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Abstract

We develop a simple and elegant method for lossless compression using latent

variable models, which we call ‘bits back with asymmetric numeral systems’

(BB-ANS). The method involves interleaving encode and decode steps, and

achieves an optimal rate when compressing batches of data. We demonstrate it

firstly on the MNIST test set, showing that state-of-the-art lossless compression

is possible using a small variational autoencoder (VAE) model. We then make

use of a novel empirical insight, that fully convolutional generative models,

trained on small images, are able to generalize to images of arbitrary size, and

extend BB-ANS to hierarchical latent variable models, enabling state-of-the-art

lossless compression of full-size colour images from the ImageNet dataset. We

describe ‘Craystack’, a modular software framework which we have developed

for rapid prototyping of compression using deep generative models.
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Preface

The connections between information theory and machine learning have long

been known to be deep. The two fields are so closely related that they have

been described as ‘two sides of the same coin’ by MacKay (2003), who insists,

in the preface to his book, that they ‘belong together’. One particularly elegant

connection is the essential equivalence between probabilistic models of data and

lossless compression methods. The source coding theorem (Shannon, 1948) can

be thought of as the fundamental theorem describing this idea, and Huffman

coding (Huffman, 1952), arithmetic coding (AC; Witten et al., 1987) and the

more recently developed asymmetric numeral systems (ANS; Duda, 2009) are

actual algorithms for implementing lossless compression, given some kind of

probabilistic model.

The field of machine learning has experienced an explosion of activity in

recent years, and, amongst other things, we have seen major breakthroughs in

probabilistic modelling of high dimensional data. Recurrent neural networks

and autoregressive models based on masked convolution have been shown to

be effective generative models for images, audio and natural language (Graves,

2014; van den Oord et al., 2016a; van den Oord et al., 2016b). These models

are slow to sample from, at least in a näıve implementation, which means

that decompression using these models is similarly slow3, however they do

tend to achieve state of the art test log-likelihoods, and hence state of the art

compression rates.

Another significant, recently invented type of probabilistic generative model

is the variational autoencoder (VAE), first presented in D. P. Kingma and Welling

(2014) and Rezende et al. (2014). VAEs are latent variable models which use a

neural network for efficient posterior inference and where the generative model

3Sampling in autoregressive models based on masked convolution can be sped up drastically
using dynamic programming (Le Paine et al., 2016; Ramachandran et al., 2017). However,
there is not yet a general implementation of this method and at present a lot of developer time
is required to hand-implement fast sampling for each individual model.
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and posterior inference network are jointly trained, using stochastic gradient

descent on the variational free energy, an objective function which we refer to in

this work as the ‘evidence lower bound’ (ELBO). VAE models have been shown

to obtain competitive (though usually not state of the art) log-likelihoods, and

sampling from them tends to be much faster than it is from autoregressive and

recurrent models.

In the last five years we have seen a number of papers covering applications

of modern deep learning methods to lossy compression. Gregor et al. (2015)

discusses applications of a VAE to compression, with an emphasis on lossy

compression. Ballé et al. (2017), Theis et al. (2017), Ballé et al. (2018), and

Minnen et al. (2018) all implement lossy compression using (variational) auto-

encoder style models, and Tschannen et al. (2018) train a model for lossy

compression using a GAN-like objective. Applications to lossless compression

were less well covered in works published prior to Townsend et al. (2019), upon

which Chapter 3 is based.

The classic lossless compression algorithms mentioned above (Huffman

coding, AC, and ANS) do not naturally cater for latent variable models. However

there is a method, known as ‘bits back coding’, which can be used to extend

those algorithms to cope with such models (C. S. Wallace, 1990; Hinton and van

Camp, 1993). Bits back coding was originally introduced as a purely theoretical

construct, but was later implemented, in a primitive form, by Frey and Hinton

(1996).

There is a fundamental incompatibility between the bits back method

and the AC scheme upon which the primitive implementation was based. A

workaround is suggested by Frey (1997), but this leads to a sub-optimal com-

pression rate and an overly complex implementation. The central theoretical

contribution of this thesis is a simple and elegant solution to the issue just

mentioned, which involves implementing bits back using ANS instead of AC.

We term the new coding scheme ‘Bits Back with ANS’ (BB-ANS).

Our scheme improves on early implementations of bits back coding in

terms of compression rate and code complexity, allowing for efficient lossless

compression of batches of data with deep latent variable models. We are also

the first to implement a method, first suggested by MacKay (2003) for using bits

back coding with continuous latent variables. In Chapter 3 we demonstrate the

efficiency of BB-ANS by losslessly compressing the MNIST dataset with a VAE.
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We find that BB-ANS with a VAE outperforms generic compression algo-

rithms for both binarized and raw MNIST, with a very simple model architecture.

In Chapter 4 we lay the ground work for scaling BB-ANS up to larger models,

describing a method for vectorizing the underlying ANS coder, and discussing

the generic software which we have written, enabling other machine learning

researchers to easily prototype compression systems. In Chapter 5 we present an

extension of BB-ANS to hierarchical latent variable models. We show that it is

possible to use a fully convolutional model to compress images of arbitrary shape

and size, and use this technique with BB-ANS to achieve a 6.5% improvement

over the previous state of the art compression rate on full-size images from the

ImageNet dataset.

In our experiments, we benchmark BB-ANS on image data because this is a

well-studied domain for deep generative models. The (non-learned) image codecs

which we benchmark against are Portable Network Graphics (PNG), WebP

lossless, and Free Lossless Image Format4 (FLIF), which were first released in

1997, 2012, and 2015, respectively. All three of these codecs achieve compression

using local, low-dimensional prediction. They adapt (effectively ‘learning’) as

more pixels within a single image are processed. The broad approach taken in

this thesis, which can be applied to data types other than images, and with

models other than VAEs, is to spend a large amount of computation time

adapting (training) a model on a generic dataset such as ImageNet, before it is

presented with an image which it is tasked with compressing.

I would argue that the early results from using this approach, which are

presented in this thesis, as well as the other recent works, are promising. In

the period since the publication of Townsend et al. (2019), there have been

a number of articles on this topic, most of which make use of ideas from our

work. Mentzer et al. (2019) was published just after Townsend et al. (2019),

and demonstrates learned lossless compression with a relatively weak model,

achieving excellent run-times but failing to outperform existing methods in

terms of compression rate. F. H. Kingma et al. (2019) builds directly on our

work, proposing an extension of BB-ANS to hierarchical models; we compare

this to our own extension in Chapter 5. Very recent work by Ruan et al. (2021)

also directly extends the methods in this thesis, using Monte Carlo methods

4FLIF is being subsumed by the JPEG XL standard which is currently under development.
JPEG XL is more general and achieves better lossless compression rates than FLIF, see
Alakuijala et al., 2019.
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to improve the compression rate. Hoogeboom et al. (2019), Ho et al. (2019),

and van den Berg et al. (2020) all use ANS with flow models to do lossless

compression. They show excellent lossless compression performance on 32× 32

and 64× 64 images but do not manage to scale their methods up to large images

as we have. It is still an open question whether this potential paradigm shift

can be exploited in the production-grade systems which are used by billions of

people every day, and whether the gains will be as impressive in other domains,

such as audio and video.

Structure of the thesis

This thesis is comprised of a background chapter (Chapter 1), followed by four

‘core’ chapters (Chapters 2 to 5). It is designed to be read by someone who has a

little background knowledge in information theory and coding theory (MacKay,

2003, Chapters 4-6, provides an ideal introduction to the necessary topics), and

who is already familiar with the types of modern generative models discussed

above, particularly variational autoencoders (VAEs). A brief outline of the core

chapters:

2. Introduction to asymmetric numeral systems

We introduce ANS coding, proving worst-case bounds on its performance.

We include diagrams and pseudocode to assist the reader in their under-

standing. We also provide a 50 line working Python implementation to

accompany this chapter, which can be found in Appendix A. This chapter

is based on our tutorial paper, Townsend (2020). The ANS algorithm was

first presented in Duda (2009).

3. Bits back coding with asymmetric numeral systems

We present our novel approach to bits-back coding and demonstrate its

performance by compressing the MNIST test set with a small VAE model.

We call this method ‘bits-back with asymmetric numeral systems’ (BB-

ANS). We discuss a number of potential issues with the method and also

discuss ways to improve this simple prototype system. This chapter is

based on our paper, Townsend et al. (2019).

4. Vectorizing ANS with Craystack

We describe a method for implementing a vectorized ANS coder, drawing

on earlier work by Giesen (2014). We describe ‘Craystack’, a software tool
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which we have developed which aims to provide a flexible, user-friendly

API for machine learning practitioners who wish to prototype compression

systems. We discuss future directions for Craystack.

5. Scaling up bits back coding with asymmetric numeral systems

We demonstrate that the BB-ANS method can be scaled up to hierarchical

VAEs and large, colour images from the ImageNet test set. The method

achieves state of the art compression on a randomly selected subset of

2,000 images from the ImageNet dataset. We discuss the challenges and

solutions which were necessary to achieve this scale-up. This chapter is

based on our paper, Townsend et al. (2020).

Although each chapter in some ways builds on all of the previous, it should be

possible to read and understand (at least on a high level) Chapter 4 without

reading Chapter 3, and Chapter 5 without reading Chapter 4. Figure 1 visualizes

this approximate dependency structure between the core chapters.

2 3 4 5

Figure 1: Dependencies between the core chapters of this thesis. We recommend not
to read a chapter before reading its parents in this graph.
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Chapter 1

Background

This chapter aims to give a concise overview of the necessary background material

for understanding the rest of the thesis and its context within the existing

compression literature. We begin, in Section 1.1, by describing probabilistic

generative models, and specifically latent variable models, which are a central

tool in the compression methods developed in later chapters. Then in Section 1.2

we review some theoretical background material in compression, and in particular

we define lossless compression and give a statement of the source coding theorem

(Shannon, 1948). In Section 1.3, we outline a few of the most commonly used,

generic, lossless compression methods. Finally, in Section 1.4, we motivate

lossless compression of images and give an overview of two existing codecs,

comparing their approach to ours.

1.1 Probabilistic generative models

A probabilistic model describes a variable (or set of variables) whose value is

random. Such a model may be characterised by a probability ‘mass function’

P : X → R, where X is a countable (usually finite) set. The function P must

satisfy two properties

1. ∀x ∈ X , P (x) ≥ 0

2.
∑

x∈X P (x) = 1.

We say that the distribution defined by P is ‘discrete’. This definition can

be generalized to sets X which are Lebesgue measurable (such as the set R of

real numbers). Then instead of a mass function the distribution is characterised

by a ‘density function’ p : X → R, with

1. ∀x ∈ X , p(x) ≥ 0
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2.
∫
x∈X p(x) = 1

and we say that the distribution is ‘continuous’, rather than discrete. As we

will see in Chapter 2, we can efficiently compress outcomes from a discrete

distribution if they can be broken down into a sequence of ‘symbols’, i.e. if we

can write x = x1, x2, ... with P (x) =
∏
t P (xt |x1, . . . , xt−1) and if we are able

to compute the cumulative distribution function (CDF) and its inverse for each

of the factors P (xt |x1, . . . , xt−1).

In practice, a mass function or density function will usually have one or

more tunable parameters. We usually use θ to denote the vector containing a

model’s parameters and write P (x; θ) for the parametrized mass function. In the

context of modern machine learning, the parameters of a probabilistic generative

model are usually tuned (or ‘trained’), by optimizing the ‘log-likelihood’ function

over a set of example data, referred to as the ‘training set’. That is, by solving

the following optimization problem:

θ̂ = arg max
θ

∑
x∈X

logP (x; θ), (1.1)

where X is a set of example data. This technique is known as ‘maximum

likelihood’ (ML) learning. If P can be tractably computed, then its gradient

with respect to θ can usually be computed using automatic differentiation (AD),

and the log-likelihood optimized using stochastic gradient descent (SGD). After

optimization the model is usually evaluated on a held-out set of examples called

the ‘test set’.

In the last five years, maximum likelihood training has been scaled to

models with billions of parameters, and data sets with millions of examples,

utilizing parallel graphics processing unit (GPU) based hardware for efficient

training. Two particularly famous examples of systems which use this technique

are WaveNet (van den Oord et al., 2016b), which is a probabilistic generative

model for audio, used in Google’s speech synthesis applications, and GPT-3

(Brown et al., 2020), a natural language model with 175 billion parameters.

Models for images which are trained using maximum likelihood are also fast

approaching photo-realism in the samples which they generate. Recent examples

include Menick and Kalchbrenner (2018), Jun et al. (2020), and Child (2020).
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1.1.1 Latent variable models

Latent variable models are a class of probabilistic generative model which involve

unobserved, or ‘latent’, variables. Their mass function is defined implicitly by

an integral, or, to use the terminology of probability theory, by ‘marginalizing’

a latent variable:

P (x) :=

∫
z
P (x | z)p(z)dz (1.2)

The distribution specified by p(z) is referred to as the ‘prior’, and the forward

probability P (x | z) the ‘likelihood’ (note likelihood here has a slightly different

meaning to the definition in the previous section). We usually choose prior

and likelihood distributions which are straightforward to sample from, and thus

exact sampling from P (x) is straightforward by first sampling z from the prior

and then sampling x from the likelihood, conditioned on the sampled z.

A popular class of latent variable models, which we use to demonstrate our

methods in Chapters 3 and 5, are called ‘variational auto-encoders’ (VAEs), first

introduced in D. P. Kingma and Welling (2014) and Rezende et al. (2014). They

usually use a simple, fixed prior distribution, such as a multivariate Gaussian

with mean zero and with covariance equal to the identity matrix. The likelihood

function P (x | z) is usually of the form Psimple(x | f(z; θ)), where f is a multi-layer

neural network (i.e. a composition of differentiable, parametrized functions),

and Psimple is a mass function which is straightforward to compute, and has

the appropriate support. For discrete data, a discretized logistic distribution is

often used (we give details of the distributions we used in our experiments in

later chapters).

For VAE models the integral eq. (1.2) cannot easily be computed, and

thus direct maximum likelihood training is not possible. To train a VAE, we

instead optimize a variational lower bound on logP (x; θ), called the ‘evidence

lower-bound’ (ELBO), sometimes referred to as the ‘variational free energy’. It

is defined as

L(x; θ, φ) =

∫
z
q(z |x;φ) log

P (x | z; θ)p(z)
q(z |x;φ)

dz. (1.3)

We refer to the newly introduced density function q as the variational posterior,

or the approximate posterior, and the new parameters φ as the variational

parameters. The fact that L(x; θ, φ) ≤ P (x; θ) follows directly from Jensen’s

inequality.
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The approximate posterior q can, in principal, be any distribution, but in

VAEs it is common to use a parametrization similar to that of the likelihood,

i.e. a function with the form qsimple(z | g(x;φ)), where g is a multi-layer neural

network and qsimple is usually a Gaussian distribution with a diagonal covariance

matrix. Exact sampling from q is then straightforward, and this allows us to

compute an unbiased Monte Carlo estimate of L:

L̂(x; θ, φ) = log
P (x | z; θ)p(z)
q(z |x;φ)

where z ← q(· |x;φ). (1.4)

The shorthand notation z ← q(· |x;φ) means z is sampled from the approximate

posterior distribution q(z |x;φ).

If the process used to generate z from q is differentiable with respect to φ,

then the function L̂ can be differentiated with respect to θ and φ (we usually use

automatic differentiation tools to do this), and SGD can be used to optimize L.

Variational auto-encoders are reasonably straightforward to train and sam-

ple from, and since 2014 there have been a huge number of papers presenting

different versions, with a general trend towards models with more parameters,

better samples, and more accurate density estimation. Rather than survey this

extensive literature we simply point to the two most recent examples of works

which have pushed this envelope, Maaløe et al. (2019) and Vahdat and Kautz

(2020), both of which demonstrate VAE image models with samples that, to the

human eye, appear similar to real examples.

For the algorithms introduced later, we will need to be able to compress

outcomes from the prior, likelihood and posterior of a latent variable model. As

mentioned in Section 1.1, this means their mass functions must be factorizable

into a product of conditionals in such a way that we are able to compute the

CDF and its inverse under each conditional. Since, in a VAE, elements of the

vectors x and z are usually modelled as independent under the three relevant

distributions, we can simply use the natural factorization which has one factor

for each element in the vector; it is also common practice to use distributions

for which the CDF and inverse CDF for each element can easily be computed.

Lossless compression is only possible for discrete (rather than continuous) data,

which would seem to render it incompatible with the continuous latents typically

used for VAEs. However, it turns out that it is straightforward to overcome

this issue by quantizing continuous latents, in a way which has only a very
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small effect on compression rates. We will give more detail in Chapter 3 and

Chapter 5.

1.1.2 Further background on probabilistic generative models

For detailed background on probabilistic generative models, MacKay (2003)

and Bishop (2006) are classic references. Murphy (2012) gives a more modern,

extremely thorough, overview of the field, and the even more recent Goodfellow

et al. (2016) includes VAE models and detail on the various neural network tech-

niques which are useful for defining the functions f(x; θ) and g(z;φ) mentioned

above.

1.2 Source coding

‘Source coding’, first formalized by Shannon (1948), is the name we give to

the problem of trying to find lossless encodings for data which are drawn from

a random source. Source coding is more-or-less synonymous with ‘lossless

compression’. In this section we define basic terminology, then in Section 1.3

we review some of the basic algorithms for doing source coding. This is closely

based on MacKay (2003) Chapters 4-7, which we recommend as an introduction

to these topics.

1.2.1 Terminology and the source coding theorem

We use the following definition for probability distributions, based on that used

by MacKay (2003):

Definition 1. An ensemble X is a triple (x,AX ,PX) where the outcome x is

the value of a random variable, taking on one of a set of possible values AX =

{a1, . . . , aI}, and PX = {p1, . . . , pI} are non-negative real-valued probability

weights with each P (x = ai) = pi and therefore
∑I

i=1 pi = 1.

The following are the basic quantities of concern in source coding and

information theory in general. Here, and throughout the rest of the thesis, we

use ‘log’ for the base 2 logarithm, usually denoted ‘log2’.

Definition 2. The Shannon information content of an outcome x is

h(x = ai) := log
1

pi
. (1.5)
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Definition 3. The entropy of an ensemble X is

H(X) :=
∑
i

pi log
1

pi
. (1.6)

The source coding theorem demonstrates the relevance of the entropy as

a measure of a random variable’s information content. We give an informal

statement of the theorem. For more detail, including a proof of the theorem,

see MacKay (2003), Chapter 4.

Theorem 1 (Source coding theorem, informal statement). N i.i.d. random

variables each with entropy H(X) can be compressed into more than NH(X) bits

with negligible risk of information loss, as N →∞; but conversely, if they are

compressed into fewer than NH(X) bits it is virtually certain that information

will be lost.

This fundamental theorem specifies a theoretical limit of possibility for

lossless compression. Compression at rates close to the entropy is possible

(though may not be computationally feasible), and coding at better rates,

without loss of information, is not.

1.2.2 Coding according to a model

In the next section, some of the coding algorithms which we review assume

access to a probabilistic model, as defined in Section 1.1. In practical settings,

there is almost always some discrepency between the model used and the

true data generating distribution. To highlight this, we will use p̃i = P (x =

ai; θ) and h(x = ai; θ) = log 1/p̃i for the probabilities and information content

according to the model. The coding algorithms are deterministic, and for a fixed

input sequence their message length has no dependence on the true generative

distribution, but it will depend on the model distribution, and in particular on

h(x; θ). In particular, we will see that, for the three model-based algorithms

that we describe, we can write down a bound on compressed message length of

the form

l(x) ≤ h(x; θ) + . . . (1.7)

This is useful, because the maximum likelihood objective, defined in eq. (1.1),

directly minimizes h(x; θ) on training data. Thus we might say that the log-

likelihood is the correct objective function to use to optimize a model for lossless

compression (assuming any extra terms, denoted ‘. . .’, are not too significant).
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We can relate the above quantity to the entropy by taking the expectation

of h(x; θ) over the true generating distribution

E(h(x; θ)) =
∑
i

pi log
1

p̃i
(1.8)

= H(X) +
∑
i

pi log
pi
p̃i
. (1.9)

The sum
∑

i pi log(pi/p̃i) is an example of a Kullback-Leibler divergence (KL

divergence). It can be shown, using Jensen’s inequality, that it is non-negative,

and equal to zero only when pi = p̃i for all i, i.e. only when the model perfectly

fits the true generating distribution (see MacKay, 2003 for more detail). For an

in-depth overview of explicit probabilistic model-based approaches to lossless

compression, see Steinruecken (2014).

1.3 Basic coding techniques

We now give an overview of algorithms for lossless compression and the com-

pression rates which they achieve. For Huffman coding, arithmetic coding (AC)

and dictionary coding we give only brief overviews, since all of these algorithms

are already described in many textbooks including MacKay (2003) and Cover

and Thomas (1991). The more recently invented asymmetric numeral systems

(ANS) is introduced briefly here and described in detail in Chapter 2.

1.3.1 Huffman coding

Huffman coding (Huffman, 1952) is a ‘symbol code’, which means it directly

maps individual symbols, from an alphabet AX , to binary words. Huffman

coding assumes access to a model ensemble over symbols, i.e. a set of probabili-

ties p̃1, . . . , p̃I . A string containing concatenated Huffman code words can be

unambiguously decoded because the words which the Huffman coder outputs

have the ‘prefix property’, which means that no binary code word is equal to

the start of any other code word. For example, it is possible for the codewords

0 and 10 to be output by a Huffman coder, but then the codeword 010 would

not be permitted, because it would be impossible to disambiguate this word

from the concatenation of the two words 0 and 10.

Given an ensemble X, Huffman coding uses an efficient iterative algorithm

to generate codewords with length li satisfying

li = dh(x = ai; θ)e < h(x = ai; θ) + 1, (1.10)
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where dxe denotes the nearest integer greater than or equal to x. The average

length is therefore equal to the entropy H(X) when: (a) the model is equal to

the true generating distribution and (b) all of the probabilities are exact integer

powers of 2, i.e. when each pi = 2−ni for ni ∈ {0, 1, . . .}. A Huffman code is

optimal within the class of symbol codes (codes that directly map symbols to

code words) assuming only condition (a); i.e. even when the average codeword

length is not equal to the entropy, it is not possible to do any better than

Huffman, this is a consequence of the fact that codewords lengths must be whole

numbers, and the Huffman lengths are the smallest integers greater than or

equal to the information content (MacKay, 2003).

Despite achieving optimal compression rates for individual symbols, Huff-

man coding can be highly inefficient for compressing sequences of symbols,

particularly when the information content of each individual symbol in a se-

quence is close to zero, when the contribution from the ‘+ 1’ in the upper bound

in eq. (1.10) can dominate, leading to a total average message length that is

much larger than the sequence’s entropy. This inefficiency is addressed by stream

codes, which achieve near-optimal per-symbol compression rates over sequences

of symbols, rather than for single symbols.

1.3.2 Stream codes

There are two broad classes of codes which work on sequential or streaming

data. The first, which we will refer to as ‘model-based stream codes’, are, in a

sense, a direct generalization of Huffman codes to sequential data. Like Huffman

codes, they require access to a model over data, but unlike Huffman codes they

cater particularly to auto-regressive (sometimes referred to as ‘adaptive’) models

over sequences of symbols. To be precise, for data drawn from a sequence

X1, . . . , XN , they assume access to the CDFs and inverse CDFs under the

conditional distributions P (x1), P (x2 |x1), . . . , P (xN |x1, . . . , xN−1).

The second major class of stream codes used in practice are known as

‘dictionary codes’; they require no prior knowledge, or model, of the distribution

of the input stream and aim to achieve acceptable (as opposed to optimal)

performance for any input.

1.3.2.1 Arithmetic coding and asymmetric numeral systems

‘Arithmetic coding’ (AC; Witten et al., 1987) and the much more recent ‘asym-

metric numeral systems’ (ANS; Duda, 2009) are both model-based stream codes,
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which work by encoding a sequence of symbols one-at-a-time, and differ from

each other in the order in which data may be decoded. AC is first-in-first-out

(FIFO) or ‘queue-like’, so data are decoded in the same order in which they

are encoded, whilst ANS is last-in-first-out (LIFO) or ‘stack-like’, which means

that in ANS, data are decoded in the opposite order to that in which they were

encoded. Both schemes have very similar compression performance, achieving

per-symbol compression rates which are close to the information content under

the model. MacKay (2003) shows that AC can achieve a message length with

the worst-case bound

l(x)
approx
≤ h(x; θ) + 2, (1.11)

where h(x; θ) denotes the information content of an entire sequence, which can

be decomposed as

h(x; θ) =

N∑
n=1

h(xn |x1, . . . , xn−1; θ). (1.12)

The conditional information contents h(xn |x1, . . . , xn−1; θ) are defined in the

obvious way as the information content of xn under the conditional distribution

P (xn |x1, . . . , xn−1). For long sequences, the effect of the ‘+2’ on the per-symbol

compression rate becomes negligible, hence we can say that the per-symbol

compression rate of AC is close to optimal.

The ‘approx’ above the ‘≤’ symbol is there because Mackay, and other

works which mention this bound, such as Witten et al. (1987) and Moffat et al.

(1998), assume the implementation can use exact (i.e. unbounded precision)

rational numbers. With exact arithmetic, AC encode and decode compute time

scales poorly with the sequence length N . In practical settings it is important

to achieve fast runtimes, and thus implementations of AC which are used in

production invariably use faster, fixed precision arithmetic to approximate the

exact algorithm. Another difference between practical implementations and

the ideal implementation to which eq. (1.11) applies is that files are usually

comprised of a whole-number of bytes. We can easily account for this and make

the bound more realistic by rounding the quantity on the right-hand-side of

eq. (1.11) up to the nearest multiple of 8:

l(x)
approx
≤ dh(x; θ) + 2e8 ≤ h(x; θ) + 10, (1.13)
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where we use dxen to denote the smallest multiple of n which is greater than or

equal to x. I have been unable to find analysis of the worse-case behavior of

AC when using more realistic bounded-precision arithmetic, but it is likely that

eq. (1.13) is a reasonably good approximation in most practical settings.

On the other hand, establishing exact worst-case bounds for practical

implementations of ANS, the algorithm that we use throughout this work, is fairly

straightforward, and in Chapter 2 we show that under our ANS implementation

we have

l(x) ≤ h(x) +Nε+ C, (1.14)

where ε and C are both implementation dependent constants. A typical setup in

our experiments gives ε ≈ 2.2× 10−5 and C = 64. Although this bound appears

worse than the AC bound in eq. (1.13), for long enough sequences the difference

has little practical implication—the ‘one-off’ constant C has a negligible effect

on the per-symbol compression rate, and ε amounts to a worst-case overhead

of one bit every 2.2 × 105 symbols. The expected (as opposed to worst-case)

behaviour of ANS has not been exactly characterized but empirically it is usually

significantly better than the above bound (Duda, 2009).

In practice, ANS is usually slightly faster than AC, is more straightforward

to implement and is also easier to generalize to a vectorized implementation

(Duda, 2009; Giesen, 2014). Moreover, the LIFO property of ANS is critical

for the new methods introduced in this thesis. In Chapter 2 we describe ANS

in detail, and we give a full working Python implementation, which is only

50 lines in length, in Appendix A. We discuss vectorization, which we have

also implemented, in Chapter 4. A high level description of AC can be found

in MacKay (2003), Chapter 6, and a detailed description with a full, clear C

implementation in Witten et al. (1987).

1.3.2.2 Dictionary coding

Dictionary coding, also referred to as substitution coding, works by going through

a stream of symbols and replacing (‘substituting’) any sub-sequence which has

already occurred in the stream with a pointer to the sub-sequence’s previous

occurrence. Compression is achieved when sequences are repeated whose length

exceeds that of a pointer. The family of Lempel-Ziv coders use this technique,

and a variant called DEFLATE is used in gzip, which is perhaps the most

widely used compression software in existence. Although they do not make



1.4. Image compression in practice 28

use of a model over data, Lempel-Ziv codes can be shown to be asymptotically

optimal (Cover and Thomas, 1991). However, for practical sources and finite

sequences, the lengths of encoded messages are often significantly greater than

the entropy. See MacKay (2003), Section 6.4 for more detail, including examples

of sources on which Lempel-Ziv coding performs poorly.

1.4 Image compression in practice

In Chapters 3 and 5 we present the BB-ANS algorithm, which extends ANS to

latent variable models. The algorithm is generic, in the sense that it can be

applied with a wide range of latent variable models, over any kind of data. We

chose to demonstrate the method on images because deep generative models

of images are well studied and reasonably straightforward to setup and train,

and because image compression is extremely widely used and well studied, with

good baselines to compare to.

For most image compression use cases, such as communication of images

across the internet and local storage of a photo library, some loss of data is

acceptable, particularly if this can be achieved without affecting the perceptual

quality of the image (i.e. the appearance of the image ‘to the human eye’).

JPEG (G. K. Wallace, 1991) has been the dominant lossy format for compressing

photographic images since its introduction in 1992, and is extremely widely used

on the web and as a storage format.

Lossless image compression is useful when it is not known in advance that

degradation in an image’s quality will be acceptable to the intended recipient.

When using lossy compression there is always a somewhat speculative decision

that needs to be made about how much compression is appropriate. As argued

in Sneyers and Wuille (2016), it is useful to have a codec that users don’t need

to think about before using, and lossless codecs fall into this category. Moreover,

lossless image codecs are typically not specialised to photographs (as JPEG is),

and aim to achieve reasonable performance on any image that a human might

wish to communicate or store.

Lossless compression is also particularly useful for saving intermediate

versions during image editing, where repeatedly editing and saving in a lossy

format would lead to successively more severe degradation of image quality. It

is also especially desirable for archival storage, and for images which are used in

scientific or medical applications; indeed in some jurisdictions it is illegal for
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medical images to be stored in a lossy format (Liu et al., 2017).

1.4.1 Comparing PNG, FLIF, and our new codecs

We now discuss two existing formats, and how the approach they take differs from

ours. The first is ‘portable network graphics’ (PNG), which is the most widely

used lossless image format today, and is particularly popular for compressing

graphics for the web. PNG development began in the mid 1990s, and the format

was intended to be a more flexible replacement for GIF (another lossless format),

and to be completely unencumbered by patents, which GIF, at the time, was

not. The authors of the format claimed at the time that PNG compression was

“among the best that can be had without losing image data and without paying

patent or other licensing fees” (Roelofs, 1999).

The reference PNG implementation, libpng, is free software, and the PNG

standard and libpng were developed by a small community which overlapped

with the group who developed gzip. PNG compression has two stages, which

are referred to as ‘preprocessing’ and ‘compression’. The compression stage takes

the result of preprocessing and compresses it using the same algorithm (and in

libpng the same implementation) as gzip. Thus the job of preprocessing is to

reversibly convert the image to a more ‘gzip friendly’ form.

The preprocessing in PNG consists of passing one of five convolutional

filters over each line of the image. The filters all subtract the values of previous

pixels from the current pixel’s value, exploiting the approximate smoothness

of images to try to create a result in which all pixel values are close to zero.

The result of preprocessing, along with a list specifying which of the five filters

was used for each row, is passed forwards to the compression stage, which uses

the same DEFLATE algorithm as gzip, a form of dictionary coding (Roelofs,

1999). The method for selecting which filter should be used for each row is not

specified by the PNG standard, but the implementation in libpng uses a simple

heuristic, simply selecting the filter whose output is closest to zero (in the sense

that the sum of the absolute values of each element in the row is smallest).

Figure 1.1 shows the importance of the preprocessing used by PNG, since

PNG is 23% smaller than gzip in this case. Displaying a bitstream in this way

is a crude but useful way to observe when a stream contains obvious redundancy,

implying that there is room for improvement in the codec. A perfect codec should

output bits which are indistinguishable from samples from an i.i.d. uniform
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Figure 1.1: Comparing a photograph of the cat ‘Stasha’ with the compressed bit
streams resulting from applying the codecs gzip, PNG and FLIF to the
image. Vertical bands are clearly visible in the gzip stream, and upon
close inspection there are some visible vertical bands in the PNG stream,
implying some correlation between pixels and hence redundancy. No
structure is visible in the FLIF stream, suggesting that FLIF may be close
to optimal.

distribution (MacKay, 2003). It’s impossible to confirm that a stream is i.i.d.

uniform using this method, but sometimes non-uniformities and correlation are

obvious enough to be confident that a stream is not i.i.d. uniform.

The second format which we discuss is the ‘free lossless image format’

(FLIF), which was the last to set new state of the art performance on lossless

compression benchmarks, improving on PNG by 43% on average (Sneyers and

Wuille, 2016). FLIF is also free software, though it has yet to gain widespread

adoption1. It is significantly more sophisticated than PNG, although it also uses

a two stage preprocessing and compression pipeline. In the FLIF documentation,

preprocessing is referred to as ‘prediction’, but for self-consistency we will

continue to use ‘preprocessing’.

Preprocessing in FLIF is actually slightly simpler than in PNG, in that the

same filter is used on every line of the image, instead of switching between five

filters. The filter works by subtracting the median of T , L and T +L−TL from

each pixel, where T is the value of the pixel above, and L is the value of the pixel

to the left of the current pixel. The ‘compression’ stage uses an algorithm called

‘meta-adaptive near-zero integer arithmetic coding’ (MANIAC). MANIAC uses

arithmetic coding with an adaptive model, which learns as it processes an image.

1In fact FLIF has recently been subsumed by the JPEG XL standard, still under development
at time of writing, see Alakuijala et al., 2019.
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Which mixture component is selected for each pixel is determined by the values

of the pixels T and L, see Sneyers and Wuille (2016) for more detail.

1.4.1.1 A paradigm shift

The approach we take to lossless compression is fundamentally different to

PNG, FLIF, and other existing codecs. We explicitly de-couple compression

and modelling, spending a lot of engineering effort and compute time to develop

an accurate image model, before doing compression with the model. We can

train our model on a dataset containing a representative sample of the images

that the compression algorithm will be used for. For the full-size colour image

compression experiments in Chapter 5, we use the ImageNet dataset, which is

reasonably representative of the images that are communicated over the internet.

Having ‘seen’ a huge number of images before attempting any compression, our

method could be said, in the language of Bayesian statistics, to have a ‘strong

prior’. Before compressing a test image, it may have very high level structural

knowledge about the kinds of objects that tend to appear in images. Given

an image whose top few rows look like the top of a cat’s head, the model may

be able to infer that the rest of the image is likely to contain the rest of the

cat. PNG, FLIF and other existing codecs could only be said to have weak

knowledge about images—they know that pixels are locally correlated and that

patterns tend to be repeated within individual images. They certainly would

not be able to predict the existence of pixels representing a cat’s body given

only the top of the cat’s head.

This approach represents a paradigm shift, and in Chapters 3 and 5 we

demonstrate that this may lead to improved compression rates. Currently, our

implementations are significantly slower than existing codecs, and the BB-ANS

method only performs optimally when processing batches of images, but we are

confident that these issues can be overcome, in future work which builds on the

foundation we have helped to lay.



Chapter 2

Introduction to asymmetric numeral

systems

We are interested in algorithms for lossless compression of sequential data.

Arithmetic coding (AC) and the range variant of asymmetric numeral systems

(sometimes abbreviated to rANS, we simply use ANS) are examples of such

algorithms. Just like arithmetic coding, ANS is close to optimal in terms of

compression rate (Witten et al., 1987; Duda, 2009). The key difference between

ANS and AC is in the order in which data are decoded : in ANS, compression

is last-in-first-out (LIFO), or ‘stack-like’, while in AC it is first-in-first-out

(FIFO), or ‘queue-like’. The stack-like nature of ANS is critical for the algorithm

we present in Chapter 3. We recommend MacKay (2003) Chapter 4-6 for

background on source coding and arithmetic coding in particular. This chapter

contains pseudocode which could be converted to a working ANS implementation

without too much difficulty. We also provide a 50 line Python implementation,

with example usage, in Appendix A.

ANS comprises two basic functions, which we denote push and pop, for

encoding and decoding, respectively (the names refer to the analogous stack

operations). The push function accepts some pre-compressed information m

(short for ‘message’), and a symbol x to be compressed, and returns a new

compressed message, m′. Thus it has the signature

push : (m,x) 7→ m′. (2.1)

The new compressed message, m′, contains precisely the same information as

the pair (m,x), and therefore push can be inverted to form a decoder mapping.
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The decoder, pop, maps from m′ back to m,x:

pop : m′ 7→ (m,x). (2.2)

Because the functions push and pop are inverse to one another, we have

push(pop(m)) = m and pop(push(m,x)) = (m,x).

2.1 Specifying the problem which ANS solves

In this section we first define some notation, then describe the problem which

ANS solves in more detail and sketch the high level approach to solving it. In

the following we use ‘log’ as shorthand for the base 2 logarithm, usually denoted

‘log2’.

The functions push and pop will both require access to the probability

distribution from which symbols are drawn (or an approximation thereof). To

describe distributions we use notation similar to MacKay (2003):

Definition 4. A quantized ensemble X with precision r is a triple (x,AX ,PX)

where the outcome x is the value of a random variable, taking on one of a set of

possible values AX = {a1, . . . , aI}, and PX = {p1, . . . , pI} are the integer-valued

probability weights with each pi ∈ {1, . . . , 2r}, each P (x = ai) = pi/2
r and

therefore
∑I

i=1 pi = 2r.

Note that this definition differs from Definition 1 from the last chapter,

in that the probabilities are assumed to be quantized to some precision r (i.e.

representable by fractions pi/2
r), and we assume that none of the ai have zero

probability. Having probabilities in this form is necessary for the arithmetic

operations involved in ANS (as well as AC). Note that if we use a high enough r

then we can specify probabilities that are not close to zero with a precision similar

to that of typical floating point—32-bit floating point numbers for example

contain 23 ‘fraction’ bits, and thus would have roughly the same precision as

our representation with r = 23. Symbols with very small probabilities are a

potential failure mode of both ANS and AC. These must either be rounded up

to the smallest nonzero quantized value, or all symbols with small probabilities

can effectively be split into two symbols: the first, a global ‘escape’ symbol,

which has mass equal to the sum of the small probabilities, and the second, the

symbol itself, with mass equal to the conditional given that the symbol is in the

escape group (this conditional will be larger than the symbol’s original mass).
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An escape mechanism is described in more detail in Moffat et al. (1998).

Given a sequence of quantized ensembles X1, . . . , XN , we seek an algorithm

which can encode any outcome x1, . . . , xN in a binary message whose length is

close to h(x1, . . . , xN ) = log 1/P (x1, . . . , xN ). According to Shannon’s source

coding theorem it is not possible to losslessly encode data in a message with

expected length less than E[h(x)], thus we are looking for an encoding which is

close to optimal in expectation (Shannon, 1948). Note that the joint information

content of the sequence can be decomposed:

h(x1, . . . , xN ) = log
1

P (x1, . . . , xN )
(2.3)

=
∑
n

log
1

P (xn |x1, . . . , xn−1)
(2.4)

=
∑
n

h(xn |x1, . . . , xn−1). (2.5)

Because it simplifies the presentation significantly, we focus first on the ANS

decoder, the reverse mapping which maps from a compressed binary message to

the sequence x1, . . . , xN . This will be formed of a sequence of N pop operations;

starting with a message m0 we define

mn, xn = pop(mn−1) for n = 1, . . . , N (2.6)

where each pop uses the conditional distribution Xn |X1, . . . , Xn−1. We will

show that the message resulting from each pop, mn, is effectively shorter than

mn−1 by no more than h(xn |x1, . . . , xn−1) + ε bits, where ε is a small constant

which we specify below, and therefore the difference in length between m0 and

mN is no more than h(x1, . . . , xN ) +Nε, by eqs. (2.3) to (2.5).

We will also show that pop is a bijection whose inverse, push, is straightfor-

ward to compute, and therefore an encoding procedure can easily be defined by

starting with a very short base message and adding data sequentially using push.

Our guarantee about the effect of pop on message length translates directly to

a guarantee about the effect of push, in that the increase in message length due

to the sequence of push operations is less than h(x1, . . . , xN ) +Nε.

2.2 Asymmetric numeral systems

Having set out the problem which ANS solves and given a high level overview

of the solution in Section 2.1, we now go into more detail, firstly discussing the
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data structure we use for m, then the pop function and finally the computation

of its inverse, push.

2.2.1 The structure of the message

We use a pair m = (s, t) as the data structure for the message m. The element

s is an unsigned integer with precision rs (i.e. s ∈ {0, 1, . . . , 2rs − 1}, so that s

can be expressed as a binary number with rs bits). The element t is a stack

of unsigned integers of some fixed precision rt where rt < rs. This stack has

its own push and pop operations, which we denote stack push and stack pop

respectively. See fig. 2.1 for a diagram of s and t. We need s to be large enough

to ensure that our decoding is accurate, and so we also impose the constraint

s ≥ 2rs−rt , (2.7)

more detail on how and why we do this is given below. In the demo implemen-

tation we use rs = 64 and rt = 32.

Note that a message can be flattened into a string of bits by concatenating

s and the elements of t. The length of this string is

l(m) := rs + rt|t|, (2.8)

where |t| is the number of elements in the stack t. We refer to this quantity as

the ‘length’ of m. We also define the useful quantity

l∗(m) := log s+ rt|t|, (2.9)

which we refer to as the ‘effective length’ of m. Note that the constraint in

eq. (2.7) and the fact that s < 2rs imply that

l(m)− rt ≤ l∗(m) < l(m). (2.10)

Intuitively l∗ can be thought of as a precise measure of the size of m, whereas

l, which is integer valued, is a more crude measure. Clearly l is ultimately the

measure that we care most about, since it tells us the size of a binary encoding

of m, and we use l∗ to prove bounds on l.
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s

rs

01100010
10100011

...

11011001

rt

t

|t|

Figure 2.1: The two components of a message: the unsigned integer s (with rs = 16)
and the stack of unsigned integers t (with rt = 8). The integers are
represented here in base 2 (binary).

2.2.2 Constructing the pop operation

To avoid notational clutter, we begin by describing the pop operation for a

single quantized ensemble X = (x,AX ,PX) with precision r, before applying

pop to a sequence in Section 2.2.3. Our strategy for performing a decode with

pop will be firstly to extract a symbol from s. We do this using a bijective

function d : N → N ×A, which takes an integer s as input and returns a pair

(s′, x), where s′ is an integer and x is a symbol. Thus pop begins

def pop(m):

s, t := m
s′, x := d(s)

We design the function d so that if s ≥ 2rs−rt , then

log s− log s′ ≤ h(x) + ε (2.11)

where

ε := log
1

1− 2−(rs−rt−r)
. (2.12)

We give details of d and prove eq. (2.11) below. Note that when the term

2−(rs−rt−r) is small, the following approximation is accurate:

ε ≈ 2−(rs−rt−r)

ln 2
, (2.13)

and thus ε itself is small. We typically use rs = 64, rt = 32, and r = 16, which

gives ε = log 1/(1− 2−16) ≈ 2.2× 10−5.

After extracting a symbol using d, we check whether s′ is below 2rs−rt , and

if it is we stack pop integers from t and move their contents into the lower

order bits of s′. We refer to this as ‘renormalization’. Having done this, we

return the new message and the symbol x. The full definition of pop is thus
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def pop(m):

s, t := m
s′, x := d(s)
s, t := renorm(s′, t)
return (s, t), x

Renormalization is necessary to ensure that the value of s returned by pop

satisfies s ≥ 2rs−rt and is therefore large enough that eq. (2.11) holds at the

start of any future pop operation. The renorm function has a while loop, which

pushes elements from t into the lower order bits of s until s is full to capacity.

To be precise:

def renorm(s, t):
# while s has space for another element from t
while s < 2rs−rt:

# pop an element ttop from t
t, ttop := stack_pop(t)
# and push ttop into the lower bits of s
s := 2rt · s + ttop

return s, t

The condition s < 2rs−rt guarantees that 2rt · s+ ttop < 2rs , and thus there

can be no loss of information resulting from overflow. We also have

log(2rt · s+ ttop) ≥ rt + log s (2.14)

since ttop ≥ 0. Applying this inequality repeatedly, once for each iteration of

the while loop in renorm, we have

log s ≥ log s′ + rt · [# elements popped from t] , (2.15)

where s, t = renorm(s′, t) as in the definition of pop.

Combining eq. (2.11) and eq. (2.15) gives us

l∗(m)− l∗(m′) ≤ h(x) + ε, (2.16)

where (m′, x) = pop(m), using the definition of l∗. That is, the reduction in the

effective message length resulting from pop is close to h(x).

2.2.3 Popping in sequence

We now apply pop to the setup described in Section 2.1, performing a sequence

of pop operations to decode a sequence of data. We suppose that we are given
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some initial message m0.

For n = 1 . . . N , we let mn, xn = pop(mn−1) as in Section 2.1, where each

pop uses the corresponding distribution Xn |X1, . . . , Xn−1. Applying eq. (2.16)

to each of the N pop operations, we have:

l∗(m0)− l∗(mN ) =

N∑
n=1

[l∗(mn−1)− l∗(mn)] (2.17)

≤
N∑
n=1

[h(xn |x1, . . . , xn−1) + ε] (2.18)

≤ h(x1, . . . , xN ) +Nε. (2.19)

This result tells us about the reduction in message length from pop but

also, conversely, about the length of a message constructed using push. We can

actually initialize an encoding procedure by choosing mN , and then performing

a sequence of push operations. Since our ultimate goal when encoding is to

minimize the encoded message length m0 we choose the setting of mN which

minimizes l∗(mN ), which is mN = (sN , tN ) where sN = 2rs−rt and tN is an

empty stack. That gives l∗(mN ) = rs − rt and therefore, by eq. (2.19),

l∗(m0) ≤ h(x1, . . . , xN ) +Nε+ rs − rt. (2.20)

Combining that with eq. (2.10) gives an expression for the actual length of the

flattened binary message resulting from m0:

l(m0) ≤ h(x1, . . . , xN ) +Nε+ rt. (2.21)

It now remains for us to describe the function d and show that it satisfies

eq. (2.11), as well as showing how to invert pop to form the encoding function

push.

2.2.4 The function d

The function d : N → N × A must be a bijection, and we aim for d to satisfy

eq. (2.11), and thus P (x) ≈ s′

s . Achieving this is actually fairly straightforward.

One way to define a bijection d : s 7→ (s′, x) is to start with a mapping d̃ : s 7→ x,

with the property that none of the preimages d̃−1(x) := {n ∈ N : d̃(n) = x} are

finite for x ∈ A. Then let s′ be the index of s within the (ordered) set d̃−1(x),

with indices starting at 0. Equivalently, s′ is the number of integers n with
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0 ≤ n < s and d(n) = x.

With this setup, the ratio

s′

s
=
|{n ∈ N : n < s, d(n) = x}|

s
(2.22)

is the density of numbers which decode to x, within all the natural numbers

less than s. For large s we can ensure that this ratio is close to P (x) by setting

d̃ such that numbers which decode to a symbol x are distributed within the

natural numbers with density close to P (x).

To do this, we partition N into finite ranges of equal length, and treat

each range as a model for the interval [0, 1], with sub-intervals within [0, 1]

corresponding to each symbol, and the width of each sub-interval being equal

to the corresponding symbol’s probability (see fig. 2.2). To be precise, the

mapping d̃ can then be expressed as a composition d̃ = d̃2 ◦ d̃1, where d̃1 does

the partitioning described above, and d̃2 assigns numbers within each partition

to symbols (sub-intervals). So

d̃1(s) := s mod 2r. (2.23)

Using the shorthand s̄ := d̃1(s), and defining

cj :=


0 if j = 1∑j−1

k=1 pk if j = 2, . . . , I

(2.24)

as the (quantized) cumulative probability of symbol aj−1,

d̃2(s̄) := ai where i := max{j : cj ≤ s̄}. (2.25)

That is, d̃2(s̄) selects the symbol whose sub-interval contains s̄. Figure 2.2

illustrates this mapping, with a particular probability distribution, for the range

s = 64, . . . , 71.

2.2.5 Computing s′

The number s′ was defined above as “the index of s within the (ordered) set

d̃−1(x), with indices starting at 0”. We now derive an expression for s′ in terms

of s, pi and ci, where i = max{j : cj ≤ s̄} (as above), and we prove eq. (2.11).

Our expression for s′ is a sum of two terms. The first term counts the
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s 64 65 66 67 68 69 70 71

s mod 2r 0 1 2 3 4 5 6 7

x

0 1

a b c d

Figure 2.2: Showing the correspondence between s, s mod 2r and the symbol x. The
interval [0, 1] ⊂ R is modelled by the set of integers {0, 1, . . . , 2r − 1}.
In this case r = 3 and the probabilities of each symbol are P (a) = 1/8,
P (b) = 2/8, P (c) = 3/8 and P (d) = 2/8.
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Figure 2.3: Showing the pmf of a distribution over symbols (left) and a visualization of
the mapping d (middle and right). In the middle and right figures, numbers
less than or equal to smax are plotted, for smax = 20 and smax = 70. The
position of each number s plotted is set to the coordinates (x, s′), where
s′, x = d(s). The heights of the bars are thus determined by the ratio
s′/s from eq. (2.22), and can be seen to approach the heights of the lines
in the histogram on the left (that is, to approach P (x)) as the density of
numbers increases.

entire intervals, corresponding to the selected symbol ai, which are below s.

The size of each interval is pi and the number of intervals is s ÷ 2r, thus the

first term is pi · (s ÷ 2r), where ÷ denotes integer division, discarding any

remainder. The second term counts our position within the current interval,

which is s̄− ci ≡ s mod 2r − ci. Thus

s′ = pi · (s÷ 2r) + s mod 2r − ci. (2.26)

This expression is straightforward to compute. Moreover from this expression it

is straightforward to prove eq. (2.11). Firstly, taking the log of both sides of

eq. (2.26) and using the fact that s mod 2r − ci ≥ 0 gives

log s′ ≥ log(pi · (s÷ 2r)). (2.27)
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then by the definition of ÷, we have s÷ 2r > s
2r − 1, and thus

log s′ ≥ log
(
pi

( s
2r
− 1
))

(2.28)

≥ log s− h(x) + log

(
1− 2r

s

)
(2.29)

≥ log s− h(x)− ε, (2.30)

as required, using the fact that P (x) = pi
2r and s ≥ 2rs−rt .

By choosing rs−rt to be reasonably large (it is equal to 32 in our implementa-

tion), we ensure that s′

s is very close to P (x). This behaviour can be seen visually

in fig. 2.3, which shows the improvement in the approximation for larger s.

2.2.6 Pseudocode for d

We now have everything we need to write down a procedure to compute d.

We assume access to a function fX : s̄ 7→ (ai, ci, pi), where i is defined above.

This function clearly depends on the distribution of X, and its computational

complexity is equivalent to that of computing the CDF and inverse CDF for X.

For many common distributions, the CDF and inverse CDF have straightforward

closed form expressions, which don’t require an explicit sum over i.

We compute d as follows:

def d(s):
s̄ := s mod 2r

x, c, p := fX(s̄)
s′ := p · (s÷ 2r) + s̄− c
return s′, x

2.2.7 Inverting the decoder

Having described a decoding process which appears not to throw away any

information, we now derive the inverse process, push, and show that it is

computationally straightforward.

The push function has access to the symbol x as one of its inputs, and must

do two things. Firstly it must stack push the correct number of elements to t

from the lower bits of s. Then it must reverse the effect of d on s, returning a

value of s identical to that before pop was applied.

Thus, on a high level, the inverse of the function pop can be expressed as

def push(m, x):
s, t := m
p, c := gX(x)
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s′, t := renorm_inverse(s, t; p)
s := d−1(s′; p, c)
return s, t

where gX : x 7→ (pi, ci) with i as above. The function gX is similar to fX in

that it is analogous to computing the quantized CDF and mass function x 7→ pi.

The function d−1 is really a pseudo-inverse of d; it is the inverse of s 7→ d(s, x),

holding x fixed.

As mentioned above, renorm inverse must stack push the correct amount

of data from the lower order bits of s into t. A necessary condition which the

output of renorm inverse must satisfy is

2rs−rt ≤ d−1(s′; p, c) < 2rs . (2.31)

This is because the output of push must be a valid message, as described in

Section 2.2.1, just as the output of pop must be.

The expression for s′ in eq. (2.26) is straightforward to invert, yielding a

formula for d−1:

d−1(s′; p, c) = 2r · (s′ ÷ p) + s′ mod p+ c. (2.32)

We can substitute this into eq. (2.31) and simplify:

2rs−rt ≤ 2r · (s′ ÷ p) + s′ mod p+ c < 2rs (2.33)

⇐⇒ 2rs−rt ≤ 2r · (s′ ÷ p) < 2rs (2.34)

⇐⇒ p · 2rs−rt−r ≤ s′ < p · 2rs−r. (2.35)

So renorm inverse should move data from the lower order bits of s′ into t

(decreasing s′) until eq. (2.35) is satisfied. To be specific:

def renorm_inverse(s′, t; p):
while s′ ≥ p · 2rs−r:

t := stack_push(t, s′ mod 2rt)
s′ := s′ ÷ 2rt

return s′, t

Although, as mentioned above, eq. (2.35) is a necessary condition which

s′ must satisfy, it isn’t immediately clear that it’s sufficient. Is it possible that

we need to continue the while loop in renorm inverse past the first time that

s′ < p · 2rs−r? In fact this can’t be the case, because s′ ÷ 2rt decreases s′ by a
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factor of at least 2rt , and thus as we iterate the loop above we will land in the

interval specified by eq. (2.35) at most once. This guarantees that the s that we

recover from renorm inverse is the correct one.

2.3 Further reading

Since its invention by Duda (2009), ANS appears not to have gained widespread

attention in academic literature, despite being used in various state of the art

compression systems. At the time of writing, a search on Google Scholar for

the string “asymmetric numeral systems” yields 148 results. For comparison,

a search for “arithmetic coding”, yields ‘about 44,000’ results. As far as I’m

aware, ANS has appeared in only one textbook, with a practical, rather than

mathematical, presentation (McAnlis and Haecky, 2016).

However, for those wanting to learn more there is a huge amount of material

on different variants of ANS in Duda (2009) and Duda et al. (2015). Extensions

to latent variable models are, of course, described in Chapters 3 and 5, as well

as in Townsend et al. (2019), F. H. Kingma et al. (2019), and Townsend et al.

(2020). A parallelized implementation based on SIMD instructions was first

presented in Giesen (2014) and is described in Chapter 4. Finally, a version

which performs simultaneous encryption and compression is described in Duda

and Niemiec (2016).

Duda maintains a list of ANS implementations at https://encode.su/

threads/2078-List-of-Asymmetric-Numeral-Systems-implementations.

 https://encode.su/ threads/2078-List-of-Asymmetric-Numeral-Systems-implementations
 https://encode.su/ threads/2078-List-of-Asymmetric-Numeral-Systems-implementations


Chapter 3

Bits back coding with asymmetric

numeral systems

This chapter is based on the paper ‘Practical lossless compression with latent

variables using bits back coding’ (Townsend et al., 2019), which was presented

at the International Conference of Learning Representations (ICLR). The paper

was co-authored with Tom Bird, who assisted with writing the paper and setting

up the experiments. We propose a new coding method, extending ANS to

latent variable models. Like ANS itself, our new method achieves a near-optimal

rate when a sequence (or ‘batch’) of data are compressed, and may suffer a

significant, but bounded, overhead at the beginning of the encoding process

(we discuss methods for minimizing this overhead in Section 5.1.2). At the

end of this chapter we demonstrate the method by compressing the MNIST

test set using a VAE, outperforming all other codecs benchmarked, in terms of

compression rate. Code for reproducing the results in this chapter can be found

at github.com/bits-back/bits-back.

The lossless compression algorithms mentioned in Chapters 1 and 2, namely

Huffman coding, arithmetic coding (AC) and asymmetric numeral systems

(ANS), do not naturally cater for models with latent variables. However, there

is a method, known as ‘bits back coding’ (C. S. Wallace, 1990; Hinton and van

Camp, 1993), first introduced as a thought experiment, but later implemented

in Frey and Hinton (1996) and Frey (1997), which may be used to extend those

algorithms to such models.

Although bits back coding was implemented in restricted cases by Frey

(1997), prior to our work there was no known implementation for modern neural

net-based models or high dimensional data; Frey’s implementation was demon-

strated on 8× 8 binary images. There is, in fact, an awkward incompatibility

https://github.com/bits-back/bits-back
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Figure 3.1: Visual comparison of 30 binarized MNIST images with bit stream outputs
from running lossless compression algorithms PNG, bz2 and BB-ANS on
the images.

between bits back and the arithmetic coding scheme with which it was imple-

mented in Frey (1997). In this chapter we describe this issue and present a clean

solution—a scheme that instead implements bits back coding using ANS. We

term this new coding scheme ‘Bits Back with ANS’ (BB-ANS).

In Section 3.3.2 we demonstrate the efficacy of BB-ANS by losslessly

compressing the MNIST dataset with a variational auto-encoder (VAE; D. P.

Kingma and Welling, 2014), a deep latent variable model with continuous latent

variables which we described in Section 1.1.1. BB-ANS with a VAE outperforms

generic compression algorithms for both binarized and raw MNIST, even with a

very simple model architecture. In Chapter 5 we demonstrate that the method

scales well to a larger model, using it to compress full-size colour photographs.

3.1 Bits back coding

It is well known that an arithmetic decoder can be used to map a randomised

binary message to a sample from the distribution used as a model for the coder.

In the case of ANS, the fact that running the decoder, parametrized by some

mass function P , on a random message will generate a sample from P , is a

straightforward consequence of the fact, stated and proved in Section 2.2, that

numbers which decode to x appear in the natural numbers with density close to

P (x). This is a fundamental property of ANS which is necessary for optimal

compression.

In this section we describe bits back coding, a method which uses the

aforementioned sampling capability of a lossless codec for compression of data

using a latent variable model. We first present the form in which bits-back

coding has appeared in previous works, then we present our own novel approach.

3.1.1 Bits back without ANS

Suppose that a sender wishes to communicate a symbol x to a receiver, and

that both sender and receiver have access to a generative model with a latent
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z x

Figure 3.2: Graphical model with latent variable z and observed variable x.

variable, z. For now we take z to be discrete; in Section 3.2.2 we show how to

apply the method to continuous latents.

Suppose that the CDFs/inverse CDFs required for coding with ANS under

the marginal distribution P (x) are intractable to compute, as is typically the

case in deep latent variable models. Bits back is an idea that can be used to

encode and decode x assuming only the ability to encode/decode using the

forward probabilities P (z) and P (x | z), and a (possibly approximate) posterior

Q(z |x).

We must assume that, as well as the sample x, the sender already has

a separate compressed message to communicate. The sender can run the

approximate posterior decode on the extra message to generate a sample from

Q(z |x). Then they can encode the latent sample according to P (z) and the

symbol x according to P (x | z). The receiver then does the inverse to recover

the latent sample and the symbol. The extra message can also be precisely

recovered by the receiver by encoding the latent sample according to Q(z |x).

We can write down the expected increase in message length (over the length

of the extra message at the start):

L(Q) = EQ(z |x)

[
− logP (z)− logP (x | z) + logQ(z |x)

]
(3.1)

= −EQ(z |x) log
P (x, z)

Q(z |x)
. (3.2)

This is the negative of the evidence lower bound (ELBO), which was defined in

eq. (1.3).

A great deal of recent research has focused on inference and learning with

approximate posteriors, using the ELBO as an objective function. Because of

the above equivalence, methods which maximize the ELBO for a model are

implicitly minimizing the message length achievable by bits back coding with

that model. This suggests that we may be able to draw on this plethora of

existing methods when learning a model for use in compression applications,

safe in the knowledge that the objective function they are maximizing is the

negative expected message length.
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3.1.2 Chaining bits back coding

If we wish to encode a sequence of data points, and do not have any extra

information to communicate, we may be able to accept a one-time overhead

for coding the first element at a rate worse than the negative ELBO. Maybe

we have a fallback codec which doesn’t require an existing message, which we

can use for the first element; if not, we can generate the latent for the first

element of the sequence in any way we like, including by sampling it from

a pseudo-random number generator, and then encode it using the prior and

likelihood. The resulting compressed message can then be used as the extra

message for bits-back coding of the second data point, the encoded second data

point as the extra message for the third, and so on. This daisy-chain-like scheme

was first described by Frey (1997), and was called ‘bits-back with feedback’. We

refer to it simply as ‘chaining’.

As Frey (1997) notes, the above method cannot be implemented directly

using AC, because in order for it to work it is necessary to decode data in

the opposite order to that in which they were encoded. Frey gets around this

by implementing what amounts to a stack-like wrapper around AC, for which

it is necessary to terminate AC encoding after each chaining step, effectively

using AC like a symbol code. This incurs a cost both in code complexity and,

importantly, in compression rate. The cost in compression rate is due to the

fact that terminating AC incurs a cost of up to two bits (see eq. 1.11). As Frey

notes, any symbol code will do for chaining, and in situations where x and z

are actually each comprised of individual symbols (in most situations we study,

they are in fact vectors), Huffman coding would be the optimal choice, but this

still incurs a compression rate overhead for each chaining step.

3.1.3 Chaining bits back coding with ANS

The central insight of this chapter is the observation that the chaining described

in the previous section can be implemented straightforwardly with ANS with

zero compression rate overhead per iteration. This is because of the fact that

ANS is stack-like by nature, which resolves the problems that occur if one tries

to implement bits back chaining with AC, which is queue-like. We now describe

this novel method, which we refer to as ‘Bits Back with ANS’ (BB-ANS).

We can visualize the stack-like state of an ANS coder as
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Table 3.1: The shorthand we use for ANS encoding and decoding operations, based
on left and right pointing arrows. The operations can be translated me-
chanically to or from the pseudocode shown in the right-hand column.

Notation Meaning Pseudocode

x→ P (·) “Encode x using P” message = push P(message, x)

x← P (·) “Decode x using P” message, x = pop P(message)

where the dashed line on the right symbolizes the encoding/decoding end

or ‘top’ of the stack. When we encode a symbol x onto the message stack we

effectively add it to the end, resulting in a ‘longer’ state

log 1/P (x)

and when we decode (or equivalently, sample) a symbol x′ from the stack

we remove it from the same end, resulting in a ‘shorter’ state, plus the symbol

that we decoded.

log 1/P (x′)

, x′

For compactness, we use define a shorthand notation for encoding and

decoding operations: x→ P (·) for encoding (pushing) x onto the stack using

the distribution P , and x ← P (·) for decoding (popping). The notation is

summarized in Table 3.1. Table 3.2 shows the states of the message as the

sender encodes a sample, using our bits back with ANS algorithm, starting with

an existing message, labelled ‘extra information’, as well as the sample x to be

encoded. The operations are performed starting at the top of the table and

working downwards.

This process is clearly invertible, by reversing the order of operation and

replacing encodes with decodes and sampling with encoding. Furthermore it can

be repeated; the ANS message at the end of encoding is still an ANS message,

and therefore can be readily used as the extra information for encoding the next

symbol. The algorithm is compatible with any model whose prior, likelihood

and (approximate) posterior can be encoded and decoded with ANS, i.e. it is

necessary and sufficient to be able to compute conditional CDFs and inverse

CDFs under those distributions. A simple Python implementation of both the

encoder and decoder of BB-ANS is shown in fig. 3.3.
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Table 3.2: Visualizing the process by which a sender encodes (pushes) a symbol x onto
an ANS message stack using Bits Back with ANS. The process starts with
an existing ANS message, labelled ‘extra information’, and the operations
in the right hand column are performed starting at the top of the table
and working downwards. The ‘Variables’ column shows variables which are
known to the sender before each operation is performed.

BB-ANS message Variables Operation

Extra information

x

log 1/Q(z |x)

x, z z ← Q(· |x)

log 1/P (x | z)

z x→ P (· | z)

log 1/P (z)

z → P (·)

3.2 Issues affecting the efficiency of BB-ANS

A number of factors can affect the efficiency of compression with BB-ANS, and

mean that in practice, the coding rate will never be exactly equal to the ELBO.

For any algorithm based on AC/ANS, the fact that all probabilities have to be

approximated at finite precision has some detrimental effect. When encoding a

batch of only a small number of i.i.d. samples, with no ‘extra information’ to

communicate, the inefficiency of encoding the first data point may be significant.

In the worst case, that of a batch with only one data point, the message length

will be equal to the log joint, logP (x, z). Note that optimization of this is

equivalent to maximum a posteriori (MAP) estimation. However, for a batch

containing multiple images, this effect is amortized. Figure 3.1 shows an example

with 30 samples, where BB-ANS performs well.

Below we discuss two other issues which are specific to BB-ANS. We

investigate the magnitude of these effects experimentally in Section 3.3.2. We

find that when compressing the MNIST test set, they do not significantly affect

the compression rate, which is typically close to the negative ELBO in our

experiments.
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def push(message, x):

# (1) Sample z according to Q(z|x)
# Decreases message length by log 1/Q(z|x)
message, z = posterior_pop(x)(message)

# (2) Encode x according to the likelihood P (x|z)
# Increases message length by log 1/P (x|z)
message = likelihood_append(z)(message, x)

# (3) Encode z according to the prior P (z)
# Increases message length by log 1/P (z)
message = prior_append(message, z)

return message

def pop(message):

# (3 inverse ) Decode z according to P (z)
message, z = prior_pop(message)

# (2 inverse ) Decode x according to P (x|z)
message, x = likelihood_pop(z)(message)

# (1 inverse ) Encode z according to Q(z|x)
message = posterior_append(x)(message, z)

return message, x

Figure 3.3: Python implementation of BB-ANS encode (‘push’) and decode (‘pop’)
methods.

3.2.1 The extra information

Extra information is required to initialize the bits-back chain. In practical

situations, there may not be any other information that we wish to communicate,

apart from that which we are modelling with a latent variable model. In this

situation, we can simply send random information at the start of the chain. This

means that the message has some redundancy, and the minimum amount of

redundant information which we must transmit scales with the dimensionality

of the latent variables. In the experiments which we present in this chapter,

we use small models with a latent dimension of 40 or 50, and find that in this

case the overhead is low enough that we can achieve good compression even

when compressing short sequences of 30 images (see fig. 3.1). In Chapter 5, we

use far larger, hierarchical models, with latent dimensionality in the hundreds

of thousands, and this becomes a serious issue. In Section 5.1.2 we describe a

straightforward method to deal with the overhead, by using a hybrid codec: we
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first encode images using FLIF, which doesn’t require extra bits, until enough

of a buffer has been built up, then when possible we switch to BB-ANS, which

achieves a better bit-rate.

3.2.2 Discretizing a continuous latent space

Bits back coding has previously been implemented only for models with discrete

latent variables, in Frey (1997). However, many successful latent variable models

utilize continuous latents, including the VAE which we use in our experiments.

We present here a derivation, based on MacKay (2003), of the surprising fact

that continuous latents can be coded with bits back, up to arbitrary precision,

without affecting the coding rate. We also briefly discuss our implementation,

which as far as we are aware is the first implementation of bits back to support

continuous latents. In the following we continue to use upper case P and Q to

denote mass functions for discrete distributions, and use lower case p and q for

density functions of continuous distributions.

We can crudely approximate a continuous probability distribution, with

density function p, with a discrete distribution, by partitioning the real line

into ‘buckets’ of equal width δz. Indexing the buckets with i ∈ I, we assign a

probability mass to each bucket of P (i) ≈ p(yi)δz, where yi is some point in the

ith bucket (say its centre).

During bits back coding, we must discretize both the prior and the ap-

proximate posterior using the same set of buckets. Sampling from the discrete

approximation Q(i |x) uses approximately log(q(yi |x)δz) bits, and then encod-

ing according to the discrete approximation to the prior P costs approximately

log(p(yi)δz) bits. The expected message length increase for bits back with a

discretized latent is therefore

∆L = −EQ(i |x)

[
log

P (x | yi)p(yi)δz
q(yi |x)δz

]
. (3.3)

The δz terms cancel, and thus the only cost to discretization results from the

discrepancy between our approximation and the true, continuous, distribution.

However, if the density functions are smooth (as they are in a VAE), then for

small enough δz the effect of discretization will be negligible.

Note that the number of bits required to generate the latent sample scales

with the precision − log δz, meaning reasonably small precisions should be pre-

ferred in practice. Furthermore, the benefit from increasing latent precision past
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a certain point is negligible for most machine learning model implementations,

since they operate at 32 bit precision. In our experiments we found that increases

in performance were negligible past 16 bits per latent dimension.

In our implementation, we divide the latent space into buckets which have

equal mass under the prior (as opposed to equal width). This discretization is

simple to implement, the computational complexity does not increase with the

precision of the number of discrete intervals, and it is efficient, for the following

reasons: firstly, because the discretized prior reduces to a discrete uniform

distribution, which is cheap to encode/decode; secondly, because the posterior

we use is parametric (a Gaussian), we can do all the computation necessary

for encoding and decoding without enumerating all intervals; and thirdly (and

more subtlely), we don’t have to worry about encoding discrete intervals which

have zero mass. This is because the prior is uniform (so all intervals have the

same, nonzero mass), and the only intervals we ever need to encode with the

discretized posterior have been sampled from the discretized posterior, and thus

cannot have zero mass. This saves us from a costly process of ensuring that

no symbols have zero mass. Note that this discretization method can only be

applied when dimensions of a latent vector are independent random variables.

In Section 5.1.3 we show how to extend this simple discretization to latents with

non-trivial dependence structure.

3.2.3 The need for ‘clean’ bits

In our description of bits back coding in Section 3.1, we noted that the ‘extra

information’ required to seed bits back should take the form of ‘random bits’.

More precisely, we need the result of mapping these bits through our decoder to

produce a true sample from the distribution q(z |x). A sufficient condition for

this is that the bits are i.i.d. Bernoulli distributed with probability 1
2 of being

in each of the states 0 and 11. We refer to such bits as ‘clean’.

During chaining, we effectively use each compressed data point as the seed

for the next. Specifically, we use the bits at the top of the ANS stack, which are

the result of coding the previous latent z according to the prior p(z). Will these

bits be clean? The latent z is originally generated as a sample from q(z |x).

This distribution is clearly not equal to the prior, except in degenerate cases, so

naively we wouldn’t expect encoding z according to the prior to produce clean

1This is sufficient because of a fundamental property of ANS; that integers which decode to
a symbol x are distributed within the natural numbers with density P (x).
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bits. However, the true sampling distribution of z is in fact the average of q(z |x)

over the data distribution. That is, q(z) ,
∑

x q(z |x)Pdata(x). This is referred

to in Hoffman and Johnson (2016) as the ‘average encoding distribution’.

If q is equal to the true posterior, and the model is perfectly fit to the

data, then q(z) ≡ p(z), however in general neither of these conditions are

met. Hoffman and Johnson (2016) measure the discrepancy empirically using

what they call the ‘marginal KL divergence’ DKL(q(z) ‖ p(z)), showing that

this quantity contributes significantly to the ELBO for three different VAE like

models learned on MNIST. This difference implies that the bits at the top the

ANS stack after encoding a sample with BB-ANS will not be perfectly clean,

which could adversely impact the coding rate. However, empirically we have

not found this effect to be significant.

3.3 Experiments

3.3.1 Using a VAE as the latent variable model

We now demonstrate the BB-ANS coding scheme using a VAE. This model has

a multidimensional latent with standard Gaussian prior and diagonal Gaussian

approximate posterior:

p(z) = N(z; 0, I) (3.4)

q(z |x) = N(z;µ(x),diag(σ2(x))). (3.5)

We choose an output distribution (likelihood) P (x | z) suited to the domain of

the data we are modelling (see below). The usual VAE training objective is

the ELBO, which, as we noted in Section 3.1.1, is the negative of the expected

message length with bits back coding. We can therefore train a VAE as usual

and plug it into the BB-ANS framework without modification.

3.3.2 Compressing MNIST

We consider the task of compressing the MNIST dataset (Lecun et al., 1998).

We first train a VAE on the training set and then compress the test set using

BB-ANS with the trained VAE. The MNIST dataset has pixel values in the

range of integers 0, . . . , 255. As well as compressing the raw MNIST data,

we also present results for stochastically binarized MNIST (Salakhutdinov and

Murray, 2008). For both tasks we use VAEs with fully connected generative

and recognition networks, and ReLU activations.
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Binarized MNIST Full MNIST

Raw 1 8

Generic bz2 0.25 1.42
gzip 0.33 1.64

Image PNG 0.78 2.79
WebP 0.44 2.10

Models Locally masked PixelCNN2 (0.14) (0.65)
Our small VAE (0.19) (1.39)

BB-ANS Our small VAE 0.19 1.41

Table 3.3: Compression rates on the binarized MNIST and full MNIST test sets, using
BB-ANS and other benchmark compression schemes, measured in bits
per dimension. Note that PNG and WebP are included for context but
the comparison is not particularly fair, because the image files contain
metadata, the size of which is significant relative to the size of an MNIST
image, particularly in the binarized case. We also give (in brackets) the
negative ELBO value for our trained VAEs, and the log-likelihood under the
current state of the art model, ‘Locally masked PixelCNN’, all evaluated
on the test set.

For binarized MNIST the generative and recognition networks each have a

single deterministic hidden layer of dimension 100, with a stochastic latent of

dimension 40. The generative network outputs logits parametrizing a Bernoulli

distribution on each pixel. For the full (non-binarized) MNIST dataset each

network has one deterministic hidden layer of dimension 200 with a stochastic

latent of dimension 50. The output distributions on pixels are modelled by a

beta-binomial distribution, which is a two parameter discrete distribution. The

generative network outputs the two beta-binomial parameters for each pixel.

We initialize the BB-ANS chain with a supply of ‘clean’ bits. We find that

around 400 bits are required for this in our experiments. The precise number

of bits required to start the chain depends on the entropy of the discretized

approximate posterior (from which we are initially sampling), and scales roughly

linearly with the dimensionality of the latents.

We report the achieved compression against a number of benchmarks in

Table 3.3. Despite the relatively small network sizes and simple architectures we

have used, the BB-ANS scheme outperforms benchmark compression schemes.

While it is encouraging that even a relatively small latent variable model can

outperform standard compression techniques when used with BB-ANS, the more

important observation to make from Table 3.3 is that the achieved compression

rate is very close to the value of the negative test ELBO seen at the end of VAE

training.
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In particular, the detrimental effects of finite precision, the extra information

overhead (section 3.2.1), discretizing the latent (Section 3.2.2) and of less ‘clean’

bits (Section 3.2.3) do not appear to be significant. Their effects can be seen

in Figure 3.4, accounting for the small discrepancy of around 1% between the

negative ELBO and the achieved compression.

(a) Binarized MNIST (b) Full MNIST

Figure 3.4: A 2000 point moving average of the compression rate, in bits per dimension,
during the compression process using BB-ANS with a VAE. We compress
a concatenation of three shuffled copies of the MNIST test set.

3.4 Discussion

3.4.1 Extending BB-ANS to state-of-the-art latent variable

models

Implementing a state-of-the-art latent variable model is not the focus of this

chapter. However, we have shown that BB-ANS can compress data to sizes very

close to the negative ELBO for small-scale models. In Chapter 5 we demonstrate

BB-ANS on a large-scale model and achieve state-of-the-art lossless compression

on images from the ImageNet dataset.

Another extension of BB-ANS is to latent Gaussian state space models

such as those studied in Johnson et al. (2016), and to state space models more

generally. Very recent work (which originated from discussions during the viva

for this PhD) has shown how to do this by interleaving push/pop steps with

the time-steps in a model (Townsend and Murray, 2021).

3.4.2 Parallelization of BB-ANS

Modern machine learning models are optimized to exploit batch-parallelism

and model-parallelism and run fastest on GPU hardware. Almost all of the

computation in the BB-ANS algorithm could be executed in parallel, on GPU

2Jain et al. (2020).
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hardware, and the arithmetic operations required for ANS coding should not be

a computational bottleneck in a system which uses a deep generative model with

ANS. In Chapter 4 we give more detail on how to implement ANS on parallel

hardware, and present our own fast CPU implementation, written in NumPy

(Oliphant, 2015), based on ideas from Giesen (2014).

3.4.3 Communicating the model

A neural net based model such as a VAE may have many thousands of parameters.

Although it is not the focus of this work, the cost of communicating and storing

a model’s parameters would need to be considered when developing a system

which uses BB-ANS with a large scale model.

However, we can amortize the one-time cost of communicating the parame-

ters over the size of the data we wish to compress. If a latent variable model

could be trained such that it could model a wide class of images well, then

BB-ANS could be used in conjunction with such a model to compress a large

number of images. This makes the cost of communicating the model weights

worthwhile to reap the subsequent gains in compression. Efforts to train latent

variable models to be able to model such a wide range of images are currently of

significant interest to the machine learning community, for example on expansive

datasets such as ImageNet (Deng et al., 2009). We therefore anticipate that this

is the most fruitful direction for practical applications of BB-ANS.

We also note that there have been many recent developments in methods

to decrease the space required for neural network weights, without hampering

performance. For example, methods involving quantizing the weights to low

precision (Han et al., 2016; Ullrich et al., 2017), sometimes even down to single

bit precision (Hubara et al., 2016), are promising avenues of research that could

significantly reduce the cost of communicating and storing model weights.

3.5 Conclusion

Probabilistic modelling of data is a highly active research area within machine

learning. Given the progress within this area, it is of interest to study the

application of probabilistic models to lossless compression. Indeed, if practical

lossless compression schemes using these models can be developed then there

is the possibility of significant improvement in compression rates over existing

methods.

In this chapter we have shown the existence of a scheme, BB-ANS, which can
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be used for lossless compression using latent variable models. We demonstrated

BB-ANS by compressing the MNIST dataset, achieving compression rates

superior to generic algorithms. We have shown how to handle the issue of latent

discretization. Crucially, we were able to compress to sizes very close to the

negative ELBO for a large dataset. This is the first time this has been achieved

with a latent variable model, and suggests that state-of-the-art latent variable

models could be used in conjunction with BB-ANS to achieve significantly better

lossless compression rates than current methods. All components of BB-ANS

are readily parallelizable, and in Chapter 4, we describe a method for vectorizing

ANS, before scaling BB-ANS up to large models and full-size colour photographs

in Chapter 5.



Chapter 4

Vectorizing ANS with Craystack

To implement the prototype compression system presented in Chapter 5, we

wrote new software for performing vectorized ANS operations, using NumPy

(Oliphant, 2015). We call the software tool which we wrote ‘Craystack’, and

make it available open source at github.com/j-towns/craystack (mirrored

at doi.org/10.5281/zenodo.4707276). Tom Bird and Julius Kunze both

assisted with the implementation of Craystack; Tom also created fig. 4.3. This

chapter gives low-level detail on how ANS vectorization works, and a high-level

overview of Craystack, as well as discussion of future directions for compression

prototyping software.

We begin by describing how ANS vectorization works. The method is

based on Giesen (2014). You will need to have read Chapter 2 to understand

Section 4.1.

4.1 Vectorizing asymmetric numeral systems

We now describe a method for ‘vectorizing’ ANS, that is, generalizing the push

and pop operations and expressing them in terms of vector or ‘single-instruction-

multiple-data’ (SIMD) functions. What we give here is a high-level description,

with pseudo-code. For a full implementation, which uses NumPy, see the code

repository linked above.

4.1.1 The vectorized message data structure

The data structure for the message in vectorized ANS is identical to the data

structure described in Section 2.2.1, except that instead of a scalar s we use a

vector s = (s1, s2, . . . , sK). We refer to K as the ‘size’ of the message (not to be

confused with the message length). A diagram of a vectorized message is shown

in fig. 4.1. In our implementation we use a NumPy array to represent s.

https://github.com/j-towns/craystack
https://doi.org/10.5281/zenodo.4707276
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s

rs

0010110011010011
...

0110001001110010

K

01100010
10100011

...

11011001

rt

t

|t|

Figure 4.1: The two components of a (vectorized) message: the vector of unsigned
integers s (with rs = 16) and the stack of unsigned integers t (with rt = 8).
The integers are represented here in base 2 (binary).

4.1.2 Vectorizing the pop operation

The original (scalar) version of the pop function was defined in Section 2.2.2, as

def pop(m):

s, t := m
s′, x := d(s)
s, t := renorm(s′, t)
return (s, t), x

we needn’t alter this high level definition, but just need to look at the

functions d and renorm. The original definition of d is

def d(s):
s̄ := s mod 2r

x, c, p := fX(s̄)
s′ := p · (s÷ 2r) + s̄− c
return s′, x

This is actually trivial to vectorize, simply by replacing all scalar arithmetic

operations by their (element-wise) vector counterparts. We do not need to

change the definition in any way, as long as we use arithmetic operators which

are compatible with vector arguments. Note that our vectorized d function

applied in this way will produce a vector x = (x1, . . . , xK), and the resulting s′

will also be a vector of length K.

The scalar function renorm was defined in Section 2.2.2 as

def renorm(s, t):
while s < 2rs−rt:

t, ttop := stack_pop(t)
s := 2rt · s + ttop

return s, t

For vector s this can be generalized to

def renorm(s, t):
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for sk in s:
while sk < 2rs−rt:

t, ttop := stack_pop(t)
sk := 2rt · sk + ttop

return s, t

Implementing this function and its inverse, in NumPy, is difficult, so we

make the simplifying assumption that rs ≤ 2rt, where rs and rt are the precisions

of the unsigned integers s and t, respectively; as in Chapter 2. This assumption

has only a negligible effect on the compression rate at the precisions we typically

use (rs = 64 and rt = 32), and implies that at most one iteration of the inner

while loop will ever be required for each element, so the definition of renorm

becomes

def renorm(s, t):
for sk in s:

if sk < 2rs−rt:
t, ttop := stack_pop(t)
sk := 2rt · sk + ttop

return s, t

replacing while with if. That version of renorm is straightforward to

implement using the NumPy where function and boolean indexing.

The derivation of a vectorized push function by inverting pop is mechan-

ical, and rather than detailing it here we refer the interested reader to the

implementation in the file craystack/rans.py in the Craystack repository.

4.1.3 The length of the vectorized message

In Section 2.2.1, we defined the length of a scalar message as

l(m) := rs + rt|t| (4.1)

and the effective length as

l∗(m) := log s+ rt|t|. (4.2)

The length of the scalar message tells us how many bits are required to store

a flattened representation of that message. We could flatten a vector message

m = ((s1, . . . , sK), t), simply by concatenating the elements s1, . . . , sK and the
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elements of t, which would lead to a flattened string with length

lnäıve(m) = Krs + rt|t|. (4.3)

We can improve on this length, by approaching the question of how to flattenm as

a lossless compression problem. We split the vector s into a pair s1, (s2, . . . , sK),

and treat m′ = (s1, t) as a scalar message, and the question becomes, how best

to push the elements s2, . . . , sK onto m′? We can use ANS (a near-optimal

compressor) to do this, and then we just have to pick a distribution to use to

model s2, . . . , sK .

4.1.3.1 The Benford distribution

It has been observed empirically, by Bloom (2014), that in practical settings,

the elements sk precisely follow Benford’s law (Benford, 1938). Benford’s law

says that samples of leading digits from sets of ‘real-world’ numbers tends to

follow a distribution with mass function

PBenford(x) ∝ 1/x, (4.4)

where x is the integer formed by concatenating the r leading digits of a sampled

constant, for some fixed value of r (the normalizing constant of P is a function

of r). We refer to this as the ‘Benford distribution’. MacKay (2003) argues that

the reason that digits in physical constants must follow this distribution is that

their distribution ought not to depend on the units of measurement used, and

that the Benford distribution is the unique distribution which is invariant to

rescaling of units.

The number s can be thought of as the first rs/(rs − rt) digits of a flat

message, if the message is treated as a large integer, expressed in base rs −

rt. Since, as we have shown, message length is approximately equal to the

information content of an encoded sequence plus a constant, the fact that s is

Benford distributed is equivalent to saying that probability masses of sample

sequences tend to follow Benford’s law.

Why might this be? Similarly to MacKay (2003), we can sketch a proof by

contradiction. Consider the sequence

pn =
n∏
i=1

P (xi |x1, . . . , xi−1) (4.5)
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for a sample x1, x2, . . . , xn, . . . with mass function P . Let qn be the integer

composed of the first r non-zero digits of pn. If we assume that qn tends to a

stationary distribution as n increases, and that the stationary distribution is

positive (that is, each possible state of qn has non-zero probability), then by

definition the stationary distribution must be invariant to the scale of pn, because

for each n, qn+1 is derived from a rescaling of pn (specifically, multiplying pn by

P (xn+1 |x1, . . . , xn)).

We can approximate the normalizer for the Benford distribution over s

2rs∑
s=2rs−rt

1

s
≈
∫ 2rs

2rs−rt

1

s
(4.6)

= [rs − (rs − rt)] ln 2 (4.7)

= rt ln 2 (4.8)

and thus, using the Benford distribution to append the elements s2, . . . , sK to

the scalar message (s1, t) results in a flattened message whose length satisfies

lopt(m) ≤ rs +
K∑
k=2

log sk + (K − 1) log(rt ln 2) + rt|t|+ (K − 1)ε, (4.9)

by applying eq. (2.16) to each s2, . . . , sK .

4.1.4 The cost of vectorization

In the scalar case we were able to prove the following bound on message length,

eq. (2.21),

l(m) ≤ h(x1, . . . , xN ) +Nε+ rs. (4.10)

If we initialize a vector message to m = (sinit, tinit) where sinit :=

(2rs−rt , 2rs−rt , . . . , 2rs−rt), i.e. the minimum permissible value for each element,

then apply eq. (4.9) and eq. (2.16) to each encoding iteration element-wise, we

get an inequality which is analogous to eq. (4.10)

lopt(m) ≤ h(x1, . . . , xN ) + (K − 1) log(rt ln 2) +K(Nε+ rs − rt) + rt. (4.11)

For short messages and large K, the overhead terms (K − 1) log(rt ln 2) and

K(rs − rt) may be significant.

One approach to reducing these overheads, which we use in Chapter 5, is to

encode the first samples in a sequence using scalar ANS, then expand the size of
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the message progressively by decoding (i.e. sampling) new elements sk from the

message as it grows in length. TheK(rs−rt) overhead term from the vector initial

message disappears when we do this, and if we use the Benford distribution to

sample the sk then the (K−1) log(rt ln 2) term is cancelled out as well, meaning

we can vectorize with negligible overhead in compression rate. However, this

approach is complicated to implement, and it is unclear whether it would be

sensible to use it in practical settings given the additional complexity required.

4.1.5 The benefit of vectorization

The performance benefits of vectorization are drastic. To demonstrate this

we benchmarked the ANS encoding and decoding of ImageNet images (see

Chapter 5 for more details on the codec), using a scalar ANS implementation

vs a vectorized implementation. The results are shown in fig. 4.2, and show

that in this setting the vectorized ANS implementation was nearly three orders

of magnitude faster than the scalar implementation. This is because of loops

which occur in the Python interpreter in the scalar version being ‘pushed down’

into highly optimized NumPy kernels, implemented in C and Fortran.

32x32 64x64 128x128
size

100

101

102

103

tim
e 
(s
)

vectorized
serial

Figure 4.2: Runtime of vectorized vs. serial ANS implementations for different image
sizes. Times were computed on a desktop with 6 CPU cores.

4.2 Craystack

Having described some of the low-level details of vectorized ANS, we now

discuss some of the high-level features of the Craystack library, which aims to

make prototyping lossless compression systems with ANS straightforward and

approachable for machine learning practitioners.
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x→ p(· | z) z → p(·)

Vectorized
ANS
coder

...

Figure 4.3: Visualizing the process of pushing images and latents from a VAE to the
vectorized ANS stack with Craystack. The ANS stack head is shaped such
that images and latents can be pushed and popped in parallel, without
reshaping. Beneath the shaped top of the stack is the flat message stream
output by ANS.

4.2.1 High-level design

When writing a lossless compression system, it is essential to ensure that the

decoder function is the precise inverse of the encoder. Manually writing code

which satisfies this constraint requires care, and one of the central goals of

Craystack is to ease this burden by ensuring that this constraint is satisfied

automatically. To achieve this, Craystack provides a set of primitive codecs,

including codecs for coding data according to uniform, Bernoulli, discretized

logistic, discretized Gaussian, and categorical distributions. Each primitive

codec is comprised of a (push, pop) inverse pair. As well as the primitives, we

also provide a set of combinators for composing and nesting codecs. Examples

of high level combinators included in Craystack are a BB-ANS combinator and

a combinator for compression with an auto-regressive model.

The code for the BB-ANS combinator is shown in fig. 4.4. By using the

Craystack primitives combined with the provided combinators, users are able to

build elaborate compressors without needing to worry about the correctness of

their code.

4.2.2 Generalizing vectorized ANS

Another way in which Craystack aims for convenience is by allowing arbitrarily

shaped data arrays to be coded directly. The ‘vector’ s in the Craystack ANS

implementation is a 1D NumPy array, but we allow codecs to use arbitrary

shaped NumPy views of s, and multiple views of s can even be separated into

an arbitrary nesting of Python tuples, lists and dictionaries. Figure 4.3 shows a

visualization of this, where s is split into a pair of rectangular views.
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def BBANS(prior, likelihood, posterior):

def push(message, data):

message, latent = posterior(data).pop(message)

message = likelihood(latent).push(message, data)

message = prior.push(message, latent)

return message

def pop(message):

message, latent = prior.pop(message)

message, data = likelihood(latent).pop(message)

message = posterior(data).push(message, latent)

return message, data

return Codec(push, pop)

Figure 4.4: The BB-ANS combinator provided in Craystack. It accepts codecs for
the prior, likelihood and approximate posterior as arguments and returns
a codec which uses BB-ANS to compress data modelled with a latent
variable model.

The API for this mechanism, which is via a function called substack, only

requires the user to supply a function which creates the view from a flat vector s.

For example, codecs for the latent and observation in fig. 4.3 could be expressed

as

latent_view = lambda s: s[:latent_size].reshape(latent_shape)

obs_view = lambda s: s[latent_size:].reshape(obs_shape)

flat_latent_codec = substack(shaped_latent_codec, latent_view)

flat_obs_codec = substack(shaped_obs_codec, obs_view)

The view functions are linear, orthonormal mappings (in the sense of linear

algebra), and therefore they can be inverted using reverse mode automatic

differentiation (AD). This is because the derivative of a linear function is the

function itself; reverse mode AD computes the transpose of the derivative, and

the transpose of an orthonormal mapping is equal to the mapping’s (pseudo)

inverse. The substack function automatically computes the inverse of the view

functions using Autograd (Maclaurin et al., 2015), ensuring that the push and

pop functions produced are inverse to one-another. Methods for implementing

automatic view inversion from scratch (i.e. without exploiting an AD system),

can be found in Voigtländer (2009).

4.3 Future directions for Craystack

We broadly see two major directions for improving Craystack. The first is

to allow ANS to run on accelerators such as GPUs. One way to achieve this
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would be to port the implementation into Google’s JAX software (Bradbury

et al., 2018), which enables use of GPU and TPU backends with a NumPy-like

API. JAX also allows just-in-time compilation with automatic loop fusion,

amongst other optimizations, and implementing deep generative models in JAX

is reasonably straightforward1.

One interesting open question is whether it is possible to have a user

write a decoder (pop) function (which would be very similar to a function for

sampling from a model), and to automatically transform that function into an

encoder (push) function. Internally, JAX is based on a core system for writing

composable function transformations, with transformations such as forward and

reverse mode differentiation, auto-vectorization and just-in-time compilation

provided. More investigation is needed to find out whether this transformation

can be implemented in a practical manner, but if so it could fit well into the

existing JAX system.

1During the very recent work described in Ruan et al. (2021), we implemented a proof-
of-concept version of Craystack’s core vectorized rANS in JAX, and have run it on GPU,
though we haven’t thoroughly benchmarked it yet. The implementation is available at
github.com/j-towns/crayjax, mirrored at https://doi.org/10.5281/zenodo.4650348.

https://github.com/j-towns/crayjax
https://https://doi.org/10.5281/zenodo.4650348


Chapter 5

Scaling up bits back coding with

asymmetric numeral systems

This chapter is based on the paper ‘HiLLoC: lossless image compression with

hierarchical latent variable models’, published at ICLR 2020 (Townsend et al.,

2020). We show that the bits back with ANS method presented in Chapter 3 can

be scaled up to larger models and applied to compression of colour photographs,

achieving a state-of-the-art compression rate on full-sized images from the

ImageNet dataset (Russakovsky et al., 2015). This was a collaboration with

Tom Bird, who contributed to the ideas and wrote the paper and experiments

with me, and Julius Kunze, who mostly assisted in writing the experiments.

In order to scale up the methods in Chapter 3, we will use four novel ideas:

1. A vectorized ANS implementation supporting dynamic shape.

2. Direct coding of arbitrary sized images using a fully convolutional model.

3. Dynamic discretization of hierarchical latents.

4. Initializing the bits back chain using a different codec.

We have already discussed item 1 in detail in Chapter 4, and will discuss

items 2 to 4 in Section 5.1. We call the combination of BB-ANS using a

hierarchical latent variable model and the above techniques: ‘Hierarchical

Latent Lossless Compression’ (HiLLoC). In our experiments (Section 5.2), we

demonstrate that HiLLoC can be used to compress colour images from the

ImageNet test set at rates close to the ELBO, outperforming all of the other

codecs which we benchmark.

Note that the ‘Bit-Swap’ method, presented by F. H. Kingma et al. (2019)

has a similar aim to HiLLoC, namely scaling up the method described in
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0.0 0.2 0.4 0.6 0.8 1.0
Compression ratio

Raw data

Figure 5.1: A selection of images from the ImageNet dataset and the compression
rates achieved on the dataset by PNG, WebP, FLIF, Bit-Swap and the
HiLLoC codec (with ResNet VAE) presented in this chapter.

Chapter 3. We describe the central idea of Bit-Swap in Section 5.1.2.1, and

where relevant we compare our approach to it, describing the trade-offs where

they exist. We recommend reading at least Chapters 2 and 3 for background

before trying to understand the material in this chapter.

5.1 Scaling up BB-ANS

5.1.1 Fully convolutional models

When all of the layers in the generative and recognition networks of a VAE

are either convolutional or element-wise functions (i.e. the VAE has no densely

connected layers), then it is possible to evaluate the recognition network on

images of any height and width, and similarly to pass latents of any height and

width through the generative network to generate an image. Thus, such a VAE

can be used as a (probabilistic) model for images of any size.

We exploit this fact, and show empirically in Section 5.2 that, surprisingly,

a fully convolutional VAE trained on 32 × 32 images can perform well (in the

sense of having a high ELBO) as a model for 64 × 64 images as well as far

larger images. This, in turn, corresponds to a good compression rate, and we

implement lossless compression of arbitrary sized images by using a VAE in this

way. We would expect this result might extend to deep generative models other

than VAEs, i.e. models which use masked convolutions (Germain et al., 2015)

and flow-based models, although investigating this is outside of the scope of this

work.

5.1.2 Reducing one-time overhead

As mentioned in Section 3.1.2, if we don’t have an ‘extra message’ to com-

municate, and we wish to communicate a sequence of data points (modeled
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as independent), then we may use a method other than BB-ANS to code the

first data, until enough of a buffer has been built up to generate a latent from

Q(z |x), or we may generate a latent z for the first datapoint, using any process

we like, and encode it with the prior and posterior, accepting that we will

then be commucating redundant information at the beginning of a chain. The

overhead of starting the chain is particularly significant for hierarchical models,

because the information required to sample from Q(z |x) typically scales with

the dimensionality of z and thus with the latent depth.

In this subsection we discuss two techniques for mitigating this issue. The

first is ‘Bit-Swap’, which was presented in F. H. Kingma et al. (2019). Bit-Swap

exploits Markov chain structured latents, by interleaving latent pop and push

steps, and for models with the right structure it can reduce the overhead from

O(L) to O(1).

It may sometimes be desirable to use latents which do not have a Markov

chain structure, and for this we use an alternative, simpler method for reducing

overhead (which could also be used to further reduce the overhead when using

Bit-Swap), which is simply to use the FLIF codec, which we know to be

reasonably efficient, to code the first elements of the batch.

5.1.2.1 Bit-Swap

The Bit-Swap method (F. H. Kingma et al., 2019) assumes that the generative

model has a hierarchical structure with L latent layers, illustrated, for a model

with L = 3, in fig. 5.2. In particular it assumes that the generative joint

distribution and the approximate posterior may be expressed as

P (x, z) = P (x | z1)

[
L−1∏
l=1

P (zl | zl+1)

]
P (zL) (5.1)

Q(z |x) = Q(z1 |x)

L∏
l=2

Q(zl | zl−1). (5.2)

Given this structure, it is possible to alter the BB-ANS procedure from table 3.2,

to avoid popping the whole of z in one go. The sender can interleave steps,

popping one layer at a time and pushing whenever possible, as shown in table 5.1.

This technique reduces the initial bits overhead from O(L) to O(1), at the cost

of introducing the Markov restriction on the generative model and approximate

posterior (we discuss this further in Section 5.1.3.1).
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Variables Operation

x z1 ← Q(· |x)

x, z1 x → P (· | z1)

z1 z2 ← Q(· | z1)

z1, z2 z1 → P (· | z2)

...
...

zL−1, zL zL−1 → P (· | zL)

zL zL → P (·)

(a) Encoder

Operation Variables

zL ← P (·) zL

zL−1 ← P (· | zL) zL−1, zL

...
...

z1 ← P (· | z2) z1, z2

z2 → Q(· | z1) z1

x ← P (· | z1) x, z1

z1 → Q(· |x) x

(b) Decoder

Table 5.1: The Bit-Swap encoder and decoder procedures, in order from the top, for
a model with L layers. For the encoder, the ‘Variables’ column shows
variables known before each operation. For the decoder, that column shows
variables known after each operation.

5.1.2.2 Reducing overheads with FLIF

As will be explained in Section 5.1.3, our dynamic discretization method pre-

cludes the use of Bit-Swap for reducing the one-time cost of starting a BB-ANS

chain, and we also want to be able to use a model without Markov chain latent

structure. We propose instead to use a significantly simpler method to address

the high cost of coding a small number of samples with BB-ANS: we code the

first samples using a different codec. The purpose of this is to build up a suffi-

ciently large buffer of compressed data to permit the first stage of the BB-ANS

algorithm—to pop a latent sample from the posterior. In our experiments we

use the ‘Free Lossless Image Format’ (FLIF; Sneyers and Wuille, 2016) to build

up the buffer. We chose this codec because it was the best performing at the

time of writing, but in principal any lossless codec could be used.

The amount of previously compressed data required to pop a posterior

sample from the ANS stack (and therefore start the BB-ANS chain) is roughly

proportional to the size of the image we wish to compress, since in a fully

convolutional model the dimensionality of the latent space is determined by the

image size.

We can exploit this to obtain a better compression rate than FLIF as quickly

as possible. We do so by partitioning the first images we wish to compress with

HiLLoC into smaller patches. These patches require a smaller data buffer, and

thus we can use the superior HiLLoC coding sooner than if we attempted to

compress full images. We find experimentally that, generally, larger patches have
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a better coding rate than smaller patches. Therefore we increase the size of the

image patches being compressed with HiLLoC as more images are compressed

and the size of the data buffer grows, until we finally compress full images

directly once the buffer is sufficiently large.

For our experiments on compressing full ImageNet images, we compress

32×32 patches, then 64×64, then 128×128 before switching to coding the full

size images directly. Note that since our model can compress images of any

shape, we can compress the edge patches which will have different shape if the

patch size does not divide the image dimensions exactly. Using this technique

means that our coding rate improves gradually from the FLIF coding rate

towards the coding rate achieved by HiLLoC on full images. We compress only 5

full ImageNet images using FLIF before we are able to start compressing 32×32

patches using HiLLoC.

5.1.3 Dynamic discretization

It is standard for state of the art latent variable models to use continuous latent

variables. Since ANS operates over discrete probability distributions, if we wish

to use BB-ANS with such models it is necessary to discretize the latent space

so that latent samples can be communicated. In Section 3.2.2, we described

a static discretization scheme for the latents in a simple VAE with a single

layer of continuous latent variables, and in Section 3.3, we showed that this

discretization has a negligible impact on compression rate. The addition of

multiple layers of stochastic variables to a VAE has been shown to improve

performance (D. P. Kingma et al., 2016; Sønderby et al., 2016; Maaløe et al.,

2019; F. H. Kingma et al., 2019). Motivated by this, we propose a discretization

scheme for hierarchical VAEs with multiple layers of latent variables.

The discretization described in Section 3.2.2 is formed by dividing the latent

space into intervals of equal mass under the prior p(z). For a hierarchical model,

the prior on each layer depends on the previous layers:

p(z1:L) = p(zL)
L−1∏
l=1

p(zl | zl+1:L). (5.3)

It isn’t immediately possible to use the simple static scheme from Section 3.2.2,

since the marginals p(z1), . . . , p(zL−1) are not known. The Bit-Swap method,

described in Section 5.1.2.1, estimates these marginals by sampling, creating

static bins based on the estimates. They demonstrate that this approach can
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work well, see F. H. Kingma et al. (2019) for details. We propose an alternative

approach, allowing the discretization to vary with the context of the latents we

are trying to code. We refer to this as dynamic discretization.

In dynamic discretization, instead of discretizing with respect to the

marginals of the prior, we discretize according to the conditionals in the prior,

p(zl | zl+1:L). Specifically, for each latent layer l, we partition each dimension into

intervals which have equal probability mass under the conditional p(zl | zl+1:L).

This directly generalizes the static scheme from Section 3.2.2.

Dynamic discretization is more straightforward to implement than the

method used with Bit-Swap, because it doesn’t require calibrating the dis-

cretization to samples. However it imposes a restriction on model structure, in

particular it requires that posterior inference is done top-down. This precludes

the use of the Bit-Swap technique for reducing the size of the initial message

needed to start the bits-back chain. In Section 5.1.3.1 we contrast the model

restriction from dynamic discretization with the bottom-up, Markov restriction

imposed by Bit-Swap itself.

We give further details about the dynamic discretization implementation

which we use in Appendix B.
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Figure 5.2: Graphical models representing the generative and inference models with
HiLLoC and Bit-Swap, both using a 3 layer latent hierarchy. The dashed
lines indicate dependence on a fixed observation.

5.1.3.1 Model restrictions

The first stage of BB-ANS encoding is to pop from the posterior, z1:L ← q(· |x).

When using dynamic discretization, popping the layer zl requires knowledge of

the discretization used for zl and thus of the conditional distribution p(zl | zl+1:L).

This requires the latents zl+1:L to have already been popped. Because of this,

latents in general must be popped (sampled) in ‘top-down’ order, i.e. zL first,

then zL−1 and so on down to z1.
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The most general form of posterior for which top-down sampling is tractable

is

q(z1:L |x) = q(zL |x)

L−1∏
l=1

q(zl | zl+1:L, x). (5.4)

This is illustrated, for a hierarchy of depth 3, in fig. 5.2b. The Bit-Swap technique

(F. H. Kingma et al., 2019) requires that inference be done bottom up, and that

generative and inference models must both be a Markov chain on z1, . . . , zL,

and thus cannot use skip connections. These constraints are illustrated in

figs. 5.2c and 5.2d. Skip connections have been shown to improve the achievable

ELBO value in very deep models (Sønderby et al., 2016; Maaløe et al., 2019).

HiLLoC does not have this constraint, and we do utilize skip connections in our

experiments.

5.2 Experimental results

Using Craystack, we implement HiLLoC with a ResNet VAE (RVAE; D. P.

Kingma et al., 2016). In all experiments we used an RVAE with 24 stochastic

hidden layers. The RVAE utilizes skip connections, which are important for

effectively training models with such a deep latent hierarchy. See Appendix C

for more details.

We trained the RVAE on the ImageNet 32 training set, then evaluated the

RVAE ELBO and HiLLoC compression rate on the ImageNet 32 test set. To test

generalization, we also evaluated the ELBO and compression rate on the tests

sets of ImageNet64, CIFAR-10 and full size ImageNet. For full size ImageNet,

we used the partitioning method described in Section 5.1.2 to compress the first

images. The results are shown in Table 5.2.

For HiLLoC the compression rates are for the entire test set, except for full

ImageNet, where we use 2000 randomly selected images from the test set.

Table 5.2 shows that HiLLoC achieves competitive compression rates on all

benchmarks, and is the first deep learning based method to be evaluated on full

size ImageNet images. This significant upscaling relative to previous work was

enabled by the speedups from vectorizing ANS in Craystack. We anticipate that

flow-based and/or autoregressive models may outperform VAEs on this task

1Integer discrete flows, retrieved from Hoogeboom et al. (2019).
2Integer discrete flows trained on ImageNet 32. ImageNet 64 images are split into four

32×32 patches. Retrieved from Hoogeboom et al. (2019).
3Local bits back, retrieved from Ho et al. (2019).
4For Bit-Swap, full size ImageNet images were cropped so that their side lengths were

multiples of 32.
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Table 5.2: Compression performance of HiLLoC with RVAE compared to other codecs.
Rates measured in bits/dimension (raw data is 8 bits/dimension). For
HiLLoC we display compression rate and theoretical performance (ELBO).
All HiLLoC results are obtained from the same model, trained on ImageNet
32.

ImageNet 32 ImageNet 64 Cifar-10 ImageNet

Generic PNG 6.39 5.71 5.87 4.71
WebP 5.29 4.64 4.61 3.66
FLIF 4.52 4.19 4.19 3.37

Flow-based IDF1 4.18 3.90 3.34 -
IDF generalized2 4.18 3.94 3.60 -
LBB3 3.88 3.70 3.12 -

VAE-based Bit-Swap 4.50 - 3.82 3.514

HiLLoC 4.20 3.90 3.56 3.15
HiLLoC (ELBO) (4.18) (3.89) (3.55) (3.14)

in terms of compression rate, possibly with slower compression/decompression

times. Further work is required to investigate different model classes and

architectures.

The fact that HiLLoC with an RVAE can achieve state of the art compression

on full ImageNet relative to the baselines, even under a change of distribution,

is striking. This provides evidence of its efficacy as a general method for lossless

compression of natural images. Näıvely, one might expect a degradation of

performance relative to the original test set when changing the test distribution—

even more so when the resolution changes. However, in the settings we studied,

the opposite was true, in that the average per-pixel negative ELBO (and thus

the compressed message length) was lower on all other datasets compared to

the ImageNet 32 validation set.

In the case of CIFAR, we conjecture that the reason for this is that its

images are simpler and contain more redundancy than ImageNet. This theory

is backed up by the performance of standard compression algorithms which,

as shown in Table 5.2, also perform better on CIFAR images than they do on

ImageNet 32. We find the compression rate improvement on larger images more

surprising. We hypothesize that this is because pixels at the edge of an image

are harder to model because they have less context to reduce uncertainty. The

ratio of edge pixels to interior pixels is lower for larger images, thus we might

expect less uncertainty per pixel in a larger image.

To demonstrate the effect of vectorization we timed ANS of single images at

different, fixed, sizes, using a fully vectorized and a fully serial implementation.

The results are shown in Figure 4.2 in the previous chapter, which clearly shows
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a speed-up of nearly three orders of magnitude for all image sizes. We find that

the run times for encoding and decoding are roughly linear in the number of

pixels, and the time to compress/decompress an average sized ImageNet image

of 500× 374 pixels (with vectorized ANS) is around 30s on a desktop computer

with 6 CPU cores and a GTX 1060 GPU. Most of this time is spent on neural net

computation, highlighting the need for more computationally efficient models,

and/or more powerful hardware.

5.3 Discussion

Our experiments demonstrate HiLLoC as a bridge between large scale latent

variable models and compression. To do this we use simple variants of pre-

existing VAE models. Having shown that bits back coding is flexible enough to

compress well with large, complex models, we see plenty of work still to be done in

searching model structures (i.e. architecture search), optimizing with a trade-off

between compression rate, encode/decode time and memory usage. Particularly

pertinent for HiLLoC is latent dimensionality, since compute time and memory

usage both scale with this. Since the model must be stored/transmitted to use

HiLLoC, weight compression is also highly relevant. This is a well-established

research area in machine learning (Han et al., 2016; Ullrich et al., 2017).

Our experiments also demonstrated that one can achieve good performance

on a dataset of large images by training on smaller images. This result is

promising, but future work should be done to discover what the best training

datasets are for coding generic images. One question in particular is whether

results could be improved by training, as opposed to just evaluating, models

on larger images and/or images of varying shape and size. We leave this to

future work. Another related direction for improvement is batch compression of

images of different sizes using masking, analogous to how samples of different

length may be processed in batches by recurrent neural nets in natural language

processing applications.

Whilst this work has focused on latent variable models, there is also promise

in applying state of the art fully observed auto-regressive models to lossless

compression. We look forward to future work investigating the performance

of models such as WaveNet (van den Oord et al., 2016a) for lossless audio

compression as well as PixelCNN++ (Salimans et al., 2016) and the state of the

art models in Jun et al. (2020) for images. Sampling speed for these models, and
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thus decompression, scales with autoregressive sequence length, and can be very

slow. This could be a serious limitation, particularly in common applications

where encoding is performed once but decoding is performed many times. This

effect can be mitigated by using dynamic programming (Le Paine et al., 2016;

Ramachandran et al., 2017), and altering model architecture (Reed et al., 2017),

but on parallel architectures sampling/decompression may still be slower than

with VAE models.

On the other hand, fully observed models, as well as the flow based models

of Hoogeboom et al. (2019) and Ho et al. (2019), do not require bits back coding,

and therefore do not have to pay the one-off cost of starting a chain. Therefore

they may be well suited to situations where one or a few i.i.d. samples are to be

communicated. Similar to the way that we use FLIF to code the first images for

our experiments, one could initially code images using a fully observed model

then switch to a faster latent variable model once a stack of bits has been built

up.

5.4 Conclusion

In this chapter, we described HiLLoC, an extension of BB-ANS to hierarchical

latent variable models, and show that HiLLoC can perform well with large models.

We open-sourced our implementation, along with the Craystack package for

prototyping lossless compression. We have also explored generalization of large

VAE models, and established that fully convolutional VAEs can generalize well

to other datasets, including images of very different size to those they were

trained on. Finally, we have described a method for compressing images of

arbitrary size with HiLLoC, achieving a compression rate superior to the best

available codecs on ImageNet images.



Chapter 6

General Conclusions

The research on which this thesis is based had two aims. The first, more direct,

aim was to develop methods for lossless compression using latent variable models,

and show that they could perform well. The second was broadly to demonstrate

that lossless compression is an interesting and potentially useful application

of recently developed generative modelling techniques, and that compression

ideas can be prototyped by machine learning practitioners without too much

difficulty, particularly using ANS.

Towards the first aim, we have demonstrated that it is practically possible

to implement lossless compression using large scale latent variable models, and

in particular that compression rates very close to the model negative ELBO

can be achieved in large-scale VAEs, on full size images from the ImageNet

dataset. We have also, towards the second aim, presented what we hope is

an accessible introduction to ANS, and easy-to-use software for prototyping

ANS-based compression.

It is too early to say how significant our impact has been in shifting attention

towards lossless compression among machine learning practitioners. However,

there has already a strong response from the community: whilst we’re not aware

of any work prior to ours connecting deep generative models to ANS, since the

publication of Townsend et al. (2019) there have been at least four publications

by other machine learning researchers which use ANS and deep generative models

to demonstrate new lossless compression ideas (F. H. Kingma et al., 2019; Ho

et al., 2019; Hoogeboom et al., 2019; van den Berg et al., 2020). Perhaps more

significantly, as a result of our work, ANS and BB-ANS now form part of the

popular ‘Deep Unsupervised Learning’ course at UC Berkeley. We hope that

the ideas, experimental results and software presented in this thesis can form a

strong basis for future research applying deep learning to lossless compression.



Appendix A

Example ANS implementation

The following is a complete implementation, in pure Python, of the range variant

of asymmetric numeral systems (rANS), using the same variable names as in

Chapter 2. A cons list (implemented as a binary tuple tree) is used as the stack

data structure for t, and the methods flatten stack and unflatten stack

convert between the stack representation and a Python list. For more detail,

see github.com/j-towns/ans-notes/blob/master/rans.py.

Listing A.1: Scalar rANS core

s_prec = 64

t_prec = 32

t_mask = (1 << t_prec) - 1

s_min = 1 << s_prec - t_prec

m_init = s_min, () # Shortest possible message

def rans(model):

f, g, p_prec = model

def push(m, x):

s, t = m

c, p = g(x)

while s >= p << s_prec - p_prec:

s, t = s >> t_prec, (t, s & t_mask)

s = (s // p << p_prec) + s % p + c

return s, t

def pop(m):

s, t = m

s_bar = s & ((1 << p_prec) - 1)

x, (c, p) = f(s_bar)

s = p * (s >> p_prec) + s_bar - c

while s < s_min:

t, t_top = t

s = (s << t_prec) + t_top

return (s, t), x

return push, pop

https://github.com/j-towns/ans-notes/blob/master/rans.py
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def flatten_stack(t):

flat = []

while t:

t_top, t = t

flat.append(t_top)

return flat

def unflatten_stack(flat):

t = ()

for t_top in reversed(flat):

t = t_top, t

return t

Listing A.2: Scalar rANS example usage

import math

log = math.log2

# We encode some data using the example model from
# Chapter 2 and verify the inequality in eq . (2.19) .

# First setup the model
p_prec = 3

# Probability weights , must sum to 2 ∗∗ p prec
ps = {’a’: 1,

’b’: 2,

’c’: 3,

’d’: 2}

# Cumulative probabil it ies
cs = {’a’: 0,

’b’: 1,

’c’: 3,

’d’: 6}

# Backwards mapping
s_bar_to_x = {0: ’a’,

1: ’b’, 2: ’b’,

3: ’c’, 4: ’c’, 5: ’c’,

6: ’d’, 7: ’d’}

def f(s_bar):

x = s_bar_to_x[s_bar]

c, p = cs[x], ps[x]

return x, (c, p)

def g(x):

return cs[x], ps[x]

model = f, g, p_prec
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push, pop = rans(model)

# Some data to compress
xs = [’a’, ’b’, ’b’, ’c’, ’b’, ’c’, ’d’, ’c’, ’c’]

# Compute h(xs ) :
h = sum(map(lambda x: log(2 ** p_prec / ps[x]), xs))

print(’Information content of sequence: ’

’h(xs) = {:.2f} bits.’.format(h))

print()

# In i t i a l i z e the message
m = m_init

# Encode the data
for x in xs:

m = push(m, x)

# Verify the inequality in eq (20)
eps = log(1 / (1 - 2 ** -(s_prec - p_prec - t_prec)))

print(’eps = {:.2e}’.format(eps))

print()

s, t = m

lhs = (log(s) + t_prec * len(flatten_stack(t))

- log(s_min))

rhs = h + len(xs) * eps

print(’Eq (20) inequality, rhs - lhs == {:.2e}’

.format(rhs - lhs))

print()

# Decode the message , check that the decoded data
# matches original
xs_decoded = []

for _ in range(len(xs)):

m, x = pop(m)

xs_decoded.append(x)

xs_decoded = reversed(xs_decoded)

for x_orig, x_new in zip(xs, xs_decoded):

assert x_orig == x_new

# Check that the message has been returned to i t s
# original state
assert m == m_init

print(’Decode successful!’)



Appendix B

Reparameterizing discretized latents

in hierarchical VAEs

After discretizing the latent space, the latent variable at layer l can be treated

as simply an index il labeling the interval into which zl falls. We introduce the

following notation for pushing and popping according to a discretized version of

the posterior:

il ↔ Ql(· | il+1:L, x), (B.1)

where Ql(· | il+1:L, x) is the distribution over the intervals of the discretized latent

space for zl, with interval masses equal to their probability under q(zl | z̃l+1:L, x).

The discretization is created by splitting the latent space into equal mass

intervals under p(zl | z̃l+1:L). We use z̃ to denote the centred values that can be

reconstructed from the indices il. To be precise, z̃l(il) is set to the median value

within the interval indexed by il, under the prior. Note that Ql has an implicit

dependence on the previous prior distributions p(zk|zk+1:L) for k ≥ l, as these

prior distributions are required to calculate z̃l+1:L and the discretization of the

latent space. Also note that interval construction is implicit—we never have to

do any computation over the set of all intervals, or store that set in memory,

everything we need is computed efficiently only when required.

Since we discretize each latent layer into intervals of equal mass under the

prior, the prior distribution over the indices il reduces to a uniform distribution

over the interval indices, U(il), which is not dependent on i6=l. This allows us to

push/pop the il according to the prior in parallel. The full encoding and decoding

procedures for a hierarchical latent model with the dynamic discretization are

shown in Table B.1. Note that the operations in the two tables are ordered top

to bottom.
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Variables Operation

x iL ← QL(· |x)

x, iL iL−1 ← QL−1(· | iL, x)

...
...

x, i2:L i1 ← Q1(· | i2:L, x)

x, i1:L x → p(· | z̃1:L(i1:L))

i1:L i1:L → U(·)
(a) Encoding

Operation Variables

i1:L ← U(·) i1:L

x ← p(· | z̃1:L(i1:L)) x, i1:L

i1 → Q1(· | i2:L, x) x, i2:L

i2 → Q2(· | i3:L, x) x, i3:L

...
...

iL → QL(· |x) x

(b) Decoding

Table B.1: The BB-ANS encoding and decoding operations, in order from the top, for
a hierarchical latent model with L layers. The Ql are posterior distributions
over the indices il of the discretized latent space for the lth latent, zl. The
discretization for the lth latent is created such that the intervals have
equal mass under the prior.



Appendix C

The ResNet VAE architecture

A full description of the RVAE architecture is given in D. P. Kingma et al. (2016),

and a full implementation can be found in our repository https://github.com/

hilloc-submission/hilloc, but we give a short description below.

The RVAE is a hierarchical latent variable model, trained by maximization

of the usual evidence lower bound (ELBO) on the log-likelihood:

log p(x) ≥ Eq(z |x)

[
log

b(x, z)

q(z |x)

]
. (C.1)

We use L to denote the depth of the latent hierarchy, and label the latent

layers z1:L. There are skip connections in both the generative model, p(x, z1:L),

and the inference model, q(z1:L |x). Due to our requirement of using dynamic

discretization, we use a top-down inference model 1. This means that we can

factorize p and q

p(x, z1:L) = p(x | z1:L)p(zL)

L−1∏
l=1

p(zl | zl+1:L) (C.2)

q(z1:L |x) = q(zL |x)

L−1∏
l=1

q(zl | zl+1:L, x) (C.3)

and express the ELBO as

log p(x) ≥ Eq(z1:L |x) [log p(x | z1:L)]−DKL(q(zL |x) ‖ p(zL)) (C.4)

−
L−1∑
l=1

Eq(zl+1:L |x) [DKL(q(zl | zl+1:L, x) ‖ p(zl | zl+1:L))] . (C.5)

Where DKL is the KL divergence. As in D. P. Kingma et al. (2016), the KL

divergence terms are individually clamped by max(DKL, λ), where λ is some

1Note that in D. P. Kingma et al., 2016, this is referred to as ‘bidirectional inference’.

https://github.com/hilloc-submission/hilloc
https://github.com/hilloc-submission/hilloc
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constant. This is an optimization technique known as free bits, and aims to

prevent latent layers in the hierarchy collapsing to the prior.

Each layer in the hierarchy consists of a ResNet block with two sets of

activations. One set of activations are calculated bottom-up (in the direction of

x to zL), and the other are calculated top-down. The bottom-up activations

are used only within q(z1:L |x), whereas the top-down activations are used by

both q(z1:L |x) and p(x, z1:L). Every conditional distribution on a latent zl is

parameterized as a diagonal Gaussian distribution, with mean and covariance

a function of the activations within the ResNet block, and the conditional

distribution on x is parameterized by a discretized logistic distribution. Given

activations for previous ResNet blocks, the activations at the following ResNet

block are a combination of stochastic and deterministic features of the previous

latent layer, as well as from skip connections directly passing the previous

activations. The features are calculated by convolutions.

Note also that all latent layers are the same shape. Since we retained the

default hyperparameters from the original implementation, each latent layer has

32 channels and spatial dimensions half those of the input (e.g. h
2 ×

w
2 for input

of shape h× w).
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van den Oord, Aäron, Dieleman, Sander, Zen, Heiga, Simonyan, Karen, Vinyals,

Oriol, Graves, Alex, Kalchbrenner, Nal, Senior, Andrew, and Kavukcuoglu,

Koray (2016a). WaveNet: A Generative Model for Raw Audio. arXiv: 1609.

03499.
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