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Abstract
This article presents the results of a series of measurements of multistatic radar signatures
of small UAVs at L‐ and X‐bands. The system employed was the multistatic multiband
radar system, NeXtRAD, consisting of one monostatic transmitter‐receiver and two
bistatic receivers. NeXtRAD is capable of recording simultaneous bistatic and monostatic
data with baselines and two‐way bistatic range of the order of a few kilometres. The paper
presents an empirical analysis with range‐time plots and micro‐Doppler signatures of
UAVs and birds of opportunity recorded at several hundred metres of distance. A
quantitative analysis of the overall signal‐to‐noise ratio is presented along with a com-
parison between the power of the signal scattered from the drone body and blades. A
simple study with empirically obtained features and four supervised‐learning classifiers
for binary drone versus non‐drone separation is also presented. The results are
encouraging with classification accuracy consistently above 90% using very simple fea-
tures and classification algorithms.

1 | INTRODUCTION

The increasing presence and usage of commercially available
small drones is presenting commercial opportunities (e.g. ap-
plications in filming, agriculture, inspections, delivery, moni-
toring, and surveillance) and also challenges and potential
threats (from illegal or intrusive filming to more serious
smuggling of drugs into prison, disruption to airports, and
potential usage of weaponised drones). Radar is one of the
most promising technologies to monitor drones, as it provides
operational capabilities in all weather and light conditions, with
accurate estimation of range and velocities through reliable
range‐Doppler processing.

However, drones are challenging targets for conventional
radar systems, such as those installed for air traffic control or
designed to monitor larger aircraft. Drones are smaller (hence
lower Radar Cross Section) and more manoeuvrable than their
manned counterparts or larger Unmanned Aerial Vehicles

(UAVs), meaning that they can be removed with the clutter
during the detection or lost during the tracking process.
Increasing the sensitivity of the radar does help, but the related
challenge is then the significant number of false targets due
mostly to birds and moving non‐drone objects (such as
vegetation or wind turbines) that can still be in the main lobe
or sidelobes of the radar [1, 2].

While the best radar systems and signal processing algo-
rithms for optimal detection, tracking, and classification of
drones are being actively investigated, it can be argued that
access to multistatic/networked radar data can improve per-
formances due to the multi‐perspective views on the targets of
interest and inherent resilience in cases where the target is
occluded, or the data is degraded at one of its nodes. The same
reasoning applies to other types of challenging targets, for
example, small boats against intense sea clutter background.
The majority of research available in the open literature on the
radar signature of drones assumes monostatic geometries, with
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limited analysis of multistatic experimental drone data per-
formed in some of the authors' previous work [3–5]. These
used the NetRAD system, the S‐band pulse‐Doppler radar
developed in collaboration between UCL and the University of
Cape Town, made of three separate but identical nodes [6]. A
key capability of the NetRAD system was the possibility to
collect simultaneous measurements of monostatic and multi-
static signatures of targets and clutter, allowing a direct com-
parison to be made.

This article is an extended version of our previous
contribution presented at the 2019 SEE International Radar
Conference in Toulon, France [7]. That paper presented initial
results of an experimental campaign involving the successor
of the NetRAD system, called NeXtRAD. NeXtRAD has
been developed to improve overall capabilities following the
experience of using NetRAD in trials. The new radar is
capable of operating in dual‐band configuration (L‐ and X‐
bands, albeit not simultaneously, but alternating by pulse
repetition interval, PRI), collecting polarimetric data at X‐
band, and operating in multistatic geometries across base-
lines of the order of hundreds of metres by means of GPS‐
Disciplined Oscillators [8–10].

While the conference paper presented only an empirical
analysis of the signatures of UAVs in the range‐time and micro‐
Doppler domains, this article expands such analysis. A quan-
titative analysis of the drone SNR is presented for different
bands, polarisations and geometries of acquisition. Another
contribution consists of the analysis of the relative level of the
Doppler components due to the rotational motion of the
drone blades with respect to the body zero‐Doppler compo-
nent. Furthermore, simple but yet effective features are pre-
sented to classify drones (observed at both X‐ and L‐bands)
versus non‐drones targets (birds either flying individually or as
part of a flock). The considered features are derived from
sections of the micro‐Doppler spectrograms, as well as from
their Singular Value Decomposition (SVD) processing, mostly
with the aim of exploiting the signatures of the rotor blades to
identify drone targets. Good classification performances above
90% are demonstrated with simple supervised‐learning classi-
fiers such as Nearest Neighbour, Support Vector Machine, and
an Ensemble classifier described in Section 3. While this simple
classification study yielded good results, its limitations have to
be considered, namely the amount of data restricted to those
recordings with high signal‐to‐noise ratio where the targets
signatures are well visible. Nevertheless, the demonstrated ca-
pabilities of high classification rates for targets at several
hundred of metres is considered valuable in comparison with
state of‐the‐art systems and experiments that have been
reported.

The remainder of this article is organised as follows. Sec-
tion 2 presents the properties of the NeXtRAD system and
describes the data collection. Section 3 illustrates the results
obtained, in terms of the empirical description of Range‐Time‐
Intensity maps and spectrograms, and feature extraction and
classification for the drone versus non‐drone recognition
problem. Final remarks are drawn in Section 4.

2 | THE NeXtRAD RADAR SYSTEM AND
DATA COLLECTION

As shown in Figure 1, NeXtRAD is composed of three
different nodes interconnected by a wireless network and
operated by a master interface from the ‘Command & Control’
(CnC) computer. The CnC node can access all the local
computers at each radar node (the so‐called ‘node controllers’
(NC)), but at the same time NC also allow local operators
access for quality control during data collection and experi-
ments. Each node is equipped with a GPS Disciplined Oscil-
lator (GPSDO) [10] to establish and maintain time and phase
coherency during operations, which is fundamental for col-
lecting valuable bistatic data in the Doppler domain. Video
cameras are also mounted at the antenna pedestal for each
node to allow recording of the ground‐truth video data, which
can be extremely valuable for comparison with the radar data.

One of the nodes, Node 0, depicted at the top of Figure 1,
is the designated transceiver equipped with high power am-
plifiers (capable of peak power of approximately 400 W at X‐
band and 1.6 kW at L‐band), and frequency‐tuneable wave-
form generator. The typical operating frequencies are 8.5 GHz
at X‐band and 1.3 GHz at L‐band. The effective analogue
bandwidth of the system is 45 MHz, which translates into an
approximate range resolution of 3.3 m. The additional two
radar nodes are used as passive, receiver‐only nodes.

Each receiver can simultaneously collect both polarimetric
V and H X‐band channels, meaning that in X‐band, full
polarimetric data can be captured using alternating polarised
pulses or with two consecutive measurements using different
transmitted polarisation. The data are recorded in binary
format as three individual channels of 16‐bit in‐phase and
quadrature samples, with an effective sample rate of 180 MHz.

At L‐band, where Doppler ambiguity requirements are less
stringent, only one receiver chain is present, meaning that four
measurements would be needed to collect complete polar-
isation data. At this stage, accounting for the very high cost of
fast RF switches operating at such high transmitted power in
L‐band, changes in transmitted polarisation are done with
slower manual switches.

The system is operated through a unified GUI interface
where the operators can set specified parameters (such as
carrier frequency, pulse length, Pulse Repetition Frequency
PRF, number of pulses, polarisations), which are then shared
over the networks using a configuration header file to all radar
nodes. Included in the header file is the epoch trigger time,
which is a future UTC timestamp that sets the start time of
each radar recording. Data and metadata (the header file with
the aforementioned parameters, as well as videos for ground‐
truth) are then stored as HDF5 files for further processing.

2.1 | Synchronisation and networking

Each node is equipped with an ovenised crystal oscillator
(OCXO)‐based GPSDO to establish time and frequency
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synchronisation [10], as well as geospatial WSG84 coordinates
for radar geometry requirements. Relative time accuracy between
the transmitter and passive nodes on the order of a few nano-
seconds is required for range accuracy at the given radar band-
width, whilst frequency accuracy and phase stability during the
CPI is required for Doppler processing. The GPSDOs are
operated under the common‐view time and frequency transfer
principle, which provides epoch trigger accuracy with an
approximate RMS uncertainty of 4 ns, and relative frequency
uncertainty (Overlapping Allan Deviation) of 5e‐11 at 1 s aver-
ages. The radar has been also synchronised using a fibre‐optic
White Rabbit network [10], which improves the epoch trigger
accuracy to below a nanosecond, reduces the relative phase drift,
and removes the reliance on GPS in GPS‐denied scenarios.

Experiments are initiated by distributing the header file from
the CnC over a secure shell to each node using 5GHz directional
WiFi links. Upon receiving the header, each node is automati-
cally configured to the chosen parameters, and each subcom-
ponent is armed accordingly. When the epoch timestamp is
reached, each GPSDO fires a ‘mainbang’ pulse on the averaged
UTC transition, which triggers the Timing and Control Unit
(TCU). The TCU is an integrated FPGA and ARM controller
that is responsible for triggering the PRF, biasing the HPAs, and
switching the transmitted carrier on a pulse‐to‐pulse basis.
Additionally, each TCU can be programmed with variable delays

(with a resolution of 10 ns) to minimise static time offsets be-
tween the nodes during calibration.

2.2 | Trial geometry and drones

In this article, we report some preliminary results where the
system was operated over relatively long baselines in the range
of hundreds of metres. These were collected over a couple of
weeks of experimental campaign performed in December
2018, in Simon's Town, South Africa, with the collaboration of
academic partners (UCT, UCL, University of Glasgow) and
FFI (Norway). Figure 2 shows a map with key locations
around the area of Simon's Town within False Bay. The
monostatic transceiver (yellow arrow) was located on the
outdoor terrace (with antennas on the pedestal looking out
towards the sea, as shown in Figure 3). The bistatic nodes were
located at different positions during the trials, but the most
notable ones are shown by the red arrows (the closest one at
Lower North, about 2.7 km from the transceiver, and the
furthest one at Else Bay, about 4 km from the transceiver).
The green circle on the right‐hand side represents the location
of a lighthouse, Roman Rock, which is located at approxi-
mately 1.8 km from the transceiver and that was often used as
static reference targets for range calibration and antenna

F I GURE 1 Simple schematics of the
NeXtRAD system, with one active transceiver,
Node 0 (top), and two passive receivers, Nodes 1
and 2. GPS and WiFi antennas are fixed to
collapsible masts to improve line‐of‐sight. L‐ and
X‐band antennas are placed on electronically
steerable pedestals. Solid arrows represent low‐loss
coaxial cables, whilst dotted lines and double bars
represent computer cabling and wireless
connections respectively
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alignment. The measurement campaign involved the collection
of radar returns from a hexacopter (DJI Matrice) and a
quadcopter (DJI Phantom), flying over the sea surface at a
maximum distance of about 500 m from the monostatic
transceiver for safety reasons. Both UAVs had rotor blades
made of carbon fibre. In this article, we focus on presenting
results with the hexacopter signature for its higher RCS and
better visibility.

The UAVs were equipped with a GPS logger device, which
collected the latitude and longitude of the object with a sam-
pling interval of about 0.2 s. Figure 4 shows an example of the
plots of the monostatic range (i.e. the distance between the
target and the monostatic transceiver), of the two‐way bistatic
range (i.e. the sum of the monostatic range transmitter to
target, plus the distance between the target and the bistatic
receiver located at Lower North), and the bistatic angle. We
observe that during an interval of 20 s, the target covers about

30 m along the monostatic range (from 410 to 440 m) and
40 m along the bistatic range (from 3090 to 3135 m). The
values of the bistatic angle are included between 87.5° and 90°.
It can be noted that the bistatic angle is inversely related to the
bistatic range, since increasing (or decreasing) values of
the bistatic range give decreasing (or increasing) values of the
bistatic angle (β). Bistatic angles in that range are very much of
interest to explore the scattering mechanisms and the conse-
quent signatures of targets.

3 | EXPERIMENTAL RESULTS

3.1 | Empirical analysis of the results

This section presents the initial results obtained analysing the
data collected in the measurement campaign performed in
Simon's Town, in the first two weeks of December 2018.
Figure 5 shows the normalised Range‐Time‐Intensity (RTI)
maps of radar signatures of the hexacopter, for X‐band and
HH polarisation (i.e. both the transmitter and receiver an-
tennas were horizontally polarised). The RTI maps represent
the intensity of the received signal as a function of the slow
time (on the vertical axis) and of the two‐way range, which is
calculated for both the monostatic and the bistatic data, as the
sum of the transmitter‐to‐target plus target‐to‐receiver dis-
tances. These maps are normalised versus the overall
maximum of the figure to have a uniform colour scale and
allow qualitative comments, whereas quantitative comments
are drawn from the calculation of the signal‐to‐noise ratio
(SNR). The SNR of the hexacopter has been systematically
measured by selecting from the RTI maps the range‐time
window where the target is located, and extracting the pulse‐
wise maximum, which is a rough estimate of the signal
amplitude. Finally, we extract the overall maximum and the
mean of the SNR time‐series obtained from the previous step,

F I GURE 2 Location map of the experimental campaign performed in
December 2018 near Simon's Town, South Africa. The yellow arrow
corresponds to the position of the monostatic transceiver; red arrows show
the position of the two bistatic receivers (Lower North, LN, the closest one,
and Elsie Bay, EB, the furthest one); the green circle to the right
corresponds to the position of a lighthouse, Roman Rock RR, used as a
reference target. The orange circle highlights approximately the area where
the hexacopter was flying

F I GURE 3 Antennas on three rotating pedestals at the location of the
monostatic transceiver radar node. L‐band antennas are the meshed
reflectors at the top of each pedestal, where the feed is also visible; X‐band
antennas are cone‐shaped horn antennas, located to the bottom‐left of the
L‐band reflectors. The antennas are aligned to point to the same direction

F I GURE 4 Plots of the monostatic range, two‐way bistatic range and
bistatic angle as a function of time, extracted by the GPS logger mounted
on the hexacopter. Dataset collected on 14 December 2018; timestamp
10.35.43
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whereas the noise level is the average amplitude of a range cell
containing only noise.

The monostatic RTIs (Figure 5a) show a higher SNR with
respect to the bistatic RTIs (Figure 5b). The monostatic ap-
pears weaker in Figure 5 due to high close in clutter returns
meaning this range section is not noise limited compared to the
bistatic node data. The bistatic RTIs show the presence of
scatterers different from the UAV between 30 and 50 s. A
possible source of these radar returns are the birds (mostly
seagulls and cormorants) that were flying around the drone
during the collection. Table 1 shows the maximum and mean
values of the monostatic and simultaneous bistatic SNR for a
series of datasets collected on the 13th and 14th of December
2018. The table links the values of the SNR with the band,
polarisation, two‐way range (r2W) of the monostatic and

bistatic node, bistatic angle (β) and trajectory of the drone. It
should be noted that small values of the bistatic angle (8°–9°)
are associated with the measurements realised with short
bistatic baseline (147 m), whereas large values of β (around
90°) are obtained with large baseline (2.7 km). The values of
the SNR are in general larger in L‐band with respect to
X‐band, which is consistent with the higher transmit power
employed in the L‐band subsystem.

We observe that the mean monostatic SNR ranges from 35
to 45 dB in L‐band, with maximum values included between 48
and 58 dB. The X‐band co‐polarised data show mean SNR
values of 33–34 dB and maxima of 42–45 dB. The X‐band
cross‐polarised data show large variations between the two
datasets collected, where the mean values are 20 and 25 dB,
and the maxima are 31 and 38 dB. The difference among the
SNR values for datasets with comparable values of the drone
two‐way range may be due to the different drone trajectories.
The drone in hovering condition covers a very small interval of
aspect angles, thus a small variance of the SNR values is ex-
pected. Conversely, when the drone covers circular or random
trajectories, multiple aspect angles are obtained, thus yielding
higher variance of the SNR values, thus higher maxima are
expected. Similar considerations can be drawn for other data-
sets showing different SNR values for identical bands and
polarisations and comparable range intervals.

More complex is the analysis of the bistatic data, which are
characterised by higher degrees of diversity, as the transmitter
and receiver aspect angles are not necessarily identical and the
bistatic angle is an additional factor to consider. In general,
bistatic data show lower SNR values than monostatic ones, and
the difference increases with larger bistatic angle. The first
datasets were collected at shorter bistatic two‐way ranges and
with bistatic angles included roughly between 8° and 10°,
yielding a quasi‐monostatic geometry of acquisition. For those
datasets, the gap between the monostatic and bistatic SNR
values is about 13–15 dB and 10–12 dB for L‐ and X‐band co‐
polarised data, respectively. This difference decreases to 5 dB
for X‐band cross‐polarised data. The remaining datasets were
collected at large bistatic angles (88°–91°) and larger bistatic
two‐way ranges (>3 km). The gap between the monostatic and
bistatic mean SNR values is about 11 dB and 19–27 dB for X‐
and L‐band, respectively. For the cross‐polarised X‐band data,
the difference is about 16 dB. It should be noted that for the
datasets collected at large bistatic angle, the drone is located
within a range interval where the side‐lobes of the direct signal
coming from the transmitter are still present, which has made
more difficult the extraction of the SNR values.

The drone micro‐Doppler signatures were extracted using
the Short Time Fourier Transform (STFT), with a moving
window of 200 temporal samples, corresponding to 200 ms,
with a 50% overlap, and the number of frequency samples
equal to 1024. The analysis of the micro‐Doppler signature was
performed on the monostatic and bistatic data collected at
lower bistatic angles (upper part of Table 1). We observe that
the monostatic and bistatic micro‐Doppler signatures of the
hexacopter at X‐band (Figure 6) show a similar behaviour and
that the presence of scatterers different from the UAV noticed

F I GURE 5 Range‐Time‐Intensity maps of the monostatic (a) and
short‐baseline bistatic (b) X‐band returns of the hexacopter at horizontal
polarisation
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in the RTI maps between 30 and 50 s is confirmed by the
spectrograms in Figure 6.

In Figure 7, we compare the monostatic and bistatic micro‐
Doppler signatures of the hexacopter at L‐band and HH
polarisation. During the selected time interval, the drone was
hovering for the majority of the time, thus its bulk yields a
strong stationary component at zero Doppler. We note the
presence of strong micro‐Doppler returns extended within the
whole spectral interval, that is between −500 and 500 Hz.
These micro‐Doppler signatures are not time‐stationary, as
their intensity changes with time, which is probably due to
small variations of the pitch and roll angles of the drone. For
instance, we observe an increase of the intensity between 40
and 45 s, for both monostatic and bistatic data. We observe
that the micro‐Doppler signatures of the monostatic and
bistatic data shown in Figure 6 are quite similar, which is
probably due to the fact that the data are plotted from mea-
surements at lower bistatic angles (∼9°).

The micro‐Doppler signatures of the drone highlight the
presence of different components, which can be roughly divided
in two groups, that is the scattering from the body, which is
stationary, thus centred at zeroDoppler in the case that the drone
is hovering, and the component due to the rotational motion of
the drone blades, which is often referred to as Helicopter Rotor
Modulation (HERM) lines [2]. Such component appears as mi-
nor peaks in the short‐time Doppler spectrum whose amplitude
and spacing depends on radar parameters, such as PRFand band,
as well as on the rotational speed of the blades.

For values of the PRF greater or equal to the rotational
frequency ( fP) of the blades, the scattering from the blades
would appear as a sinusoidal component in the Doppler
spectrum, whereas if the PRF is lower than fP, the radar
samples the blade sinusoidal component at particular Doppler
values, yielding the HERM lines. Aliasing occurs for low
transmit frequencies, yielding overlapping non‐zero Doppler
components such as those revealed by the L‐band spectro-
grams in Figure 7.

In order to study the level of the body and blade Doppler
components, the plots in Figure 8 (monostatic) and Figure 9
(bistatic) show the signal power as a function of the Doppler
frequency. These plots were obtained by averaging the spec-
trogram values over a window of 20 ms, and the datasets
considered cover the case of hovering drone with small bistatic
angle. In the plots we highlight the higher minor peaks in the
Doppler spectra, that is the higher HERM line. We observe
that the relative level of the blade Doppler component is the
lowest in the X‐band HH data, equal to about −10 and −11 dB
for the monostatic and bistatic nodes, respectively. For the X‐
band monostatic HV data, the first HERM line is about 3.7 dB
lower than the body zero‐Doppler line, whereas this gap is
reduced to 8.4 dB for bistatic data. In general, X‐band data
show that the relative level of the HERM lines is higher for
bistatic data with respect to the monostatic ones. This
behaviour is more evident in the cross‐polarised data, where
the bistatic HERM lines are almost at the noise level, as shown
in Figures 8b and 9b. On the other hand, L‐band data show an
opposite behaviour with respect to X‐band: Figures 8c and 9c
show that the highest blade‐to‐body ratio is about 7 and 4 dB
for the monostatic and bistatic data, respectively.

By observing the plots in Figures 8 and 9, the values of the
Doppler frequencies of the highest HERM line can also be
evaluated. These values are in general higher in L‐band (78 and
−90 Hz) with respect to X‐band (83 Hz for monostatic HH,
66 Hz for bistatic HH, 64 Hz for monostatic HV). As a general
comment, the values the higher HERM Doppler frequency
are similar between monostatic and bistatic data, which can
be justified by the fact that the datasets have small bistatic angle.

3.2 | Feature extraction and classification
results

The data presented empirically in the previous sections were
analysed and the best files selected based on the SNR and

TABLE 1 Measured values of the Signal‐to‐Noise Ratio. For legibility, the dataset recorded at the X‐band have been shaded in green colour and those at L‐
band in yellow colour.; top four recordings collected with small bistatic angle ∼9° (quasi‐monostatic configuration) and bottom five recordings collected with
large bistatic angle (∼90°)

Date/Time Band Pol
Mono Mean
SNR (dB)

Mono Max
SNR (dB)

Bi Mean
SNR (Db)

Bi Max
SNR (dB) Mono r2w (m) Bi r2w (m) β Trajectory

2018‐12‐13/16:02:38 X HH 34 42 24 34 970–1000 1090–1120 9.2° Hovering then linear

2018‐12‐13/16:02:38 X HV 20 31 15 25 970–1000 1090–1120 9.2° Hovering then linear

2018‐12‐13/16:08:26 L HH 44 58 31 42 920–970 1040–1090 9.5° Circles

2018‐12‐13/16:10:53 L HH 45 57 30 41 940–1100 1070–1220 8.8° Circles‐random

2018‐12‐14/10:33:05 X HH 33 45 14 19 950–1080 3160–3210 89° Random

2018‐12‐14/10:33:05 X HV 25 38 9 19 950–1080 3160–3210 89° Random

2018‐12‐14/10:35:56 L HH 41 54 27 39 840–960 3100–3160 89° Random

2018‐12‐14/10:41:17 L HH 41 55 14 24 830–900 3080–3120 90° Random

2018‐12‐14/10:44:12 L HH 35 48 14 21 1137–1257 3222–3263 88° Small circles
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clarity of view of the available targets, specifically drone versus
non‐drone targets. Non‐drone data were files with the signa-
tures of single birds or flocks of multiple birds.

The discrimination of drones versus non‐drone targets,
specifically large sea birds, has been investigated in the litera-
ture in the past few years [2, 11–14], but it is still an
outstanding research challenge. In total, 231 s of data were
selected for usage in the classification analysis, namely 100 s of
drone data at L‐band, 71 s of non‐drone data at L‐band, and
60 s of drone data at X‐band.

Unfortunately, the SNR of the bird targets at X‐band was
not sufficient to comprehensively analyse these targets. This
limits the possibility to perform a balanced comparison of
drone versus non‐drone targets in the two bands separately. All
in all, the data for the classification analysis shown in this paper

were monostatic HH co‐polarised data, selected for the clearer
signature of the rotor blades.

These data were analysed so as to isolate the parts of range‐
time matrices containing target signatures. Their micro‐Doppler
spectrograms were then calculated and divided into 1 s long
segments. These segments were then used to extract feature
samples, in total 10 different features from each sample.
Figure 10 shows for completeness three L‐band spectrograms of
the drone (Figure 10a) and non‐drone objects, namely a single
(or a very limited number of birds) in Figure 10b, andmany birds
flying together in a flock in Figure 10c.

The obvious difference, visible empirically by eye, is the
presence of rotor blades contributions in the drone signatures.
The information contained in these rotor blades' modulations
is very rich and, besides the problem of discrimination of
drones versus non‐drones, has been exploited successfully also
to differentiate between different models of drones [15, 16].

The ten features considered in this work were:

� Maximum value, mean value, variance, and sum of all the
pixels values in the positive (Doppler values > 0) region of

F I GURE 6 Normalised spectrograms of X‐band monostatic (a) and
short‐baseline bistatic (b) signatures of the hexacopter at horizontal
polarisation

F I GURE 7 Normalised spectrograms of L‐band monostatic (a) and
bistatic (b) radar signatures from the hexacopter. Data collected on 14
December 2018, bistatic baseline of 2.7 km, bistatic angle of about 90°
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the micro‐Doppler spectrum, calculated as the upper 37.5%
of the Doppler bins from the 0 Hz;

� Maximum value, mean value, variance, and sum of all the
pixels values in the negative (Doppler values < 0) region of
the micro‐Doppler spectrum, calculated as the lower 37.5%
of the Doppler bins from the 0 Hz;

� Mean and variance of the singular values in the matrix S,
resulting from the SVD (Singular Value Decomposition) of
the 1s spectrogram segment N, whereby N = USVT.

The features were empirically selected (or ‘handcrafted’ as
described by some authors), meaning that the process to
calculate them and extract their values required significant
manipulations of thresholds and parameters. This contrasts
with other, more recent data‐driven approaches where the
relevant features can be extracted directly by the classification
algorithm, typically a neural network, limiting or completely
eliminating the need of pre‐processing steps performed by the
human operator who analyses the data.

The 10 features extracted are selected using a so‐called
filter method [17] based on the T‐test. The features are
ranked in terms of their quality based on the clustering of their
samples in terms of inter‐class and intra‐class differences,
whereby good features (highly ranked) are those maximising

the former difference and minimising the latter. Four features
out of the initial pool of 10 were selected and denoted by A–D.
These were (A) the maximum value of the negative Doppler
region, (B) the mean of the singular values of the SVD, (C) the
variance of the singular values of the SVD, and (D) the vari-
ance of the positive Doppler region. All possible combinations
(15) of these four selected features were tested, starting with
single feature classification (A; B; C; D), pairs of features,
triplets of features, and all four features together.

Four classifiers were used, namely Naïve Bayes (NB),
Nearest Neighbours with three neighbours (KNN), Support
Vector Machine (SVM) with quadratic kernel, and an ensemble
classifier based on ‘bags of trees’ (ET) [18]. The classifiers are
trained with 50% of the available feature samples and tested
with the remaining 50%. The process is repeated 50 times with
random selection of training and testing samples and the final
results averaged, to reduce overfitting given the small size of
the available dataset.

Results are presented in the remainder of this section.
Figure 11 shows the classification accuracy for the four clas-
sifiers as a function of the combinations of selected four
features. It should be noted that the classification problem
here was binary drone versus non‐drone, where samples for
the drone classes included both X‐ and L‐band data. The

F I GURE 8 Plots of the normalised power as a function of the Doppler frequency, obtained by averaging the spectrograms over a window of 20 ms, in the
case of hovering drone. Monostatic node. X‐band HH (a) and HV (b), L‐band HH (c)

F I GURE 9 Plots of the normalised power as a function of the Doppler frequency, obtained by averaging the spectrograms over a window of 20 ms, in the
case of hovering drone. Bistatic node. X‐band HH (a) and HV (b), L‐band HH (c)

8 - PALAMÀ ET AL.



ensemble classifier appears to outperform the other classifiers,
both in terms of the achieved values of accuracy and in terms
of its performance stability being less affected by the selection
of the features. This is not surprising as the idea behind an
ensemble classifier is to combine the results from a group of
multiple weak classifiers to yield better results through this
combination [18].

Table 2 shows the maximum, minimum, mean, and stan-
dard deviation values across the 50 cross‐validation tests for
the considered best case, that is the case achieving the highest
accuracy on average across all possible feature combinations.
The maximum/minimum values and the standard deviation are
reported to show the distribution of the results around the
mean value, in particular looking at the worst case (the mini-
mum value) to ensure that it does not degrade below an
acceptable threshold. In this case, the ensemble classifier
provides approximately 95% minimum accuracy value, which is
an encouraging result.

Table 3 shows the corresponding confusion matrix (case of
the ensemble classifier, with the feature combination yielding
the highest mean accuracy). This enables to see where
misclassification events happen, and in case there are more
missed detection of real drones or false alarms due to non‐
drone samples classified as drones. It should be noted that

the classifiers were trained in this case assuming a 50%
probability across the two classes and with the same penalty
cost for misclassification for both missed detection and false
alarms. Note also that the matrix shows the values in terms of
samples across the 50 cross‐validation tests (80 drone samples
and 35 non‐drone samples for each test, for 50 tests in total,
yielding to 1750 non‐drone and 4000 drone samples as shown
in the matrix).

As a further test, the standard deviation of the feature
samples contained in the test vector for the classifier has been
artificially increased by a factor ranging from 1.05 to 2.5 in
steps. This was done to attempt to mimic the situation where
additional new test data, on which the classifier has not been
trained for, present a wider possible range of values around
their original distribution. This could be due to different
physical characteristics of the drones, their kinematic profile
and trajectory, or even to lower SNR. The majority of our
features are strongly correlated to the intensity patterns of the
pixels in the micro‐Doppler spectra, hence it is expected that
reductions in SNR will worsen the separation of the feature
samples for the different classes. Although these synthetic data

F I GURE 1 0 Normalised spectrograms of L‐band monostatic signatures of the drone (a), single or limited number of birds (b), and many birds in a large
flock (c)

F I GURE 1 1 Classification accuracy as a function of combinations of
the four selected features for different classifiers. Binary classification drone
(L + X‐band) versus non‐drone data (L‐band)

TABLE 2 Maximum, minimum, mean, and standard deviation values
for the best (on average) result across the feature combinations

MAX MIN MEAN STD

NB 0.98 0.94 0.97 0.01

KNN 1.00 0.94 0.98 0.01

SVM 0.97 0.83 0.92 0.03

ET 1.00 0.95 0.98 0.01

TABLE 3 Confusion matrix across the 50 cross‐validation attempts
for the best feature combination – ET classifier

Predicted non‐drone Predicted drone

True Non‐drone 1669 81

True drone 52 3948
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cannot substitute additional authentic experimental data which
may contain true and different outliers, this test is useful to
evaluate how the simple classification approach presented here
responds to some changes in the test data.

Figure 12 shows the classification accuracy using the ET
classifier for the different combinations of selected features, as
in Figure 11, but with the different traces here referring to
different scaling factors to increase the standard deviation. The
dashed trace is the original result also shown in Figure 11, that
is, with no scaling of the standard deviation. As expected,
increased standard deviation in the test data corresponds to
decreasing classification performance. This effect is however
more evident for certain combinations of features rather than
others, in a sign that some features may be to an extent more
robust than others to variations in their values. Specifically, the
single feature (previously denoted as feature A) used at com-
bination #1 in Figure 12 (and also in Figure 11) appears to be
more robust than the others to the changes in standard devi-
ation. This is reinforced by the fact that combinations #8–10
in Figure 12 are all pairs of features containing feature A,
namely AD; AC; AB. Note that this feature A was the
maximum value of all pixels values in the negative region of the
micro‐Doppler spectrum.

3.3 | Discussion on the results

As mentioned in Section 3.2, it was not possible to acquire
usable data of non‐drone targets of opportunity at X‐band. For
this reason, a rigorous quantitative comparison of the perfor-
mances at the two bands, L and X, is not possible with the
initial data presented in this paper. However, it is possible to
perform an analysis of the simple classification test for L‐band
only data, and then investigate the effect of mixing these data
with some of the available X‐band drone data. Figure 13 shows
the results of this simple comparison using the ET classifier
and the combinations of features described in Section 3.2. The
three traces refer to:

1. Blue trace; binary classification drone (L + X‐band data)
versus non‐drone data (L‐band data)

2. Red trace; binary classification drone (L‐band data only)
versus non‐drone data (L‐band data)

3. Green trace; binary classification drone (X‐band data only)
versus non‐drone data (L‐band data only)

Trace one was already shown in Figure 11. Trace two shows
that when using L‐band data only, higher classification accuracy
can be obtained, near 100% even using very few features. More
interesting is to look at the performance for trace 3, where the
classification algorithm is run in a multi‐frequency manner, with
the drone data collected at X‐band and the non‐drone data at L‐
band. The classification accuracy for the binary drone versus.
non‐drone problem can reach above 95% with suitable feature
combinations. While these numbers are computed over a small
amount of data and feature samples, the results are encouraging
to investigate further (a) the difference in scattering behaviour at
the two frequency bands for drone and non‐drone targets, and
(b) the possible advantages in information fusion approaches
that combine the two sources of data.

Another topic of discussion concerns the quantification of
benefits of using amultistatic radarwith respect to a conventional
monostatic system. How better can certain radar performance
metrics (e.g. classification accuracy, probability of detection,
clutter properties) becomewhenmultiple bistatic nodes are used,
and how many of such nodes are needed to achieve a noticeable
benefit? To answer these excellent research questions through a
rigorous quantitative analysis, one needs simultaneous re-
cordings of the same targets and scene of interest.

Work performed with NetRAD, the predecessor of the
radar presented in this article, allowed to partially answer these
questions. For example, the work in [19–22] compared sea
clutter properties relevant in radar detection processes for
simultaneous monostatic and bistatic data at different bistatic
angles (multistatic in case of [19]). These were, for example, the

F I GURE 1 2 Classification accuracy as a function of feature
combinations for different increases of standard deviation in testing data
samples. Ensemble (ET) classifier used in all cases; binary classification
drone (L + X‐band) versus non‐drone data (L‐band)

F I GURE 1 3 Classification accuracy as a function of feature
combinations for data at different bands: trace #1 X + L‐band drone data;
trace #2 L‐band drone data only; trace #3 X‐band drone data only. Non‐
drone data are always at L‐band
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amplitude statistics such as the shape parameter of the
K + Noise distribution, spatial and temporal correlation, and
average reflectivity. The analysis of these metrics showed sig-
nificant ‘clutter diversity’, essentially different properties of the
sea clutter recorded at monostatic and bistatic nodes, such as
clutter presenting ‘less spiky’ statistics in some bistatic geom-
etries. This can be exploited as new degrees of freedom in the
design of radar systems in maritime applications [23].

The analysis in [3, 24] presented the classification of a
drone (DJI Phantom) with/without small payloads attached to
its body, comparing the performance in terms of classification
accuracy when combining the multistatic data with different
information fusion approaches (i.e. only monostatic data,
feature fusion of multistatic data, and decision level fusion with
different schemes). This provided a quantitative comparison of
the gain in accuracy when multistatic, that is multi‐perspective,
information on the targets was used.

Further analysis was performed in [25] with corner re-
flectors in an indoor controlled scenario, and in [26, 27] in the
context of outdoor surveillance for personnel identification
and classification of unarmed versus potentially armed sub-
jects. This work showed the advantage of using spatially
diverse, multi‐perspective information on the targets of interest
and provided quantitative comparisons of monostatic and
single‐perspective data versus multistatic in terms of classifi-
cation accuracy. Advantages of ‘feature diversity’ were also
shown [27], that is how diversifying and adapting the classifi-
cation scheme, namely the extracted features, at each radar
node provided a performance gain compared to having all
nodes working on the same features.

The aforementioned examples provide quantitative infor-
mation on potential advantages of bistatic and multistatic radar,
designing new radar capabilities in a diverse and flexible network
rather than in a single stand‐alone device [28]. The initial results
in this article using the NeXtRAD system can provide some
further insights for a quantitative monostatic versus bistatic
comparison. For example, the results presented in Table 1
compare the SNR for simultaneous recordings of the same target
by the monostatic node and one bistatic receiver, for small (∼9°)
and large (∼90°) bistatic angles.While this comparison is still too
‘sparse’ as a function of β to draw robust conclusions, the results
show the capabilities of the NeXtRAD system to address this
question in a more systematic investigation in further work.

4 | CONCLUSIONS AND FUTURE
WORK

This article has discussed examples of the capabilities of the
multistatic multiband radar network, NeXtRAD, in measuring
the radar signatures of small UAVs (mainly a DJI Matrice
hexacopter) at large baselines (few kilometres), bistatic angles
(of the order of 90°) and bistatic ranges (few kilometres), at
both X‐ and L‐bands.

Empirical examples of range‐time plots and micro‐
Doppler spectrograms have been presented, showing consid-
erable SNR and a good level of details to characterise the

modulations of rotor blades and the signatures of birds of
opportunity at distances in the order of several hundred me-
tres. Based on these signatures, a simple classification scheme
for binary drone versus non‐drone discrimination has been
developed. Ten empirically obtained features extracted from
the micro‐Doppler data and its SVD decomposition have been
used, combined with feature selection and four supervised
learning classifiers. The results show good performance, with
accuracy above 90% up to a best average of 98% and minimum
(worst case scenario across 50 cross‐validation tests) of 95%.

While encouraging, these results were obtained with a
relatively limited dataset due to the complexity of measuring
targets from land to sea at relatively long distances. Never-
theless, the multistatic setup showed its capabilities and po-
tential, and further analysis work is ongoing on the data
collected, including those from a new experimental campaign
performed in December 2019 and not showed in this article.
This additional work include the investigation of a wider set of
data with drones and birds targets, collected with different
combinations of relevant parameters that can influence the
classification results (e.g. polarisation, bistatic angles, SNR
levels). More advanced spectral analysis tools, such as different
time‐frequency distributions and the wavelet transform, can be
considered. Furthermore, the radar signatures can be matched
with the data collected by the GPS logger mounted on the
UAVs (latitude, longitude, measured speed, pitch and roll an-
gles) and the images from the video cameras, in order to
extract track‐related information that could be exploited for
implementing kinematic based classification schemes, without
resorting to the use of micro‐Doppler.

ACKNOWLEDGEMENTS
The authors would like to thank A. Stevens, L. Clayton, B.
Kahn, D. Du Plessis, J. Cilliers, S. Coetzee, S. Sandenbergh, T.
Johnsen, and W. Miceli for the support provided during the
measurement campaign, Masters student Y. Ding for data
processing support, and the Office of Naval Research Global
(USA), the Institution of Engineering and Technology, FFI
Norway), and SA National Defence Force for funding this
work.

ORCID
Riccardo Palamà https://orcid.org/0000-0001-6121-9485
Francesco Fioranelli https://orcid.org/0000-0001-8254-
8093
Matthew Ritchie https://orcid.org/0000-0001-8423-8064
Michael Inggs https://orcid.org/0000-0003-2162-7710
Hugh Griffiths https://orcid.org/0000-0002-9947-5553

REFERENCES
1. Patel, J.S., Fioranelli, F., Anderson, D.: Rekview of radar classification and

RCS characterisation techniques for small UAVs or drones. IET Radar,
Sonar Navig. 12(9), 911–919 (August 2018)

2. Rahman, S., Robertson, D.A.: Radar micro‐Doppler signatures of
drones and birds at K‐band and W‐band. Nat. Scientific Rep. 8,
17396 (2018)

PALAMÀ ET AL. - 11

https://orcid.org/0000-0001-6121-9485
https://orcid.org/0000-0001-6121-9485
https://orcid.org/0000-0001-8254-8093
https://orcid.org/0000-0001-8254-8093
https://orcid.org/0000-0001-8254-8093
https://orcid.org/0000-0001-8423-8064
https://orcid.org/0000-0001-8423-8064
https://orcid.org/0000-0003-2162-7710
https://orcid.org/0000-0003-2162-7710
https://orcid.org/0000-0002-9947-5553
https://orcid.org/0000-0002-9947-5553
https://orcid.org/0000-0001-6121-9485
https://orcid.org/0000-0001-8254-8093
https://orcid.org/0000-0001-8423-8064
https://orcid.org/0000-0003-2162-7710
https://orcid.org/0000-0002-9947-5553


3. Fioranelli, F., et al.: Classification of loaded/unloaded micro‐drones us-
ing multistatic radar. Electron. Lett. 51(22), 1813–1815 (October 2015)

4. Ritchie, M., et al.: Monostatic and bistatic radar measurements of birds
and micro‐drone. IEEE Radar Conference, Philadelphia, PA (May 2016)

5. Hoffmann, F., et al.: Micro‐Doppler based detection and tracking of
UAVs with multistatic radar. IEEE Radar Conference, Philadelphia, PA
(May 2016)

6. Derham, T.E., et al.: Design and evaluation of a low‐cost multistatic
netted radar system. IET Radar, Sonar Navig. 1, 362–368 (2007)

7. Palamà, R., et al.: Measurements of multistatic X&L band radar signa-
tures of UAVs. SEE International Radar Conference, Toulon, France
(September 2019)

8. Inggs, M., et al.: Multistatic radar: system requirements and experimental
validation, pp. 1–6.SEE International Radar Conference, Lille (2014)

9. Alhuwaimel, S., et al.: First measurements with NeXtRAD, a polarimetric
X/L band radar network. IEEE Radar Conference (RadarConf), Seattle,
WA, pp. 1663–1668 (2017)

10. Sandenbergh, J.: Synchronising coherent networked radar using low‐cost
GPS‐disciplined oscillators, PhD thesis, University of Cape Town (2019).
https://open.uct.ac.za/handle/11427/30829

11. Molchanov, P., et al.: Classification of small UAVs and birds by micro‐
Doppler signatures. European Radar Conference, Nuremberg (2013)

12. Jahangir, M., Baker, C.J.: Extended dwell Doppler characteristics of birds
and micro‐UAS at l‐band, 2017 18th International Radar Symposium,
Prague, pp. 1–10. (2017)

13. Torvik, B., Olsen, K.E., Griffiths, H.: Classification of birds and UAVs
based on radar polarimetry. IEEE Geosci. Remote Sensing Lett. 13(9),
1305–1309 (September 2016)

14. Rahman, S., Robertson, D.A.: Classification of drones and birds using
convolutional neural networks applied to radar micro‐Doppler spectro-
gram images. IET Radar, Sonar Navig. 14(5), 653–661 (2020)

15. Huizing, A., et al.: Deep learning for classification of mini‐UAVs using
micro‐Doppler spectrograms in cognitive radar. IEEE Aero. Electron
Syst. Mag. 34(11) (2019)

16. Cai, Y., Krasnov, O., Yarovoy, A.: Radar recognition of multi‐propeller
drones using micro‐Doppler linear spectra, 16th European Radar Con-
ference (EuRAD), France, Paris (October 2019)

17. Gürbüz, S.Z., et al.: Operational assessment and adaptive selection of
micro‐Doppler features. IET Radar, Sonar Navig. 9(9), 1196–1204 (12
2015)

18. Breiman, L.: Bagging predictors. Mach. Learn. 24, 123–140 (1996)
19. Fioranelli, F., et al.: Analysis of polarimetric bistatic sea clutter using the

NetRAD radar system IET Radar, Sonar Navig. 8, vol. 10, pp. 1356–1366
(2016)

20. Palamà, R., et al.: Correlation analysis of simultaneously collected bistatic
and monostatic sea clutter, 2017 IEEE Radar Conference (RadarConf),
Seattle, WA, pp. 1466–1471 (2017)

21. Al‐Ashwal, W.A., Woodbridge, K., Griffiths, H.D.: Analysis of bistatic sea
clutter – Part I: average reflectivity. IEEE Trans. Aerosp. Electron. Syst.
50(2), 1283–1292 (April 2014)

22. Al‐Ashwal, W.A., Woodbridge, K., Griffiths, H.D.: Analysis of bistatic sea
clutter – Part II: amplitude statistics. IEEE Trans. Aerosp. Electron. Syst.
50(2), 1293–1303 (April 2014)

23. Klemm, R., et al. (eds.): Novel Radar Techniques and Applications, vol. 2,
Chapter 6: Clutter diversity, Scitech Publishing (2018)

24. Ritchie, M., et al.: Multistatic micro‐Doppler radar feature extraction for
classification of unloaded/loaded micro‐drones. IET Radar, Sonar Navig.
vol. 11, pp. 116–124 (2017)

25. Vespe, M., Baker, C.J., Griffiths, H.D.: Radar target classification using
multiple perspectives IET Radar, Sonar Navig., vol. 1, pp. 300–307
(August 2007)

26. Fioranelli, F., Ritchie, M., Griffiths, H.: Performance analysis of centroid
and SVD features for personnel recognition using multistatic micro‐
Doppler. IEEE Geosci. Remote Sensing Lett. 13(5), 725–729 (May 2016)

27. Fioranelli, F., et al.: Feature diversity for optimised human micro‐Doppler
classification using multistatic radar. IEEE Trans. Aerosp. Electron. Syst.
53(2), 640–654 (April 2017)

28. Novel Radar Techniques and Applications, (eds.). In: Chapter 8: The
concept of the intelligent radar network, Vol. 2, Chapter 8: Scitech
Publishing (2018)

How to cite this article: Palamà R, Fioranelli F,
Ritchie M, Inggs M, Lewis S, Griffiths H. Measurements
and discrimination of drones and birds with a multi‐
frequency multistatic radar system. IET Radar Sonar
Navig. 2021;1–12. https://doi.org/10.1049/rsn2.12060

12 - PALAMÀ ET AL.

https://open.uct.ac.za/handle/11427/30829
https://doi.org/10.1049/rsn2.12060

	Measurements and discrimination of drones and birds with a multi‐frequency multistatic radar system
	1 | INTRODUCTION
	2 | THE NeXtRAD RADAR SYSTEM AND DATA COLLECTION
	2.1 | Synchronisation and networking
	2.2 | Trial geometry and drones

	3 | EXPERIMENTAL RESULTS
	3.1 | Empirical analysis of the results
	3.2 | Feature extraction and classification results
	3.3 | Discussion on the results

	4 | CONCLUSIONS AND FUTURE WORK
	ACKNOWLEDGEMENTS


