaussian white
noises, 〈ξi(t )ξ j (t ′)〉 = 2Dδ(t − t ′)δi j (i, j = x, y), F(t ) an ap-
plied time-dependent driving to be specified later on, and U (r)
a two-dimensional space-periodic potential.

The equation of motion (1) describes a Brownian particle
in a 2D lattice, surrounded by a white noise bath at tempera-
ture T = D/(αkB), where kB is the Boltzmann constant, under
external forcing. At the microscale, most Brownian particles
are in the overdamped regime, where the inertial term mr̈
can be neglected against the frictional force, resulting in the
first-order equation

αṙo = −∇U (ro) + F(t ) + ξ (t ), (2)

where the subscript o denotes overdamped dynamics. Equa-
tion (2) is formally obtained from Eq. (1) by taking the limit
m → 0, this limit being in practice a very good approximation
whenever m � α(m/U0)1/2/k, where k and U0 are the typi-
cal wavenumber and amplitude, respectively, of the potential
landscape U (x, y), both to be precisely defined later on, in
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Eqs. (10) and (23). In other words, Eq. (2) assumes that
friction is so large that the Brownian particle approaches very
rapidly its limit velocity.

Throughout the paper, reduced units are assumed so that
m = k = U0 = 1 for the numerical examples in the under-
damped regime [Eq. (1)], while for the overdamped regime
[Eq. (2)] units are defined by α = k = U0 = 1.

The oscillating forces leading to the potential renormal-
ization are chosen to be in the form of the so-called split
biharmonic driving, consisting of two orthogonal harmonic
drives, which we take here along the x and y directions, of
frequency ω and 2ω, respectively:

F(t ) = F0 sin(ωt )ex + F0 sin(2ωt + φ)ey, (3)

where φ is a driving phase which will be used as a control
parameter. The split biharmonic drive was first introduced
in the context of the ratchet effect [7]. For a low frequency
ω, of the order of the potential vibrational frequency, and
small amplitude, it was shown that a split biharmonic driving
breaks the relevant spatiotemporal symmetries and leads to
directed motion in the spatial direction corresponding to the
2ω component [8–10]. Here, we consider the large-amplitude
high-frequency limit, with ω exceeding any typical frequency
of the system. As we will show in the following, in this limit
the frequency is too high for the driving to lead to directed
motion. However, the nonlinear coupling between harmonics
gives rise to potential renormalization effects additional to the
standard single-harmonic dressing.

III. DERIVATION OF THE EFFECTIVE POTENTIAL

We consider a high-frequency force of the form (3), with
very large ω, formally in the asymptotic limit ω → ∞. In this
limit, if the force (3) is to have any effect, it is also necessary
that F0 → ∞.

The precise way the driving amplitude must diverge in the
high-frequency limit depends on whether the system is in the
underdamped [Eq. (1)] or in the overdamped [Eq. (2)] regime.

Consider first the underdamped regime. In the high-
frequency limit ω, F0 → ∞, the strong drive [Eq. (3)] creates
a very fast oscillation rF (t ) in the Brownian particle, which is
obtained by integrating the equation of motion (1),

rF (t ) = −r sin(ωt )ex − r sin(2ωt + φ)ey, (4)

where

r = F0

mω2
. (5)

Therefore, r, hereafter called the high-frequency ratio, must
remain finite in the limit ω, F0 → ∞.

Consider now the overdamped regime. We start from
Eq. (2), and thus we explicitly assume that, regardless of
how large ω is, the condition ω � α/m is always satisfied—
formally, the limit m → 0 is taken before ω → ∞. Note that
the opposite limit, that is, for ω � α/m, is already covered
by the high-frequency results presented for the underdamped
regime. From Eq. (2), we find

ro
F (t ) = −ro cos(ωt )ex − ro cos(2ωt + φ)ey (6)

with

ro = F0

αω
. (7)

The above expression is the high-frequency ratio for the over-
damped regime.

By removing the fast dependence from r(t ),

r̃ = r − rF (t ), (8)

we can expect r̃ to vary on a much slower time scale than
that of the high-frequency drive. Thus, the explicit time de-
pendence in the equation of motion for r̃ can approximately be
removed by integrating over a time interval that includes many
high-frequency periods, but in which the slow variables r̃ do
not appreciably change. In the considered asymptotic limit,
this leads to an equation of motion for r̃ like the original for
r, but with the following effective potential:

Ueff (̃x, ỹ) = ω

2π

∫ 2π/ω

0
dt̃ U [̃x + xF (̃t ), ỹ + yF (̃t )]. (9)

We consider now some specific forms of two-dimensional
potential, so as to illustrate the effect of the renormalization
due to the split biharmonic drive. We start by considering the
rectangular lattice potential:

U (r) = U0 cos(kx)[1 + cos(2ky)] . (10)

The term depending on x only leads to the standard renormal-
ization, with the potential U0 multiplied by a zero-order Bessel
function [5]. The term containing both x and y dependencies
gives rise to additional renormalization effects. After some
calculations, it can be shown—see the Appendix—that the
potential

U (x, y) = U0 cos(kxx) cos(kyy)], (11)

under the split-biharmonic driving [Eq. (3)] in the high-
frequency limit ω, F0 → ∞, with r or ro constant, is
transformed into

Ueff (x, y) = U0 cos(kxx)[cos(kyy)C1 + sin(kyy)C2], (12)

where the coefficients are given, in the underdamped regime
[Eq. (1)], by

C1(r, φ) = J0(kxr)J0(kyr/4) +
∞∑

l=1

2 cos(2lφ)

× J4l (kxr)J2l (kyr/4), (13a)

C2(r, φ) =
∞∑

l=0

2 sin[(2l + 1)φ]J4l+2(kxr)J2l+1(kyr/4),

(13b)

and in the overdamped regime [Eq. (2)], by

Co
1 (ro, φ) = J0(kxro)J0(kyro/2) +

∞∑
l=1

2(−1)l cos(2lφ)

× J4l (kxro)J2l (kyro/2), (14a)

Co
2 (ro, φ) =

∞∑
l=0

2(−1)l+1 cos[(2l + 1)φ]J4l+2(kxro)

× J2l+1(kyro/2). (14b)
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Here Jν is the νth-order Bessel function. Regardless of the
dynamical regime, we can always write the coefficients C1 and
C2 (or Co

1 and Co
2) as

C1 = C0 cos(kyy0), (15a)

C2 = C0 sin(kyy0), (15b)

yielding Eq. (12) as

Ueff (r) = U0C0 cos(kxx) cos[ky(y − y0)] = U (x, y − y0)C0.

(16)
Therefore, the high-frequency split-biharmonic drive [Eq. (3)]
transforms the original potential (11) by multiplying by a
constant C0 and translating it in the y direction by an amount
y0. Both quantities are controlled by the driving parameters r
(or ro) and φ.

Notice that the effective potential (16), being a scaled
translation of Eq. (11), has exactly the same symmetries as
the latter; i.e., it is spatially symmetric in both directions.

Let us recall some useful properties of Bessel functions.
Their expansion is given by [11]

Jν (z) =
(

1

2
z

)ν ∞∑
l=0

(− 1
4 z2

)l

l! 	(ν + l + 1)
, (17)

which implies

J0(0) = 1 and Jν (0) = 0 for ν 	= 0. (18)

By applying the result (12) and the Bessel properties (18),
we obtain, for the rectangular potential (10), the following
effective potential:

Ueff (x, y) = U0 cos(kx)[J0(r) + cos(2ky)C1 + sin(2ky)C2],

(19)

where C1 and C2 are given by Eqs. (13), or Eqs. (14) in the
overdamped regime, with kx = k = ky/2.

IV. NUMERICAL VALIDATION

In this section we validate via numerical simulations the
analytical results reported in the previous section. The vali-
dation procedure will examine two different configurations.
In the first one, the only oscillating forces will be the
high-frequency ones leading to the renormalization. Thus, a
situation of effective equilibrium is expected. The analyti-
cally calculated effective potential will be compared to the
one corresponding to the particles’ probability distribution,
as calculated by numerically solving the Langevin equa-
tion inclusive of the high-frequency renormalizing forces. In
the second configuration, additional low-frequency oscillating
forces are applied, to explore out-of-equilibrium settings. The
appearance of the ratchet effect, and its magnitude, will be
used to validate our approach. This configuration will also
allow us to identify some features of the intermediate regime
of finite amplitude and frequency of the renormalizing force.

Consider first the equilibrium case, i.e., in the absence of
any driving. The probability density of finding the Brownian
particle about r is canonical [10],

P(r, t ) = Pst (r) = Z−1 exp[−U (r)/kBT ], (20)
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FIG. 1. Potential renormalization for a Brownian underdamped
particle in the rectangular landscape [Eq. (10)] with high-frequency
split-biharmonic driving [Eq. (3)]. The parameters of the driving are
high frequency ω = 10, driving phase φ = π/4, and frequency ratio
r = 1.20241. The friction coefficient and the noise strength were set
to α = 0.1 and D = 0.1, respectively. (a) Analytically calculated ef-
fective potential Ueff [Eq. (19)]. (b) Potential reconstruction using the
probability density (21) of the smooth coordinates (̃x, ỹ), yielding the
numerically calculated effective potential. The data involve averages
over 106 independent trajectories.

where Z is a normalization constant, kB is the Boltzmann
factor, and T is the temperature associated with the bath
described by the friction and random force in Eq. (1), sat-
isfying the fluctuation-dissipation relation D = αkBT . Con-
versely, in a simulation the stationary probability Pst (r) can be
sampled, and from there the potential U can be reconstructed,

U (r) = −D

α
log Pst (r), (21)

up to an arbitrary additive constant. Next, when the high-
frequency renormalizing force (3) is present, from the
analytical results of the previous section it follows that in
the slow coordinates r̃ = r − rF there also exists a stationary
probability density, which has the exact same form [Eq. (20)],
but with r replaced by r̃ and U replaced by Ueff .

As our first numerical example, let us consider the rect-
angular lattice potential of Eq. (10) with the high-frequency
split-biharmonic drive [Eq. (3)]. Figure 1(a) displays the an-
alytically calculated effective potential (19), while Fig. 1(b)
displays the effective potential reconstructed, via the proba-
bility density function, from the numerical solutions of the
Langevin equation inclusive of the high-frequency renor-
malizing fields, as from Eq. (21). The excellent agreement
between the analytically calculated effective potential and the
reconstructed one from numerical simulations validates our
approach.

We consider now the application of an additional low-
frequency force along the y direction. This configuration will
allow us to probe the out-of-equilibrium properties of the
system, validating our derivation for the asymptotic limit, and
at the same time revealing some interesting features about
the intermediate regime of finite amplitude and frequency of
the renormalizing fields. The response of the system will be
quantified by considering the occurrence of a directed current
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FIG. 2. Average current in the y direction for the same system as
in Fig. 1 but driven, in addition to the high-frequency force, with
high frequency ω = 10 (black triangles), ω = 15 (green inverted
triangles) or ω = 20 (red diamonds), by a single-harmonic drive
F ′

0 sin(ω′t )ey (solid symbols) or a symmetry-breaking biharmonic
drive F ′

0 [sin(ω′t ) + sin(2ω′t )]ey (open symbols), with ω′ = π . The
black solid line is the prediction for the extra biharmonic drive using
the effective potential (19).

of particles, with average velocity 〈v〉 defined as

〈v〉 = lim
t→∞

〈r(t ) − r(0)〉
t

. (22)

Consider first the application of a single-harmonic low-
frequency drive F ′

0 sin(ω′t )ey, of amplitude F ′
0 and frequency

ω′, taken in an irrational ratio with the frequency of the renor-
malizing fields so as to avoid any unwanted interplay between
the two forces. In the context of the ratchet effect [10], one can
show that the occurrence of a directed current is intimately
related to the breaking of relevant spatiotemporal symmetries
[8,12]. For a single-harmonic oscillating force, the generation
of directed current requires an asymmetric potential; thus this
setup allows one to probe the symmetry of the effective poten-
tial. We refer to the results of Fig. 2 (data in solid symbols).
For a single-harmonic drive, a current is generated in the
regime of finite frequency of the renormalizing fields. This
result shows the occurrence of effective asymmetries in the
intermediate regime. However, for increasing frequency of
the renormalizing field, i.e., approaching the asymptotic limit
ω → ∞, the directed current diminishes and approaches zero.
This demonstrates that the potential symmetry is restored in
the asymptotic regime, in agreement with our analytic calcu-
lations.

Consider now the application of a biharmonic low-
frequency drive. In this case, the generation of a current is
expected also in the asymptotic limit of a spatially symmetric
effective potential, given that the low-frequency driving force
breaks the relevant spatiotemporal symmetries [8,10]. This is
confirmed by the numerical simulations of Fig. 2 (data in open
symbols), where a nonzero current is observed also in the
asymptotic limit. To be more quantitative, the amplitude of
the ratchet current was numerically calculated (solid lines in
Fig. 2) using the analytically derived effective potential (19).
Results of Fig. 2 show that the current numerically calcu-
lated from the Langevin equation including the renormalizing
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FIG. 3. Effective potential of the rectangular lattice system (10),
in the overdamped regime, under a high-frequency split drive tuned
to a translation in the y direction of half a period. The driving
parameters are r = 5.85949 and φ = π/2. (a) Effective potential re-
construction from the probability density in a simulation with D = 1
and ω = 20. (b) Analytically calculated effective potential (19).

forces asymptotically approaches the current calculated with
the effective potential (19); the larger the high-frequency driv-
ing, the better the approximation. This validates our derivation
of the effective potential also for an out-of-equilibrium setting.

Having demonstrated the validity of the effective potential
approximation, we now focus on the control of the potential
landscape with the high-frequency driving. The analytic ex-
pressions for the effective potential reported in the previous
section can be readily used to identify the driving parameters
r and φ which determine the translation of the potential land-
scape in the y direction of the desired amount. Figure 3 reports
the reconstructed effective potential obtained in a simulation
with driving specifically tuned to produce a translation of half
a period. This simulation also serves as a numerical valida-
tion of the analytical expressions in the overdamped regime,
Eq. (14).

The renormalization procedure is not restricted to rectan-
gular lattices, and can be applied to other landscapes with
different symmetries. Consider, for example, the following
potential:

U (x, y) = U0

[
cos(kx) + 2 cos

(
kx

2

)
cos

(√
3ky

2

)]
, (23)

which defines a hexagonal lattice. Figure 4 shows the numeri-
cal results in the underdamped regime. Like in the simulation
reported in Fig. 3, the driving parameters were chosen to pro-
duce a translation of the hexagonal potential in the y direction
of half a period. The reconstructed potentials shown in Fig. 4
are in excellent agreement with the analytical expressions,
with a level of agreement similar to that shown in the exam-
ples of Figs. 1 and 3. These results highlight the ability to
implement an arbitrary spatial translation in the direction of
the 2ω driving using a split-biharmonic drive.

V. CONCLUSIONS

In this work we extended the domain of vibrational me-
chanics to higher dimensions, with fast vibrations applied
to different directions. In particular, we considered the case
of the split-biharmonic drive, where harmonics of frequency
ω and 2ω are applied to orthogonal directions in a two-
dimensional setting. It was shown, both numerically and with
analytic calculations, that this determines a highly tunable
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FIG. 4. High-frequency split drive translating the hexagonal
potential (23) in the y direction in the underdamped regime.
(a) Reconstructed hexagonal potential in the absence of driving.
(b) Effective potential reconstruction in a simulation with r =
5.84611, φ = 0, and ω = 20. The rest of the parameters are as in
Fig. 1.

effective potential with the same symmetry as the original one.
The driving allows one not only to tune the amplitude of the
potential, but also to introduce an arbitrary spatial translation
in the direction corresponding to the 2ω driving.

The setup can easily be generalized to allow spatial trans-
lations in any desired direction within the two-dimensional
landscape. This requires the application of additional split-
biharmonic drives. In general, this allows for complete
control, although the complicated interplay between differ-
ent drivings may complicate the prediction of the translation
direction on the control parameters. This can simplified by
decoupling the different biharmonic drives using irrational
frequencies, as introduced in the case of low-frequency driv-
ings in Ref. [13]. The same approach can be used for
three-dimensional systems.

The obtained results are of interest for systems, such as
solid-state systems, whose periodic potential cannot be di-
rectly tuned via the variation of external parameters. The
present work shows that the application of fast oscillating
forces, typically via the application of oscillating electric
fields in the above-mentioned case of solid-state periodic
structures, allows for a fine tuning of the potential, with the
only limitation of the original symmetry.
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APPENDIX: CALCULATION OF THE EFFECTIVE
POTENTIAL

In this Appendix we detail the steps in the calculation of
the effective potential created by the application of a high-
frequency split-biharmonic force (3) on the potential (11),
leading to the renormalized potential of Eq. (12).

The first step is to expand the cosines in Eq. (11) in expo-
nential functions by using the formula

cos(z) = exp(iz) + exp(−iz)

2
, (A1)

for both z = kxx and z = kyy. Then, we change to the slow
coordinates (8) with the replacement, in the underdamped
regime,

x = x̃ − r sin(ωt ), (A2a)

y = ỹ − r sin(2ωt + φ), (A2b)

or in the overdamped case,

x = x̃ − ro cos(ωt ), (A3a)

y = ỹ − ro cos(2ωt + φ). (A3b)

The next step consists in replacing the exponentials with
arguments involving sinusoidal functions by Bessel functions,
using—several times—the following expression [11]:

eiz sin θ =
∞∑

n=−∞
Jn(z) einθ . (A4)

The resulting terms can be easily time integrated, as pre-
scribed in Eq. (9), because they can be traced back to simple
integrals with the general form

ω

2π

∫ 2π/ω

0
dt̃einω̃t = δn,0, (A5)

with n integer. Finally, using the following properties of the
Bessel function, for n integer,

Jn(−z) = (−1)nJn(z), (A6a)

J−n(z) = (−1)nJn(z), (A6b)

we obtain expression (12) for the effective potential, with the
coefficients given by Eq. (13) in the underdamped case, and
Eq. (14) in the overdamped case.
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