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Abstract

There is a persisting interest in methods that reduce bias in the estimation of paramet-
ric models. There is already a wide range of methods that achieve that goal, with a
few of them also delivering beneficial side effects. For example, the bias-reducing ad-
justed scores approach of Firth (1993) has been shown to always deliver finite estimates
in models like logistic regression even when the maximum likelihood (ML) estimator
takes infinite values. Other proposals (e.g. reduced-bias M estimation in Kosmidis and
Lunardon (2020), and indirect inference of Kuk (1995)) have been shown to be able to re-
duce estimation bias even in cases where the model is partially specified, such as for gen-
eral M-estimators. In this thesis, we examine the applicability, evaluate the performance
and compare a range of bias reduction methods such as the bias-reducing adjusted score
equations of Firth (1993), indirect inference and reduced-bias M estimation, in terms of
their impact on estimation and inference, in well-used model classes in econometrics and
statistics, which are beyond the various standard models that bias reduction methods have
been used for before. In particular, we study the Heckit regression model which handles
non-randomly selected samples where the observed range of the dependent variable is
censored, i.e. it is only partially known whether it is above or below a fixed threshold.
We also examine accelerated failure time models which are parametric survival models
for censored lifetime observations. Finally, we consider two stratified models (see, Sar-
tori, 2003) where interest lies in the estimation of a parameter in the presence of a set
of nuisance parameters, whose dimension increases with the number of strata. The main
challenge with these models is that even basic requirements, like consistency of the ML
estimator, are not necessarily satisfied (see, Neyman and Scott, 1948). We focus on bino-
mial matched pairs where the ML estimate of the parameter of interest may be infinite due
to data separation. We propose a penalised version of the log-likelihood function based
on adjusted responses which always results in a finite estimator of the log odds ratio.
The probability limit of the penalised adjusted log-likelihood estimator is derived and it
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is shown that in certain settings the ML, conditional and modified profile log-likelihood
estimators drop out as special cases of the former estimator. It is found that for the mod-
els of censored data, Firth adjustments are not available in closed form whereas indirect
inference and reduced-bias M estimation are applicable and are an improvement over
traditional ML estimation.
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Impact Statement

In this thesis we explore the problem of reducing the bias in the estimation of some non-
standard models such as the Heckit model for non-randomly selected samples and the
Weibull accelerated failure time model for censored lifetimes. The bias of the maximum
likelihood estimator may be considerable for small samples and consequently impact the
performance of inferences. The popular approach of bias-reducing adjusted scores of
Firth (1993) is not always applicable and it involves cumbersome computations, while
the method of reduced-bias M estimation of Kosmidis and Lunardon (2020) is simpler to
implement and has wider applicability.

More specifically, we found that while the method of Firth (1993) is difficult to apply
in the Heckit and Weibull accelerated failure time models, the reduced-bias M estimation
method was easily implemented and effective in reducing the small sample bias of the ML
estimator. This opens the door to further research on general Tobit and accelerated failure
time models where the method of Kosmidis and Lunardon (2020) is applicable and has
the potential of significant bias reduction.

The Heckit (Tobit II) model and Tobit models in general are broadly used in many
fields for modelling censored and sample selected data. For instance, in economics Tobit
models are used to analyse the relationship between household expenditure on durable
goods and household incomes. In political sciences Tobit models can be used to investi-
gate the role of various factors in European Union project selection fund receipt. Social
scientists have also used these models to research on the effectiveness of attending one
kind of school rather than another. On the other hand, accelerated failure time models
are frequently encountered when modelling failure time data. For example, in biomedi-
cal and clinical studies these models are used to assess the efficacy and safety of a new
chemotherapy in treatment of some advanced cancer. In engineering and reliability stud-
ies, accelerated failure time models are used to obtain information on the endurance of
machine components subjected to life tests.
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Other non-standard models that we consider are ones for stratified observations such
as the binomial matched pairs model used in matched case-control studies, which are
popular in biostatistics and epidemiology. The estimation of a parameter of interest in the
presence of high-dimensional nuisance parameters is generally challenging because even
the standard ML estimator is biased and inconsistent. Even though the methods of Firth
(1993) and Kosmidis and Lunardon (2020) are applicable to the binomial matched pairs
model, the former may be harder to apply in other stratified models. There is much scope
to extend the framework of reduced-bias M estimation to stratified settings, and therefore
potentially yield estimates with smaller bias.
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Chapter 1

Introduction

1.1 Bias reduction methods

The reduction of estimation bias in parametric statistical models has received consider-
able attention in the literature because misleading inferences may arise if the magnitude
of the bias is large. Under the usual regularity conditions (see, Pace and Salvan, 1997,
Section 3.4, pg. 89), the well known maximum likelihood (ML) estimator possesses op-
timal properties. In particular, it is consistent and asymptotically unbiased with a leading
term in its bias expansion of order O(n−1). However, for small sample sizes the first-order
bias term of the ML estimator could be large enough to significantly impact the perfor-
mance of inferential procedures. Several methods have been suggested in the literature
for the removal of the O(n−1) term of the ML estimator in regular parametric statistical
models. Kosmidis (2014) identifies all known methods to reduce the bias of any suitably
defined estimator, θ̂ , not necessarily the ML estimator, as explicit or implicit attempts to
approximate the solution of the equation

θ̃ = θ̂ −B
θ̂
(θ), (1.1)

with respect to a new estimator θ̃ , where B
θ̂
(θ) = Eθ (θ̂ −θ) is the bias function.

The explicit methods, i.e. those that solve the equation θ̃ = θ̂ −B
θ̂
(θ̂) are based on

a two step calculation where the bias term is first approximated, analytically or through
simulation, then evaluated at θ̂ , and then it is subtracted from the initial estimates. For
example, when the initial estimator is the ML, the asymptotic bias correction approach
approximates the bias function B

θ̂
(θ) by the first term in the asymptotic expansion of
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B
θ̂
(θ) in decreasing powers of n, then evaluates it at the ML estimates. Efron (1975)

showed that the resulting estimator θ̃ has bias of asymptotic order O(n−2) which is of
smaller order than the O(n−1) bias of the ML estimator. Obtaining analytical expressions
for the first-order bias term of the ML estimator has been extensively studied in the litera-
ture, examples include Cox and Snell (1968) who derive an expression for the first-order
bias term of the ML estimator in general parametric models and Schaefer (1983) who cal-
culated the first-order bias terms for logistic regressions. The general matrix form of the
first-order bias term of the ML estimator is given in Kosmidis and Firth (2010). Never-
theless, the asymptotic bias correction method cannot be applied when the ML estimates
are infinite, which is common with models for categorical data, such as logistic regres-
sion models and models for censored lifetime data (Heinze and Schemper, 2002; Lin and
Kim, 2020). Other popular methods for the approximation of the bias function of the ML
estimator are through the jackknife and the bootstrap schemes (Quenouille, 1956; Efron
and Tibshirani, 1993). These methods, however, can become computationally expensive
if the ML estimator is not in closed form and inherit any of its pathologies such as that of
infinite estimates.

An alternative family of estimators in regular parametric models was developed in
Firth (1993) were the first-order bias term is removed from the asymptotic bias of the ML
estimator by solving a set of adjusted score equations. This method has the advantage of
not requiring the value of the ML estimate itself and thus it can still be applied even when
the ML estimates are infinite. Firth (1993) considered the case of exponential families
with canonical parametrisation, amongst others, and showed that for such models, the
method is equivalent to maximising a penalised likelihood where the penalty function is
the Jeffreys invariant prior. However, the asymptotic bias correction approach and the
method of Firth (1993) have the disadvantage that they can only be applied if the first
term in the asymptotic expansion of the bias function, B

θ̂
(θ), of the ML estimator and

other quantities such as the Fisher information matrix are available in closed form, a task
which is difficult for many models.

Indirect inference (Guerrier et al., 2019) is an alternative, simulation-based procedure,
that can be used for bias reduction of the ML estimator and of other estimators. Its sim-
plest version proceeds similarly to the asymptotic bias correction except that we subtract
from the ML estimator its full bias, instead of its first order bias term, and evaluate it
at the new estimator θ̃ which therefore becomes the solution of an implicit equation. In
other words, the indirect inference estimator, θ̃ , solves the equation θ̃ = θ̂ −B

θ̂
(θ̃). The
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advantage of indirect inference over asymptotic bias correction is that it can be applied
even if the bias of the ML estimator is not available in closed form, thus in principle it
can be applied to any parametric model. For example, Kuk (1995) describes a simulation-
based approach of implementing an iterative bias correction of the best linear unbiased
prediction (BLUP) estimator, or any conveniently defined estimator, in generalised linear
models with random effects, to yield estimates that are asymptotically unbiased and con-
sistent. Of course indirect inference inherits the disadvantages of explicit methods such
as asymptotic bias correction, jackknife and the bootstrap because it explicitly depends
on the original estimator and it can be computationally expensive to calculate.

As can be seen from the above review, each method of bias reduction has its own ad-
vantages and disadvantages and there is no one method that produces better results than
others. Nevertheless, all methods differ in terms of applicability and requirements for
their computation. Kosmidis and Lunardon (2020) give an excellent classification of key
bias reduction methods in the literature (Kosmidis and Lunardon, 2020, Table 1) in terms
of the level of model specification, the way the methods approximate the bias, the type
of the method according to the classification in Kosmidis (2014) and on the method’s re-
quirements in terms of computation of expectations, differentiation and access to the orig-
inal estimator. Moreover, Kosmidis and Lunardon (2020) develop a novel method for the
reduction of the asymptotic bias of M-estimators from general, unbiased estimating func-
tions and call the new estimation method Reduced Bias M-estimation (RBM-estimation).
Their method results in estimators with bias of lower asymptotic order than the original
M-estimators and relies on empirical additive adjustments that depend only on the first
two derivatives of the contributions to the unbiased estimating functions. Unlike the bias
reducing adjusted scores approach in Firth (1993), the empirical adjustments do not re-
quire the computation of cumbersome expectations nor do they require the, potentially
expensive, calculation of M-estimates from simulated samples, as is the case with sim-
ulation based bias reduction methods. In particular, RBM-estimation applies to models
that are at least partially specified, does not rely on the original estimator θ̂ and uses an
analytical approximation to the bias function B

θ̂
(θ) that relies only on derivatives of the

contributions to the estimating functions, a task which nowadays requires increasingly
less analytical effort because of the availability of comprehensive automatic differentia-
tion routines in popular computing environments. When the estimating functions are the
components of the gradient of an objective function, as is the case in maximum likelihood
estimation where the objective function is the log-likelihood, Kosmidis and Lunardon
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(2020) show that bias reduction can always be achieved by the maximisation of an ap-
propriately penalised version of the objective, unlike the method in Firth (1993) which
does not always have a penalised likelihood interpretation. Moreover, they show that the
RBM-estimators have the same asymptotic distribution and efficiency properties as the
original M-estimators.

1.2 Stratified models

A challenging modelling setting is that of independent stratified observations (Sartori,
2003), with density or probability mass function

fi(yi j;ψ,λi),

where i = 1, . . . ,q and j = 1, . . . ,mi. The sample size is n = ∑
q
i=1 mi and the unknown

parameter is θ = (ψᵀ,λ )ᵀ where ψ is a p-dimensional parameter of interest and the
nuisance parameter λ = (λ1, . . . ,λq)

ᵀ has dimension q, with one parameter per stratum.
We are interested in likelihood inference procedures for ψ when both the number of strata,
q, and the stratum sample sizes, mi, are allowed to increase to infinity. The log-likelihod
function for θ based on independent observations y11, . . . ,y1m1, . . . ,yq1, . . . ,yqmq is

l(θ) =
q

∑
i=1

mi

∑
j=1

ln fi(yi j;ψ,λi) =
q

∑
i=1

li(ψ,λi).

The presence of a substantial number of nuisance parameters becomes a common ob-
stacle that statisticians encounter in the theory of inference and estimation because, in
general, the ML estimator does not yield consistent point estimates of ψ as the dimension
of the nuisance parameter becomes large relative to the stratum sample size (for exam-
ples, see Neyman and Scott, 1948, who refer to ψ and λ as the structural and incidental
parameters, respectively). This is known as the incidental parameter problem.

A way for eliminating nuisance parameters in estimation is to introduce the profile log-
likelihood which is obtained by replacing the nuisance parameters in the log-likelihood
with their ML estimates for a fixed value of the parameter of interest. The expected
value of the profile score however is not zero in general, and estimates generated from
the profile log-likelihood may be biased and inconsistent. See Example 1 of McCullagh
and Tibshirani (1990) on the many normal means model where n pairs of independent
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normal random variables are observed and the variance σ2 is of interest while the means
are nuisance. In this case the estimator of the variance generated from the profile log-
likelihood is inconsistent. A score function that has zero expectation and whose variance
equals the negative of its expected derivative matrix is said to be unbiased and information
unbiased, respectively (Lindsay, 1982). According to this terminology, it is well known
that the gradient of the log-likelihood function is both unbiased and information unbiased
(see for example, Silvey, 1970, Chapter 2, pg. 36 and 40, for a proof). On the other
hand, it can be shown that, in general, the score function computed from the profile log-
likelihood is neither unbiased nor information unbiased (McCullagh and Tibshirani, 1990,
Remark 2).

Since in problems with large numbers of nuisance parameters the profile log-likelihood
is known to give inconsistent estimates, an alternative route is to work with modified pro-
file log-likelihoods of the form lM(ψ) = lp(ψ)+M(ψ), where lp(ψ) is the profile log-
likelihood. Some examples of modified log-likelihood functions include the approximate
conditional profile log-likelihood of Cox and Reid (1987), which requires orthogonality of
the parameter of interest and the nuisance parameter, the modified profile log-likelihood
of Barndorff-Nielson (1983) whose computation requires a sample space derivative and
the adjusted profile log-likelihood of McCullagh and Tibshirani (1990), which is a simple
adjustment of the profile log-likelihood so as to make it both asymptotically unbiased and
information unbiased. The approximate conditional and modified profile log-likelihood
functions are often simple to compute for exponential and composite group families and
only involve the observed information matrix for the components of the nuisance param-
eter which is readily available from direct differentiation (Pace and Salvan, 1997, §4.7).
On the other hand, the adjusted profile log-likelihood involves expectations which can be
cumbersome to evaluate even for exponential family models. It has been shown through
many examples that when the profile likelihood performs poorly, modified profile likeli-
hoods can perform much better. For example, McCullagh and Tibshirani (1990) show that
in the many normal means problem described above, the estimator of the variance derived
from the profile likelihood is biased and inconsistent, while the same estimator derived
from each of the approximate conditional, modified and adjusted profile likelihoods is
unbiased and consistent. Lunardon (2018) showed that the bias reduction approach of
Firth (1993) provides an inferential framework which is, from an asymptotic perspec-
tive, equivalent to that for modified profile log-likelihoods when dealing with nuisance
parameters. The advantage of bias reduction of Firth (1993) over modified profile log-
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likelihoods is that it can handle the problem of monotone likelihoods for stratified models
with categorical responses. Nevertheless, the approach of Firth (1993) is not in general
invariant under interest-respecting reparameterizations.

In this thesis, we propose a general simulation-based algorithm for indirect inference,
motivated by that in Kuk (1995), which we adapt to nuisance parameter settings. In theory
this method could be applied to reduce the bias of any suitably defined initial estimator of
the parameter of interest in the presence of a set of nuisance parameters.

1.3 Outline

The recent framework for bias reduction (Kosmidis and Lunardon, 2020) motivates its
application to non-standard models, such as those for censored observations, and its com-
parison to other well known methods in terms of reducing estimation bias especially in
small sample sizes.

The current thesis is organised in the following way. In Chapter 2, we set up some
notation and likelihood related quantities and we give a brief description of the various
modifications of the likelihood function that have been proposed in the literature for im-
proving estimation in stratified settings in the presence of nuisance parameters. We also
review some of the explicit and implicit methods of bias reduction as in Kosmidis (2014),
including the asymptotic bias correction, indirect inference and the bias-reducing adjusted
score equations of Firth (1993). We describe the simulation-based algorithm for indirect
inference, motivated by that in Kuk (1995), for nuisance parameter settings. We also de-
scribe the novel method of reduced-bias M estimation of Kosmidis and Lunardon (2020)
which has wider applicability than previously proposed bias reduction methods.

In Chapter 3 we study the Heckit (Tobit II) model and review current methods for
the estimation of its parameters. This model is non-standard because it is used to model
non-randomly selected samples. For example, one observes market wage offers but has
access to wage observations for only those who work. Since people who work are selected
non-randomly from the population, estimating the effect of working on wages from the
subpopulation who work may introduce sample selection bias because the wages of work-
ers do not, in general, afford a reliable estimate of what non workers would have earned
had they worked. The most common methods of estimation for this model in the literature
are maximum likelihood and the Heckman two-step correction method (Heckman, 1976,
1979). We implement the methods of indirect inference and reduced-bias M estimation of
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Kosmidis and Lunardon (2020) to this model and compare their performance in terms of
bias reduction with ML estimation and the Heckman two-step method through simulation
studies.

Chapter 4 focuses on the accelerated failure time model with the Weibull distribution
when the lifetimes are right censored. We extend the indirect inference and empirical
bias reducing adjustments method of Kosmidis and Lunardon (2020) to this model and
compare their performance, through simulations, to ML estimation in terms of their fre-
quentist properties.

In Chapter 5 we consider two stratified models, namely the matched gamma pairs
model and the binomial matched pairs model. For the matched gamma pairs model, we
review the profile, approximate conditional profile and modified profile log-likelihood
methods of estimation of the parameter of interest which all yield biased and inconsistent
estimates. We derive the adjusted profile log-likelihood and show that it yields an unbi-
ased and consistent estimator of the parameter of interest which coincides with the esti-
mator derived from indirect inference. For the binomial matched pairs model we review
current methods of point estimation of the log odds ratio. These include the conditional
and modified profile log-likelihoods (Barndorff-Nielson, 1983) and the bias reducing ad-
justed scores approach of Firth (1993). The former two methods however are known to
inherit the problem of infinite estimates of the parameter of interest. We propose a pe-
nalised version of the log-likelihood function based on adjusted responses which always
results in a finite estimator of the log odds ratio. The probability limit of the adjusted log-
likelihood estimator is derived and it is shown that in certain settings the ML, conditional
and modified profile log-likellihood estimators drop out as special cases of the former.
We implement indirect inference to the adjusted log-likeihood estimator. The method of
Firth (1993) also prevents infinite estimates of the log odds ratio and we compare its per-
formance with our proposed adjustment of the log-likelihood, indirect inference and the
current methods above through a complete enumeration study as in Lunardon (2018).

Finally, a summary of the main results and concluding remarks are given in Chapter 6,
and we give some suggestions for further work in the area.

Appendices A and B include the algebraic derivations of several results presented in
the main text.
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Chapter 2

Likelihood modifications and bias
reduction methods

2.1 Modifications of the likelihood function

In this section we define important likelihood-related quantities as in Pace and Salvan
(1997, Chapter 1, §1.4.2) and we give a brief description of the class of linear exponential
family models. We consider statistical models where the parameter space is partitioned
into a parameter of interest and nuisance parameters. The more complex the structure
of the nuisance parameters, the more attractive the possibility of basing inference on a
likelihood function which only depends on the parameter of interest, thus eliminating the
nuisance parameters altogether. This can be achieved by introducing pseudo-likelihoods
which refer to any function of the data which depends only on the parameter of inter-
est and which behaves, in some respects, as if it were a genuine likelihood (i.e. score
with zero null expectation etc). We review some of the notions of pseudo-likelihoods
such as the approximate conditional, modified and adjusted profile log-likelihoods as in
Cox and Reid (1987), Barndorff-Nielson (1983) and McCullagh and Tibshirani (1990),
respectively.

2.1.1 Likelihood and related quantities

Suppose that Y = (Y ᵀ
1 ,Y

ᵀ
2 , . . . ,Y

ᵀ
n )

ᵀ is a random n sample of independent d-vectors where
each Yi is distributed with density function fY (y,θ),y ∈ Y ⊆ Rd , depending on a vector
parameter θ = (θ1, . . . ,θp)

ᵀ ∈Θ⊆Rp. Suppose that the parameter θ can be partitioned as
θ = (ψᵀ,λᵀ)ᵀ where ψ = (ψ1, . . . ,ψr)

ᵀ is the parameter of interest and λ = (λ1, . . . ,λs)
ᵀ
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is the nuisance parameter.
The likelihood and log-likelihood functions are defined, respectively, by

L(θ) = L(ψ,λ ) =
n

∏
i=1

fYi(yi,θ) ,

l(θ) = l(ψ,λ ) = lnL(θ) =
n

∑
i=1

ln fYi(yi,θ) .

Let the partial derivatives of the log-likelihood function be

lr = lr(θ) =
∂ l(θ)
∂θr

,

lrs = lrs(θ) =
∂ 2l(θ)
∂θr∂θs

,

etc. These derivatives are called likelihood quantities because they are obtained from the
likelihood function.

The score function is defined as S(θ) = ∇θ l(θ) = (l1, . . . , lp)
ᵀ, where ∇θ denotes the

gradient of l(θ) with respect to θ .
The observed information matrix, j(θ), is

j = j(θ) =−∇θ ∇
ᵀ
θ

l(θ) =


−l11 · · · −l1p

... . . . ...
−lp1 · · · −lpp

 .

Furthermore, the expected information or Fisher information matrix is

i = i(θ) = Eθ{ j(θ)} .

2.1.2 Exact conditional likelihood

Let u be a statistic such that the factorisation

fY (y;ψ,λ ) = fU(u;ψ,λ ) fY |U=u(y;u,ψ) (2.1)

holds. In other words, U is partially sufficient for λ . Provided that the likelihood factor
which corresponds to fU(.) can be neglected, inference about ψ can be based on the
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conditional model with density fY |U(.). The corresponding likelihood function

Lc(ψ) = Lc(ψ;y|u) = fY |U=u(y;u,ψ) (2.2)

is called the conditional likelihood based on conditioning on U = u.

2.1.3 Profile likelihood

Constructing conditional likelihoods is only possible when partially sufficient statistics
are available for the nuisance parameter. Thus factorisations such as (2.1) are not always
possible and arise, for example, in exponential and group families. An alternative in such
cases is the profile likelihood.

The overall maximum likelihood (ML) estimator of θ is denoted by θ̂ = (ψ̂, λ̂ ) and is
defined by θ̂ = argmax

ψ,λ
l(ψ,λ ). The ML estimator can be obtained by the solution of the

score equations S(θ) = ∇θ l(θ) = 0.
Let λ̂ψ denote the constrained maximum likelihood estimate of λ for a fixed value of

ψ and ψ̂λ denote the constrained maximum likelihood estimate of ψ for a fixed value of
λ .

The profile log-likelihood function for ψ is defined by

lp(ψ) = max
λ

l(ψ,λ ) = l(ψ, λ̂ψ) .

The constrained ML estimator of λ for fixed ψ is defined by λ̂ψ = argmax
λ

l(ψ,λ ), i.e.

is the solution in λ of ∂ l(ψ,λ )/∂λ = 0, while the overall ML estimator of ψ is defined
by ψ̂ = argmax

ψ
lp(ψ), i.e. is the solution in ψ of ∂ lp(ψ)/∂ψ = 0. Therefore, the overall

ML estimator of λ is given by λ̂ = λ̂ψ̂ .

2.1.4 Approximate conditional profile likelihood

Various modifications, have been proposed in the literature, aiming to improve profile
likelihoods, in the sense that the expectation of the profile score is non zero, so estimation
of the parameter of interest using profile likelihoods yields biased and inconsistent esti-
mates, when the number of nuisance parameters grows relative to the stratum sample size.
These modifications include the approximate conditional profile likelihood, the modified
profile likelihood and the adjusted profile likelihood.
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According to Cox and Reid (1987), the approximate conditional profile log-likelihood

function for ψ in the case of a single parameter of interest (r = 1) is defined by

lcp(ψ) = l(ψ, λ̂ψ)−
1
2

ln{det jλλ (ψ, λ̂ψ)} (2.3)

where jλλ (ψ, λ̂ψ) is the observed information per observation for the λ components and
is given in terms of the negative of the second derivative of the log-likelihood function
with respect to λ as

jλλ (ψ,λ ) =−∂ 2l(ψ,λ )

∂λ∂λᵀ =−



∂ 2l(ψ,λ )

∂λ 2
1

∂ 2l(ψ,λ )
∂λ1∂λ2

· · · ∂ 2l(ψ,λ )
∂λ1∂λs

∂ 2l(ψ,λ )
∂λ2∂λ1

∂ 2l(ψ,λ )

∂λ 2
2

· · · ∂ 2l(ψ,λ )
∂λ2∂λs

...
... . . . ...

∂ 2l(ψ,λ )
∂λs∂λ1

∂ 2l(ψ,λ )
∂λs∂λ2

· · · ∂ 2l(ψ,λ )
∂λ 2

s


.

The properties of lcp(ψ) requires an orthogonal parametrization of ψ and λ , i.e.
E(−∂ 2l(ψ,λ )/∂ψ∂λ j) = 0 for j = 1,2, . . . ,s. This is because the approximate condi-
tional profile log-likelihood is an approximation to a likelihood with separable parame-
ters.

Note that if we have a single nuisance parameter then the observed information per
observation for λ is a scalar and is given by

jλλ (ψ,λ ) =−d2l(ψ,λ )

dλ 2 .

2.1.5 Modified profile likelihood

The modified profile log-likelihood can be though of as a correction for non-orthogonality
by adding a penalty term to the approximate conditional profile log-likelihood function.

According to Barndorff-Nielson (1983), the modified profile log-likelihood function
for ψ in the case of a single parameter of interest is defined by

lmp(ψ) = l(ψ, λ̂ψ)−
1
2

ln{det jλλ (ψ, λ̂ψ)}+ ln{det(dλ̂/dλ̂ψ)} (2.4)
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where dλ̂/dλ̂ψ is the matrix of partial derivatives of λ̂ with respect to λ̂ψ , called the
sample space derivative, i.e.

dλ̂

dλ̂ψ

=
∂ λ̂

∂ λ̂
ᵀ
ψ

=



∂ λ̂1
∂ λ̂1,ψ

∂ λ̂1
∂ λ̂2,ψ

· · · ∂ λ̂1
∂ λ̂s,ψ

...
... . . . ...

∂ λ̂s
∂ λ̂1,ψ

∂ λ̂s
∂ λ̂2,ψ

· · · ∂ λ̂s
∂ λ̂s,ψ


.

Note that if we have a single nuisance parameter then the sample space derivative
becomes a scalar. Furthermore, if λ̂ = λ̂ψ then the matrix dλ̂/dλ̂ψ becomes the iden-
tity matrix and hence lmp(ψ) = lcp(ψ). Moreover, the above definition does not require
orthogonality of ψ and λ .

An alternative and often more convenient expression for (2.4) can be derived as follows
(Severini, 2000, Section 9.3): Suppose that the log-likelihood function can be written in
terms of the overall ML estimates ψ̂ and λ̂ and an ancillary statistic a, as l(ψ,λ ; ψ̂, λ̂ ,a),
then by the definition of λ̂ψ we know that

∂ l(ψ,λ ; ψ̂, λ̂ ,a)
∂λ

∣∣∣∣
λ=λ̂ψ

= 0 ,

and so differentiating the above with respect to λ̂ , using the multivariate chain rule for
composite functions, yields

∂ λ̂
ᵀ
ψ

∂ λ̂

∂ 2l(ψ,λ ; ψ̂, λ̂ ,a)

∂ λ̂
ᵀ
ψ∂λ

∣∣∣∣
λ=λ̂ψ

+
∂ λ̂

∂ λ̂

∂ 2l(ψ,λ ; ψ̂, λ̂ ,a)

∂ λ̂ᵀ∂λ

∣∣∣∣
λ=λ̂ψ

= 0 .

Rearranging the above and taking the determinant we get

det
(

∂ λ̂
ᵀ
ψ

∂ λ̂

)
= det

(
∂ 2l(ψ,λ )

∂ λ̂ᵀ∂λ

∣∣∣∣
λ=λ̂ψ

)[
det
(
− ∂ 2l(ψ,λ )

∂ λ̂
ᵀ
ψ∂λ

∣∣∣∣
λ=λ̂ψ

)]−1

= det
(

∂ 2l(ψ,λ )

∂ λ̂ᵀ∂λ

∣∣∣∣
λ=λ̂ψ

)[
det
(
− ∂ 2l(ψ,λ )

∂λᵀ∂λ

∣∣∣∣
λ=λ̂ψ

)]−1

= det
(

∂ 2l(ψ,λ )

∂ λ̂ᵀ∂λ

∣∣∣∣
λ=λ̂ψ

)
[det jλλ (ψ, λ̂ψ)]

−1 , (2.5)
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where we have suppressed the dependence of the log-likelihood function on the ML esti-
mates and the ancillary parameter, and where the second equality follows since differenti-
ating the log-likelihood with respect to λ , substituting λ = λ̂ψ , then differentiating again
with respect to λ̂ψ , is the same as differentiating the log-likelihood twice with respect to
λ then substituting λ = λ̂ψ .

The modified profile log-likelihood function may therefore be written as

lmp(ψ) = l(ψ, λ̂ψ)+
1
2

ln{det jλλ (ψ, λ̂ψ)}− ln
{

det
(

∂ 2l(ψ, λ̂ψ)

∂ λ̂ᵀ∂λ

)}
. (2.6)

Since the log-likelihood is a function of sufficient statistics s and the parameter θ , it is
well known that if the dimension of s and θ are equal, the ML estimator θ̂ is usually a
one-to-one function of s and then θ̂ = (ψ̂, λ̂ ) is also sufficient. We can then write the log-
likelihood as l(θ ; ψ̂, λ̂ ). If however, the maximum likelihood estimator is not sufficient
then an ancillary statistic a is needed such that (θ̂ ,a) is the sufficient statistic for the model
and hence, we may write the log likelihood more generally as l(θ ; ψ̂, λ̂ ,a).

The sample space derivative is therefore sometimes difficult to evaluate because in
some cases in order to obtain the first term of (2.5), the log-likelihood function must be
expressed as a function of ψ̂ , λ̂ and an ancillary a so that it can be differentiated partially
with respect to λ̂ , holding a fixed. Re-expressing the log-likelihood in this form is usually
tough and is not possible for all models, hence an approximation to such derivative is
needed.

The modified profile log-likelihood however, can be simplified for linear exponential
families (Davison, 2003, Example 12.22). The likelihood function in a linear exponential
family in canonical form can be written as

L(ψ,λ )≡ h(y)exp
(

ψ
ᵀt1 +λ

ᵀt2−κ(ψ,λ )
)
,

where there is no ancillary statistic and where h(y) is a function of the data only, t1 =

(t11, . . . , t1r)
ᵀ and t2 =(t21, . . . , t2s)

ᵀ are the sufficient statistics for the parameter of interest
and the nuisance parameter, respectively. Furthermore, κ(ψ,λ ) is the logarithm of a
normalisation factor, that ensures that the corresponding density fY (y;ψ,λ ) integrates to
one, called the cumulant generating function and is given by

κ(ψ,λ ) = ln

(∫
y
h(y)exp

(
ψ

ᵀt1 +λ
ᵀt2
)

dy

)
.
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The log-likelihood function is

l(ψ,λ ) = ψ
ᵀt1 +λ

ᵀt2−κ(ψ,λ )+ constant . (2.7)

The overall ML estimates ψ̂ and λ̂ are solutions of the equations t1 − κψ(ψ̂, λ̂ ) = 0
and t2− κλ (ψ̂, λ̂ ) = 0, respectively where κψ(ψ,λ ) = ∂κ(ψ,λ )/∂ψ and κλ (ψ,λ ) =

∂κ(ψ,λ )/∂λ .
Therefore the log-likelihood may be written as

l(ψ,λ ; ψ̂, λ̂ ) = ψ
ᵀ
κψ(ψ̂, λ̂ )+λ

ᵀ
κλ (ψ̂, λ̂ )−κ(ψ,λ ) ,

and hence the first and second terms of (2.5) become, respectively

∂ 2l(ψ,λ ; ψ̂, λ̂ )

∂ λ̂∂λ

∣∣∣∣
λ=λ̂ψ

=
∂

∂ λ̂

(
∂ l(ψ,λ ; ψ̂, λ̂ )

∂λ

∣∣∣∣
λ=λ̂ψ

)
=

∂

∂ λ̂

(
κλ (ψ̂, λ̂ )−κλ (ψ, λ̂ψ)

)
=

∂

∂ λ̂

(
κλ (ψ̂, λ̂ )

)
= κλλ (ψ̂, λ̂ ) ,

jλλ (ψ, λ̂ψ ; ψ̂, λ̂ ) = − ∂

∂λ

(
∂ l(ψ,λ ; ψ̂, λ̂ )

∂λ

∣∣∣∣
λ=λ̂ψ

)
= − ∂

∂λ

(
κλ (ψ̂, λ̂ )−κλ (ψ,λ )

)∣∣∣∣
λ=λ̂ψ

= − ∂

∂λ

(
−κλ (ψ,λ )

)∣∣∣∣
λ=λ̂ψ

= κλλ (ψ, λ̂ψ) .

However, the second partial derivative of the cumulant generating function with respect
to λ can be written as κλλ (ψ̂, λ̂ ) = −∂ 2l(ψ̂, λ̂ ; ψ̂, λ̂ )/∂λ 2 = jλλ (ψ̂, λ̂ ; ψ̂, λ̂ ), i.e. in
terms of the observed information and similarly κλλ (ψ, λ̂ψ) =−∂ 2l(ψ, λ̂ψ ; ψ̂, λ̂ )/∂λ 2 =

jλλ (ψ, λ̂ψ ; ψ̂, λ̂ ).
Therefore (2.5) reduces to

det
(

∂ λ̂ψ

∂ λ̂

)
= [det jλλ (ψ̂, λ̂ ; ψ̂, λ̂ )][det jλλ (ψ, λ̂ψ ; ψ̂, λ̂ )]−1 . (2.8)
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Thus substituting for the last term of (2.6), the modified profile log-likelihood function
for ψ becomes

lmp(ψ) = l(ψ, λ̂ψ)+
1
2

ln{det jλλ (ψ, λ̂ψ ; ψ̂, λ̂ )}− ln{det jλλ (ψ̂, λ̂ ; ψ̂, λ̂ )}

= l(ψ, λ̂ψ)+
1
2

ln{det jλλ (ψ, λ̂ψ ; ψ̂, λ̂ )}+ constant , (2.9)

where the term ln{det jλλ (ψ̂, λ̂ ; ψ̂, λ̂ )} has been neglected since it is independent of ψ .

2.1.6 Adjusted profile likelihood

The profile log-likelihood score function is defined by

U(ψ) =
∂ lp(ψ)

∂ψ
.

This score function is neither unbiased nor information unbiased (Lindsay, 1982; Silvey,
1970).

Now consider the case of a single parameter of interest and let m(ψ) and w(ψ) be two
functions such that

m(ψ) = E
ψ,λ̂ψ
{U(ψ)}

w(ψ) =

{
−E

ψ,λ̂ψ

(
∂U(ψ)

∂ψ

)
+

∂m(ψ)

∂ψ

}/
Var

ψ,λ̂ψ
{U(ψ)} ,

where expectations are computed at
(
ψ, λ̂ᵀ

ψ

)ᵀ rather than at the true parameter value.
According to McCullagh and Tibshirani (1990), the adjusted profile log-likelihood

score function is defined as

Ũ(ψ) =
{

U(ψ)−m(ψ)
}

w(ψ) . (2.10)

This means that the adjusted profile log-likelihood function for ψ is given by

lap(ψ) =
∫

ψ

Ũ(t)dt . (2.11)

In contrast to the profile score, the adjusted score function is asymptotically unbiased
and information unbiased.
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2.2 Bias reduction methods

2.2.1 Preamble

Suppose that interest lies in the estimation of the vector of parameters θ = (ψᵀ,λᵀ)ᵀ =

(θ1, . . . ,θp)
ᵀ ∈ Θ⊂ Rp, as before, from data y = (y1, . . . ,yn)

ᵀ assumed to be realisations
of a random quantity Y = (Y1, . . . ,Yn)

ᵀ distributed according to a parametric model G with
density function fY (y|x,θ). The subscript n here is used as a measure of the information
in the data and is usually the sample size. An estimator of θ , not necessarily the overall
ML estimator, is a function θ̂ ≡ t

(
Y
)

and in the presence of observed data y the estimate
would be t

(
y
)
.

The bias of an estimator θ̂ is defined by

B
θ̂
(θ) = g∗(θ)−θ ,

where g∗(θ) = Eθ (θ̂) and where the expectation is taken with respect to G which is the
joint distribution function of the process that generated the data and where the symbol θ

inside the brackets denotes that the corresponding function is evaluated at θ . An estimator
whose bias is equal to zero for all values of the parameter θ is said to be unbiased.

It is well known that under standard regularity conditions, the overall ML estimator of
θ , θ̂ , has optimal properties. One important property is that θ̂ has bias of asymptotic order
O(n−1) which implies that this bias vanishes as n→ ∞ where n is the sample size. How-
ever, for small samples where n is finite the bias of θ̂ may have considerable magnitude.
Biased estimators arise frequently in statistics and can result in misleading inferences if
the magnitude of the bias is large (see for example, Kosmidis, 2014). Kosmidis (2014)
identifies all known methods to reduce bias as attempts to approximate the solution of the
equation

θ̃ = θ̂ −B
θ̂
(θ) , (2.12)

with respect to a new estimator θ̃ . These methods can be distinguished into explicit and
implicit methods.
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If both B
θ̂
(θ) and θ were known then θ̃ would be unbiased since

B
θ̃
(θ) = Eθ (θ̃)−θ

= Eθ (θ̂)−B
θ̂
(θ)−θ

= B
θ̂
(θ)−B

θ̂
(θ)

= 0,

but of course, estimation would be unnecessary if θ was known, and moreover, the func-
tion B

θ̂
(θ) usually is not available in closed form or G is unknown.

For many estimators θ̂ including the ML estimator, the bias function can be expanded
in decreasing powers of n as

B
θ̂
(θ) = Eθ (θ̂)−θ =

b1(θ)

n
+

b2(θ)

n2 +
b3(θ)

n3 +O(n−4) , (2.13)

where n is the sample size, θ is the true but unknown parameter value and bt (t = 1,2,3, . . .)
is an appropriate sequence of functions of θ .

Explicit methods rely on estimating the bias function B
θ̂
(θ) at θ̂ and then subtracting

it from θ̂ resulting in the new estimator θ̃ . The resulting equation is then solved with
respect to θ̂ .

2.2.2 Asymptotic bias correction

One approach to correct the bias of the overall ML estimator is to define a bias-corrected
estimator

θ̃ = θ̂ − b1(θ̂)

n
, (2.14)

where we have estimated the bias function B
θ̂
(θ) in equation (2.12) by b1(θ̂)/n, the first-

term in the right hand side of (2.13); the asymptotic expansion of the bias of the overall
ML estimator, evaluated at θ̂ . It may be shown (Pace and Salvan, 1997, Section 9.4) that
θ̃ has bias of asymptotic order O(n−2) which is of smaller order than the O(n−1) bias of
θ̂ .

The general form of the first-order bias term of the overall ML estimator θ̂ can be
found in matrix notation in Kosmidis and Firth (2010) and is

b1(θ)

n
=−{i(θ)}−1A(θ) , (2.15)
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where the function A(θ) is a p-dimensional vector with t-th component

At(θ) =
1
2

tr
[
{i(θ)}−1{Pt(θ)+Qt(θ)

}]
(t = 1, . . . , p) , (2.16)

and where
Pt(θ) = Eθ

{
S(θ)S(θ)ᵀSt(θ)

}
(t = 1, . . . , p) , (2.17)

Qt(θ) =−Eθ

{
j(θ)St(θ)

}
(t = 1, . . . , p) , (2.18)

are higher order joint null moments of log-likelihood derivatives with St(θ) denoting the
t-th log-likelihood derivative.

Implicit methods, on the contrary, rely on approximating the bias function but at the
target estimator θ̃ and then subtracting it from θ̂ resulting in the new estimator θ̃ . The
resulting equation is then solved with respect to θ̃ and hence, θ̃ is the solution of an
implicit equation.

2.2.3 Indirect inference

Indirect inference is a class of inferential procedures that appeared in the Econometrics
literature in Gourieroux et al. (1993) and can be used for bias reduction. If the maximum
likelihood estimator and its bias function can be written in closed form, then the simplest
method of bias reduction via indirect inference relies on solving the equation

θ̃ = θ̂ −B
θ̂
(θ̃) , (2.19)

with respect to θ̃ , which alternatively can be written as

θ̂ = g∗(θ̃) . (2.20)

When either there is a closed form solution for the ML estimator but not for its bias func-
tion or there is no closed form solution for neither the ML estimator nor its bias function,
B

θ̂
(θ) is approximated at θ̃ through parametric bootstrap. Kuk (1995) independently pro-

duced the same idea for solving equation (2.19) by iteratively adjusting the estimator θ̃

for reducing the bias in the estimation of generalised linear models with random effects.
In fact, Kuk (1995) describes a general method of adjusting any suitably defined initial

estimator θ̂ , where θ = (θ1, . . . ,θp)
ᵀ is a vector of unknown parameters, through iterative

bias correction, to yield an estimator which is asymptotically unbiased and consistent.
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The method of Kuk (1995) can be summarized as follows: suppose that θ̂ is some
initial estimator of θ , not necessarily the ML estimator, obtained as the solution of a set
of p estimating equations of the form

S(θ)≡ S(θ ;y) = 0 . (2.21)

Let the bias of θ̂ be given by
B

θ̂
(θ) = g(θ)−θ , (2.22)

where g(θ) = θ ∗ is defined implicitly by

Eθ{S(θ ∗,Y )}= 0 . (2.23)

To correct for the bias of θ̂ , let B(0) = 0 be an initial estimate of the bias of θ̂ . Define

B(k+1) = g(θ̂ −B(k))− (θ̂ −B(k)) (2.24)

as an updated estimate of the bias and

θ̃
(k+1) = θ̂ −B(k+1) (2.25)

the updated bias-corrected estimate of θ . Assuming that the limit of B(k) exists, we can
let k→ ∞ in equation (2.24) to obtain

B = g(θ̃)− (θ̂ −B) (2.26)

so that
θ̂ = g(θ̃) . (2.27)

The function g(θ) = θ ∗, however, has no closed form solution in general, so Kuk (1995)
proposes to approximate g(θ) by gR(θ) where

gR(θ) =
1
R

R

∑
i=1

θ̂(yi) (2.28)

is the average of θ̂ over simulated samples and where y1, . . . ,yR are simulated from the
model with the parameters set at θ . Substituting gR for g in equations (2.24) and (2.25),
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we obtain
B(k+1)

R = gR(θ̂ −B(k)
R )− (θ̂ −B(k)

R ) (2.29)

as the Monte Carlo estimate of the bias of θ̂ at the (k+1)th iteration and

θ̃
(k+1) = θ̂ −B(k+1)

R (2.30)

the updated bias-corrected estimate of θ .
Suppose now that g(θ)= g∗(θ) where θ̂ is the ML estimator of θ . In this case, observe

that equations (2.24) become

B(k+1) = E
θ̂−B(k)(θ̂)− (θ̂ −B(k)) . (2.31)

Letting k→ ∞ in (2.31) we therefore obtain

B = E
θ̃
(θ̂)− (θ̂ −B) (2.32)

so that
θ̂ = E

θ̃
(θ̂) . (2.33)

So equation (2.20) that we aim to solve is simply equation (2.27) of Kuk (1995) where
g(θ) is set to be Eθ (θ̂).

Consider now the case where the model parameter θᵀ = (ψ,λᵀ) is partitioned into a
scalar parameter of interest ψ and a vector of nuisance parameters λ , and we are interested
in adjusting the bias of the ML estimator of ψ . We propose below a simulation-based
algorithm for indirect inference estimation of the parameter of interest, ψ , motivated by
that of Kuk (1995) above. Let g(ψ) = Eψ(ψ̂) be approximated by

gR(ψ) =
1
R

R

∑
i=1

ψ̂(zi) (2.34)

where z1, . . . ,zR are simulated from the model with the parameters set at θ = (ψ, λ̂ ).
Replacing θ by ψ and gR(θ) by gR(ψ) in equations (2.29) and (2.30), we obtain

B(k+1)
R = gR(ψ̂−B(k)

R )− (ψ̂−B(k)
R )

= gR(ψ̃
(k))− ψ̃

(k) (2.35)
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as the Monte Carlo estimate of the bias of ψ̂ at the (k+1)th iteration and

ψ̃
(k+1) = ψ̂−B(k+1)

R

= ψ̂−gR(ψ̃
(k))+ ψ̃

(k)

= ψ̂ + ψ̃
(k)− 1

R

R

∑
i=1

ψ̂(zi) (2.36)

the updated bias-corrected estimate of ψ , where z1, . . . ,zR are simulated from the model
with the parameters set at θ = (ψ̃(k), λ̂ ). All that is required for the implementation of
(2.36) is a routine for sampling from the probability model, and a routine for calculating
the ML estimates of ψ and λ .

Note that if the initial estimate of the bias B(0) is set to zero then the initial estimate
of ψ̃ , ψ̃(0) coincides with ψ̂ . Note also how when g is set to be the expectation function,
iterative bias correction simply reduces to iterative correction of the estimate ψ̃ .

2.2.4 Firth’s bias-reducing adjusted score equations

Firth (1993) explored an approach to bias reduction of the overall ML estimator by de-
riving an adjusted score function and hence showed that an estimator with O(n−2) bias is
obtained by solving an adjusted score equation in the form

S∗(θ̃) = S(θ̃)+A(θ̃) = 0 , (2.37)

where A(θ) is allowed to depend on the data. Firth (1993) described two different alter-
natives of A(θ), denoted by A(E)(θ) and A(O)(θ), based on the expected and observed
information matrix, respectively. The components of these two alternatives are given in
matrix notation in Kosmidis and Firth (2010) and take the form

A(E)
t (θ) = At(θ) (t = 1, . . . , p) , (2.38)

and
A(O)

t (θ) = jt(θ){i(θ)}−1A(E)(θ) (t = 1, . . . , p) , (2.39)

where the 1× p vector jt(θ) denotes the t-th row of j(θ) and where At(θ) is as given in
(2.16).

The reason that this is an implicit method of bias reduction can be seen if equation
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(2.37) is rewritten as

S(θ̃)−{i(θ̃)}b1(θ̃)

n
= 0 ,

or equivalently as

{i(θ̃)}−1S(θ̃) =
b1(θ̃)

n
, (2.40)

which reveals that θ̃ is an approximate solution to equation (2.12) because B
θ̂
(θ) is ap-

proximated by b1(θ)/n evaluated at θ = θ̃ and {i(θ̃)}−1S(θ̃) is the first term in the
asymptotic expansion of θ̂ −θ evaluated at θ = θ̃ .

Note that (2.38) is simply the expected value of (2.39). Note also that in the case of an
exponential family in canonical parametrization the observed information matrix j(θ) is
independent of the data, so the A(E)(θ) and A(O)(θ) adjustments coincide.

2.2.5 Empirical bias-reducing adjusted estimating functions

All the methods of bias reduction discussed so far approximate the bias term in (2.12)
either analytically or through simulation and assume either full or partial specification of
the assumed underlying model G. Methods like asymptotic bias correction and Firth’s
bias-reducing adjusted score equation (Firth, 1993) approximate B

θ̂
(θ) analytically and

require access to log-likelihood derivatives and the computation of expectations of prod-
ucts of those under the assumed partial or full model G, respectively. For models with
intractable or cumbersome likelihoods, these expectations are intractable or expensive to
compute, and can be hard to derive even for simple models. On the other hand, indirect
inference approximate the bias term by simulating samples from the assumed model and
as a result, simulation-based methods are typically more computationally intensive than
analytical methods. Finally, all the bias reduction methods reviewed so far, except for
Firth’s bias reducing adjusted scores approach, require the original estimator θ̂ and con-
sequently they directly inherit any of the instabilities that θ̂ may have. For example, in
logistic regression (Albert and Anderson, 1984) the maximum likelihood estimates may
be infinite due to data separation. Then, simulation based methods of bias reduction like
indirect inference cannot be applied because even if data separation did not occur for the
original sample, there is always a positive probability that it will occur for at least one of
the simulated samples.

Suppose that we observe the values y1, . . . ,yn of a sequence of random vectors Y1, . . . ,Yn

with yi = (yi1, . . . ,yici)
ᵀ ∈ Y ⊂ Rc, with a sequence of covariate vectors x1, . . . ,xn with
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xi =(xi1, . . . ,xiqi)
ᵀ ∈X ⊂Rq. Let Y =(Y ᵀ

1 , . . . ,Y
ᵀ
n )

ᵀ, and denote by X the set of x1, . . . ,xn.
Suppose that we want to estimate the unknown parameter vector θ ∈ Θ ⊂ Rp using
data y1, . . . ,yn and x1, . . . ,xn through a vector of p estimating functions ∑

n
i=1 ω i(θ) =(

∑
n
i=1 ω i

1(θ), . . . ,∑
n
i=1 ω i

p(θ)

)ᵀ

, where ω i(θ) = ω(θ ,yi,xi) and ω i
r(θ) = ωr(θ ,yi,xi),

(r = 1, . . . , p). The M-estimator θ̂ of θ results by the solution of the system of estimating
equations

n

∑
i=1

ω
i(θ) = 0p, (2.41)

with respect to θ , where 0p is a p-vector of zeros.
Assume for simplicity, the stronger modelling assumption that Yi has a distribution

function Fi(yi|xi,θ) and that the estimator θ̂ is the ML estimator which is the maximiser
of the objective function l(θ) = ∑

n
i=1 ln fi(yi|xi,θ), where fi(yi|xi,θ) is the joint density

corresponding to Fi(yi|xi,θ). Then the estimating equations in (2.41) become

n

∑
i=1

∇ ln fi(yi|xi,θ) = 0p, (2.42)

assuming that the gradient exists in Θ.
Kosmidis and Lunardon (2020) derive an implicit reduced bias M-estimator (iRBM),

θ̃ , with O(n−3/2) bias under a set of assumptions (Kosmidis and Lunardon, 2020, §2.2)
that results from the implicit solution of the empirical adjusted estimating equations

n

∑
i=1

ω
i(θ)+A(θ) = 0p, (2.43)

where both A(θ) = A(θ ,Y,X) and its derivatives with respect to θ are Op(1) as n grows
where n is a measure of information about θ , which is typically, the number of observa-
tions. Assuming that Y1, . . . ,Yn are independent, the matrix form of the rth element of the
vector of empirical bias-reducing adjustments reduces to

Ar(θ) =−trace{ j(θ)−1dr(θ)}−
1
2

trace
[

j(θ)−1e(θ){ j(θ)−1}ᵀur(θ)
]
, (2.44)

where j(θ) is the matrix with sth row −∑
n
i=1 ∇ω i

s(θ), s = (1, . . . , p), assumed invertible
but not necessarily symmetric, e(θ) = ∑

n
i=1{ω i(θ)}{ω i(θ)}ᵀ. In other words, the (s, t)th

23



element of e(θ) is

[e(θ)]st =
n

∑
i=1

ω
i
s(θ)ω

i
t (θ), (2.45)

ur(θ) = ∑
n
i=1 ∇∇ᵀω i

r(θ) and dr(θ) = ∑
n
i=1{∇ω i

r(θ)}ω i(θ). In other words, the (s, t)th
element of dr(θ) is

[dr(θ)]st =
n

∑
i=1

{
∂

∂θ s ω
i
r(θ)

}
ω

i
t (θ). (2.46)

Note that j(θ), e(θ), ur(θ) and dr(θ) are all p× p matrices.
In the case of maximum likelihood estimation, where ω(θ) is the gradient of the log-

likelihood function, the above components of (2.44) reduce to j(θ) = −∑
n
i=1 ∇∇ᵀli(θ),

the observed information matrix, e(θ) = ∑
n
i=1{∇li(θ)}{∇ᵀli(θ)}, the matrix of outer

products of log-likelihood derivatives, ur(θ) = ∑
n
i=1 ∇∇ᵀ{∂ li(θ)/∂θ r}, the hessian of

the rth derivative of the log-likelihood and dr(θ) = ∑
n
i=1{∇(∂ li(θ)/∂θ r)}{∇li(θ)}.

The iRBM-estimator θ̃ is such that

{i(θ)}1/2(θ̃ −θ)
d−→ Np(0p, Ip), (2.47)

when the M-estimator θ̂ is the ML estimator, where i(θ) is the expected (Fisher) informa-
tion and Ip is the p× p identity matrix. As a result, the iRBM-estimator is asymptotically
efficient, exactly as the ML and Firth’s bias-reducing adjusted scores estimators are.

When estimation is through the maximisation of the log-likelihood function, Kosmidis
and Lunardon (2020) (see §6.1) show that the empirical bias-reducing adjustments (2.44)
is formally equivalent to the maximisation of a penalised log-likelihood function of the
form

l(θ)− 1
2

trace{ j(θ)−1e(θ)}, (2.48)

assuming that the maximum exists. Note that the derivative of the penalty term above with
respect to (the rth parameter of) θ is the Ar(θ) term in (2.44). Note also that since es-
timation is through the maximisation of the log-likelihood function, the iRBM-estimates
can be computed using general numerical optimisation procedures for the maximisation
of the penalised log-likelihood function (2.48), like those provided by the optim or optimx

functions in R.
Under the same assumptions of §2.2, Kosmidis and Lunardon (2020) (see §12) give

an explicit reduced bias M-estimator (eRBM-estimator) with o(n−1) bias in general M-
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estimation problems defined explicitly as

θ
† = θ̂ + j(θ̂)−1A(θ̂), (2.49)

where θ̂ is the M-estimator and where the rth component of A(θ) is as in expression
(2.44) for the empirical bias-reducing adjustments. In contrast to the iRBM-estimator
θ̃ which requires only the estimating function contributions and their first derivatives,
the eRBM-estimator θ † requires also the second derivatives of the estimating function
contributions.
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Chapter 3

Heckit (Tobit II) selection model

3.1 Introduction

Tobit models refer to regression models in which the range of the dependent variable is
censored in some way. In a censored regression model only the value of the dependent
variable is unknown, more specifically, it is only partially known whether it is above or
below a fixed threshold or the value of another random variable, i.e. censored, while
the value for the independent variable is still available. This is in contrast to truncated
regression models which arise in cases where observations with values in the dependent
variable below or above certain thresholds are excluded from the sample. This means that
neither the dependent nor the independent variable is known so that whole observations
are missing. Tobit models are censored regression models and are distinct from truncated
regression models. A leading model used to deal with censored data is the Tobit I model
proposed by Tobin (1958) which is a special case of the censored regression model when
the dependent variable is censored from below at a threshold of zero. Tobin (1958) used
this model to analyze household expenditure (purchases) on durable goods against income
where the expenditure (the dependent variable) cannot be negative.

Ignoring censoring will generally lead to inconsistent and biased estimators. In the ex-
ample above, because the expenditure is observed only when it is positive, conventional
regression methods like ordinary least squares (OLS) estimators for the relationship be-
tween household expenditure and income are downwardly biased. Numerous applications
of the Tobit I model have appeared in the economics literature such as the number of ex-
tramarital affairs (Fair, 1958) where the independent variables are sex age, number of
years married, number of children, education, occupation and degree of religiousness.
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Another example is the number of arrests (or convictions) per month after release from
prison (Witte, 1980) where the independent variables are accumulated work release funds,
number of months after release until first job, wage rate after release, age, race and drug
use.

The classical Tobit I regression model describes the relationship between a censored
continuous dependent variable and a vector of independent variables, where the statistical
inference mainly focuses on the estimation of the regression parameter β and the variance
σ2 of the error term. Since the likelihood function of the Tobit I model is the product of
the likelihood function of the probit regression model for binary responses relating to
the dependent variable (Cameron and Trivedi, 2005, §14.3) and the likelihood function
of the truncated normal regression model (Greene, 2004, §19.2), one can maximize the
logarithm of the first of the two products to obtain the probit maximum likelihood esti-
mator of β/σ (Amemiya, 1984, §4.1) which is consistent and asymptotically normally
distributed. The maximization must be done by an iterative scheme such as Newton-
Raphson (Amemiya, 1981, p.1495). However, one can only estimate the ratio β/σ by
this method and not the regression parameter and standard deviation separately. Hence
the probit ML estimator is not fully efficient because it ignores a part of the likelihood
function that involves β and σ . The Tobit ML estimator however, defined as a solution
of equating the score equations to zero using the full likelihood function of the Tobit I
model, is strongly consistent and asymptotically normal (Amemiya, 1973). The score
equations are nonlinear in the parameters and so must be solved iteratively. Amemiya
(1973) also showed that the Tobit I likelihood function is not globally concave with re-
spect to the original parameters β and σ2. However, Olsen (1978) proved after a certain
reparametrization the global concavity of the log-likelihood in the Tobit I model, which
implies that a standard iterative method such as Newton-Raphson or the method of Fisher
scoring always converges to the global maximum of the log-likelihood function. A major
weakness of the Tobit ML estimator is its heavy reliance on distributional assumptions.
If the underlying disturbances of the regression are either non normal or heteroskedastic
(meaning that the variability of the disturbances is unequal across the range of values of
the dependent variable), then the Tobit ML estimator is inconsistent (see Maddala, 1983,
for a comprehensive discussion of Tobit models).

Variations of the Tobit I model can be produced by changing where and when censor-
ing occurs. Amemiya (1984, p.30) and Amemiya (1985, p.384) classified these variations
into five basic types (Tobit I - Tobit V), according to the form of the likelihood function.
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Censored regression is a special case of a general problem known as sample selection.
This means that observational studies are rarely based on pure random samples. Instead,
a sample is, intentionally or unintentionally based in part on values taken by a dependent
variable. Such samples are broadly defined as selected samples.

Sample selection bias may arise in particular for two reasons. First, there may be self
selection, with the outcome of interest determined in part by individual choice of whether
or not to participate in the activity of interest. Second, it can result from sample selection,
with those who participate in the activity of interest being deliberately oversampled by an-
alysts. In either case, parameter estimates may be inconsistent unless corrective measures
are taken because consistency relies on relatively strong distributional assumptions (see
Cameron and Trivedi, 2005, Chapter 16 for a a good description of Tobit and selection
models). In the model of expenditures on durable goods described above, the consumer
simultaneously decided whether or not to purchase a certain good and how much to spend
on it. Alternatively, we could assume that these decisions are taken sequentially. First,
the individual chooses whether or not to purchase the good. Subsequently the consumer
determines how much they will spend. This formulation generalizes the simple Tobit I
model by introducing a censoring latent variable that differs from the latent variable gen-
erating the outcome of interest so the resulting model comprises a participation (decision)
equation and a resultant outcome equation. This model is referred to as the Tobit II or
Heckit model.

There are many examples of self selection bias. One observes labor market wages
for working women whose market wage exceeds the reservation wage at zero hours of
work (Mroz, 1987). If the presence of children affects the work decision but does not
affect market wages, regression evidence from selected samples of working women that
women with children earn lower wages is not necessarily evidence that there is market
discrimination against such women or that women with lower work experience earn less.
Similarly, the wages of migrants do not, in general, afford a reliable estimate of what non
migrants would have earned had they migrated. Comparisons of the wages of migrants
with the wages of non migrants results in a biased estimate of the effect of migration.

As in the Tobit I model, consistent estimation of the ratio of the regression parame-
ter and standard deviation of the participation equation in the Heckit model can be ob-
tained by maximizing the probit part of the log-likelihood function. This estimator is
also not fully efficient. Similarly, OLS leads to inconsistent estimation of the regres-
sion parameters of the participation and outcome equations unless the errors of the two
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regression equations are uncorrelated. The most popular solutions for sample selection
problems are based on Heckman (1976) where a two-step estimator, called the Heckit
estimator, is proposed by combining a probit maximum likelihood procedure and a sim-
ple linear regression procedure. The method of Heckman (1976) was originally designed
for the Tobit III model but it also applies to Tobit I - Tobit V, with some adjustments
(Amemiya, 1984). The resulting estimators of the Heckman two-step method are consis-
tent and asymptotically normally distributed (see Amemiya, 1984; Heckman, 1979, for a
proof of the consistency and asymptotic normality of the Heckit estimators in the Tobit 1
model). When compared to the ML estimator which is also consistent and asymptotically
normal, the Heckit estimator is simple to implement and is more robust in certain circum-
stances. For example, it remains consistent when the joint normality of the errors of the
regression equations is not satisfied so it requires distributional assumptions weaker than
that required for the ML estimator. However, the ML estimator enjoys greater efficiency
compared to the Heckit estimator and the latter estimator of the square of the correlation
coefficient, ρ2, is not bounded by zero and one, compared to the limit of [0,1] of the
maximum likelihood estimator of ρ2.

In this chapter we apply the indirect inference method (Kuk, 1995) and empirical bias
reducing adjustments method (Kosmidis and Lunardon, 2020) to the special Heckit (Tobit
II) model. We evaluate the performance of these estimation techniques through simulation
and contrast them with the standard ML estimation and the Heckman two-step estimation
procedure.

The chapter is organized as follows. In Section 3.2, we describe the Heckit model
in full generality and review how the log-likelihood function is derived. We also review
the maximum likelihood and Heckman two-step estimation methods in Section 3.3. In
Section 3.4 we describe why the implementation of the Firth (1993) bias reduction method
is not possible for this model and derive the necessary expressions for the implementation
of the RBM-estimation. A simulation study is included in Section 3.5 and in Section 3.6
we apply the results to analyze a real data set of labor supply and compare the results of
typically used estimation techniques to those from bias reduction.

3.2 Description of the Heckit model

Consider a random sample of n pairs of observations (yS
i ,y

O
i ), (i = 1, . . . ,n), where the

first observation is binary, representing some sort of participation (or selection), and the
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second observation represents the resulting outcome (Greene, 2012, Chapter 19, §19.3.4
and §19.5). Such a sample can be modelled by a selection equation and an outcome
equation where the selection equation is (see Toomet and Henningsen, 2008, §2.1)

yS∗
i = β

ᵀxi + ε
S
i , (3.1)

yS
i =

0 if yS∗
i < 0

1 if yS∗
i ≥ 0

. (3.2)

In the above expressions, yS∗
i is the latent (unobserved) variable of the selection tendency

for individual i, βᵀ = (β1, . . . ,βp) is a 1× p vector of parameters, xi is a p× 1 vector
of explanatory regressors (independent variables), εS

i ∼N (0,1) and yS
i is the observed

binary value. Note that only the sign of yS∗
i is observed. The outcome equation is, then,

given by

yO∗
i = γ

ᵀzi + ε
O
i , (3.3)

yO
i =

0 if yS
i = 0

yO∗
i if yS

i = 1,
(3.4)

where yO∗
i is the latent outcome for individual i, γᵀ = (γ1, . . . ,γq) is a 1× q vector of

parameters, zi is a q× 1 vector of explanatory regressors, εO
i ∼N (0,σ2) and yO

i is the
observed outcome. Note that we observe the outcome only if the latent selection variable
yS∗

i is positive. We assume the error terms follow a bivariate normal distribution with zero
mean and correlation ρ (

εS

εO

)
∼N

((
0
0

)
,

(
1 ρσ

ρσ σ2

))
, (3.5)

where ρσ is the covariance. The variance of εS is set to be 1 because only the sign of yS∗

is observed so the variance of εS cannot be estimated. The above formulation shows that
we have a linear model with additive errors for each latent variable. The n× p regressor
matrix X with xi in its ith row and n× q matrix Z with zi in its ith row are assumed to
be of full rank (i.e. there is no exact linear relationship among any of the independent
variables in the model) so that if all data were available, the parameters of each linear
equation could be estimated by least squares. Note that X and Z may or may not have the
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same columns. Note also that the Tobit I model is the special case yS∗ = yO∗.
The likelihood function for the data is built up from two parts. The first part consists

of the product of the probability of selection and the density conditional on selection for
observations with yS

i = 1. The second part is simply the probability of non selection for
observations with yS

i = 0. The Heckit model therefore has the likelihood function

L(β ,γ,σ2,ρ) =
n

∏
i=1

[
f (yO

i |yS
i = 1)Pr(yS

i = 1)
]yS

i
[

f (yO
i |yS

i = 0)Pr(yS
i = 0)

]1−yS
i

=
n

∏
i=1

[
f (yO

i |yS∗
i ≥ 0)Pr(yS∗

i ≥ 0)
]yS

i
[

f (yO
i |yS∗

i < 0)Pr(yS∗
i < 0)

]1−yS
i

=
n

∏
i=1

[
f (yO

i |yS∗
i ≥ 0)Pr(yS∗

i ≥ 0)
]yS

i
[

Pr(yS∗
i < 0)

]1−yS
i , (3.6)

where the last equality follows since f (yO
i = 0|yS∗

i < 0)= 1. The second product in (3.6) is
simply Pr(yS∗

i < 0) = Φ(−βᵀxi), where Φ(α) is the distribution function of the standard
normal variable evaluated at α . The first product in (3.6) can be rewritten as

f (yO
i |yS∗

i ≥ 0)Pr(yS∗
i ≥ 0) =

∫
∞

0
f (yO

i ,y
S∗
i )dyS∗

i

=
∫

∞

0
f (yS∗

i |yO
i ) f (yO

i )dyS∗
i

=
∫

∞

0
f (yS∗

i |yO∗
i = yO

i ) f (yO∗
i = yO

i )dyS∗
i . (3.7)

Both densities in (3.7) have a normal distribution where yO∗
i ∼N (γᵀzi,σ

2) and yS∗
i |yO∗

i =

yO
i ∼N (βᵀxi +σ−1ρ(yO

i − γᵀzi),1−ρ2) (see Greene, 2012, Appendix B, §B.9). The
density f (yO∗

i = yO
i ) goes outside the integral in (3.7) since it is independent of yS∗

i and
can be written as σ−1φ

(
σ−1[yO

i − γᵀzi]
)
, where φ(α) is the density function of the stan-

dard normal variable evaluated at α . Then, the integral
∫

∞

0 f (yS∗
i |yO∗

i = yO
i )dyS∗

i is easily
derived by using the substitution

t =
yS∗

i −βᵀxi−σ−1ρ(yO
i − γᵀzi)√

1−ρ2
, (3.8)

and exploiting the definition of the distribution function Φ(α) as an integral. The likeli-
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hood about θ = (β1, . . . ,βp,γ1, . . . ,γq,σ
2,ρ) reduces to

L(θ) =
n

∏
i=1

[
Φ(−β

ᵀxi)
]1−yS

i

×

[
1√

2πσ2
exp
(
−

(yO
i − γᵀzi)

2

2σ2

)
Φ

(
βᵀxi +σ−1ρ(yO

i − γᵀzi)√
1−ρ2

)]yS
i

, (3.9)

and, hence, the log-likelihood of the Heckit model is (see, Toomet and Henningsen, 2008,
§2.1)

l(θ) =
n

∑
i=1

{
(1− yS

i ) lnΦ(−β
ᵀxi)−

1
2

yS
i ln(2π)− 1

2
yS

i ln(σ2)−
yS

i (y
O
i − γᵀzi)

2

2σ2

+ yS
i lnΦ

(
βᵀxi +σ−1ρ(yO

i − γᵀzi)√
1−ρ2

)}
. (3.10)

3.3 Review of point estimation of the model parameters

3.3.1 Maximum likelihood estimator

Since the Heckit model is fully parametric, it is straightforward to construct the maximum
likelihood estimator. Let

m1(α) =
φ(α)

1−Φ(α)
, (3.11)

m2(α) =
φ(α)

Φ(α)
, (3.12)

where m1 and m2 are known as inverse Mills ratios. Moreover, for simplicity in the
forthcoming derivations, let

ai = β
ᵀxi, (3.13)

bi =
βᵀxi +σ−1ρ(yO

i − γᵀzi)√
1−ρ2

. (3.14)

Then direct differentiation of the log-likelihood function (3.10) with respect to β , γ , σ

and ρ yields the score equations

∇β l(θ) = Xᵀ

[
1√

1−ρ2
M2Y S−M1

(
1n−Y S)], (3.15)
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∇γ l(θ) = Zᵀ

[
1

σ2 Ȳ OY S− ρ

σ
√

1−ρ2
M2Y S

]
, (3.16)

∂

∂σ
l(θ) = 1ᵀn

[
− ρ

σ2
√

1−ρ2
Ȳ OM2Y S− 1

σ
Y S +

1
σ3 (Ȳ

O)2Y S

]
, (3.17)

∂

∂ρ
l(θ) =

1
σ(1−ρ2)3/2 1ᵀn

[
σρaM2Y S + Ȳ OM2Y S

]
, (3.18)

where ∇β l(θ) = (∂ l(θ)/∂β1, . . . ,∂ l(θ)/∂βp) is the gradient of l(θ) with respect to
β and similarly for ∇γ l(θ). The (p + q + 2)× 1 score equation is given by S(θ) =(
∇β l,∇γ l,∂ l/∂σ ,∂ l/∂ρ

)ᵀ.
Here, 1n is an n-vector of ones, Y S is the n×1 vector of Y S

1 , . . . ,Y
S
n , Ȳ O = diag{r1, . . . ,rn}

with ri = yO
i −γᵀzi, i= 1, . . . ,n, a= diag{a1, . . . ,an}, M1 = diag{m1(a1), . . . ,m1(an)} and

M2 = diag{m2(b1), . . . ,m2(bn)}. In obtaining these gradients and derivatives we use the
results

∇β ai = xi, (3.19)

∇β bi =
xi√

1−ρ2
, (3.20)

∇γbi =−
ρzi

σ
√

1−ρ2
, (3.21)

∂bi

∂σ
=− ρ

σ2
√

1−ρ2

(
yO

i − γ
ᵀzi
)
, (3.22)

∂bi

∂ρ
=

ρσai +
(
yO

i − γᵀzi
)

σ(1−ρ2)3/2 . (3.23)

These score equations are non linear and must be solved numerically, using for example
the selection function from sampleSelection R package (see Toomet and Henningsen,
2008). Since the log-likelihood function of this model is not globally concave, one should
use a good choice of initial values for the Newton-Raphson algorithm (see Toomet and
Henningsen, 2008, §6.1), otherwise the algorithm may not converge or it may converge
to a local instead of a global maximum.

The probit maximum likelihood estimation method for the Heckit model is derived
by maximizing the probit part of the log-likelihood function. i.e. by maximizing the
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logarithm of

Lp(β ) =
n

∏
i=1

[
Pr(yS∗

i ≥ 0)
]yS

i
[

Pr(yS∗
i < 0)

]1−yS
i . (3.24)

This yields the probit ML estimator of β which is consistent but inefficient. Note that in
general, maximising the logarithm of the above likelihood yields the probit ML estimator
of the scaled version of β , β/σ , however, we assume that the variance of the error term
in the selection equation, εS, is one. The probit ML estimator of β is used as a first step in
the Heckman’s two step estimation method (see Section 3.3.2) which was proposed since
maximum likelihood estimation was difficult to implement back then and which provides
a complete set of consistent estimators of the model parameters.

3.3.2 Heckman’s two step (Heckit) estimator

Since the Heckit model is by construction linear for the selection and outcome variables,
one might consider ordinary least squares regression of the observed outcome Y O on Z.
This, however, leads to inconsistent parameter estimates of γ since the conditional mean
E(Y O|Z,X ,Y S = 1) differs from Zγ because E(εO|Z,X ,Y S = 1) is non zero which is a nec-
essary assumption for linear regression. Nonetheless, the expression for the conditional
mean of Y Owas used by Heckman (1979) to motivate an alternative estimation procedure
now known as Heckman’s two step estimation method.

The conditional mean that applies to the observations in our sample may be written
as (see Greene, 2012, §19.5 for a derivation which uses Theorem 19.5, p. 913 for the
conditional moments of incidentally truncated bivariate normal distribution)

E(yO
i |yS∗

i > 0) = E(yO
i |εS

i >−β
ᵀxi)

= γ
ᵀzi +E(εO

i |εS
i >−β

ᵀxi)

= γ
ᵀzi +ρσm1(−β

ᵀxi)

= γ
ᵀzi +ρσm2(β

ᵀxi). (3.25)

Alternatively, observe that εO
i |εS

i ∼ N (ρσεS
i ,σ

2(1− ρ2)) so εO
i = ρσεS

i + ξi, where
ξi ∼ N (0,σ2(1− ρ2)) is independent of εS

i . This means that E(εO
i |εS

i > −βᵀxi) =

ρσE(εS
i |εS

i >−βᵀxi) so the truncated moments of the standard normal distribution can be
used to find the latter expectation (see Cameron and Trivedi, 2005, §16.3.4 and §16.5.3).
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It is now clear why OLS regression of Y O on Z above leads to inconsistent estimation
of γ as the expression (3.25) for the conditional mean includes the additional regressor
m1(−Xβ ), or equivalently since ρσ is not equal to zero (by assumption). Using Theorem
19.5 of Greene (2012) also yields the conditional variance

Var(yO
i |yS∗

i > 0) = Var(yO
i |εS

i >−β
ᵀxi)

= Var(εO
i |εS

i >−β
ᵀxi)

= σ
2(1−ρ

2
δ (−β

ᵀxi)
)
, (3.26)

where δ (ai) = dm1(ai)/d(ai) = m1(ai)[m1(ai)−ai] is the derivative of the inverse Mills
ratio m1. The conditional variable yO

i |yS∗
i > 0 may therefore be written as

yO
i |yS∗

i > 0 = γ
ᵀzi +ρσm2(β

ᵀxi)+νi, (3.27)

where νi is an error term with E(νi) = 0 and Var(νi) = σ2(1−ρ2δ (−βᵀxi)
)
.

Note that even if we observe βᵀxi and hence m2(β
ᵀxi), entering m2(Xβ ) as a regressor

in (3.27) would lead to unbiased but inefficient least squares estimators of γ and ρσ . The
inefficiency is a consequence of the heteroscedasticity of the error νi apparent from (3.26).
Heckman’s two step method can now be defined and it proceeds as follows

1. Obtain the probit maximum likelihood estimator of β , β̂prob, and use this estimator
to compute m2(β̂

ᵀ
probxi) which is an estimate of the inverse Mills ratio.

2. Estimate γ and ρσ by least squares regression of Y O on Z and m2(X β̂prob).
The estimator β̂prob and the OLS estimators of γ and ρσ from step 2, called the Heckit

estimators, are all consistent, where consistent estimators of the individual parameters ρ

and σ have also been derived in the literature (see Greene, 2012, p. 916). This method
can be easily implemented using the heckit function from the sampleSelection R package.

Consistent estimators of the individual parameters ρ and σ can be obtained using

σ̂
2 =

(
1
n

n

∑
i=1

ν̂i
2
)
+

(
1
n

n

∑
i=1

δ̂i

)(
β̂

m)2
, (3.28)

where ν̂ is the vector of residuals from the OLS estimation of (3.27), δ̂i = δ̂ (βᵀxi) =

m̂2(β
ᵀxi)
[
m̂2(β

ᵀxi) + β̂ᵀxi
]
, and β̂ m = ρ̂σ . A consistent estimator of the correlation

between εS and εO can be obtained by ρ̂ = β̂ m/σ̂ . Note that ρ̂ can be outside the interval
[−1,1].
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A consistent estimate of the variance-covariance matrix can be obtained by (see Greene,
2004, §19.5.3)

V̂ar
[
γ̂, β̂ m]= σ̂

2[Zᵀ
mZm

]−1[Zᵀ
m
(
In− ρ̂

2
∆̂
)
Zm +R

][
Zᵀ

mZm
]−1

, (3.29)

where
R = ρ̂

2(Zᵀ
m∆̂X

)
V̂ar
[
β̂
](

Xᵀ
∆̂Zm

)
, (3.30)

where X is the matrix of all observations of x, Zm is the matrix of all observations of z

and m̂2, In is an identity matrix, ∆̂ is a diagonal matrix with ith diagonal element δ̂i, and
V̂ar
[
β̂
]

is the estimated variance-covariance matrix of the probit estimate of β . Any of
the observed or expected information matrices of the probit likelihood could be used to
compute the latter variance. Note that in R, the variance-covariance matrix of the heckit
two-step estimators, using the heckit function, is only partially implemented with NAs in
place of the unimplemented components. The unimplemented components are those of σ

and ρ .

3.4 Implicit bias reduction methods

3.4.1 Firth’s adjusted score equations method

The popular estimator of Firth (1993) for reducing the bias of the ML estimator of θ may
be obtained through the solution of the adjusted score equation

S∗(θ) = S(θ)+A(θ) = 0, (3.31)

where A(θ) is Op(1) in magnitude as n→ ∞ and where the two alternatives of A(θ)

described by Firth and are given by (2.38) and (2.39).
Differentiation of (3.15), (3.16), (3.17) and (3.18) yields the second order partial

derivatives and Hessian matrices

∇β ∇
ᵀ
β

l(θ) = Xᵀ
{
− 1

1−ρ2UM
′
2− (In−U)M

′
1

}
X , (3.32)

where U = diag{Y S
1 , . . . ,Y

S
n }, M

′
2 = M2(M2 +b) where b =

[
a+(ρȲ O)/σ

]
/
√

1−ρ2, In

is the n×n identity matrix and where M
′
1 = M1(M1−a).
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∇β ∇
ᵀ
γ l(θ) =

ρ

σ(1−ρ2)
XᵀUM

′
2Z, (3.33)

∂

∂σ
∇β l(θ) =

ρ

σ2(1−ρ2)
XᵀM

′
2Ȳ OY S, (3.34)

∂

∂ρ
∇β l(θ) =

1
(1−ρ2)3/2 Xᵀ

{
− 1

σ
√

1−ρ2
M
′
2(ρσa+ Ȳ O)Y S +ρM2Y S

}
, (3.35)

∇γ∇
ᵀ
γ l(θ) = ZᵀU

{
− 1

σ2 In−
ρ2

σ2(1−ρ2)
M
′
2

}
Z, (3.36)

∂

∂σ
∇γ l(θ) = Zᵀ

{
− 2

σ3 Ȳ OY S− ρ2

σ3(1−ρ2)
M
′
2Ȳ OY S +

ρ

σ2
√

1−ρ2
M2Y S

}
, (3.37)

∂

∂ρ
∇γ l(θ) =

1
σ(1−ρ2)3/2 Zᵀ

{
ρ

σ
√

1−ρ2
M
′
2(ρσa+ Ȳ O)Y S−M2Y S

}
, (3.38)

∂ 2

∂ (σ)2 l(θ) = 1ᵀn

{
− ρ2

σ4(1−ρ2)
M
′
2(Ȳ

O)2Y S

+
2ρ

σ3
√

1−ρ2
Ȳ OM2Y S +

1
σ2Y S− 3

σ4 (Ȳ
O)2Y S

}
, (3.39)

∂ 2

∂ρ∂σ
l(θ) = 1ᵀn

{
ρ

σ3(1−ρ2)2 Ȳ OM
′
2(ρσa+Ȳ O)Y S− 1

σ2(1−ρ2)3/2 Ȳ OM2Y S
}
, (3.40)

∂ 2

∂ρ2 l(θ) = 1ᵀn

{
1

σ(1−ρ2)5/2

[
σ(2ρ

2 +1)a+3ρȲ O]M2Y S−
(

σρa+ Ȳ O

σ(1−ρ2)3/2

)2

M
′
2Y S
}
.

(3.41)
In obtaining these derivatives and Hessian matrices we frequently used the following

results
dφ(α)

dα
=−αφ(α), (3.42)

δ1(α) =
dm1(α)

dα
= m1(α)

[
m1(α)−α

]
, (3.43)

δ2(α) =
dm2(α)

dα
=−m2(α)

[
m2(α)+α

]
, (3.44)

(∇β M2)Y S =− 1√
1−ρ2

M
′
2UX , (3.45)
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(∇γM2)Y S =
ρ

σ
√

1−ρ2
M
′
2UZ, (3.46)

∂

∂σ
M2 =

ρ

σ2
√

1−ρ2
M
′
2Ȳ O, (3.47)

∂

∂ρ
M2 =−

1
σ(1−ρ2)3/2 M

′
2(ρσa+ Ȳ O), (3.48)

(∇β M1)(1n−Y S) = M
′
1(In−U)X , (3.49)

(∇γȲ O)Y S =−UZ, (3.50)

and where in (3.45), (3.46), (3.49) and (3.50) we made use of the relation diag{a}b =

diag{b}a, where a and b are arbitrary n×n vectors.
The (p+q+2)× (p+q+2) observed information matrix becomes

j(θ) =


jββ jβγ jβρ jβσ

( jβγ)
ᵀ jγγ jγρ jγσ

( jβρ)
ᵀ ( jγρ)

ᵀ jρρ jρσ

( jβσ )
ᵀ ( jγσ )

ᵀ ( jρσ )
ᵀ jσσ

 , (3.51)

where jββ =−∇β ∇
ᵀ
β

l, jβγ =−∇β ∇
ᵀ
γ l, jβρ =−∂ (∇β l)/∂ρ , jβσ =−∂ (∇β l)/∂σ , jγγ =

−∇γ∇
ᵀ
γ l, jγρ =−∂ (∇γ l)/∂ρ , jγσ =−∂ (∇γ l)/∂σ , jρρ =−∂ 2l/∂ρ2, jρσ =−∂ 2l/∂ρ∂σ ,

jσσ =−∂ 2l/∂ (σ)2.
To obtain the Fisher information matrix, i(θ), we need to calculate the expectation of

the second order partial derivatives and gradients in j(θ). The expectations involved in
the derivation of i(θ), Pt(θ) and Qt(θ) are not all available in closed form and hence the
method of Firth cannot be applied to this model. However, we can get access to a couple
of these expectations using the score equations and the second and third Bartlett identities.
We list below the analytic expressions for the expectations that are derived as solutions
of various second and third Bartlett identities, and those as solutions of score equations,
followed by a list of the remaining required expectations which are not available in closed
form. We explain the requirements for the derivation of these unavailable expectations,
which if obtained, make the Firth method applicable to this model.

1. The score equation E
(
∇β l

)
= 0, yields

E
(
M2Y S)=√1−ρ2Q

′
1n, (3.52)
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where Q
′
= diag{φ(a1), . . . ,φ(an)}.

2. The score equation E
(
∂ l/∂ρ

)
= 0, yields

E
(
Ȳ OM2Y S)=−σρ

√
1−ρ2aQ

′
1n. (3.53)

3. The second Bartlett identity −E
(
∇β ∇

ᵀ
β

l
)
= E

[(
∇β l

)(
∇
ᵀ
β

l
)]

, yields

E
(
M2bY S)= (1−ρ

2)aQ
′
1n. (3.54)

4. The second Bartlett identity −E
[
∂
(
∇β l

)
/∂ρ

]
= E

[(
∇β l

)(
∂ l/∂ρ

)]
, yields

E
(
Ȳ OM2bY S)= ρσ(1−ρ

2)(In−a2)Q
′
1n. (3.55)

5. The score equation E
(
∇γ l
)
= 0, yields

E
(
Ȳ OY S)= σρQ

′
1n. (3.56)

6. The score equation E
(
∂ l/∂σ

)
= 0, yields

E
[
(Ȳ O)2Y S]= σ

2[Q−ρ
2aQ

′]
1n, (3.57)

where Q = diag{Φ(a1), . . . ,Φ(an)}.
7. The second Bartlett identity −E

[
∂
(
∇β l

)
/∂σ

]
= E

[(
∇β l

)(
∂ l/∂σ

)]
, yields

E
[
(Ȳ O)2M2Y S]= σ

2
√

1−ρ2
[
In−ρ

2(In−a2)
]
Q
′
1n. (3.58)

8. The second Bartlett identity −E
[
∂
(
∇γ l
)
/∂σ

]
= E

[(
∇γ l
)(

∂ l/∂σ
)]

, yields

E
[
(Ȳ O)3Y S]= σ

3
ρ
[
3−ρ

2(In−a2)
]
Q
′
1n. (3.59)

9. The second Bartlett identity −E
(
∂ 2l/∂ρ2)= E

[
(∂ l/∂ρ)2], yields

E
[
(Ȳ O)2M2bY S]= σ

2(1−ρ
2)a
[
In−ρ

2(3In−a2)
]
Q
′
1n. (3.60)

10. The simultaneous solution of the two second Bartlett identities −E
(
∂ 2l/∂ (σ)2)=
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E
[
(∂ l/∂σ)2] and −E

(
∂ 2l/∂σ∂ρ

)
= E

[
(∂ l/∂σ)(∂ l/∂ρ)

]
, yields

E
[
(Ȳ O)3M2Y S]= ρσ

3a
√

1−ρ2
[
ρ

2(3In−a2)−3In
]
Q
′
1n, (3.61)

E
[
(Ȳ O)4Y S]= σ

4[3Q−ρ
2a
[
6In−ρ

2(3In−a2)
]
Q
′]

1n. (3.62)

11. The third Bartlett identity
E
[
∇β ∇

ᵀ
β

(
∇β l

)]
+3E

[(
∇β ∇

ᵀ
β

l
)(

∇β l
)]

+E
[(

∇β l
)(

∇
ᵀ
β

l
)(

∇β l
)]

= 0, yields

E
(
M2b2Y S)=√1−ρ2

[
ρ

2 +a2(In−ρ
2)
]
Q
′
1n. (3.63)

12. The third Bartlett identity E
[
∂
(
∇β ∇

ᵀ
β

l
)
/∂ρ

]
+E
[(

∇β ∇
ᵀ
β

l
)(

∂ l/∂ρ
)]

+

E
[(

∇β l
)(

∇
ᵀ
β

)(
∂ l/∂ρ

)]
+2E

[(
∇β l

){
∂
(
∇β l

)
/∂ρ

}]
= 0, yields

E
(
Ȳ OM2b2Y S)=−ρσa

√
1−ρ2

[
ρ

2(3In−a2)− (2In−a2)
]
Q
′
1n. (3.64)

13. The third Bartlett identity E
[
∂ 2(∇β l

)
/∂ρ2]+E

[(
∇β l

)(
∂ 2l/∂ρ2)]+

E
[(

∂ l/∂ρ
)2(

∇β l
)]

+2E
[(

∂ l/∂ρ
){

∂
(
∇β l

)
/∂ρ

}]
= 0, yields

E
[
(Ȳ O)2M2b2Y S]= σ

2
√

1−ρ2
[
ρ

2(1−ρ
2)
[
3In−a2(6In−a2)

]
+a2]Q′1n.

(3.65)
14. Using the moment generating function of the random variable yO

i |yS
i = 1 it may be

shown that (see Appendix A for a full derivation),

E
[
(Ȳ O)5Y S]= ρσ

5{[15−ρ
2(10−3ρ

2)
]
In +ρ

2a2[2(5−3ρ
2)In +ρ

2a2]}Q
′
1n,

(3.66)

E
[
(Ȳ O)6Y S]= σ

6{15Q−ρ
2a
[
5ρ

2(3−2ρ
2)a2

+15
[
3−ρ

2(3−ρ
2)
]
In +ρ

4a4]Q′}1n. (3.67)

15. Using (3.65), (3.58) and (3.61) (see Appendix A for a full derivation) it may be
shown that

E
[
(Ȳ O)4M2Y S]= σ

4
√

1−ρ2
{

ρ
4[3In−a2(6In−a2)

]
−6ρ

2(1−a2)+3In
}

Q
′
1n.

(3.68)
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16. Using (3.61) and (3.68) (see Appendix A for a full derivation) it may be shown that

E
[
(Ȳ O)3M2bY S]= ρσ

3{
ρ

2[a2(9In−a2)−6In
]

+ρ
4[3In−a2(6In−a2)

]
+3(In−a2)

}
Q
′
1n. (3.69)

17. Using the final useful third Bartlett identity E
[(

∂ 2l/∂ (σ)2)(∂ l/∂ρ
)]

+

E
[
∂ 3l/∂ (σ)2∂ρ

]
+E
[(

∂ l/∂σ
)2(

∂ l/∂ρ
)]

+ 2E
[(

∂ l/∂σ
)(

∂ 2l/∂σ∂ρ
)]

= 0 and
the expectations (3.65), (3.61), (3.68) and (3.69) it may be shown that (see Ap-
pendix A for a full derivation)

E
[
(Ȳ O)5M2Y S]=−ρaσ

5
√

1−ρ2
{

ρ
4[15In−a2(10In−a2)

]
−10ρ

2(3In−a2)+15In
}

Q
′
1n. (3.70)

18. Using (3.70) (see Appendix A) we obtain

E
[
(Ȳ O)4M2bY S]= σ

4a
{

ρ
4[33In−a2(16In−a2)

]
−3ρ

2(7In−2a2)

−ρ
6[15In−a2(10In−a2)

]
+3In

}
Q
′
1n. (3.71)

The remaining expectations that are not available in analytic form are of the following
random variables

1. (M2)
2Y S

2. (M2)
3Y S

3. (M2)
2bY S

4. Ȳ O(M2)
2Y S

5. (Ȳ O)2(M2)
2Y S

6. Ȳ O(M2)
3Y S

7. (Ȳ O)2(M2)
3Y S

8. (Ȳ O)3(M2)
2Y S

9. (Ȳ O)3(M2)
3Y S

10. (Ȳ O)4(M2)
2Y S

11. Ȳ O(M2)
2bY S

12. (Ȳ O)2(M2)
2bY S

13. (Ȳ O)3(M2)
2bY S

It is not necessary though to approximate all of the above 13 expectations because

41



some of them may be obtained from others. For example, the third expectation above
is defined as a linear combination of the first and fourth expectations (see (A.17) of Ap-
pendix A). The eleventh expectation is defined as a linear combination of the fourth and
fifth expectations (see (A.18) of Appendix A). The twelfth expectation is defined as a
linear combination of the fifth and eighth expectations (see (A.19) of Appendix A), while
the thirteenth expectation above is defined as a linear combination of the eighth and tenth
expectations (see (A.20) of Appendix A).

The expectation of the remaining nine random variables involves bivariate integrals.
However, using the Law of iterated expectation (see Johnston and DiNardo, 1997, Ap-
pendix B.5, or see (A.1) of Appendix A), these bivariate integrals can be reduced to a
univariate integral. For example, the ith component of the first integral in the above list
may be written as

EY S
i ,Y

O
i

[
Y S

i m2
2(bi)

]
= EY S

i

{
EY O

i |Y S
i

[
Y S

i m2
2(bi)

]}
= Pr(Y S

i = 0)EY O
i |Y S

i =0

[
Y S

i m2
2(bi)

]
+Pr(Y S

i = 1)EY O
i |Y S

i =1

[
Y S

i m2
2(bi)

]
= Φ(ai)EY O

i |Y S
i =1

[
m2

2(bi)
]

= Φ(ai)
∫

∞

−∞

φ 2(bi)

Φ2(bi)
f (yO

i |yS
i = 1)dyO

i

=
1
σ

∫
∞

−∞

φ 2(bi)

Φ(bi)
φ

(
yO

i − γᵀzi

σ

)
dyO

i , (3.72)

where the third equality above follows since EY O
i |Y S

i =0

[
Y S

i m2
2(bi)

]
= 0. In summary, the

above decomposition implies that the required expectations are of the following form:
EY O

i |Y S
i =0

[
md1

2 (bi)b
d2
i
(
yO

i − γᵀzi
)d3
]
, where d1,d2 and d3 are in the range d1 ∈ {2,3}, d2 ∈

{0,1} and d3 ∈ {1,2,3,4}. The integral in (3.72) involves Gaussian functions and so
do the remaining integrals in the above list. No closed form, of which we are aware of,
exists for these Gaussian integrals and so numerical approximation is necessary which
complicates the numerical implementation of the bias reduction methods in Firth (1993).
Owen (1980) provides an extensive list of Gaussian-type integrals but none of them are
helpful.
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3.4.2 Empirical bias-reducing penalty

In contrast to Firth (1993), reducing the bias of the ML estimator through iRBM-estimation
is straightforward and equivalent to the maximisation of the penalised function (2.48),
where j(θ) is derived in Section 3.4.1 and the (p+q+2)× (p+q+2) matrix e(θ) takes
the form

e(θ) =


eββ eβγ eβρ eβσ

(eβγ)
ᵀ eγγ eγρ eγσ

(eβρ)
ᵀ (eγρ)

ᵀ eρρ eρσ

(eβσ )
ᵀ (eγσ )

ᵀ (eρσ )
ᵀ eσσ

 , (3.73)

where

eββ =
n

∑
i=1

(
∇β li(θ)

)(
∇
ᵀ
β

li(θ)
)

= Xᵀ[(In−U)(M1)
2 +(1−ρ

2)−1U(M2)
2]X , (3.74)

eβγ =
n

∑
i=1

(
∇β li(θ)

)(
∇
ᵀ
γ li(θ)

)
=

1
σ2
√

(1−ρ2)
XᵀUM2

[
Ȳ O−σρ(1−ρ

2)−1/2M2
]

(3.75)

eβρ =
n

∑
i=1

(
∇β li(θ)

)(
∂

∂ρ
li(θ)

)
=

1
σ(1−ρ2)

Xᵀ(M2)
2U
[
σρa+ Ȳ O]1n, (3.76)

eβσ =
n

∑
i=1

(
∇β li(θ)

)(
∂

∂σ
li(θ)

)
=

1
σ3
√

(1−ρ2)
XᵀUM2

[
−σρȲ OM2−σ

2In +(Ȳ O)2]1n, (3.77)

eγγ =
n

∑
i=1

(
∇γ li(θ)

)(
∇
ᵀ
γ li(θ)

)
=

1
σ4(1−ρ2)

ZᵀU
[
(1−ρ

2)(Ȳ O)2−2σρ
√
(1−ρ

2)Ȳ OM2 +σ
2
ρ

2(M2)
2]Z,
(3.78)

43



eγρ =
n

∑
i=1

(
∇γ li(θ)

)(
∂

∂ρ
li(θ)

)
=

1
σ3(1−ρ2)2 ZᵀM2U

[{
σρa+ Ȳ O}{√(1−ρ

2)Ȳ O−σρM2
}]

1n, (3.79)

eγσ =
n

∑
i=1

(
∇γ li(θ)

)(
∂

∂σ
li(θ)

)
=

1
σ5(1−ρ2)

ZᵀU
[
σρ
√

(1−ρ
2)M2

{
σ

2In−2(Ȳ O)2}
+ (1−ρ

2)Ȳ O{(Ȳ O)2−σ
2In
}
+σ

2
ρ

2Ȳ O(M2)
2
]
1n, (3.80)

eρρ =
n

∑
i=1

(
∂

∂ρ
li(θ)

)(
∂

∂ρ
li(θ)

)
=

1
σ2(1−ρ2)3 1ᵀn(M2)

2U
[
σρa(2Ȳ O +σρa)+(Ȳ O)2]1n, (3.81)

eρσ =
n

∑
i=1

(
∂

∂ρ
li(θ)

)(
∂

∂σ
li(θ)

)
=

1
σ4(1−ρ2)

1ᵀnM2U
[
−σρȲ OM2

{
Ȳ O +σρa

}
−σ

2
ρ
√
(1−ρ

2)a

+
√
(1−ρ

2)Ȳ O{(Ȳ O)2−σ
2 +σρaȲ O}]1n, (3.82)

eσσ =
n

∑
i=1

(
∂

∂σ
li(θ)

)(
∂

∂σ
li(θ)

)
=

1
σ6(1−ρ2)

1ᵀnU
[
σρȲ OM2

{
σρȲ OM2 +2σ

2
√

(1−ρ
2)In−2

√
(1−ρ

2)(Ȳ O)2}
+ σ

4(1−ρ
2)In +(1−ρ

2)(Ȳ O)2{(Ȳ O)2−2σ
2In
}]

1n. (3.83)

The value of the eRBM estimator defined in (2.49) is readily available once the empir-
ical bias-reducing penalty term in (2.48) is calculated. All that is needed is the numerical
differentiation of this penalty term and its evaluation with the inverse observed informa-
tion matrix at the ML estimates.

3.4.3 Indirect inference

The indirect inference estimator, θ̃ , is the solution of the equation

θ̃ = θ̂ −B
θ̂
(θ̃), (3.84)
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where B
θ̂
(θ) = Eθ (θ̂)−θ is the bias of the ML estimator evaluated at θ . Using (2.28),

the Monte Carlo estimate of the bias function becomes

B
θ̂
(θ) =

1
R

R

∑
r=1

θ̂
(
y(r)
)
−θ , (3.85)

where y(1), . . . ,y(R) are simulated from the Heckit model with the parameters set at θ . The
solution of (3.84) is obtained iteratively where the indirect inference estimate of θ at the
(k+1)-th iteration is given by

θ̃
(k+1) = θ̂ − 1

R

R

∑
r=1

θ̂
(
y(r)
)
+ θ̃

(k), (3.86)

where y(1), . . . ,y(R) are simulated from the Heckit model with the parameters set at θ̃ (k)

and where the initial estimate θ̃ (0) is chosen to be the ML estimate. The iterative process
is then repeated until the difference of the components of θ̃ (k+1) and θ̃ (k) are all less than
δ in absolute value at the current estimates, where δ is a small number.

3.5 Simulation study

In order to assess the finite sample performance of the maximum likelihood, Heckman
two-step (Heckit), the indirect inference, iRBM and eRBM estimators we perform a sim-
ulation study where we compare their bias, Monte Carlo simulation error (calculated by
dividing the square root of the estimated variance of the estimator by the square root
of the number of simulations), average estimated standard error, empirical standard er-
ror, length and coverage probability of 95% and 99% confidence intervals for different
sample sizes. Specifically, we simulated 3000 data sets from the Heckit model with true
intercepts β1 = 0.01 and γ1 = 0.03, true slopes β2 = 0.7 and γ2 = 0.9, true correlation
coefficient ρ = 0.2 and true variance σ2 = 1. The explanatory variables for the selection
equation and outcome equation were generated from the standard uniform distribution.
The average censoring level was 36%. Four values of the sample size, n, were considered
ranging from 50 to 300.

The maximum likelihood and Heckman two-step estimation were implemented by the
sampleSelection package in R using the functions selection and heckit, respectively (see
Toomet and Henningsen, 2008). The likelihood maximisation was performed using the
maxLik package (see Henningsen and Toomet, 2011) which uses the Newton-Raphson
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algorithm. Convergence issues may appear at the boundary of the parameter space (if
|ρ| → 1). Also the log-likelihood function is not globally concave so the model may not
converge, or it may converge to a local maximum, if the initial values are not chosen
well enough. The default starting values used by selection for the maximum likelihood
estimation are obtained by Heckman’s two-step estimation of the model. In our simulation
we fix the initial values to be the true parameter values. This however, does not resolve
convergence issues completely and ρ̂ can still end up at the boundary of the parameter
space.

The indirect inference estimates of σ and ρ can end up outside the boundary of the
parameter space, i.e. σ < 0 and ρ /∈ (−1,1), which will be problematic when we simulate
from the Heckit model at the current indirect inference estimates. We resolve this by
applying indirect inference on the reparametrisation ln(σ) and ln[(1+ρ)/(1−ρ)] which
allows both σ and ρ to diverge to infinity so that when we transform them back we avoid
their boundary values. Another problem that may occur is that the variance-covariance
matrix at the current indirect inference estimates may not be positive semidefinite. We
correct for this by using a modified version of (3.86):

θ̃
(k+1) = ε

{
θ̂ − 1

R

R

∑
r=1

θ̂
(
y(r)
)}

+ θ̃
(k), (3.87)

where we multiply the first two terms in the RHS of (3.86) by a small positive constant
ε . We loop over ten values of ε , where ε = (0.5)p, where p = 0, . . . ,10 and we stop
when the resulting indirect inference estimates of σ and ρ form a positive semi definite
variance covariance matrix. We set the value of Monte Carlo replicates R to be 500 and
δ is set to be 0.01. The indirect inference estimates of σ and ρ in Table 3.1 are not
the bias corrected ones but the transformed version of them. The standard error of the
indirect inference estimates is evaluated using the inverse of the observed information
matrix evaluated at the indirect inference estimates, i,e, using the Hessian matrix which is
the same method used for the standard error of the maximum likelihood estimates using
the Newton-Raphson algorithm. Note that the final indirect inference estimate of ρ can
still end up on the boundary of the parameter space just like the maximum likelihood
estimate of ρ .

The maximisation of the empirical penalised log-likelihood function was performed
using the optimx function in R (see Nash and Varadhan, 2011). Since the maximum
likelihood estimate of ρ can be on the boundary of the parameter space, i.e. close to one,
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and the heckit estimate of ρ , ρ̂hec, can be greater than one, the starting values for the
optimisation of the empirical log-likelihood need to be case dependent. We consider four
cases:
a) |ρ̂|> 0.99 and |ρ̂hec|< 1
b) |ρ̂|> 0.99 and |ρ̂hec|> 1
c) |ρ̂|< 0.99 and |ρ̂hec|< 1
d) |ρ̂|< 0.99 and |ρ̂hec|> 1,
and we consider six different starting values:

1. The ML estimates
2. The true parameter values
3. The Heckman two-step estimates
4. The ML estimates with the ML estimate of ρ replaced with 0.9
5. The ML estimates with the ML estimate of ρ replaced with the true parameter value

of ρ

6. The ML estimates with the ML estimate of ρ replaced with the heckit estimate of
ρ , ρ̂hec.

When case a is satisfied, we try optimx with each of the starting values 2,3,4,5 and 6,
when case b is satisfied, we try each of the starting values 2,4 and 5 and when either
case c or d is satisfied we try only the first starting value, i.e. the ML estimates. We
specified that all available (and suitable) optimisation methods are used for optimx and
we chose the iRBM-estimates from the optimisation method that converged and satisfied
the kkt1 and kkt2 conditions where kkt1 checks whether the gradient at the final parameter
estimates is small and kkt2 checks whether the Hessian at the final parameter estimates is
positive definite, except when some of the parameters are on the boundary in which case
the Hessian is allowed to be positive semi-definite. This means that we are automatically
excluding any iRBM-estimates of ρ on the boundary of the parameter space. As with
the indirect inference estimator, since we are trying to reduce the bias at the σ and ρ

parameterisation, in order to avoid a constrained optimisation problem (σ > 0 and |ρ|<
1), we transform σ to ln(σ) and ρ to ln[(1+ρ)/(1−ρ)] so that we optimise the empirical
penalised log-likelihood function on the real line. The estimates of ln(σ) and ln[(1+
ρ)/(1−ρ)] from optimx are then transformed back and the resulting final estimates are
the iRBM-estimates of σ and ρ .

The eRBM-estimates are computed directly by substituting the ML estimates into
(2.49) and the standard errors of the iRBM-estimates and the eRBM-estimates are evalu-
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ated using the Hessian matrix.
There are cases where the standard error of the maximum likelihood, indirect infer-

ence, iRBM and eRBM estimates is not available, because it is not possible to invert the
observed information matrix or the estimate of ρ is on the boundary of the parameter
space or close to it. Similarly, the standard error of the Heckman two-step estimates of σ

and ρ are not available for all samples because the variance covariance matrix of the two-
step estimators is only partially implemented in the sampleSelection package in R and
NA is returned in place of the unimplemented components as mentioned in Toomet and
Henningsen (2008, p.g.7). This means that we need to compute the coverage probability
and length of confidence intervals under a convention. We assume that if the standard er-
ror for a particular parameter is not available then the confidence interval covers the true
parameter value and that the interval has infinite length so we compute the median length
over simulated samples.

For some samples the maximum likelihood estimation may fail and as a consequence
the indirect inference and eRBM estimations will also fail. Moreover, the indirect infer-
ence estimator may not converge. The iRBM estimation can also fail. These samples are
excluded from the summaries for all estimators so that no estimator is using more samples
than others. The maximum likelihood, indirect inference and eRBM estimators fail for 12
and 2 samples for sample sizes n = 50 and n = 100, respectively. However, the indirect
inference estimator does not converge for a small proportion of the simulated data for all
sample sizes. The iRBM estimator fails for 314, 139, 98 and 103 samples for sample
sizes n = 50, n = 100, n = 150 and n = 300, respectively. The samples that are excluded
from the summaries are all of those for which the maximum likelihood, indirect inference,
iRBM and eRBM estimators failed and for which the indirect inference estimator did not
converge. In total, the percentage of excluded samples for n = 50, n = 100, n = 150 and
n = 300 were 13.8%, 7.9%, 7.9% and 7.0%, respectively.

Table 3.1 reports the bias and Monte Carlo simulation error of estimators, Table 3.2
reports the average estimated standard error and empirical standard error, while Tables 3.3
and 3.4 report the coverage probability and median length of confidence intervals with
nominal level 95% and 99%, respectively. Overall, we observe from Table 3.1 that all
estimators of β1 and β2 are less biased than their ML estimator, for all sample sizes. The
empirical standard errors, i.e. the square root of the variance, of all estimates of β1 and
β2 are also decreased when compared to ML estimation, for all sample sizes. Compared
to the ML estimator of γ1, the indirect inference, iRBM and eRBM estimators are all less

48



biased for all sample sizes too, where the empirical standard error is only slightly inflated.
In general, the indirect inference and iRBM estimators perform better than ML in terms of
bias for most parameters for small sample sizes, while the eRBM estimator is less biased
than ML for the intercept and slope parameters for all sample sizes considered. The Heckit
estimator performs poorly for γ1 and σ in terms of bias for small sample sizes which is
due to the inflated average standard errors. This can be confirmed from the histogram of
the simulated values of the Heckit estimates in Figure 3.2, since both estimates of γ1 and σ

can take very large values. Surprisingly, the performance of the reparameterised indirect
inference estimates of σ and ρ is superior to those from maximum likelihood estimates
in terms of bias while the empirical standard error is only slightly inflated. Note that
Table 3.2 shows that the average estimated standard errors of the ML, indirect inference,
iRBM and eRBM estimates are not close to (substantially smaller than) the corresponding
empirical standard errors, this is because the sample sizes we consider are small and so
the estimated asymptotic standard errors seem to underestimate finite sample variability.
The 95% and 99% coverage probabilities in Tables 3.3 and 3.4 confirm the above results,
in the sense that for any given sample size and parameter, the estimator whose coverage
probability is closer to the nominal value is either the Heckit, indirect inference, iRBM or
the eRBM estimator. In other words, one of these estimators performs better than ML for
all sample sizes and all parameters considered. Moreover, the 95% coverage probability of
the eRBM estimator is closer to the nominal level than the ML estimator for all parameters
and all sample sizes. The 95% and 99% coverage rates are slightly lower than the nominal
level since the empirical standard errors (i.e. the square root of the variance) exceed the
average estimated standard errors (i.e. the latter are anti-conservative). The 95% and
99% coverage probability of the Heckit estimates of γ1 are larger than the nominal level
for all sample sizes, since the estimated standard errors are large. Moreover, the large
Monte Carlo simulation error is due to the relatively small simulation size of 3000 data
sets. It was not feasible to use more samples in this simulation study because of the
expensive computation time. In particular, on a given Mac computer, the time taken to
conduct inference for a single dataset with the ML, Heckit, indirect inference, iRBM and
eRBM methods was 21 seconds, 15 seconds, 2-24 minutes, 5 minutes and 26 seconds,
respectively. The computation time for the indirect inference method can range from 2
to 24 minutes depending on the number of iterations required before convergence, where
100 iterations took around 24 minutes for completion. This means that the precision of
the conclusions made here is a result of the limited size of the simulation study and a
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larger scale simulation would be beneficial.
One important note to add here is that the variable m2(β

ᵀxi), the inverse Mills ratio,
is a nonlinear function of βᵀxi that can be closely approximated by a linear function of
βᵀxi over much of its range. This implies that if there is not much variability in βᵀxi then
m1(β

ᵀxi) can be closely approximated by a linear function of βᵀxi and so there is the
potential for serious multicollinearity (see Leung and Yu, 2000, for an excellent review
of the collinearity problems encountered in the two-step estimation method). Hence the
standard errors of the Heckit estimates depend on the variation in the latent selection
equation. More variation gives smaller standard errors for the Heckit estimates. Since
xi ∼U [0,1], β1 +β2xi ∼U [β1,β1 +β2]. Thus, the range of β1 +β2xi in our simulation
study is [0.01,0.71] which is very narrow. The top plot of Figure 3.1 is that of the inverse
Mills ratio over the range [0.01,0.71], which shows that m2(β

ᵀxi) is linear. This explains
the huge standard errors and hence the high coverage probability of the Heckit estimates of
γ1. We can accommodate this problem by ensuring that there is substantial variation in the
explanatory variable of the selection equation. So instead of generating the explanatory
variables from the standard uniform distribution as we do in our simulation study we can
change the support to [−10,10]. The bottom plot of Figure 3.1 is that of the inverse Mills
ratio over the range [−6.99,7.01], which shows that m2(β

ᵀxi) is nonlinear.
This means that our simulation study can be extended where in addition to considering

the effect of the correlation ρ of εS and εO we can consider the effect of the variability in
the explanatory variable of the selection equation, and hence the degree of multicollinear-
ity. Moreover, the simulation study can be further extended by considering different val-
ues of the true parameters in order to study whether the results are sensitive to the degree
of censoring. For example, when n = 50, changing the value of β1 from 0.01 to −0.5 and
keeping all other parameter values fixed, the degree of censoring changes from 36% to
55%, while changing β1 to 1 keeping all other parameter values fixed, reduces the degree
of censoring to 9%.
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Figure 3.1: Plot of the inverse Mills ratio m2(β
ᵀxi), where βᵀxi = β1 +β2xi with

β1 = 0.01 and β2 = 0.7 and where βᵀxi varies in the range [0.01,0.71] in the top plot and
βᵀxi varies in the range [−6.99,7.01] in the bottom plot.
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Table 3.1: Heckit observations with true correlation coefficient ρ = 0.2 and true variance σ2 = 1.
The true intercepts are β1 = 0.01 and γ1 = 0.03, while the true slopes are β2 = 0.7 and γ2 = 0.9.

Second to sixth columns show the estimated bias and Monte Carlo simulation error (in
parentheses) of maximum likelihood, Heckman two-step (Heckit), indirect inference, iRBM and

eRBM estimators, for sample sizes n = 50, n = 100, n = 150 and n = 300, with all entries
multiplied by 10.

Maximum Likelihood Heckman Two-Step Indirect Inference iRBM eRBM

n = 50
β1 -0.384 (0.149) -0.252 (0.147) -0.269 (0.147) -0.281 (0.146) -0.314 (0.147)
β2 1.301 (0.173) 0.837 (0.169) 0.860 (0.165) 0.580 (0.163) 0.888 (0.165)
γ1 0.904 (0.161) 3.715 (4.663) 0.583 (0.170) 0.744 (0.155) 0.890 (0.164)
γ2 -0.086 (0.175) -0.052 (0.172) 0.299 (0.179) -0.064 (0.173) -0.079 (0.175)
σ 1.155 (0.154) 29.814 (6.063) 1.089 (0.155) 0.900 (0.150) 2.043 (0.165)
ρ -1.598 (0.178) -1.622 (0.213) -1.309 (0.189) -1.348 (0.166) -1.610 (0.175)

n = 100
β1 -0.292 (0.131) -0.174 (0.130) -0.095 (0.128) -0.155 (0.129) -0.263 (0.131)
β2 0.728 (0.130) 0.468 (0.129) 0.243 (0.126) 0.301 (0.125) 0.548 (0.128)
γ1 0.546 (0.143) -4.122 (4.649) 0.141 (0.152) 0.489 (0.143) 0.535 (0.143)
γ2 -0.121 (0.145) -0.125 (0.144) 0.232 (0.149) -0.124 (0.145) -0.127 (0.145)
σ 1.029 (0.144) 20.593 (5.382) 0.900 (0.144) 1.020 (0.145) 1.526 (0.151)
ρ -1.012 (0.155) -0.845 (0.183) -0.653 (0.167) -0.924 (0.155) -1.026 (0.154)

n = 150
β1 -0.228 (0.127) -0.158 (0.126) -0.129 (0.126) -0.105 (0.125) -0.210 (0.127)
β2 0.562 (0.116) 0.416 (0.116) 0.339 (0.115) 0.228 (0.113) 0.445 (0.115)
γ1 0.366 (0.136) -2.104 (2.056) 0.156 (0.143) 0.359 (0.137) 0.354 (0.137)
γ2 -0.060 (0.133) -0.101 (0.132) 0.017 (0.134) -0.068 (0.133) -0.059 (0.133)
σ 0.859 (0.142) 11.735 (2.657) 0.682 (0.140) 0.846 (0.142) 1.209 (0.146)
ρ -0.768 (0.146) -0.345 (0.165) -0.540 (0.159) -0.749 (0.147) -0.780 (0.146)

n = 300
β1 -0.131 (0.121) -0.087 (0.121) -0.042 (0.120) -0.048 (0.120) -0.123 (0.121)
β2 0.307 (0.105) 0.219 (0.105) 0.159 (0.104) 0.096 (0.103) 0.249 (0.104)
γ1 0.252 (0.127) -0.685 (0.260) 0.039 (0.133) 0.247 (0.127) 0.246 (0.127)
γ2 -0.008 (0.121) -0.021 (0.121) 0.012 (0.122) -0.007 (0.121) -0.008 (0.121)
σ 0.596 (0.136) 2.178 (0.297) 0.429 (0.134) 0.553 (0.136) 0.787 (0.139)
ρ -0.566 (0.133) -0.019 (0.142) -0.198 (0.141) -0.538 (0.134) -0.573 (0.133)
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Table 3.2: Heckit observations with true correlation coefficient ρ = 0.2 and true variance σ2 = 1.
The true intercepts are β1 = 0.01 and γ1 = 0.03, while the true slopes are β2 = 0.7 and γ2 = 0.9.
Second to sixth columns show the average estimated standard error and empirical standard error
(in parentheses) of maximum likelihood, Heckman two-step (Heckit), indirect inference, iRBM
and eRBM estimators, for sample sizes n = 50, n = 100, n = 150 and n = 300, with all entries

multiplied by 10. The symbol __ indicates that the estimate is not available.

Maximum Likelihood Heckman Two-Step Indirect Inference iRBM eRBM

n = 50
β1 3.638 (7.599) 3.754 (7.484) 3.550 (7.453) 3.623 (7.440) 3.549 (7.464)
β2 6.330 (8.782) 6.520 (8.588) 6.060 (8.398) 6.229 (8.308) 6.154 (8.378)
γ1 5.271 (8.192) 4035.060 (237.184) 3.629 (8.655) 5.059 (7.883) 4.429 (8.324)
γ2 6.416 (8.903) 6.246 (8.734) 5.735 (9.094) 6.288 (8.813) 6.929 (8.896)
σ 2.281 (7.808) __ (308.373) 1.367 (7.860) 2.049 (7.643) 2.875 (8.389)
ρ 5.276 (9.028) __ (10.851) 2.300 (9.609) 5.150 (8.430) 9.046 (8.902)

n = 100
β1 2.474 (6.906) 2.591 (6.833) 2.425 (6.751) 2.482 (6.769) 2.492 (6.867)
β2 4.384 (6.856) 4.648 (6.800) 4.253 (6.614) 4.397 (6.580) 4.469 (6.719)
γ1 4.375 (7.497) 7790.362 (244.380) 2.809 (7.965) 3.893 (7.502) 6.053 (7.542)
γ2 4.670 (7.617) 4.651 (7.575) 4.259 (7.816) 4.627 (7.604) 4.940 (7.611)
σ 1.774 (7.588) __ (282.912) 1.049 (7.565) 1.515 (7.602) 2.761 (7.918)
ρ 4.718 (8.146) __ (9.602) 1.740 (8.804) 4.006 (8.127) 6.613 (8.095)

n = 150
β1 2.034 (6.686) 2.114 (6.637) 1.980 (6.611) 2.025 (6.585) 2.070 (6.664)
β2 3.574 (6.123) 3.750 (6.116) 3.440 (6.021) 3.549 (5.942) 3.682 (6.045)
γ1 3.611 (7.167) 913.593 (108.057) 2.239 (7.538) 3.120 (7.176) 5.538 (7.203)
γ2 3.671 (6.999) 3.666 (6.961) 3.379 (7.047) 3.632 (6.995) 3.865 (6.999)
σ 1.468 (7.443) __ (139.654) 0.900 (7.375) 1.252 (7.453) 2.482 (7.679)
ρ 4.299 (7.690) __ (8.668) 1.567 (8.342) 3.460 (7.728) 6.526 (7.660)

n = 300
β1 1.467 (6.405) 1.505 (6.377) 1.432 (6.342) 1.455 (6.342) 1.478 (6.397)
β2 2.614 (5.540) 2.696 (5.533) 2.527 (5.482) 2.584 (5.439) 2.645 (5.506)
γ1 2.919 (6.701) 18.519 (13.738) 1.709 (7.019) 2.377 (6.711) 4.729 (6.715)
γ2 2.439 (6.408) 2.442 (6.401) 2.308 (6.421) 2.414 (6.409) 2.519 (6.408)
σ 1.065 (7.184) __ (15.694) 0.696 (7.094) 0.891 (7.159) 1.769 (7.321)
ρ 3.873 (7.044) __ (7.513) 1.516 (7.431) 2.915 (7.080) 6.472 (7.032)
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Table 3.3: Heckit observations with true correlation coefficient ρ = 0.2 and true variance σ2 = 1.
The true intercepts are β1 = 0.01 and γ1 = 0.03, while the true slopes are β2 = 0.7 and γ2 = 0.9.
Second to sixth columns show the coverage probability and median length (in parentheses) of

confidence intervals with nominal level 95% derived from Wald-type confidence intervals using
the maximum likelihood, Heckman two-step, indirect inference, iRBM and eRBM estimates, for
sample sizes n = 50, n = 100, n = 150 and n = 300 with all coverage probabilities multiplied by

100.

Maximum Likelihood Heckman Two-Step Indirect Inference iRBM eRBM

n = 50
β1 91.8 (1.435) 94.6 (1.460) 95.5 (1.459) 94.9 (1.441) 94.1 (1.436)
β2 91.1 (2.467) 94.2 (2.518) 94.8 (2.548) 94.5 (2.476) 93.1 (2.477)
γ1 85.4 (1.918) 99.2 (4.020) 89.0 (1.610) 92.9 (1.977) 89.4 (Inf)
γ2 91.6 (2.460) 92.5 (2.398) 94.2 (2.517) 94.0 (2.506) 95.6 (2.843)

n = 100
β1 93.0 (0.992) 95.0 (1.013) 94.7 (0.983) 95.0 (0.995) 94.0 (0.990)
β2 92.4 (1.760) 94.6 (1.809) 95.2 (1.735) 95.0 (1.766) 93.4 (1.758)
γ1 84.4 (1.552) 98.9 (2.958) 79.8 (1.133) 87.9 (1.514) 94.9 (Inf)
γ2 93.5 (1.822) 94.0 (1.814) 92.8 (1.716) 94.4 (1.834) 95.3 (1.950)

n = 150
β1 93.6 (0.813) 94.5 (0.827) 94.0 (0.794) 94.7 (0.811) 94.1 (0.809)
β2 94.1 (1.429) 95.2 (1.463) 94.9 (1.385) 95.4 (1.425) 95.2 (1.424)
γ1 83.4 (1.285) 99.1 (2.294) 69.7 (0.882) 83.3,(1.185) 92.7 (Inf)
γ2 93.8 (1.430) 93.8 (1.433) 92.1 (1.334) 94.0 (1.428) 94.8 (1.491)

n = 300
β1 94.8 (0.582) 95.4 (0.589) 94.6 (0.570) 94.9 (0.580) 94.7 (0.580)
β2 92.3 (1.037) 95.9 (1.055) 94.9 (1.007) 95.6 (1.030) 95.0 (1.034)
γ1 82.5 (1.056) 98.4 (1.625) 61.5 (0.667) 79.1 (0.910) 88.5 (2.105)
γ2 94.3 (0.954) 94.4 (0.955) 93.4 (0.903) 94.3 (0.945) 94.9 (0.972)
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Table 3.4: Heckit observations with true correlation coefficient ρ = 0.2 and true variance σ2 = 1.
The true intercepts are β1 = 0.01 and γ1 = 0.03, while the true slopes are β2 = 0.7 and γ2 = 0.9.
Second to sixth columns show the coverage probability and median length (in parentheses) of

confidence intervals with nominal level 99% derived from Wald-type confidence intervals using
the maximum likelihood, Heckman two-step, indirect inference, iRBM and eRBM estimates, for
sample sizes n = 50, n = 100, n = 150 and n = 300 with all coverage probabilities multiplied by

100.

Maximum Likelihood Heckman Two-Step Indirect Inference iRBM eRBM

n = 50
β1 97.5 (1.886) 99.2 (1.919) 99.2 (1.918) 99.2 (1.894) 98.6 (1.887)
β2 97.6 (3.242) 99.2 (3.309) 98.9 (3.349) 98.6 (3.254) 97.7 (3.255)
γ1 92.9 (2.520) 99.9 (5.283) 95.3 (2.116) 97.8 (2.598) 92.7 (Inf)
γ2 97.0 (3.233) 97.8 (3.152) 98.0 (3.308) 98.4 (3.294) 98.8 (3.736)

n = 100
β1 98.4 (1.304) 99.4 (1.331) 98.8 (1.291) 99.0 (1.308) 98.4 (1.301)
β2 97.4 (2.312) 99.3 (2.378) 98.6 (2.280) 98.4 (2.321) 97.8 (2.311)
γ1 92.4,(2.039) 99.9 (3.887) 90.3 (1.489) 95.7 (1.990) 97.6 (Inf)
γ2 98.4 (2.394) 98.6 (2.385) 98.1 (2.256) 98.7 (2.411) 98.7 (2.562)

n = 150
β1 98.3 (1.068) 99.1 (1.087) 98.6 (1.044) 98.9 (1.066) 98.3 (1.064)
β2 98.2 (1.878) 98.8 (1.923) 98.3 (1.820) 98.4 (1.872) 98.1 (1.871)
γ1 91.1 (1.689) 100.0 (3.015) 83.2 (1.160) 91.7 (1.558) 97.0 (Inf)
γ2 98.3 (1.880) 98.5 (1.883) 97.9 (1.754) 98.4 (1.876) 98.8 (1.959)

n = 300
β1 98.9 (0.765) 99.2 (0.775) 98.9 (0.749) 99.1 (0.763) 98.8 (0.763)
β2 98.9 (1.363) 99.1 (1.386) 98.9 (1.324) 99.0 (1.354) 98.6 (1.359)
γ1 90.6,(1.388) 100.0 (2.135) 75.1 (0.876) 87.6 (1.195) 94.2 (2.767)
γ2 98.4 (1.254) 98.5 (1.255) 98.1 (1.187) 98.4 (1.242) 98.6 (1.278)
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Figure 3.2: Histogram of the simulated values of the Heckit estimates for n = 150, after
removing the excluded samples.

3.6 Analysis of female labor supply data

In this section we analyse Mroz (1987) data on female labor supply, which came from
the University of Michigan Panel Study of Income Dynamics for the year 1975. The
sample consists of 753 married white women between the ages of 30 and 60 in 1975,
with 428 working at some time during the year, i.e. participating in the formal market
(lfp = 1), while the remaining 325 observations are women who did not work for pay in
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1975 (lfp = 0). The dependent variable, the wife’s annual hours of work, is the product
of the number of weeks the wife worked for money in 1975 and the average number of
hours of work per week during the weeks she worked. The measure of the wage rate is the
average hourly earnings, defined by dividing the total labor income of the wife in 1975 by
the above measure of her hours of work.

Following Mroz (1987), we suppose that for these 428 individuals, the offered wage
exceeded the reservation wage and, moreover, the unobserved effects in the two wage
equations are correlated. As such, a wage equation based on the market data should
account for the sample selection problem, due to unobservability of the wage offer for
non working women. The labor force participation (described by the binary variable lfp,
where lfp=1 if the individual works and 0 otherwise) equation is modelled by the quadratic
polynomial (see Toomet and Henningsen, 2008, §5.1)

lfp = β1 +β2 age+β3 age2 +β4 faminc+β5 kids+β6 educ+ ε
S, (3.88)

where faminc is the family income in 1975 in dollars, kids is a binary variable which
equals one if there are children under 18 in the household and educ is education measured
in years of schooling. The wage equation is modelled by the quadratic polynomial (see
Greene, 2012, Example 19.11)

Wage = γ1 + γ2 exper+ γ3 exper2 + γ4 educ+ γ5 city+ ε
O, (3.89)

where exper is labor market experience measured as the number of years the woman
worked for money since her eighteenth birthday and city is a binary variable indicating
that the individual lived in a large urban area.

Maximum likelihood, Heckman two-step and indirect inference estimates of the labor
force participation and wage equations are shown in Tables 3.5 and 3.6 respectively. The
fact that three variables are excluded from the wage offer equation is an assumption: we
assume that, given the productivity factors, age, faminc and kids have no effect on the
wage offer.

The differences between the maximum likelihood and indirect inference estimates in
Tables 3.5 and 3.6 are small, with the estimate of ρ increasing in magnitude while that of
σ decreasing for indirect inference. The differences are larger between maximum likeli-
hood and Heckman two-step estimates as noted by Greene (2012) in Example 19.11. The
indirect inference estimates were computed by using R = 500 Monte Carlo simulations
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with δ = 0.001 and the method converged after 32 iterations. Their standard errors were
computed using the observed information matrix and are smaller than the standard errors
from both maximum likelihood and Heckman two-step for all variables.

Note that, as mentioned in Toomet and Henningsen (2008, §5.1), the maximum likeli-
hood and Heckman two-step estimated coefficients and standard errors are almost identi-
cal to the values published in Greene (2012), where the same maximum likelihood coef-
ficients can be obtained with the Newton-Raphson (NR) maximisation method, while to
obtain the published maximum likelihood standard errors we have to use the Berndt-Hall-
Hall-Hausman (BHHH) method. This is because different ways of calculating the Hes-
sian matrix may result in substantially different standard errors (Calzolari and Fiorentini,
1993). The NR algorithm uses exact analytic Hessian, while BHHH uses outer product
approximation. In Tables 3.5 and 3.6 we use the NR method to obtain both the maximum
likelihood estimates and standard errors.

The signs of the coefficients are the same across estimation methods, and the same
evidence of statistical significance are found for all variables in each estimation method.
Namely, the explanatory variables that have a strong effect on labor force participation
are age, the presence of kids and education, while only education has a strong effect on
the wage offer. The t-values of the two-sided t-tests of whether a variable is significantly
different than zero were obtained by dividing the estimates by their standard errors. The
p-values of the t-tests are very close in each estimation method for the labor force par-
ticipation equation, being smallest for indirect inference for the age and kids variables.
For example, the p-value for testing H0 : β5 = 0 from maximum likelihood, Heckman
two-step and indirect inference are 5.68×10−4, 6.38×10−4 and 3.61×10−4, respec-
tively. However, when testing H0 : β6 = 0 from maximum likelihood, Heckman two-
step and indirect inference we find that the p-values are 4.30×10−5, 2.19×10−5 and
3.91×10−5, respectively being smallest for the Heckman two-step method. The p-value
for testing H0 : γ4 = 0 is much smaller in maximum likelihood and indirect inference,
being 7.33×10−10 and 4.36×10−11, respectively, than in Heckman two-step where the
p-value is only 3.56×10−5. Overall, we observe that years of education has the highest
effect on both labor force participation and the wage offer.

The t-test for sample selection bias in estimating the wage offer equation is based
on the significance of the estimated coefficient of the inverse Mills ratio, ρ̂σ , which is
equivalent to the t-test that ρ equals zero. The t-test for a sample selection problem
in the Heckman two-step estimates fails to reject the hypothesis H0 : ρσ = 0 with p-
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value 0.386. Surprisingly, the t-test for a selection effect in the maximum likelihood and
indirect inference estimates, a nonzero ρ , also fails to reject the hypothesis H0 : ρ = 0
with p-values 0.424 and 0.140 respectively, though the difference in the p-values is quite
large.

The marginal effect of the regressors (independent variables) on yO
i in the observed

sample may be obtained by differentiating (3.25) and consists of two components. There
is the direct effect on the mean of yO

i , which is γ . In addition, for a particular independent
variable, if it appears in the probability that yS∗

i is positive, which is given by Φ(βᵀxi),
then it will influence yO

i through its presence in m1(β
ᵀxi). The full effect of changes in a

regressor that appears in both zi and xi on yO
i is

∂E(yO
i |yS∗

i > 0)
∂ zik

= γk−βk(ρσ)δ1(−ai), (3.90)

where δ1(−ai) = dm1(−ai)/dai = m1(−ai)[m1(−ai) + ai] and where ai = βᵀxi as in
(3.13). The average marginal effect for education which appears as a regressor in both
the labor force participation and wage equations is estimated as 0.480 for the maximum
likelihood estimates, as 0.481 for the Heckman two-step estimates and estimated as 0.481
for the indirect inference estimates. These estimates were obtained by averaging over all
observations, i.e. in (3.90) we replace ai with (1/n)∑

n
i=1 ai. The full effect of changes in

a regressor that appears only in xi on yO
i is

∂E(yO
i |yS∗

i > 0)
∂xik

=−βk(ρσ)δ1(−ai). (3.91)

Therefore, for the kids variable, which appears as a regressor only in the labor force
participation equation, the average marginal effect is -0.293 for the Heckman two-step
estimates and only -0.110 and -0.142 for the maximum likelihood and indirect inference
estimates, respectively.
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3.7 Discussion and further work

3.7.1 Summary

We have compared the performance of several estimators of the parameters of the Heckit
(Tobit II) model with the already available ML and Heckman two-step estimation meth-
ods. We demonstrated through simulation studies that the indirect inference, iRBM and
eRBM estimators reduce the bias in the ML estimator and improve the coverage probabil-
ities of confidence intervals, for small sample sizes. The Heckman two-step estimator on
the other hand, suffers from severe multicollinearity due to the fact that the inverse Mills
ratio does not differ enough from a linear function, which is a consequence of the small
variation in the explanatory variable of the selection equation. The collinearity problem
can be alleviated by incorporating more variability in the selection equation, and it is
desirable to investigate the performance of the bias reduction methods in this case and
how they compare to the ML and Heckman two-step estimation methods. Our simulation
study considered a single set of true parameter values but this could be easily extended to
account for different values of the parameter space and how it affects estimation bias and
inference. In particular, varying the true parameter values affects the degree of censoring
and it is useful to extend the simulation study to account for different levels of censoring
in the data. Moreover, the size of our simulation study could be considerably increased, to
10000 say, so that the Monte Carlo error is reduced, though this would be computationally
expensive. Since the indirect inference estimator could in principle be applied to any well
defined initial estimator, we may investigate the performance of indirect inference on the
bias reduction of the Heckit estimates of the model parameters, especially to that of γ1.

When applying bias reduction to real-world data sets, the indirect inference estimator
can be expensive due to its computational complexity. However, the iRBM and eRBM
estimators, on the other hand, are relatively easy to implement in general purpose pack-
ages.

3.7.2 Empirical bias-reducing penalty for Heckman two-step estimation

The Heckman two step estimator is a two step M-estimator since we can write it as a set
of estimating equations. Moreover, the estimating equations are unbiased and hence we
can apply iRBM-estimation to reduce the bias of the Heckman two step estimator by first
applying iRBM-estimation to the probit ML estimating equation of β using the penalised
log-likelihood function (2.48) and then applying iRBM-estimation to the least squares
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estimating equations of γ and ρσ using (2.44).
The likelihood function of the probit model is given by

Lp(β ) =
n

∏
i=1

pyS
i

i (1− pi)
1−yS

i , (3.92)

where pi = Pr(yS
i = 1) = Pr(yS∗

i ≥ 0) = Φ(βᵀxi), and the corresponding log-likelihood
function is (see Cameron and Trivedi, 2005, §14.3.3)

lp(β ) =
n

∑
i=1

{
yS

i lnΦ(βᵀxi)+(1− yS
i ) ln

(
1−Φ(βᵀxi)

)}
. (3.93)

The gradient of the probit log-likelihood function above is

∇β lp(β ) =
n

∑
i=1

{
yS

i −Φ(βᵀxi)

Φ(βᵀxi)
xim1(β

ᵀxi)

}
, (3.94)

which is an unbiased estimating equation since E(yS
i ) = Φ(βᵀxi).

The OLS estimator of γ and ξ = ρσ minimises the sum of squared errors, νi, given in
(3.27) and is given by

n

∑
i=1

ν
2
i =

n

∑
i=1

{
yO

i − γ
ᵀzi− (ρσ)m1(−β

ᵀxi)
}2

=
n

∑
i=1

{
yO

i − γ
ᵀzi− (ρσ)m2(β

ᵀxi)
}2

=
n

∑
i=1

{(
yO

i − γ
ᵀzi
)2−2(ρσ)

(
yO

i − γ
ᵀzi
)
m2(β

ᵀxi)

+
(
ρσ
)2(m2(β

ᵀxi)
)2
}
, (3.95)

where for simplicity we write yO
i instead of yO

i |yS∗
i > 0. The gradient with respect to γ and

the partial derivative with respect to ρσ of (3.95), are given respectively by

∇γ

( n

∑
i=1

ν
2
i

)
=−2

n

∑
i=1

{(
yO

i − γ
ᵀzi
)
− (ρσ)m2(β

ᵀxi)

}
zi, (3.96)

∂

∂ (ρσ)

( n

∑
i=1

ν
2
i

)
=−2

n

∑
i=1

{(
yO

i − γ
ᵀzi
)
− (ρσ)m2(β

ᵀxi)

}
m2(β

ᵀxi), (3.97)
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which are unbiased estimating equations since E(yO
i |yS∗

i > 0) = γᵀzi +(ρσ)m2(β
ᵀxi).

In terms of the notation of Section 2.2.5, θ =
(
β1, . . . ,βp,γ1, . . . ,γq,ρσ

)
so we have

p+q+1 estimating equations given by

n

∑
i=1

ω
i(θ) =

( n

∑
i=1

ω
i
1(β ),

n

∑
i=1

ω
i
2(θ),

n

∑
i=1

ω
i
3(θ)

)ᵀ

, (3.98)

where

n

∑
i=1

ω
i
1(β ) =

( n

∑
i=1

ω
i
11(β ), . . . ,

n

∑
i=1

ω
i
1p(β )

)ᵀ

, (3.99)

n

∑
i=1

ω
i
2(θ) =

( n

∑
i=1

ω
i
21(θ), . . . ,

n

∑
i=1

ω
i
2q(θ)

)ᵀ

, (3.100)

and where

n

∑
i=1

ω
i
1(β ) =

n

∑
i=1

∇β li
p(β )

= ∇β lp(β )

= XᵀM1Q−1[(U−Q)1n
]
, (3.101)

where X ,M1,U and 1n are as in Sections 3.3.1 and 3.4.1 and where
Q = diag{Φ(a1), . . . ,Φ(an)}, ai = βᵀxi, i = 1, . . . ,n,

n

∑
i=1

ω
i
2(θ) =

n

∑
i=1

∇γν
2
i

= ∇γ

( n

∑
i=1

ν
2
i

)
= −2Zᵀ[Ȳ O− (ρσ)Ma

2
]
1n, (3.102)

where Ȳ O is as in Section 3.3.1 and where Ma
2 = diag{m2(a1), . . . ,m2(an)},

n

∑
i=1

ω
i
3(θ) =

n

∑
i=1

∂

∂ (ρσ)
v2

i

=
∂

∂ (ρσ)

( n

∑
i=1

ν
2
i

)
= −21ᵀn

[
Ȳ O− (ρσ)Ma

2
]
Ma

21n. (3.103)
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Since the estimation of β is through maximum likelihood, bias reduction through empiri-
cal bias-reducing adjustments is equivalent to the maximisation of the penalised function

lp(β )−
1
2

trace{ j(β )−1e(β )}, (3.104)

where

j(β ) = −∑
j=1

∇β ω
i
1(β )

= −∑
j=1

∇β ∇
ᵀ
β

li
p(β )

= −∇β ∇
ᵀ
β

n

∑
i=1

li
p(β )

= −∇β ∇
ᵀ
β

lp(β )

= −
n

∑
i=1

{
yS

i xix
ᵀ
i

[
Φ(βᵀxi)δ1(β

ᵀxi)−m1(β
ᵀxi)φ(β

ᵀxi)(
Φ(βᵀxi)

)2

]
− xix

ᵀ
i δ1(β

ᵀxi)

}
= Xᵀ[−UQ−2(QM

′
1−M1Q

′
)+M

′
1
]
X , (3.105)

where δ1(β
ᵀxi) = m1(β

ᵀxi)
[
m1(β

ᵀxi)−βᵀxi
]
, M

′
1 is as in Section 3.4.1 and where Q

′
=

diag{φ(a1), . . . ,φ(an)},

e(β ) =
n

∑
i=1

{
∇β li

p(β )
}{

∇
ᵀ
β

li
p(β )

}
=

n

∑
i=1

{[
(yS

i )
2−2yS

i Φ(βᵀxi)+
(
Φ(βᵀxi)

)2(
Φ(βᵀxi)

)2

]
xix

ᵀ
i
(
m1(β

ᵀxi)
)2
}

= XᵀM2
1
[
Q−2U2−2Q−1U + In

]
X . (3.106)

The (q+1)× (q+1) matrices j(γ,ρσ) and e(γ,ρσ) in (2.44) for the empirical bias-
reducing adjustments of γ and ρσ are given by

j(γ,ρσ) =

(
jγγ jγ(ρσ)(

jγ(ρσ)

)ᵀ j(ρσ)(ρσ)

)
,

e(γ,ρσ) =

(
eγγ eγ(ρσ)(

eγ(ρσ)

)ᵀ e(ρσ)(ρσ)

)
,
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where

jγγ = −
n

∑
i=1

∇γ∇
ᵀ
γ (ν

2
i )

= −2
n

∑
i=1

ziz
ᵀ
i

= −2ZᵀZ, (3.107)

jγ(ρσ) = −
n

∑
i=1

∂

∂ (ρσ)
∇γ(ν

2
i )

= −2
n

∑
i=1

zim2(β
ᵀxi)

= −2ZᵀMa
21n, (3.108)(

jγ(ρσ)

)ᵀ
= −21ᵀnMa

2Z, (3.109)

j(ρσ)(ρσ) = −
n

∑
i=1

∂ 2

∂ (ρσ)2 (ν
2
i )

= −2
n

∑
i=1

(
m2(β

ᵀxi)
)2

= −21ᵀn
(
Ma

2
)21n, (3.110)

and where

eγγ =
n

∑
i=1

{
∇γν

2
i
}{

∇
ᵀ
γ ν

2
i
}

= 4
n

∑
i=1

{[(
yO

i − γ
ᵀzi
)2−2(ρσ)

(
yO

i − γ
ᵀzi
)
m2(β

ᵀxi)+(ρσ)2(m2(β
ᵀxi)
)2
]
ziz

ᵀ
i

}
= 4Zᵀ

[
(Ȳ O)2−2(ρσ)Ȳ OMa

2 +(ρσ)2(Ma
2
)2
]
Z, (3.111)

eγ(ρσ) =
n

∑
i=1

{
∂

∂ (ρσ)
ν

2
i

}{
∇γν

2
i

}
= 4Zᵀ(Ma

2
)2
[
(Ȳ O)2−2(ρσ)Ȳ OMa

2 +(ρσ)2(Ma
2
)2
]
1n,(

eγ(ρσ)

)ᵀ
= 41ᵀn

[
(Ȳ O)2−2(ρσ)Ma

2Ȳ O +(ρσ)2(Ma
2
)2
]
Ma

2Z, (3.112)

e(ρσ)(ρσ) =
n

∑
i=1

{
∂

∂ (ρσ)
ν

2
i

}{
∂

∂ (ρσ)
ν

2
i

}
= 41ᵀn

(
Ma

2
)2
[
(Ȳ O)2−2(ρσ)Ȳ OMa

2 +(ρσ)2(Ma
2
)2
]
1n. (3.113)

65



In addition, the matrices ur(γ,ρσ), u(ρσ)(γ,ρσ), dr(γ,ρσ) and d(ρσ)(γ,ρσ), r =

1, . . . ,q, can be written as

ur(γ,ρσ) =

(
ur,γγ ur,γ(ρσ)(

ur,γ(ρσ)

)ᵀ ur,(ρσ)(ρσ)

)
,

u(ρσ)(γ,ρσ) =

(
u(ρσ),γγ u(ρσ),γ(ρσ)(

u(ρσ),γ(ρσ)

)ᵀ u(ρσ),(ρσ)(ρσ)

)
,

dr(γ,ρσ) =

(
dr,γγ dr,γ(ρσ)(

dr,γ(ρσ)

)ᵀ dr,(ρσ)(ρσ)

)
,

d(ρσ)(γ,ρσ) =

(
d(ρσ),γγ d(ρσ),γ(ρσ)(

d(ρσ),γ(ρσ)

)ᵀ d(ρσ),(ρσ)(ρσ)

)
,

where

ur,γγ =
n

∑
i=1

∇γ∇
ᵀ
γ

(
∂

∂γr
ν

2
i

)
= 0,

ur,γ(ρσ) =
n

∑
i=1

∇γ

(
∂ 2

∂ (ρσ)∂γr
ν

2
i

)
= 0,

ur,(ρσ)(ρσ) =
n

∑
i=1

∂ 2

∂ (ρσ)2

(
∂

∂γr
ν

2
i

)
= 0,

u(ρσ),γγ =
n

∑
i=1

∇γ∇
ᵀ
γ

(
∂

∂ (ρσ)
ν

2
i

)
= 0,

u(ρσ),γ(ρσ) =
n

∑
i=1

∇γ

(
∂ 2

∂ (ρσ)2 ν
2
i

)
= 0,

u(ρσ),(ρσ)(ρσ) =
n

∑
i=1

(
∂ 3

∂ (ρσ)3 ν
2
i

)
= 0.

Finally, the components of the (q+1)× (q+1) matrices dr(γ,ρσ) and d(ρσ)(γ,ρσ) are
given by

dr,γγ =
n

∑
i=1

{
∇γ

(
∂

∂γr
ν

2
i

)}{
∇γν

2
i

}
= −4

n

∑
i=1

{(
yO

i − γ
ᵀzi
)
− (ρσ)m2(β

ᵀxi)
}

zirziz
ᵀ
i

= −4ZᵀTr
[
Ȳ O− (ρσ)Ma

2
]
Z, (3.114)
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where Tr has ith diagonal element zir and where

dr,γ(ρσ) =
n

∑
i=1

{
∇γ

(
∂

∂γr
ν

2
i

)}{
∂

∂ (ρσ)
ν

2
i

}
= −4

n

∑
i=1

{(
yO

i − γ
ᵀzi
)
− (ρσ)m2(β

ᵀxi)
}

zirzim2(β
ᵀxi)

= −4ZᵀTrMa
2
[
Ȳ O− (ρσ)Ma

2
]
1n, (3.115)(

dr,γ(ρσ)

)ᵀ
= −41ᵀn

[
Ȳ O− (ρσ)Ma

2
]
Ma

2TrZ, (3.116)

dr,(ρσ)(ρσ) =
n

∑
i=1

{
∂ 2

∂ (ρσ)∂γr
ν

2
i

}{
∂

∂ (ρσ)
ν

2
i

}
= −4

n

∑
i=1

{(
yO

i − γ
ᵀzi
)
− (ρσ)m2(β

ᵀxi)
}

zir
(
m2(β

ᵀxi)
)2

= −41ᵀnTr
(
Ma

2
)2[Ȳ O− (ρσ)Ma

2
]
1n, (3.117)

d(ρσ),γγ =
n

∑
i=1

{
∇γ

(
∂

∂ (ρσ)
ν

2
i

)}{
∇γν

2
i

}
= −4

n

∑
i=1

{(
yO

i − γ
ᵀzi
)
− (ρσ)m2(β

ᵀxi)
}

ziz
ᵀ
i m2(β
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= −4ZᵀMa
2
[
Ȳ O− (ρσ)Ma

2
]
Z, (3.118)

d(ρσ),γ(ρσ) =
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∑
i=1
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2
i

}
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∑
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)
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2
]
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d(ρσ),γ(ρσ)

)ᵀ
= −41ᵀn

[
Ȳ O− (ρσ)Ma

2
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Ma
2
)2Z, (3.120)

d(ρσ),(ρσ)(ρσ) =
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}{
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∂ (ρσ)
ν
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i

}
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n

∑
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{(
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)
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}(

m2(β
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)3

= −41ᵀn
(
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2
)3[Ȳ O− (ρσ)Ma

2
]
1ᵀn. (3.121)

3.7.3 Bias reduction for Tobit V model

A straightforward generalisation of the Tobit II model is the Roy (Tobit V) model, also
called the switching regression model (see Toomet and Henningsen, 2008, §2.2). In the
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Tobit II model the outcome variable for an individual might not be observed. Thus we
observe yO

i for individual i if yS
i = 1 but may not observe yO

i at all if yS
i = 0. In the Roy

model we have two outcome variables, where only one of them is observed, depending on
the selection process. This model arises in many contexts like treatment effect and choice
analysis. The selection equation in this model is

yS∗
i = β

ᵀxi + ε
S
i , (3.122)

yS
i =

0 if yS∗
i < 0

1 if yS∗
i ≥ 0,

(3.123)

and the two outcome equations are

yO1∗
i = γ

ᵀzO1
i + ε

O1
i , (3.124)

yO2∗
i = τ

ᵀzO2
i + ε

O2
i , (3.125)

yO
i =

yO1∗
i if yS

i = 0

yO2∗
i if yS

i = 1,
(3.126)

where yS∗
i is the latent (unobserved) variable of the selection tendency for individual i,

yS
i is the observed binary value and yO1∗

i and yO2∗
i are the two possible latent outcomes

for individual i. The distribution of the errors is usually set to be the trivariate normal
distribution. The Heckman two-step correction method can be easily extended to this
model and implemented, alongside ML estimation, using the sampleSelection R package.

A possible direction for further research is the application of the bias reduction meth-
ods of indirect inference and empirical bias reducing adjustments to ML estimation in the
Roy model.

68



Chapter 4

Accelerated failure time model

4.1 Introduction

Censored survival time data are frequently encountered in survival analysis. Survival
analysis, also called duration analysis in economics, is used for data in the form of times
from a well-defined time origin, for example entry to a study, until the occurrence of
some particular event of interest, such as death of individuals in a clinical trial or failure
in mechanical systems. Survival times however, are usually censored. This means that
the event of interest has not been observed for some individuals before the end of the
study. There are several types of censoring (see Kleinbaum and Klein, 2011, Chapter 1
for an excellent overview) but we only focus here on right-censored survival times which
is encountered when the actual survival time of an individual is greater than that observed.

Two important classes of models used for survival data are the Cox proportional hazard
(PH) models (Cox, 1972) (also called relative risk models) and accelerated failure time
(AFT) models (Kalbfleisch and Prentice, 2002). The Cox proportional hazards model
relates the hazard function (which is the instantaneous probability of failure or death)
to covariates and assumes that the covariates have a multiplicative effect on the hazard
without assuming any particular survival distribution for the data. The interpretation of
this model is done using hazard ratios, defined as the ratio of the predicted hazard function
under two different values of a covariate. A hazard ratio of one means that the covariate
has no effect on the hazard of the event, while a hazard ratio greater than one or less than
one means that the event of interest is more likely or less likely to occur, respectively,
when the covariate increases. Consider comparing a new treatment with a standard one
(two levels of a covariate), then the proportional hazards assumption simply means that
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the hazard ratio for an individual on a new treatment to that for an individual on the
standard treatment remains constant over time. The Cox proportional hazards model is a
semiparametric model in that the distribution of the baseline hazard (i.e. the hazard that
applies when all the covariates are equal to zero) is not specified (Cameron and Trivedi,
2005, Chapter 17). However, these models can be specialised if there is reason to assume
that the baseline hazard follows a particular form. For example, assuming the hazard
function to be the exponential hazard gives the exponential proportional hazards model.

An alternative to the Cox PH models is the parametric AFT models where a particular
form of the survival distribution is assumed and where a direct relationship is specified
between the covariates and the survival time. AFT models assume that the effect of a
covariate is to accelerate or decelerate the survival time of an event by some constant.
The interpretation of this model is done using survival time ratios, also knows as the ac-
celeration factor. A survival time ratio greater than or less than one, means that the event
of interest is less likely or more likely to happen, respectively. Several distributions have
been used to model the survival time in AFT models, including the log-normal and log-
logistic distributions (for a thorough discussion of those see Lawless, 2002, Chapter 6),
however in this chapter we only consider the Weibull accelerated failure time model which
is the only AFT model that satisfies the proportional hazards assumption. Inference pro-
cedures for the Weibull AFT model are based on the likelihood function and estimation
of the regression parameters is achieved through maximum likelihood (Lawless, 2002,
§6.3). The usual large sample likelihood theory applies to the maximum likelihood esti-
mator of the Weibull AFT model as described in Kalbfleisch and Prentice (2002, §3.4),
but in small samples with censored observations the maximum likelihood estimator could
be substantially biased.

In this chapter we evaluate the performance of the indirect inference estimator (Kuk,
1995) and the empirical bias reducing adjusted log-likelihood estimator of Kosmidis and
Lunardon (2020) in reducing the small sample bias of the ML estimator of the Weibull
AFT model. To our knowledge, this has not been done before.

The chapter is organised as follows. In Section 4.2, we describe the Weibull acceler-
ated failure time model and review the method of maximum likelihood estimation. We
explain in Section 4.3 that the bias reduction method of Firth (1993) is not applicable to
this model, because the required expressions for its derivation are not available in closed
form and numerical approximations are necessary. The empirical bias reducing penalty
of Kosmidis and Lunardon (2020) is also derived in this section and in Section 4.4, we
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compare the performance of indirect inference and empirical bias reduction with ML es-
timation through a small scale simulation study. Finally, in Section 4.5, the above bias
reduction methods are used for the analysis of lung cancer survival data (Kleinbaum and
Klein, 2011, Chapter 7).

4.1.1 The hazard and survival functions

Let T be a continuous nonnegative random variable representing the waiting time of an
individual from a homogeneous population (no explanatory variables) until the occurrence
of a well defined event of interest. In survival analysis, we usually refer to the waiting
time variable as "survival time", because it gives the time that an individual has survived
over some period of time. We also refer to the event as "failure", because usually the
event of interest is death, disease incidence, or some other negative individual experience,
although the event of interest may, for instance, be recovery (e.g. return to work), in
which case failure is a positive event. Major areas of application of survival data analysis
are biomedical studies, social research, industrial life testing and economic research.

Biomedical examples include the carcinogenesis data from Pike (1966) which gives the
times from insult with a carcinogen to mortality from vaginal cancer in rats, the Stanford
heart transplant data from Crowley and Hu (1977) (see also, Kalbfleisch and Prentice,
2002, Appendix A, data set IV) who give survival times of potential heart transplant
recipients from their date of acceptance into the Stanford heart transplant program, and
the Veterans’ Administration lung cancer data (Prentice, 1973; Kalbfleisch and Prentice,
2002, Appendix A, data set I) where males with advanced inoperable lung cancer were
randomized to either a standard or test chemotherapy and the primary endpoint for therapy
comparison was time to death (see also, Kalbfleisch and Prentice, 2002, Appendix A
for various other medical data set examples). Kennan (1985) and Kiefer (1985) used
survival analysis techniques in a social context to study the duration of strikes in U.S.
manufacturing, measured in number of days from the start of strike. The accelerated
life test data presented in Nelson and Hahn (1972) on the number of hours to failure of
motorettes operating under various temperatures is yet another application in engineering
research.

Suppose that T has probability density function (pdf) f (t) and cumulative distribution
function (cdf) F(t) = Pr(T ≤ t), giving the probability that the event has occurred by
duration t. It is often more convenient to work with the complement of the cdf, the
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survival function

S(t) = 1−F(t)

=
∫

∞

t
f (x)dx, (4.1)

which gives the probability that the event of interest has not occurred by duration t.
Clearly, S(t) is monotonically decreasing from one to zero since F(t) is monotonically
increasing from zero with S(0) = 1 and limt→∞ S(t) = 0, that is theoretically, if time in-
creased without limit, eventually nobody would survive.

An alternative characterisation of the distribution of T is given by the hazard function,
or the conditional failure rate, which is the instantaneous rate per unit time at which
failures occur, given that the individual has survived up to time t, defined as

λ (t) = lim
dt→0

Pr(t ≤ T < t +dt|T ≥ t)
dt

=
f (t)
S(t)

. (4.2)

Note that, the hazard function focuses on failing, that is, on the event occurring, in contrast
to the survival function, which focuses on not failing. Thus, in some sense, the hazard
function gives the opposite side of the information given by the survivor function. Note
also that the scale for the hazard rate is not (0,1), as for a probability, but rather (0,∞)

and depends on the unit of time used. In contrast to the survivor function, the graph of
λ (t) does not have to start at one and decrease to zero, but rather can start anywhere and
increase or decrease in any direction over time. In particular, for a specific value of t, the
hazard function λ (t) is always nonnegative, that is, equal to or greater than zero, and has
no upper bound (see Kleinbaum and Klein, 2011, Chapter 1, for examples).

The survivor and hazard functions are also closely related and provide alternative but
equivalent characterisations of the distribution of T , in particular given one, the other can
be easily derived. Since from (4.1), − f (t) is the derivative of S(t), the hazard equals the
change in log survivor function

λ (t) =−d lnS(t)
dt

. (4.3)

Integrating the hazard with respect to t and introducing the boundary condition S(0) = 1,
we can solve the above expression to obtain a formula for S(t) as a function of the hazard
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at all durations up to t:

S(t) = exp
(
−
∫ t

0
λ (u)du

)
. (4.4)

The integral in the above equation is called the cumulative hazard function or integrated
hazard function

Λ(t) =
∫ t

0
λ (u)du

= − lnS(t), (4.5)

and is the sum of the risks faced between 0 and t. The above relations suggest that
any nonnegative function λ (t) that satisfies Λ(t) < ∞ for some t > 0 and Λ(∞) = ∞,
i.e. S(∞) = 0 can be the hazard function of the continuous random variable T , and any
distribution defined for t ∈ [0,∞) can serve as a survival distribution for T . In fact given
a random variable W with a standard distribution in (−∞,∞) we can generate a family of
survival distributions by introducing location and scale changes of the form

lnT = Y = α +σW, (4.6)

which will be discussed further in the next subsection.
Another representation of the failure time distribution is the expectation of life, given

by

E(T ) =
∫

∞

0
t f (t)dt

=
∫

∞

0
S(t)dt, (4.7)

where the second equality above is obtained by integrating by parts, and making use of
the fact that − f (t) is the derivative of S(t), with limits S(0) = 1 and S(∞) = 0. In words,
the mean survival time is simply the integral of the survival function or the area under the
survival curve.

4.1.2 Parametric models of the hazard function

In this section we discuss briefly the general properties of some of the standard paramet-
ric failure time models for homogeneous populations like the exponential and Weibull
models which are often used in the literature. Johnson and Kotz (1970) and Kalbfleisch
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and Prentice (2002, Chapter 2) provide a more detailed discussion of these distributions
and of others that are frequently used such as the gamma, log-normal, log-logistic, gener-
alised gamma and generalised F distributions. As before, let T > 0 be a random variable
representing failure time and let Y = lnT = α +σW represent the log failure time. We
summarise below the exponential and Weibull failure time distributions in terms of T , Y

and W .
The exponential survival distribution is the simplest possible and is obtained by as-

suming a constant risk over time, so the hazard function is

λ (t) = λ > 0, (4.8)

for all t. This is known as the memoryless property of the exponential distribution; the
conditional probability of failure in a given short interval is the same regardless of when
the observation is made. The corresponding survival and density functions of T are

S(t) = exp(−λ t),

fT (t) = λ exp(−λ t). (4.9)

The density and survival function of Y = ln(T ) are, respectively

fY (y) = exp
(
y−α− ey−α

)
, (4.10)

S(y) = exp
(
− ey−α

)
, (4.11)

where α = − ln(λ ) and −∞ < y < ∞. In fact T has an exponential distribution with
parameter λ , denoted T ∼ Exp(λ ) if

Y = ln(T ) = α +W, (4.12)

where α = − ln(λ ) and W has a standard extreme value (minimum) distribution with
density and survival functions given respectively by

fW (w) = exp
(
w− ew), (4.13)

SW (w) = exp
(
− ew), (4.14)
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where −∞ < w < ∞. The moment generating function of W is

MW (θ) = E
(
eθW)= Γ(θ +1), (4.15)

where θ >−1 and where
Γ(k) =

∫
∞

0
xk−1e−x dx (4.16)

is the gamma function.
The exponential is a one-parameter distribution that is too restrictive in practice. A

generalization commonly used in econometrics is the Weibull distribution which allows
for a power dependence of the hazard on time. This yields the two-parameter Weibull
distribution with hazard function

λ (t) = λ
p pt p−1

= λ p(λ t)p−1, (4.17)

for λ , p > 0. The log of the Weibull hazard is a linear function of log time with constant
p ln(λ ) + ln(p) and slope p− 1. Thus, this hazard is monotone decreasing for p < 1,
reduces to the constant exponential hazard if p= 1, and increasing for p> 1. The survival
and density functions of T are

S(t) = exp
[
− (λ t)p],

fT (t) = λ p(λ t)p−1 exp
[
− (λ t)p]. (4.18)

The density and survival function of Y = ln(T ) are, respectively

fY (y) = σ
−1 exp

[
σ
−1(y−α)− e(y−α)/σ

]
, (4.19)

SY (y) = exp
[
− e(y−α)/σ

]
, (4.20)

where −∞ < y < ∞, α =− ln(λ ) and σ = p−1. In fact T has a Weibull distribution with
parameters λ and p, denoted T ∼W (λ , p) if

Y = ln(T ) = α +σW, (4.21)

where α =− ln(λ ), σ = p−1 and W has the extreme value (minimum) distribution (4.13).
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Another generalization which includes the exponential distribution as a special case is
the two parameter gamma distribution for T where Y = ln(T ) = α +W , with W having
the generalized extreme value distribution.

Other parametric models are also used such as the log-normal distribution for T which
can be written in the form Y = ln(T ) = α +σW , where W has a standard normal distri-
bution. The hazard function of the log-normal distribution increases from zero to reach a
maximum and then decreases monotonically, approaching zero as t becomes large.

The gamma family can be further generalized by incorporating a scale parameter σ in
the model for Y to give Y = ln(T ) = α +σW , where T and W have generalized gamma
and generalized extreme value distributions, respectively. This three parameter model was
introduced by Stacy (1962) and includes as special cases the exponential, the Weibull, the
gamma and the log-normal (limiting case) distributions.

A good approximation to the log-normal distribution is the log-logistic distribution
which is obtained for T if Y = ln(T ) = α +σW , where W has a standard logistic distri-
bution.

The generalized F distribution for T incorporates all of the preceeding distributions
as special or limiting cases if Y = ln(T ) = α +σW , where W is distributed as the log
of an F variate. This model is particularly useful for discriminating between competing
models such as the Weibull and log-logistic distributions for a given data set because it
has the advantage of adapting to a wide variety of distributional shapes (see Kalbfleisch
and Prentice, 2002, §3.8).

4.1.3 Censoring and the likelihood function

Failure time data are usually censored, in the sense that some individuals fail and there-
fore we know their exact survival time, whereas other individuals do not fail during their
observation period and all we know is that their survival time exceeds the observation
time. There are generally three reasons why censoring may occur: some individuals are
still surviving at the time the study is terminated and the analysis is done, or contact with
the individual is lost to follow up during the study period or individuals may be withdrawn
or decide to withdraw from the study because of a worsening or improving prognosis.

As is intuitively apparent, some censoring mechanisms have the potential to introduce
bias into the estimation of survival probabilities or into treatment comparisons. In prac-
tice data may be right censored, left censored or interval censored. Right censoring or
censoring from above occurs when an individual is observed to fail after some time c, but
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the actual time of failure is unknown and all we know is that failure occurs at some time
in the interval (c,∞). Likewise, left censoring or censoring from below occurs if the indi-
vidual is observed to fail at some time in the interval (0,c) but the exact time is unknown.
Interval censoring occurs when we only observe that the failure time falls within some
interval (a,b), and it incorporates both right censoring and left censoring as special cases.

We focus our attention on right censoring as in most survival analysis literature. How-
ever, even with this restriction there are a variety of possible censoring mechanisms or
assumptions, including independent censoring, random censoring and non informative
censoring (Kleinbaum and Klein, 2011, Chapter 1, §XI). For standard survival analysis
methods to be valid in the presence of censoring, the censoring mechanism needs to be
one with independent censoring. In this chapter we assume random censoring which is a
stronger assumption and more restrictive than independent censoring.

Consider survival studies in which n items or individuals are put on test and data of the
form (ti,δi,zi), i = 1, . . . ,n, are observed. Here δi is an indicator variable (δi = 0 if the ith
item is censored; δi = 1 if the ith item failed), ti > 0 is the corresponding failure or cen-
soring time, zi = (zi1, . . . ,zip)

ᵀ is a vector of covariates associated wth the ith individual
which may contain information on treatment group, various physical measurements, and
so on, where aspects of zi are expected to be predictive of subsequent failure time, and the
parameter vector θ = (θ1, . . . ,θp)

ᵀ is the covariate coefficients.
Let T̃i be the uncensored continuous failure time variable, so that the survivor func-

tion for the ith individual is Pr(T̃i > t;θ ,zi) = S(t;θ ,zi) with the corresponding density
f (t;θ ,zi). To obtain the likelihood function for θ , we need a probability model for the
censoring mechanism. Assume that the censoring mechanism is random, specifically, as-
sume that the censoring time Ci for the ith individual is a random variable with survivor
and density functions Gi and gi, respectively (i = 1, . . . ,n), and that given z1, . . . ,zn, the
Ci’s are stochastically independent of each other and of the independent failure times
T̃1, . . . , T̃n, i.e. (T̃i,Ci) are independent. So each individual in the sample has a time T̃i to
failure and a time Ci to censoring. The observed data (t1,δ1), . . . ,(tn,δn) are realisations
of the random variables

Ti = min
(
T̃i,Ci

)
(4.22)

δi =

1 if Ti = T̃i (T̃i ≤Ci)

0 if Ti =Ci (T̃i >Ci).
(4.23)
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Thus Ti is the observed, possibly censored failure time.
Note that the random censorship model includes the special case of Type I censoring,

where a sample of n individuals or units is followed for a fixed time, i.e. the censoring
time is fixed in advance. This means that the number of units or individuals failing is
random, but the total duration of the study is fixed.

Under the random censoring mechanism, it may be shown that (Kalbfleisch and Pren-
tice, 2002, §3.2) the likelihood and log-likelihood functions on the data (Ti = ti,δi,zi),
i = 1, . . . ,n, conditional on z1, . . . ,zn are given by

L(θ) =
n

∏
i=1

f (ti;θ ,zi)
δiS(ti;θ ,zi)

1−δi, (4.24)

l(θ) =
n

∑
i=1

{
δi ln f (ti;θ ,zi)+(1−δi) lnS(ti;θ ,zi)

}
. (4.25)

In fact the above likelihood and log-likelihood functions are more generally correct under
the class of independent censoring mechanisms (Kalbfleisch and Prentice, 2002, §6.2).

The independent censorship model includes the special case of Type II censoring
which occurs when a sample of n units or individuals are followed as long as neces-
sary until d units have failed. For example, a clinical trial may end after d patients have
died. This means that the number of failures or deaths is fixed in advance but the total
duration of the study is random and cannot be known with certainty.

4.2 Description of the model and maximum likelihood estimation

Consider again data of the form (ln ti,δi,zi), (i= 1, . . . ,n), where δi is an indicator variable
(δi = 0 if the ith item is censored; δi = 1 if the ith item failed), as in (4.23), and ti is the
corresponding failure or censoring time, as in (4.22). Accelerated failure time models
(also called log-linear models) are ones where the covariates act additively on the log
survival time

Y = ln(T ) = Zβ +σW, (4.26)

where ln(T ) = (lnT1, . . . , lnTn)
ᵀ, βᵀ = (β1, . . . ,βp) is a 1× p vector of parameters, Z

is an n× p matrix of covariates (explanatory variables) having rows z1, . . . ,zn, where
zi = (zi1, . . . ,zip)

ᵀ and Z has (i, t)th element zit , σ is a scale constant and where W =

(Y − Zβ )/σ is a standardised random error variable with density function fW (w) and
survival function SW (w). We assume that W is independent of β given the covariates Z.
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The density and survival function of the log survival time T can be expressed in terms of
the density and survival function of W and are, respectively

flnT (t) = σ
−1 fW (w), (4.27)

SlnT (t) = SW (w). (4.28)

The log-likelihood function about β and σ for a general accelerated failure time model is
given by

l(β ,σ) =
n

∑
i=1

{
δi ln(σ−1)+δi ln f (wi)+(1−δi) lnS(wi)

}
. (4.29)

Any of the parametric models for T discussed in Section 4.1.2 can be extended to
allow parameters to depend on covariates and hence define an accelerated failure time
model. In this chapter we consider the Weibull accelerated failure time model defined by
choosing the Weibull distribution for T which makes the error term W have an extreme
value distribution with density and survival function given respectively by (4.13) and
(4.14). Only the scale parameter λ of the Weibull distribution is allowed to depend on the
covariates and is given by λ = exp(−α) = exp(−Zβ ) while the shape parameter p = σ−1

is fixed. The log-likelihood functions for the Weibull accelerated failure time model may
be written as (Greene, 2012, §19.4.3.d)

l(β ,σ) =
n

∑
i=1

{
δi
[
wi− ln(σ)

]
− exp(wi)

}
. (4.30)

Differentiating the above log-likelihood with respect to β and σ , respectively yields

∇β l(θ) =
n

∑
i=1

zi

σ

{
−δi + exp(wi)

}
=

1
σ

Zᵀ[−δ +We1n
]
, (4.31)

∂

∂σ
l(θ) =

n

∑
i=1

1
σ

{
wi
(

exp(wi)−δi
)
−δi

}
=

1
σ

1ᵀn
[
W (We1n−δ )−δ

]
, (4.32)

where Z is the n× p matrix with zi as its i-th row, 1n is an n-vector of ones, δ is the
n× 1 vector of δ1, . . . ,δn, W = diag{w1, . . . ,wn}, where wi = (yi− zᵀi β )/σ and where
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We = diag{exp(w1), . . . ,exp(wn)}. In obtaining (4.31) and (4.32) we use the results

∇β wi = − zi

σ
, (4.33)

∂wi

∂σ
= −wi

σ
. (4.34)

The above score equations (see Kalbfleisch and Prentice, 2002, §3.6, for the score equa-
tions of a general accelerated failure time model) have no closed form solution and must
be solved numerically, for example, the survreg function from the survival R package
(Therneau, 2021) provides the ML estimates.

4.3 Reduced-bias estimation methods

4.3.1 Firth’s adjusted score equations method

The method of Firth (1993) is not applicable to the accelerated failure time model be-
cause the Fisher information matrix is not available in closed form. The latter matrix is
not available unless the censoring process is fully specified and even when fully specified,
the evaluation of the Fisher information requires numerical approximations. Under Type
I or Type II censoring, Lawless (2002, §5.6) gives general expressions, in terms of ex-
pectations, for the components of the Fisher information matrix for a general accelerated
failure time model, where the distribution of the failure time is not necessarily Weibull.
Using the Law of iterated expectation and the conditional density f (w|δ ), we derive be-
low the components of the Fisher information matrix for the Weibull accelerated failure
time model in terms of integrals, and explain how the score equations can be used to
simplify these expressions.

Differentiating (4.31) and (4.32) yields the Hessian and second order partial derivatives

∇β ∇
ᵀ
β

l(θ) =− 1
σ2 ZᵀWeZ, (4.35)

∂

∂σ
∇β l(θ) =

1
σ2 Zᵀ[

δ −We(W + In)1n
]
, (4.36)

∂ 2

∂ (σ)2 l(θ) =
1

σ2 1ᵀn
[
(2W + In)δ −WWe(W +2In)1n

]
. (4.37)

80



The (p+1)× (p+1) observed information matrix becomes

j(θ) =

(
jββ jβσ

( jβσ )
ᵀ jσσ

)
, (4.38)

where jββ = −∇β ∇
ᵀ
β

l, jβσ = −∂ (∇β l)/∂σ , jσσ = −∂ 2l/∂ (σ)2 and where ( jβσ )
ᵀ =

−σ−2[δᵀ−1ᵀn(W + In)We
]
Z.

Assume that the censoring of the failure time data is according to Type I, i.e. Ci = ci

is the prespecified censoring time for individual i and let Ri = (lnCi− zᵀi β )/σ . Then
the probability of failure is given by Pr(δi = 1) = Pr(Ti ≤Ci) = Pr(Wi ≤ Ri) = F(Ri) =

1− exp(−eRi) and the conditional density of Wi is (Lawless, 2002, §5.1.1)

f (wi|δi = 1) =
f (wi,δi = 1)
Pr(δi = 1)

=
f (wi)

F(Ri)

=
exp(wi− ewi)

1− exp(−eRi)
, (4.39)

where −∞ < wi ≤ Ri. For simplicity, consider the components of the Fisher information
matrix for β1 which simplify to

−E
(

∂ 2l
∂β 2

1

)
=

1
σ2

n

∑
i=1

z2
1iE(e

wi), (4.40)

−E
(

∂ 2l
∂β1∂σ

)
=

1
σ2

n

∑
i=1

z1iE(wiewi), (4.41)

−E
(

∂ 2l
∂ (σ)2

)
=− 1

σ2

n

∑
i=1

{
2E(δiwi)+E(δi)−E(w2

i ewi)−2E(wiewi)
}
. (4.42)

However, the score equations E(∂ li/∂β1) = 0 and E(∂ li/∂σ) = 0 imply respectively, that
E(ewi) = E(δi) = Pr(δi = 1) = 1−exp(−eRi) and E(wiewi) = E(δiwi)+E(δi). Moreover,
using the Law of iterated expectation, the expected value of wiewi and w2

i ewi may be
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simplified. For example,

EWi,δi

(
wiewi

)
= Eδi

{
EWi|δi

(
wiewi

)}
= Pr(δi = 0)EWi|δi=0

(
wiewi

)
+Pr(δi = 1)EWi|δi=1

(
wiewi

)
= S(Ri)

(
RieRi

)
+F(Ri)

∫ Ri

−∞

wiewi
exp(wi− ewi)

F(Ri)
dwi

= Ri exp
(
Ri− eRi

)
+
∫ Ri

−∞

wi exp
(
2wi− ewi

)
dwi, (4.43)

where S(Ri) = 1−F(Ri) and similarly for the expected value of w2
i ewi . Using the above

argument, (4.40), (4.41) and (4.42) simplify to

−E
(

∂ 2l
∂β 2

1

)
=

1
σ2

n

∑
i=1

z2
1i
[
1− exp(−eRi)

]
, (4.44)

−E
(

∂ 2l
∂β1∂σ

)
=

1
σ2

n

∑
i=1

z1i

{
Ri exp

(
Ri− eRi

)
+
∫ Ri

−∞

wi exp
(
2wi− ewi

)
dwi

}
, (4.45)

−E
(

∂ 2l
∂ (σ)2

)
=

1
σ2

n

∑
i=1

{[
1−exp(−eRi)

]
+R2

i exp
(
Ri−eRi

)
+
∫ Ri

−∞

w2
i exp

(
2wi−ewi

)
dwi

}
.

(4.46)

The above integrals are not available in closed form unless the sample is uncensored in
which case we can let Ci→∞, i.e. Ri→∞, and the above integrals can be written in terms
of Euler’s constant. For a censored sample numerical integration is necessary.

4.3.2 Empirical bias-reducing penalty

The implementation of iRBM-estimation is straightforward and is equivalent to the max-
imisation of the penalised function (2.48), where j(θ) is derived in Section 4.3.1 and the
(p+1)× (p+1) matrix e(θ) takes the form

e(θ) =

(
eββ eβσ

(eβσ )
ᵀ eσσ

)
, (4.47)
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where

eββ =
n

∑
i=1

(
∇β li(θ)

)(
∇
ᵀ
β

li(θ)
)

=
1

σ2 Zᵀ[D2−2DWe +W 2
e
]
Z, (4.48)

eβσ =
n

∑
i=1

(
∇β li(θ)

)(
∂

∂σ
li(θ)

)
=

1
σ2 Zᵀ

[
We
{
−D(In +2W )+WWe

}
+D2(In +W )

]
1n, (4.49)

(eβσ )
ᵀ =

1
σ2 1ᵀn

[{
− (In +2W )D+WeW

}
We +(In +W )D2

]
Z, (4.50)

eσσ =
n

∑
i=1

(
∂

∂σ
li(θ)

)(
∂

∂σ
li(θ)

)
=

1
σ2 1ᵀn

[
WWe

{
WWe−2D(In +W )

}
+D2{W (2In +W )+ In

}]
1n, (4.51)

and where D = diag{δ1, . . . ,δn}.
The value of the eRBM estimator defined in (2.49) is readily available once the empir-

ical bias-reducing penalty term in (2.48) is calculated. All that is needed is the numerical
differentiation of this penalty term and its evaluation with the inverse observed informa-
tion matrix at the ML estimates.

4.3.3 Indirect inference

The indirect inference estimator, θ̃ , is the solution of (2.19) and is obtained iteratively
where the indirect inference estimate of θ at the k+1-th iteration is given by

θ̃
(k+1) = θ̂ − 1

R

R

∑
r=1

θ̂
(
y(r)
)
+ θ̃

(k), (4.52)

where y(1), . . . ,y(R) are simulated from the Weibull accelerated failure time model with the
parameters set at θ̃ (k) and where the initial estimate θ̃ (0) is chosen to be the ML estimate.
The iterative process is then repeated until the difference of the components of θ̃ (k+1)

and θ̃ (k) are all less than δ in absolute value at the current estimates, where δ is a small
number.
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4.4 Simulation study

In order to assess the finite sample performance of the maximum likelihood, indirect in-
ference, iRBM and eRBM estimators for the accelerated Weibull failure time model we
conduct a simulation study to compare their bias, average estimated standard error, empir-
ical standard error, length and coverage probability of 95% and 99% confidence intervals
for different sample sizes. We focus on modelling with both categorical and continuous
covariates. Let ln(ti) = β1 + zi2β2 + zi3β3 +σwi and assume zi2 is a continuous covariate
generated from the standard normal distribution and zi3 is a binary covariate taking values
0 and 1 depending on group membership (e.g. new drug versus placebo). The log trans-
formed Weibull survival times, ti, were generated using the function simEventData from
the R reda package (Wang and Yan, 2019) with survival and hazard functions

S(ti) = exp
(
− e
[

ln(ti)−β1−zi2β2−zi3β3

]/
σ

)
, (4.53)

λ (ti|zi) = ρ(λziti)
ρ/ti, (4.54)

where λzi = exp(−β1− zi2β2− zi3β3) and where i denoted the subject i = 1, . . . ,n, β1 =

0.3 and ρ = 1/σ = 1.5. The censoring times, ci, were randomly generated from the
exponential distribution with survival function S(ci) = exp(−ci/m), where m is the mean
of the exponential distribution. We generated differing censoring levels by varying m

to accommodate overall failure percentages of approximately 24% and 45%. Data sets
were generated for β2 = 0.5, β3 = 0.2 and σ = 0.667 and sample sizes n = 50,100,150,
resulting in a total of 6 scenarios. Failure indicators were defined as δi = 1 if t̃i≤ ci(ti = t̃i)

and δi = 0 if t̃i > ci(ti = ci). There were an equal number of exposed (zi3 = 1) and
unexposed (zi3 = 0) observations in each data set, and 5000 data sets were generated for
each scenario.

The maximum likelihood estimates and their estimated standard errors were obtained
using the R function survreg from the survival package. When survreg fails to converge,
we use the R function nlminb to compute the ML estimates. The indirect inference es-
timate of σ can end up outside (0,∞) during iterations. In those cases it is not possible
to simulate the R Monte Carlo samples from the accelerated Weibull failure time model
at the current indirect inference estimates. We resolve this by using the reparametrisa-
tion ln(σ) which allows σ to diverge to infinity so that when we transform it back we
avoid its boundary value. For this reason, the indirect inference estimate of σ is not the
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bias corrected one but the transformed version of it. We set the value of Monte Carlo
replicates R to be 500 and any samples for which the ML estimate does not converge are
excluded from the Monte Carlo estimate of the mean of the ML estimates. We consid-
ered that the indirect inference estimator converged if the absolute difference in parameter
estimates (over all parameters) between iterations was less than δ = 0.01. The standard
errors of the indirect inference estimates are evaluated using the inverse of the observed
information matrix evaluated at the indirect inference estimates, i.e. using the Hessian
matrix.

The iRBM-estimates are computed using the optimx function in R (Nash and Varadhan,
2011) for the maximisation of the empirical penalised log-likelihood (2.48). We specified
that all available optimisation methods in optimx are used and we chose the estimates
from the optimisation method that converged and satisfied the kkt1 and kkt2 conditions
where kkt1 checks whether the gradient at the final parameter estimates is small and kkt2
checks whether the Hessian at the final parameter estimates is positive definite, except
when some of the parameters are on the boundary in which case the Hessian is allowed to
be positive semi-definite. Since we are trying to reduce the bias at the σ parametrisation,
in order to avoid a constrained optimisation problem (σ > 0), we transform σ to ln(σ)

so that we optimise the empirical penalised log-likelihood function on the real line. The
estimate of ln(σ) from optimx is then transformed back using the exponential transforma-
tion and the resulting final estimate is the iRBM-estimate of σ . The eRBM-estimates are
computed directly by substituting the ML estimates into (2.49) and the standard errors of
the iRBM-estimates and the eRBM-estimates are evaluated using the Hessian matrix. We
compute the coverage probability and length of confidence intervals under the following
convention. We assume that if the standard error for a particular parameter is not avail-
able then the confidence interval covers the true parameter value and that the interval has
infinite length so we compute the median length over simulated samples.

Tables 4.1 and 4.2 report the bias of estimators with overall censoring percentage of
approximately 24% and 45%, respectively, Tables 4.3 and 4.4 report the average estimated
standard error and empirical standard error with overall censoring percentage of approx-
imately 24% and 45%, respectively, Tables 4.5 and 4.6 report the coverage probability
and median length of confidence intervals with nominal level 95% with overall censoring
percentage of approximately 24% and 45%, respectively and Tables 4.7 and 4.8 report the
coverage probability and median length of confidence intervals with nominal level 99%
with overall censoring percentage of approximately 24% and 45%, respectively.
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All data sets converged and for an overall censoring of approximately 24%, the indi-
rect inference and iRBM estimates are less biased than the ML estimates for all param-
eters for n = 50 and n = 100. For n = 150, the indirect inference and iRBM estimates
perform better than ML in terms of bias for β1, β2 and σ . For an overall censoring of
approximately 45%, the indirect inference and iRBM estimates are less biased than the
ML estimates for all parameters for n = 50 and n = 150. For n = 100, the indirect infer-
ence and iRBM estimates perform better than ML in terms of bias for β1, β2 and σ . In
general, the eRBM estimates do not improve the bias of the ML estimates except for the
β1 estimates which are less biased for all sample sizes considered and for both censoring
levels. In fact, Tables 4.1 and 4.2 show that the eRBM estimates of the bias of σ are
larger than the ML estimates of the bias of σ , i.e. eRBM does not reduce the bias in the
estimation of the standard deviation. The average estimated standard errors are smaller
than the empirical standard errors which means that the estimated asymptotic standard
errors underestimate finite sample variability, and thus the 95% and 99% coverage rates
are slightly low in general. For an overall censoring percentage of approximately 24%,
the 95% coverage probabilities using the indirect inference, iRBM and eRBM estimators
are closer to the nominal level than the 95% coverage probabilities using the ML estima-
tor, for all parameters. For an overall censoring percentage of approximately 45%, the
95% coverage probabilities using the indirect inference and iRBM estimators are closer
to the nominal level than the 95% coverage probabilities using the ML estimator. The
99% coverage probabilities using the indirect inference, iRBM and eRBM estimators are
generally closer to the nominal level than those using the ML estimator for both censoring
levels, except for n = 150, where the coverage probability of the ML estimator of β2 is
closer to the nominal level than the indirect inference, iRBM and eRBM estimators of
β1, for a 24% censoring level, and where the coverage probability of the ML estimator of
β3 is closer to the nominal level than the indirect inference, iRBM and eRBM for a 45%
censoring level. We conclude that the performance of the indirect inference and iRBM
estimators is superior to the ML estimator for the two censoring levels of 24% and 45%
and for all parameters especially for sample sizes n = 50 and n = 100.
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4.5 Analysis of lung cancer survival data

We analyse the Veterans’ Administration lung cancer data of Prentice (1973) (see also
Kalbfleisch and Prentice, 2002, Appendix A, data set I), where 137 males with advanced
lung cancer were randomly assigned to either a standard or test chemotherapy treatment
(standard = 0, test = 1). The endpoint for treatment comparison was time to death. Only
9 of the 137 survival times were censored. In addition to treatment (txt), the data include
information on a number of covariates thought to be relevant to an individual’s prognosis:
the patient’s performance status (ps) at diagnosis (which is a measure of general medical
condition on a scale of 10 to 90; 10-30 completely hospitalised, 40-60 partial confinement,
70-90 able to care for self), the number of months from diagnosis of cancer to entry into
the study (diagage), the age of the patient at diagnosis in years (age), whether the patient
received prior therapy (prior) (0 = no,10 = yes), and tumor cell-type, classified as being
in one of four categories, squamous, small cell, adeno and large. Survival times are
measured as days from the date of entry to the study.

Preliminary analysis by Lawless (2002, Example 6.3.3) suggests that a Weibull ac-
celerated failure time model may be suitable. We fit this model to these data with eight
regressor variables (full model) where

Zβ = β1 +β2(ps)+β3(diagage)+β4(age)+β5(prior)

+ β6I(cell-type = squamous)+β7I(cell-type = smallcell)

+ β8I(cell-type = adeno)+β9(trt). (4.55)

The coefficients β6, β7 and β8 measure differences between each of the cell-type squa-
mous, small, adeno and the baseline cell-type large. Table 4.9 shows estimates and stan-
dard errors (se) of the maximum likelihood, indirect inference, iRBM and eRBM esti-
mates, along with the asymptotic normal Z statistic (not to be confused with the covari-
ates), used to test the hypotheses H : β j = 0 via Z j = (β̂ j − 0)/se(β̂ j), treating Z j as
approximately N(0,1) if H is true. The standard errors of the indirect inference, iRBM
and eRBM estimates were computed using the Hessian matrix.

From Table 4.9, it seems that only the patient’s performance status (ps) has a strong
prognostic effect on survival time. This conclusion is true under all four estimation meth-
ods. There is, also, no apparent dependence of survival time on age or disease duration
(diagage) before entry to the clinical trial. The difference between the ML estimates and
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the indirect inference, iRBM and eRBM estimates are small, indicating that estimation
bias has not been a major concern in this study. Overall, the estimated standard errors for
the indirect inference and iRBM estimators of β are only slightly inflated compared to
those from the ML estimator, while the estimated standard errors for the eRBM estimator
are slightly smaller compared to ML estimation.

Next we fit a reduced Weibull accelerated failure time model with only (ps) as the
covariate where

Zβ = β1 +β2(ps), (4.56)

and the resulting ML, indirect inference, iRBM and eRBM estimates are reported in Table
4.10 along with their estimated standard errors and Z statistics. The estimates of the
parameters of the reduced model from different estimation methods are in close agreement
and the estimated standard errors are only slightly inflated compared to ML estimation.

The adequacy of the exponential regression model relative to the Weibull model, using
the eight regressor variables, was discussed in Kalbfleisch and Prentice (2002, §3.7.2)
by testing the hypothesis σ = 1 and concluded that the ML estimate of σ under the full
Weibull model σ̂ = 0.9281 and its estimated standard error of 0.0615 provides no evi-
dence against the exponential model relative to the Weibull model with a Z statistic of
15.08. Testing the same hypothesis using the indirect inference, iRBM and eRBM esti-
mation methods yields the same conclusion, i.e. provides no evidence against the expo-
nential model. Testing the adequacy of the exponential model under the reduced model
fitting also provides no evidence against the hypothesis σ = 1, for all estimation methods.
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4.6 Discussion and further work

4.6.1 Summary

It has been shown that the implementation of the bias-reduction methods of indirect in-
ference and empirical bias reducing penalised log-likelihood function for the Weibull ac-
celerated failure time model can be easily performed. The above two methods are an
improvement over the usual maximum likelihood in terms of bias and coverage probabil-
ities of Wald type confidence intervals. These methods, although focused on the Weibull
model, can be easily extended to other types of accelerated failure time models, such
as the log-normal or log-logistic accelerated failure time models. Our simulation study
can be extended by considering alternative values of β and σ . Moreover, the Wald type
confidence intervals which use the normal approximations can be inaccurate for small
samples, and so confidence intervals based on the likelihood ratio statistic or the para-
metric bootstrap procedures can perform better (are more accurate) in censored small or
medium-size samples (Jeng and Meeker, 2000). In summary, we have demonstrated that
the indirect inference estimator and the empirical bias-reducing penalised log-likelihood
estimator (iRBM) provide improvement in reducing small sample bias over the traditional
maximum likelihood in the Weibull accelerated failure time model for censored survival
data.

4.6.2 Bias reduction for frailty models

The Weibull AFT model described in Section 4.2 (or any general AFT model) may be
extended by considering a random frailty effect ui (of expectation one) to account for
heterogeneity between different items or individuals. These models can be written analo-
gously to (4.26) in the form

Y = ln(T ) = u+Zβ +σW. (4.57)

In other words, frailty is a random component designed to account for variability due to
unobserved individual-level factors that is otherwise unaccounted for by the other inde-
pendent variables (covariates) in the model. One way to do this is to model heterogeneity
in the parametric model as described in Section 19.4.3.e of Greene (2004), by considering
a survival function conditioned on the individual specific effect ui and treat the survival
function as S(ti|ui). Then consider a model for the unobserved heterogeneity f (ui). Once
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the frailty distribution f (ui) is chosen, the unconditional survival function is found by

S(t) =
∫

∞

0
S(t|u) f (u)du. (4.58)

The corresponding unconditional hazard function can then be found using the relationship
(4.3). The gamma distribution with mean 1 and variance θ is a common choice for the
distribution f (u). The likelihood function with frailty effect can then be formulated using
the unconditional probability density function which is the product of the unconditional
hazard and survival functions. The likelihood is constructed in a similar manner to that
described in Section 4.1.3 except that the unconditional probability density is used rather
than f (t) in (4.24). This means that there is one additional parameter to estimate, the vari-
ance of the frailty, θ . It is of interest to investigate the performance of the bias reduction
methods such as indirect inference and the empirical bias reducing penalty in terms of
reducing the estimation bias of θ in the frailty Weibull AFT model.

Furthermore, the Weibull accelerated failure time model that we considered in Section
4.2 has a scale parameter σ that does not depend on the covariates i.e. Var(Yi|Z) was
constant for all i. This assumption is sometimes unsuitable, and we may want to specify
some form of dependency of σ on the covariates Z. A common choice is σ(Z) = exp(Z̃γ),
since σ has to be nonnegative, where γ is a vector of parameters. The log-likelihood
function for this model from a censored random sample is a direct generalisation of (4.29),

l(β ,γ) =
n

∑
i=1

{
−δi ln(σi)+δi ln f (wi)+(1−δi) lnS(wi)

}
, (4.59)

where wi = (yi−zᵀi β )/exp(z̃i
ᵀγ). Lawless (2002, §6.4.2) give the first and second deriva-

tives of the above log-likelihood for a general f (wi) and S(wi). The methods of indirect
inference and empirical bias-reducing penalty we discussed in this chapter could be im-
plemented to the above model of variable scale parameter and compared with ML estima-
tion.

4.6.3 Empirical bias-reducing penalty for a general accelerated failure time model

The method of iRBM-estimation can in principle be applied to any accelerated failure
time model, not just the Weibull one, by penalising the log-likelihood function (4.29). We
derive below the components of the penalised log-likelihood (2.48) for a general density
f (wi) and a general survival function S(wi). Differentiating (4.29) with respect to β and
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σ , respectively gives (Kalbfleisch and Prentice, 2002, §3.6)

∇β l(θ) =
n

∑
i=1

1
σ

ziai

=
1
σ

Zᵀa1n, (4.60)

∂

∂σ
l(θ) =

1
σ

n

∑
i=1

(
wiai−δi

)
=

1
σ

1ᵀn
[
Wa−D

]
1n, (4.61)

where a = diag{a1, . . . ,an}, D = diag{δ1, . . . ,δn} and where

ai =−δi
d ln f (wi)

dwi
+(1−δi)λ (wi), (4.62)

where λ (wi) = f (wi)/S(wi) as defined in (4.2) and (4.3). The (p+1)× (p+1) matrices
j(θ) and e(θ) are given by

j(θ) =

(
jββ jβσ(
jβσ

)ᵀ jσσ

)
and e(θ) =

(
eββ eβσ(
eβσ

)ᵀ eσσ

)
,

where

jββ = −∇β ∇
ᵀ
β

l(θ)

=
n

∑
i=1

1
σ2 Aiziz

ᵀ
i

=
1

σ2 ZᵀAZ, (4.63)

jβσ = − ∂

∂σ
∇β l(θ)

=
1

σ2

n

∑
i=1

zi
(
wiAi +ai

)
=

1
σ2 Zᵀ[WA+a

]
1n, (4.64)
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jσσ = − ∂ 2

∂ (σ)2 l(θ)

=
1

σ2

n

∑
i=1

{
w2

i Ai +2aiwi−δi
}

=
1

σ2 1ᵀn
[
W 2A+2aW −D

]
1n, (4.65)

where

Ai =
dai

dwi

= −δi
d2 ln f (wi)

dw2
i

+(1−δi)

[
λ (wi)

d ln f (wi)

dwi
+λ

2(wi)

]
, (4.66)

and where A = diag{A1 . . . ,An}. In addition,

eββ =
1

σ2 Zᵀa2Z, (4.67)

eβσ =
1

σ2 Zᵀa
[
Wa−D

]
1n, (4.68)(

eβσ

)ᵀ
=

1
σ2 1ᵀn

[
aW −D

]
aZ, (4.69)

eσσ =
1

σ2 1ᵀn
[
Wa−D

]21n. (4.70)
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Chapter 5

Stratified models

5.1 Introduction

Consider inference about a scalar parameter, ψ , of interest based on models with mi ob-
servations from each of q independent strata in the presence of nuisance (incidental) pa-
rameters λi, i = (1, . . . ,q), one for each stratum. Such models are known as stratified
models (Sartori, 2003), and it is well known, since Neyman and Scott (1948), that the
maximum likelihood estimator, derived from the profile log-likelihood, is not, in general,
a consistent estimator of ψ as the dimension of the nuisance parameter increases while
the stratum sample size is kept fixed; this is known as the incidental parameter problem.

It is possible to solve this problem, in some cases when the model has a particular
structure, like in exponential families in canonical form, using conditional or marginal
log-likelihoods (Pace and Salvan, 1997, §4.4 and §4.5). However, these are not always
available and so an alternative is to work with the approximate conditional profile log-
likelihood of Cox and Reid (1987) or the modified profile log-likelihood of Barndorff-
Nielson (1983) which involve only the information matrix for nuisance parameters. The
modified profile log-likelihood can also be difficult to compute in some models because it
requires the calculation of a sample space derivative. The adjusted profile log-likelihood
of McCullagh and Tibshirani (1990) is another simple alternative which adjusts the profile
log-likelihood score function so that it is unbiased and information unbiased. Another
method that have been used to reduce the bias of the maximum likelihood estimator in
stratified settings in the presence of a large number of nuisance parameters is the adjusted
score equations approach of Firth (1993).

In this Chapter we consider two stratified models, namely the matched gamma pairs
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model (see Sartori, 2003, Example 4) in Section 5.2, and the binomial matched pairs
model (see Sartori, 2003; Lunardon, 2018, Example 3 and §4.1, respectively) in Sec-
tion 5.3, and compare and contrast different methods of estimation of the parameter of
interest. In the matched gamma pairs model, there is no exact conditional or marginal
log-likelihood for the parameter of interest, and Sartori (2003) compared the profile log-
likelihood and the modified profile log-likelihood of Barndorff-Nielson (1983), which co-
incides with the approximate conditional profile log-likelihood of Cox and Reid (1987),
through a simulation study and showed that the modified profile log-likelihood leads to
superior inference especially for large numbers of nuisance parameters. Cox and Reid
(1992) showed that the maximum modified profile log-likelihood estimator of ψ is less
biased than the maximum likelihood estimator. We review these methods of estimation
and further compare them with the adjusted profile log-likelihood estimator of McCul-
lagh and Tibshirani (1990) and show that the latter is exactly unbiased and consistent.
We derive the asymptotic bias corrected estimator, the adjusted score equations estimator
of Firth (1993) and the indirect inference estimator of Kuk (1995), of the parameter of
interest ψ , and show that the latter coincides exactly with the unbiased adjusted profile
log-likelihood estimator of McCullagh and Tibshirani (1990). We find that for a fixed
stratum size, the asymptotic bias corrected estimator produces a substantial improvement
over the modified profile log-likelihood estimator in terms of bias especially when the
stratum sample size is small. The expected and observed adjusted score equations estima-
tors defined in (2.38) and (2.39) are less biased than the maximum likelihood estimator
but in comparison to the other estimators, the difference in bias is negligible for large
numbers of nuisance parameters.

For the binomial matched pairs model, we review in Section 5.3.1 the profile, con-
ditional, modified profile and Firth (1993) penalised likelihood estimators of ψ . Section
5.3.2 is a review of current methods of estimation in the special case of the binary matched
pairs model. Since the ML estimator of ψ can be infinite, we propose in Section 5.3.3
a penalised log-likelihood function based on adjusted responses that always yields finite
point estimates of the parameter of interest. In Section 5.3.3.1, we derive the probability
limit of that estimator while in Section 5.3.4, the indirect inference procedure is described
and applied to reduce the bias of the penalised maximum likelihood estimator based on
adjusted responses. The exact properties of the above estimators are obtained through
complete enumeration as in Lunardon (2018) where no simulation is required. Results
and discussion are given in Section 5.3.5 and in Section 5.3.6 we analyse a real data set.
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5.2 Matched gamma pairs model

Consider the independent exponential random variables Yi j1 ∼ Exp
(
λi/ψ

)
and Yi j2 ∼

Exp
(
1/(ψλi)

)
, i = 1, . . . ,q, with rates λi/ψ and 1/(ψλi) or scales (means) ψ/λi and

ψλi, respectively, as in Sartori (2003, Example 4). This implies that Yi1 = ∑
m
j=1Yi j1 ∼

Gamma
(
m,λi/ψ

)
and Yi2 = ∑

m
j=1Yi j2 ∼ Gamma

(
m,1/(ψλi)

)
. In other words, (Yi1,Yi2)

are considered as matched gamma pairs with shape parameter m and rates λi/ψ and
1/(ψλi), respectively. Note that Yi1 and Yi2 have expected values mψ/λi and mψλi, re-
spectively. The stratum sample size is 2m and so the sample size is n = ∑

q
i=1 2m = 2qm.

The parameter of interest, ψ , is the inverse square root of the product of the rates, while
the nuisance parameters are the square root of the ratio of the rates.

5.2.1 Maximum likelihood estimation

The full log-likelihood function for the above matched gamma pairs model, up to an
additive constant is

l(ψ,λi) =−2mq ln(ψ)− 1
ψ

q

∑
i=1

(
λiyi1 +(yi2/λi)

)
. (5.1)

The partial derivative of the full log-likelihood with respect to λi is

∂ l(ψ,λi)

∂λi
=−yi1

ψ
+

yi2

ψλ 2
i
.

Hence, equating the above to zero and solving for λi we find that the constrained ML
estimator of λi is λ̂i,ψ =

(
yi2/yi1

)1/2. The profile log-likelihood for ψ , obtained by sub-
stituting λ̂i,ψ in (5.1) is

lp(ψ) =−2mq ln(ψ)− 2
ψ

q

∑
i=1

(
yi1yi2

)1/2
. (5.2)

The partial derivative of lp(ψ) with respect to ψ is

∂ lp(ψ)

∂ψ
=−2mq

ψ
+

2
ψ2

q

∑
i=1

(
yi1yi2

)1/2
.
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Equating the above to zero and solving for ψ we find that the overall ML estimator of ψ

is (Sartori, 2003, Example 4)

ψ̂ =
1

mq

q

∑
i=1

(
yi1yi2

)1/2
. (5.3)

Using integration and exploiting the probability density functions of the Gamma
(
(m+

1/2),λi/ψ
)

and Gamma
(
(m+1/2),1/(ψλi)

)
variates, we find that the expected value of(

Yi1Yi2
)1/2 is

E
((

Yi1Yi2
)1/2

)
=

ψ
(
Γ(m+1/2)

)2(
Γ(m)

)2 . (5.4)

Hence as noted in Cox and Reid (1992, Example 3), E
(
ψ̂
)
=ψ

(
Γ(m+1/2)

)2
/m
(
Γ(m)

)2 6=
ψ so ψ̂ is a biased estimator of ψ . Moreover, E

(
ψ̂
)
9 ψ as q→ ∞ so ψ̂ is also in-

consistent. Note that when m = 1, we have a pair of exponential matched pairs with
E
(
ψ̂
)
= ψπ/4.

Similarly, using integration and exploiting the probability density functions of the
Gamma

(
(m + 1/2),λi/ψ

)
and Gamma

(
(m + 1/2),1/(ψλi)

)
variates again, and using

the identity Γ(z) = (z−1) ·Γ(z−1), ∀z ∈ R, we find that

E
(
Yi1Yi2

)
= ψ

2m2. (5.5)

Combining (5.4) and (5.5) we obtain

Var
((

Yi1Yi2
)1/2

)
=

ψ2
(

m2(Γ(m)
)4−

(
Γ(m+1/2)

)4
)

(
Γ(m)

)4 . (5.6)

When m= 1, the variance of the ML estimator of the parameter of interest for the matched
exponential pairs becomes Var

(
ψ̂
)
= ψ2(1−π2)/16q.

5.2.2 Modified likelihood functions

To derive the approximate conditional profile log-likelihood we first check orthogonality
of ψ and λi then calculate the term jλλ as follows: for all i = 1, . . . ,q we have

∂ l(ψ,λi)

∂λi
=

1
ψ

( 1
λ 2

i
yi2− yi1

)
,
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and
∂ 2l(ψ,λi)

∂λ 2
i

=− 2
ψλ 3

i
yi2 .

Hence, E
(
−∂ 2l(ψ,λi)/∂ψ∂λi

)
=E
(
{(Yi2/λ 2

i )−Yi1}/ψ2)= ({E(Yi2)/λ 2
i }−E(Yi1)

)
/ψ2

=
(
(mψλi/λ 2

i )− (mψ/λi)
)
/ψ2 =

(
(mψ/λi)− (mψ/λi)

)
/ψ2 = 0, i.e. ψ and λi are or-

thogonal. For all i, j = 1, . . . ,q, i 6= j we have

∂ 2l(ψ,λi)

∂λi∂λ j
= 0 .

Therefore,

jλλ (ψ,λi) =
2
ψ



y12
λ 3

1
0 0 · · · 0

0 y22
λ 3

2
0 · · · 0

...
...

... . . . ...

0 0 0 · · · yq2
λ 3

q


and so det jλλ (ψ,λi) = (2/ψ)q

∏
q
i=1(yi2/λ 3

i ) since if α is a scalar and A is a q×q matrix,
then det(α ·A) = αq det(A). The approximate conditional profile log-likelihood for ψ is
(Sartori, 2003, Example 4)

lcp(ψ) = lp(ψ)− 1
2

ln{det jλλ (ψ, λ̂i,ψ)}

= −2mq ln(ψ)− 2
ψ

q

∑
i=1

(
yi1yi2

)1/2
+

q
2

ln(ψ) .

The partial derivative of the conditional profile log-likelihood with respect to ψ is given
by

∂ lcp(ψ)

∂ψ
=−(4mq−q)

2ψ
+

2
ψ2

q

∑
i=1

(
yi1yi2

)1/2
.
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Equating this to zero and solving for ψ we find that the conditional profile log-likelihood
estimator of ψ is (Sartori, 2003, Example 4)

ψ̂cp =
4

4mq−q

q

∑
i=1

(
yi1yi2

)1/2

=
4m

4m−1
ψ̂. (5.7)

However, ψ̂cp is still biased and inconsistent since E
(
ψ̂cp
)
=
(
(4m)/(4m− 1)

)
E
(
ψ̂
)
=

4ψ
(
Γ(m+ 1/2)

)2
/(4m− 1)

(
Γ(m)

)2 6= ψ and also E
(
ψ̂cp
)
9 ψ as q→ ∞. Note that

when m = 1, ψ̂cp = 4ψ̂/3, E
(
ψ̂cp
)
= ψπ/3 and Var

(
ψ̂cp
)
= ψ2(1−π2)/9q. So if q→∞

both estimators ψ̂ and ψ̂cp are inconsistent but ψ̂cp has substantially smaller bias than ψ̂

as noticed by Cox and Reid (1992).
Since λ̂i,ψ is not a function of ψ , λ̂i = λ̂i,ψ̂ =

(
yi2/yi1

)1/2
= λ̂i,ψ . Therefore we can

immediately deduce that lmp(ψ) = lcp(ψ), as noted in Section 2.1.5.
To derive the adjusted profile log-likelihood in (2.11) we first evaluate the adjusted

score function and then integrate as follows:

U(ψ) =
∂ lp(ψ)

∂ψ
=−2mq

ψ
+

2
ψ2

q

∑
i=1

(
yi1yi2

)1/2
,

E(U) =−2mq
ψ

+
2q
(
Γ(m+1/2)

)2

ψ
(
Γ(m)

)2 =
−2mq

(
Γ(m)

)2
+2q

(
Γ(m+1/2)

)2

ψ
(
Γ(m)

)2 ,

Var(U) =
4q
(

m2(Γ(m)
)4−

(
Γ(m+1/2)

)4
)

ψ2
(
Γ(m)

)4 ,

∂U
∂ψ

=
2mq
ψ2 −

4
ψ3

q

∑
i=1

(
yi1yi2

)1/2
,

∂E(U)

∂ψ
=

2mq
(
Γ(m)

)2−2q
(
Γ(m+1/2)

)2

ψ2
(
Γ(m)

)2 ,

−E

(
∂U
∂ψ

)
=−2mq

ψ2 +
4q
(
Γ(m+1/2)

)2

ψ2
(
Γ(m)

)2 =
−2mq

(
Γ(m)

)2
+4q

(
Γ(m+1/2)

)2

ψ2
(
Γ(m)

)2 .
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So the adjustments turn out to be

m(ψ) =
−2mq

(
Γ(m)

)2
+2q

(
Γ(m+1/2)

)2

ψ
(
Γ(m)

)2 ,

w(ψ) =

(
Γ(m+1/2)

)2(
Γ(m)

)2

2
(

m2
(
Γ(m)

)4−
(
Γ(m+1/2)

)4
) .

The adjusted profile log-likelihood for ψ is therefore given by

lap(ψ) =

∫ (
2

ψ2

q

∑
i=1

(
yi1yi2

)1/2−
2q
(
Γ(m+1/2)

)2

ψ
(
Γ(m)

)2

)
·w(ψ)dt

=
−
(
Γ(m+1/2)

)2(
Γ(m)

)2

ψ

(
m2
(
Γ(m)

)4−
(
Γ(m+1/2)

)4
) q

∑
i=1

(
yi1yi2

)1/2

−
q
(
Γ(m+1/2)

)4(
m2
(
Γ(m)

)4−
(
Γ(m+1/2)

)4
) ln(ψ) .

The partial derivative of the adjusted profile log-likelihood with respect to ψ is given by

∂ lap(ψ)

∂ψ
=

(
Γ(m+1/2)

)2(
Γ(m)

)2

ψ2
(

m2
(
Γ(m)

)4−
(
Γ(m+1/2)

)4
) q

∑
i=1

(
yi1yi2

)1/2

−
q
(
Γ(m+1/2)

)4

ψ

(
m2
(
Γ(m)

)4−
(
Γ(m+1/2)

)4
) .

Equating the above to zero and solving for ψ we find that the adjusted profile log-
likelihood estimator of ψ is given by

ψ̂ap =

(
Γ(m)

)2

q
(
Γ(m+1/2)

)2

q

∑
i=1

(
yi1yi2

)1/2

=
m
(
Γ(m)

)2(
Γ(m+1/2)

)2 ψ̂. (5.8)

In contrast to the ML and conditional profile log-likelihood estimators of ψ , ψ̂ap is both
unbiased and consistent since E

(
ψ̂ap
)
=
(

m
(
Γ(m)

)2/(
Γ(m + 1/2)

)2
)

E
(
ψ̂
)
= ψ , and
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Var
(
ψ̂ap
)
= ψ2

(
m2(Γ(m)

)4−
(
Γ(m+1/2)

)4
)/

q
(
Γ(m+1/2)

)4→ 0 as q→ ∞. When

m = 1, ψ̂ap = 4ψ̂/π , E
(
ψ̂ap
)
= ψ and Var

(
ψ̂ap
)
= ψ2(1−π2)/qπ2.

5.2.3 Reduced bias estimation of the parameter of interest

The second order derivatives of l(ψ,λi) are given by

∂ 2l(ψ,λi)

∂ψ2 =
2mq
ψ2 −

2
ψ3

q

∑
i=1

(
λiyi1 +(yi2/λi)

)
= − 2

ψ3

q

∑
i=1

[
λi

(
yi1−

mψ

λi

)
+

1
λi

(
yi2−λimψ

)
+mψ

]
,

∂ 2l(ψ,λi)

∂ψ∂λi
=

1
ψ2

(
yi1−

yi2

λ 2
i

)
,

∂ 2l(ψ,λi)

∂λ 2
i

= − 2yi2

ψλ 3
i
,

∂ 2l(ψ,λi)

∂λi∂λ j
= 0 ,

and their expected values are

E
(

∂ 2l(ψ,λi)

∂ψ2

)
= −2mq

ψ2 ,

E
(

∂ 2l(ψ,λi)

∂ψ∂λi

)
= 0 ,

E
(

∂ 2l(ψ,λi)

∂λ 2
i

)
= −2m

λ 2
i
,

E
(

∂ 2l(ψ,λi)

∂λi∂λ j

)
= 0 .

The observed information matrix is therefore given by

j(ψ,λi) =


−z 1

ψ2

(
y12
λ 2

1
− y11

)
· · · 1

ψ2

(
yq2
λ 2

q
− yq1

)
1

ψ2

(
y12
λ 2

1
− y11

)
2y12
ψλ 3

1
· · · 0

...
... . . . ...

1
ψ2

(
yq2
λ 2

q
− yq1

)
0 · · · 2yq2

ψλ 3
q

 ,
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where z is the second order derivative of l(ψ,λi) with respect to ψ , and the Fisher infor-
mation matrix is

i(ψ,λi) =


2mq
ψ2 0 · · · 0

0 2m
λ 2

1
· · · 0

...
... . . . ...

0 0 · · · 2m
λ 2

q

 .

Since i(ψ,λi) is diagonal, the inverse fisher information matrix is given by

{i(ψ,λi)}−1 =


ψ2

2mq 0 · · · 0

0 λ 2
1

2m · · · 0
...

... . . . ...

0 0 · · · λ 2
q

2m

 .

The score function is given by

S(ψ,λi) =


−2mq

ψ
+ 1

ψ2 ∑
q
i=1
[
λiyi1 +(yi2/λi)

]
1
ψ

(
y12
λ 2

1
− y11

)
...

1
ψ

(
yq2
λ 2

q
− yq1

)



=



1
ψ2 ∑

q
i=1
[
λi
(
yi1− mψ

λi

)
+ 1

λi

(
yi2−λimψ

)]
1
ψ

(
y12
λ 2

1
− y11

)
...

1
ψ

(
yq2
λ 2

q
− yq1

)

 .

To make presentation simpler, let

x = Sψ(ψ,λi) = ∂ l(ψ,λi)/∂ψ,

wi = Sλi(ψ,λi) = ∂ l(ψ,λi)/∂λi,

where i = 1 . . . ,q.
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Using the central moments of the gamma distribution, a bit of algebra and indepen-
dence of the observations (see Appendix B), it may now be verified that (2.17) yields for
the ψ and λi components of P(ψ,λi), i= 1, . . . ,q, the following two matrices, respectively

Pψ(ψ,λi) = E{S(ψ,λi)S(ψ,λi)
ᵀSψ(ψ,λi)}

= E


x3 x2w1 · · · x2wq

x2w1 xw2
1 · · · xw1wq

...
... . . . ...

x2wq xw1wq · · · xw2
q



=


4mq
ψ3 0 · · · 0

0 4m
ψλ 2

1
· · · 0

...
... . . . ...

0 0 · · · 4m
ψλ 2

q

 ,

Pλi(ψ,λi) = E{S(ψ,λi)S(ψ,λi)
ᵀSλi(ψ,λi)}

= E


x2wi xw1wi · · · xwqwi

xw1wi w2
1wi · · · w1wqwi

...
... . . . ...

xwqwi w1wqwi · · · w2
qwi



=



0 0 · · · 4m
ψλ 2

i
· · · 0

0 0 · · · 0 · · · 0
...

... . . . ...
...

4m
ψλ 2

i
0 · · · 0 · · · 0

...
...

... . . . ...
0 0 · · · 0 · · · 0


.
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Moreover, the two matrices that are required for the calculation of (2.18) for the ψ and
λi components of Q(ψ,λi), are given respectively by (see Appendix B)

Qψ(ψ,λi) = −E{ j(ψ,λi)Sψ(ψ,λi)}

= −E


−zx 1

ψ
xw1 · · · 1

ψ
xwq

1
ψ

xw1
2

ψλ 3
1

y12x · · · 0
...

... . . . ...
1
ψ

xwq 0 · · · 2
ψλ 3

q
yq2x



= −


4mq
ψ3 0 · · · 0

0 2m
ψλ 2

1
· · · 0

...
... . . . ...

0 0 · · · 2m
ψλ 2

q

 ,

Qλi(ψ,λi) = −E{ j(ψ,λi)Sλi(ψ,λi)}

= −E


−zwi

1
ψ

w1wi · · · 1
ψ

wqwi
1
ψ

w1wi
2

ψλ 3
1

y12wi · · · 0
...

... . . . ...
1
ψ

wqwi 0 · · · 2
ψλ 3

q
yq2wi



= −



0 0 · · · 2m
ψλ 2

i
· · · 0

0 0 · · · 0 · · · 0
...

... . . . ...
...

2m
ψλ 2

i
0 · · · 2m

λ 3
i
· · · 0

...
...

... . . . ...
0 0 · · · 0 · · · 0


,
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where i = 1, . . . ,q. Therefore, for the ψ component of A(ψ,λi), (2.16) yields

Aψ(ψ,λi) =
1
2

tr
[
{i(ψ,λi)}−1{Pψ(ψ,λi)+Qψ(ψ,λi)

}]

=
1
2

tr


0 0 · · · 0
0 1

ψ
· · · 0

...
... . . . ...

0 0 · · · 1
ψ


=

q
2ψ

,

while for the λi component, i = (1, . . . ,q), (2.16) becomes

Aλi(ψ,λi) =
1
2

tr
[
{i(ψ,λi)}−1{Pλi(ψ,λi)+Qλi(ψ,λi)

}]

=
1
2

tr



0 0 · · · ψ

qλ 2
i
· · · 0

0 0 · · · 0 · · · 0
...

... . . . ...
...

1
ψ

0 · · · − 1
λi
· · · 0

...
...

... . . . ...
0 0 · · · 0 · · · 0


= − 1

2λi
.

Thus the first-order bias term of the overall maximum likelihood estimator θ̂ = (ψ̂, λ̂i) in
(2.15) takes the form

b1(ψ,λi)

n
= −{i(ψ,λi)}−1A(ψ,λi)

=


− ψ2

2mq 0 · · · 0

0 − λ 2
1

2m · · · 0
...

... . . . ...

0 0 · · · − λ 2
q

2m




q

2ψ

− 1
2λ1...
− 1

2λq


=

(
− ψ

4m
,

λ1

4m
, . . . ,

λq

4m

)ᵀ

,
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and so the asymptotic bias-corrected estimator of ψ is given by

ψ̃as = ψ̂− b1(ψ̂)

n

=
1

mq

q

∑
i=1

(
yi1yi2

)1/2
+

ψ̂

4m

=
1

mq

q

∑
i=1

(
yi1yi2

)1/2
+

1
4m2q

q

∑
i=1

(
yi1yi2

)1/2

=
4m+1
4m2q

q

∑
i=1

(
yi1yi2

)1/2

=
4m+1

4m
ψ̂ .

The asymptotic bias-corrected estimator, ψ̃as, is biased and inconsistent as an estimator of

ψ since E(ψ̃as) = (4m+1)ψ
(

Γ(m+1/2)
)2

/
(

4m2(Γ(m)
)2
)
6= ψ and also E(ψ̃as)9 ψ

as q→ ∞. When m = 1, ψ̂as = 5ψ̂/4, E
(
ψ̂as
)
= 5ψπ/16 and Var

(
ψ̂as
)
= 25ψ2(1−

π2)/256q. This shows that ψ̃as has smaller bias than both ψ̂ and ψ̂cp.
The indirect inference estimator of ψ , ψ̃II , is the solution of the implicit equation

(2.19) and is given by

ψ̃II = ψ̂−Bψ̃II(ψ̂)

=
1

mq

( q

∑
i=1

(
yi1yi2

)1/2
)
− ψ̃II

((
Γ(m+1/2)

)2−m
(
Γ(m)

)2

m
(
Γ(m)

)2

)
.

Solving the above for ψ̃II shows that it coincides with ψ̂ap exactly, hence the indirect
inference estimator of ψ is unbiased and consistent.

The two alternative adjustments to the score function S(ψ,λi) given by (2.38) and
(2.39) are calculated respectively as

A(E)(ψ,λi) =


q

2ψ

− 1
2λ1...
− 1

2λq

 ,
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A(O)(ψ,λi) =


− q

2ψ
+ 1

4mψ2 ∑
q
i=1
[
3λiyi1 +(yi2/λi)

]
− 1

4mψλ 2
1
(y12 +λ 2

1 y11)

...
− 1

4mψλ 2
q
(yq2 +λ 2

q yq1)

 .

To obtain the expected adjusted score estimator of ψ we need to solve simultaneously
Sψ(ψ,λi)+A(E)

ψ (ψ,λi) = 0 and Sλi(ψ,λi)+A(E)
λi

(ψ,λi) = 0, which are given respectively
by

q(1−4m)ψ +2
q

∑
i=1

[
λiyi1 +(yi2/λi)

]
= 0 , (5.9)

2λ
2
i yi1 +ψλi−2yi2 = 0 . (5.10)

The positive root of the quadratic equation (5.10) for λi is given by

λ̃
(E)
i =

−ψ +(ψ2 +16yi1yi2)
1/2

4yi1
. (5.11)

Substituting (5.11) in (5.9) we find that the expected adjusted score estimator of ψ , ψ̃
(E)
ad ,

is the root of the implicit equation

q(1−4m)ψ +
q

∑
i=1

(ψ2 +16yi1yi2)
1/2 = 0 , (5.12)

with no closed form solution. The alternative set of equations Sψ(ψ,λi)+A(O)
ψ (ψ,λi) = 0

and Sλi(ψ,λi)+A(O)
λi

(ψ,λi) = 0 simplify to

2mq(1+4m)ψ−
q

∑
i=1

[
(3+4m)λiyi1 +(1+4m)(yi2/λi)

]
= 0 , (5.13)

(4m+1)λ 2
i yi1− (4m−1)yi2 = 0 . (5.14)

The positive root of the quadratic equation (5.14) for λi is given by

λ̃
(O)
i =

(
(4m−1)yi2

(4m+1)yi1

)1/2

. (5.15)

Substituting (5.15) in (5.13) we find that the observed adjusted score estimator of ψ is
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given by

ψ̃
(O)
ad =

(3+4m)(4m−1)+(4m+1)2

2mq(4m+1)3/2(4m−1)1/2

q

∑
i=1

(
yi1yi2

)1/2

=

(
16m2 +8m−1

(4m+1)3/2(4m−1)1/2

)
ψ̂ . (5.16)

ψ̃
(O)
ad however is a biased estimator of ψ since

E(ψ̃(O)
ad ) =

( (
16m2 +8m−1

)(
Γ(m+1/2)

)2

m(4m+1)3/2(4m−1)1/2
(
Γ(m)

)2

)
ψ , (5.17)

and is inconsistent since E(ψ̃(O)
ad )9ψ as q→∞ since E(ψ̃(O)

ad ) is independent of q. When
m = 1, ψ̃

(O)
ad = 23ψ̂/

√
375, E

(
ψ̃

(O)
ad

)
= 23ψπ/(4

√
375) and Var

(
ψ̃

(O)
ad

)
= 529ψ2(1−

π2)/(6000q). This shows that ψ̃
(O)
ad has smaller bias than ψ̂ while ψ̂cp is less biased than

ψ̃
(O)
ad .

We summarise, in Table 5.1, the bias and variance of the estimators of ψ which are
available in closed form.
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q
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( y i
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+
1/
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) 2 −m

( Γ
(m

)) 2
m
( Γ

(m
)) 2

) ψ

( m
2( Γ
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)) 4 −(
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+
1/
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) 4

qm
2( Γ

(m
)) 4

) ψ
2
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−

1)
( Γ

(m
)) 2

(4
m
−
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+
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−
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+
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+
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+
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+
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+
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−
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5.2.4 Simulation study

We report, in Tables 5.2, 5.3 and 5.4 the numerical values of the theoretical bias, variance
and mean squared error, respectively, of all the estimators of ψ for m ∈ {1,3,5,8} and
q ∈ {4,8,16,32,64,128}, when the true value of ψ is one. The corresponding values in
Tables 5.2, 5.3 and 5.4 for the expected adjusted score estimator of ψ , ψ̃

(E)
ad , are based on a

simulation study of 10000 matched gamma samples where the true parameter of interest
is ψ = 1 and the true nuisance parameters, λ , are fixed to be a vector of consecutive,
equi-spaced values between 1 and 5.

The adjusted profile log-likelihood estimator, ψ̂ap, which coincides with the indirect
inference estimator, ψ̂II , are the only estimators with zero bias, while the estimator with
the largest bias in magnitude is the ML estimator, ψ̂ . The bias of all other estimators
is less than that of ψ̂ for all values of m, and converges to zero as m increases. As
noted theoretically for m = 1, excluding the unbiased estimators ψ̂ap and ψ̂II , we find
that the asymptotic bias-corrected estimator ψ , ψ̃as is the least biased estimator, followed
by the conditional and modified profile log-likelihood estimators, ψ̂cp and ψ̂mp, leaving
the observed adjusted score estimator ψ̃

(O)
ad as the estimator of ψ with the largest bias.

The above conclusion is true for all values of m considered. The expected adjusted score
estimator, ψ̃

(E)
ad , is less biased than ψ̂ for all m and less biased than ψ̃

(O)
ad for m ∈ {3,5,8},

but compared to the other estimators of ψ it does not perform better in terms of bias.
We conclude that in terms of estimators resulting from modifications of the likelihood
function, the adjusted profile log-likelihood estimator is exactly unbiased, while all other
estimators achieve bias reduction of the ML estimator.

Even though ψ̂ has the largest bias in magnitude, Table 5.3 shows that it possesses
the least amount of variance amongst all estimators of ψ . The variance of all estimators
decreases to zero as the number of strata and stratum sample size increase, independently
or together. This means that while all estimators of ψ reduce the bias of ψ̂ , they inflate
the variance a little. Table 5.4 shows that, for a fixed value of m and increasing q, the
mean squared error of all estimators, except that of ψ̂ becomes very close to each other
and decreases towards zero at a rate higher than the mean squared error of ψ̂ does. On the
other hand, fixing q and increasing m, the mean squared error of all estimators including
that of ψ̂ decrease towards zero and becomes closer to each other. The largest difference
between the mean squared error of ψ̂ and the other estimators is observed when m is very
small and q is very large.

All of the above results may also be deduced from Figures 5.1, 5.2 and 5.3 which
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show plots of the theoretical biases, variances and mean squared errors of the estimators
in Table 5.1 for a different combination of values of the stratum sample size m and the
number of strata q than those considered in Tables 5.2, 5.3 and 5.4. Finally, we simulated
10000 matched gamma pairs with true ψ = 1 and obtained, in Table 5.5, the coverage
probability and median length of 95% confidence intervals for ψ based on the chi-squared
approximation to the distribution of the profile, conditional profile and adjusted profile
log-likelihood ratios, denoted by W , Wcp and Wap, respectively. We observe that for m = 1
and m = 2 the coverage probability derived from Wap is closer to the nominal level than
those derived from Wcp for all values of q. For the remaining values of m, Wap performs
better than Wcp for most values of q or gives a coverage probability that is very close to
that given by Wcp.

In terms of the incidental parameter problem, all estimators of ψ , except for ψ̂ap = ψ̂II ,
are biased and inconsistent when m is fixed and q is allowed to increase to infinity. This
means that even though these estimators are less biased than the ML estimator, they do
not solve the incidental parameter problem. However, the adjusted profile log-likelihood
estimator which coincides with the indirect inference estimator is exactly unbiased and
consistent when m is fixed and q is allowed to increase to infinity, thus we have found
a consistent estimator which is the only estimator that solves the incidental parameter
problem of Neyman and Scott (1948) in the matched gamma pairs model.
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Table 5.2: Matched gamma pairs. Inference about common square root of product of means in q
pairs of gamma observations with shape m. Numerical values of the theoretical biases of the

estimators of ψ for various values of m and q, with all entries multiplied by 10. The parameter of
interest is ψ = 1. The empty cells correspond to the fact that the bias of all estimators except

ψ̃
(E)
ad is independent of q.

q = 4 q = 8 q = 16 q = 32 q = 64 q = 128

m = 1

ψ̂ -2.1460
ψ̂cp=ψ̂mp 0.4720
ψ̂ap=ψ̂II 0.0000
ψ̃as -0.1825

ψ̃
(E)
ad
∗ 1.4608 1.5264 1.5579 1.5348 1.5442 1.5486

ψ̃
(O)
ad -0.6717

m = 3

ψ̂ -0.7961
ψ̂cp=ψ̂mp 0.0406
ψ̂ap=ψ̂II 0.0000
ψ̃as -0.0291

ψ̃
(E)
ad
∗ 0.1018 0.0993 0.0977 0.0920 0.0860 0.0892

ψ̃
(O)
ad -0.1127

m = 5

ψ̂ -0.4869
ψ̂cp=ψ̂mp 0.0138
ψ̂ap=ψ̂II 0.0000
ψ̃as -0.0113

ψ̃
(E)
ad
∗ 0.0308 0.0313 0.0336 0.0223 0.0267 0.0284

ψ̃
(O)
ad -0.0441

m = 8

ψ̂ -0.3075
ψ̂cp=ψ̂mp 0.0052
ψ̂ap=ψ̂II 0.0000
ψ̃as -0.0046

ψ̃
(E)
ad
∗ 0.0149 0.0187 0.0179 0.0094 0.0121 0.0117

ψ̃
(O)
ad -0.0181

∗The bias values reported for the expected adjusted score estimator, ψ̃
(E)
ad , are based on a simulation

study of 10000 samples. The parameter of interest is ψ = 1 and the nuisance parameter λ is fixed to be a
vector of consecutive, equi-spaced values between 1 and 5.
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Table 5.3: Matched gamma pairs. Inference about common square root of product of means in q
pairs of gamma observations with shape m. Numerical values of the theoretical variance of the

estimators of ψ for various values of m and q, with all entries multiplied by 10. The parameter of
interest is ψ = 1.

q = 4 q = 8 q = 16 q = 32 q = 64 q = 128

m = 1

ψ̂ 0.9579 0.4789 0.2395 0.1197 0.0599 0.0299
ψ̂cp=ψ̂mp 1.7029 0.8514 0.4257 0.2129 0.1064 0.0532
ψ̂ap=ψ̂II 1.5528 0.7764 0.3882 0.1941 0.0971 0.0485
ψ̃as 1.4967 0.7483 0.3742 0.1871 0.0935 0.0468

ψ̃
(E)
ad
† 2.0705 1.0256 0.5201 0.2596 0.1296 0.0648

ψ̃
(O)
ad 1.3512 0.6756 0.3378 0.1689 0.0845 0.0422

m = 3

ψ̂ 0.3822 0.1911 0.0956 0.0478 0.0239 0.0119
ψ̂cp=ψ̂mp 0.4549 0.2274 0.1137 0.0569 0.0284 0.0142
ψ̂ap=ψ̂II 0.4512 0.2256 0.1128 0.0564 0.0282 0.0141
ψ̃as 0.4486 0.2243 0.1121 0.0561 0.0280 0.0140

ψ̃
(E)
ad
† 0.4637 0.2330 0.1165 0.0568 0.0289 0.0145

ψ̃
(O)
ad 0.4411 0.2205 0.1103 0.0551 0.0276 0.0138

m = 5

ψ̂ 0.2375 0.1188 0.0594 0.0297 0.0148 0.0074
ψ̂cp=ψ̂mp 0.2632 0.1316 0.0658 0.0329 0.0164 0.0082
ψ̂ap=ψ̂II 0.2625 0.1312 0.0656 0.0328 0.0164 0.0082
ψ̃as 0.2619 0.1309 0.0655 0.0327 0.0164 0.0082

ψ̃
(E)
ad
† 0.2644 0.1317 0.0650 0.0329 0.0164 0.0082

ψ̃
(O)
ad 0.2602 0.1301 0.0650 0.0325 0.0163 0.0081

m = 8

ψ̂ 0.1514 0.0757 0.0378 0.0189 0.0095 0.0047
ψ̂cp=ψ̂mp 0.1613 0.0806 0.0403 0.0202 0.0101 0.0050
ψ̂ap=ψ̂II 0.1611 0.0806 0.0403 0.0201 0.0101 0.0050
ψ̃as 0.1610 0.0805 0.0402 0.0201 0.0101 0.0050

ψ̃
(E)
ad
† 0.1617 0.0788 0.0397 0.0197 0.0100 0.0050

ψ̃
(O)
ad 0.1605 0.0803 0.0401 0.0201 0.0100 0.0050

†The variance values reported for the expected adjusted score estimator, ψ̃
(E)
ad , are based on a simulation

study of 10000 samples for various values of m and q. The parameter of interest is ψ = 1 and the nuisance
parameter λ is fixed to be a vector of consecutive, equi-spaced values between 1 and 5.
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Table 5.4: Matched gamma pairs. Inference about common square root of product of means in q
pairs of gamma observations with shape m. Numerical values of the theoretical mean squared

error of the estimators of ψ for various values of m and q, with all entries multiplied by 10. The
parameter of interest is ψ = 1.

q = 4 q = 8 q = 16 q = 32 q = 64 q = 128

m = 1

ψ̂ 1.4184 0.9395 0.7000 0.5803 0.5204 0.4905
ψ̂cp=ψ̂mp 1.7252 0.8737 0.4480 0.2351 0.1287 0.0755
ψ̂ap=ψ̂II 1.5528 0.7764 0.3882 0.1941 0.0971 0.0485
ψ̃as 1.5000 0.7517 0.3775 0.1904 0.0969 0.0501

ψ̃
(E)
ad
‡ 2.2839 1.2585 0.7628 0.4952 0.3680 0.3046

ψ̃
(O)
ad 1.3964 0.7207 0.3829 0.2140 0.1296 0.0873

m = 3

ψ̂ 0.4456 0.2545 0.1589 0.1112 0.0873 0.0753
ψ̂cp=ψ̂mp 0.4550 0.2276 0.1139 0.0570 0.0286 0.0144
ψ̂ap=ψ̂II 0.4512 0.2256 0.1128 0.0564 0.0282 0.0141
ψ̃as 0.4487 0.2244 0.1122 0.0562 0.0281 0.0141

ψ̃
(E)
ad
‡ 0.4647 0.2340 0.1174 0.0577 0.0297 0.0153

ψ̃
(O)
ad 0.4423 0.2218 0.1115 0.0564 0.0288 0.0151

m = 5

ψ̂ 0.2612 0.1425 0.0831 0.0534 0.0386 0.0311
ψ̂cp=ψ̂mp 0.2632 0.1316 0.0658 0.0329 0.0165 0.0082
ψ̂ap=ψ̂II 0.2625 0.1312 0.0656 0.0328 0.0164 0.0082
ψ̃as 0.2619 0.1310 0.0655 0.0327 0.0164 0.0082

ψ̃
(E)
ad
‡ 0.2645 0.1318 0.0651 0.0330 0.0165 0.0083

ψ̃
(O)
ad 0.2604 0.1303 0.0652 0.0327 0.0165 0.0083

m = 8

ψ̂ 0.1608 0.0851 0.0473 0.0284 0.0189 0.0142
ψ̂cp=ψ̂mp 0.1613 0.0807 0.0403 0.0202 0.0101 0.0050
ψ̂ap=ψ̂II 0.1611 0.0806 0.0403 0.0201 0.0101 0.0050
ψ̃as 0.1610 0.0805 0.0402 0.0201 0.0101 0.0050

ψ̃
(E)
ad
‡ 0.1617 0.0788 0.0397 0.0197 0.0101 0.0050

ψ̃
(O)
ad 0.1606 0.0803 0.0402 0.0201 0.0101 0.0050

‡The mean squared error values reported for the expected adjusted score estimator, ψ̃
(E)
ad , are based on

a simulation study of 10000 samples for various values of m and q. The parameter of interest is ψ = 1 and
the nuisance parameter λ is fixed to be a vector of consecutive, equi-spaced values between 1 and 5.
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5.3 Binomial matched pairs model

Consider a series of q independent pairs of independent binomial random variables Yi1,Yi2,
with Yi1 ∼ Bi(1,πi1) and Yi2 ∼ Bi(mi,πi2) as in Lunardon (2018, §4). Let the success
probabilities satisfy

πi1 =
exp(ψ +λi)

1+ exp(ψ +λi)
, (5.18)

and
πi2 =

exp(λi)

1+ exp(λi)
, (5.19)

where ψ = ln{πi1/(1− πi2)}− ln{πi2/(1− πi2)}, the log odds ratio, is the parameter
of interest and λi = ln{πi2/(1− πi2)} is the nuisance parameter, i = 1, . . . ,q. This is a
stratified setting as in Sartori (2003) where the sample size is n = ∑

q
i=1 mi and where q

is the number of strata and mi is the ith stratum sample size. We will refer to this model
as the binomial matched pairs model and to the model with mi = m = 1 as the binary
matched pairs model.

This model often arises in case-control studies in medical contexts, where yi1 and yi2

may represent for example the numbers of exposed or experimental persons among one
case and mi controls in the ith stratum and where interest lies in studying the influence of
some risk factor or the effect of some treatment (see Cox, 1970, §1.2 for more examples).

5.3.1 Review of point estimation of the log odds ratio

Several estimators of the common log odds ratio ψ have been proposed in the literature.
These include the Mantel and Haenszel, empirical logit and Birch estimators (see Bres-
low, 1981; Gart, 1971, for a review of these estimators and of their properties). In this
section, however, we only consider estimators of the log odds ratio that depend on the
data only through the sufficient statistic.

5.3.1.1 Maximum likelihood

The log-likelihood function for θ = (ψ,λ1, . . . ,λq)
ᵀ for the above binomial matched pairs

model is (Lunardon, 2018, §4.1)

l(θ) =
q

∑
i=1

ψyi1 +
q

∑
i=1

λi(yi1 + yi2)−
q

∑
i=1

[
ln{1+ exp(ψ +λi)}+mi ln{1+ exp(λi)}

]
.

(5.20)
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This is a linear full exponential family in canonical form (Pace and Salvan, 1997, §5)
with jointly sufficient statistics t = ∑

q
i=1 yi1 and si = yi1 + yi2 for ψ and λi, respectively.

Throughout this section, we consider for simplicity mi =m with totals si = (m+1)/2 as in
Sartori (2003, Example 3). In this setting, the constrained maximum likelihood estimator
of λi for a fixed value of ψ , denoted by λ̂i,ψ , will be identical for all i = 1, . . . ,q and so
we set λ̂i,ψ = γ̂ψ . Equivalently, denote the constrained maximum likelihood estimator of
ψ for a fixed value of γ by ψ̂γ . The score equations for the log-likelihood function with
respect to γ and ψ are respectively

m+1
2
− exp(ψ + γ)

1+ exp(ψ + γ)
−m

exp(γ)
1+ exp(γ)

= 0, (5.21)

t−q
exp(ψ + γ)

1+ exp(ψ + γ)
= 0. (5.22)

The solution of (5.22) is ψ̂γ = ln{t/(q− t)}− γ , and on substituting this in (5.21) and
solving for γ we get the maximum likelihood estimator of the nuisance parameter γ̂ =

ln
[
{q(m+ 1)− 2t}/{q(m− 1)+ 2t}

]
. Substituting γ̂ in ψ̂γ we get the maximum likeli-

hood estimator of the parameter of interest

ψ̂ = ln
(

t{q(m−1)+2t}
{q− t}{q(m+1)−2t}

)
. (5.23)

Note that when t = 0 or t = q, ψ̂ is −∞ or +∞, respectively.
Using the weak law of large numbers, Slutsky’s theorem and the Continuous mapping

theorem (Florescu, 2014, §7), we find that ψ̂ converges in probability to ψ + ln[{(m+

1)exp(ψ)+m−1}/{(m−1)exp(ψ)+m+1}] as q→∞, and so it is inconsistent. When
m is also allowed to increase to ∞, ψ̂ will tend to ψ . This means that ψ̂ will be consistent
only when both m and q diverge.

Given that the totals si are fixed, the maximum likelihood estimator of ψ depends on
the data only through the sufficient statistic T = ∑

q
i=1Yi1 and so its bias and variance can

be calculated exactly using

Eψ{ψ̂(T )}=
q−1

∑
t=1

ψ̂(t)
pr(T = t|Si = si)

1−pr(T = 0|Si = si)−pr(T = q|Si = si)
, (5.24)

varψ{ψ̂(T )}= Eψ [{ψ̂(T )}2]− [Eψ{ψ̂(T )}]2. (5.25)
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5.3.1.2 Conditional maximum likelihood

The conditional log-likelihood function is based on the distribution of Yi1 given Si = si in
each stratum. Davison (1988) and Gart (1970) noted that the conditional density of Yi1

given Si is

pr(Yi1 = yi1|Si = si) =

( 1
yi1

)( mi
si−yi1

)
exp(ψyi1)

∑
min(1,si)
u=0

(1
u

)( mi
si−u

)
exp(ψu)

. (5.26)

This is the noncentral hypergeometric distribution which is obtained by rewriting the
left hand side of (5.26) as Pr(Yi1 = yi1,Si = si)/Pr(Si = si) = Pr(Yi1 = yi1)Pr(Yi2 = si−
yi1)/Pr(Yi1+Yi2 = si), by independence of Yi1 and Yi2, and noting that Pr(Yi1+Yi2 = si) =

∑
si
u=0 Pr(Yi1 = u)Pr(Yi2 = si− u). Because yi1 can only be 0 or 1, the right hand side of

(5.26) can be further simplified to

pr(Yi1 = yi1|Si = si) =

[
si exp(ψ)

mi +1+ si{exp(ψ)−1}

]yi1
[

mi− si +1
mi +1+ si{exp(ψ)−1}

]1−yi1

.

(5.27)
This shows that Yi1|Si has a Bernoulli distribution with success probability the first term
inside the bracket of the right hand side of (5.27). Taking the logarithm of the product of
(5.27) gives the conditional log-likelihood function which simplifies to

lc(ψ) =
q

∑
i=1

ψyi1−
q

∑
i=1

ln
[
mi +1+ si{exp(ψ)−1}

]
. (5.28)

The score equation for the conditional log-likelihood function is

t−
q

∑
i=1

si exp(ψ)

mi +1+ si{exp(ψ)−1}
= 0. (5.29)

Letting mi = m and si = (m+1)/2, (5.28) simplifies to

lc(ψ) = ψt−q ln{exp(ψ)+1}, (5.30)

and (5.29) simplifies to

t−q
exp(ψ)

exp(ψ)+1
= 0, (5.31)
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so the solution of the latter gives the conditional maximum likelihood estimator

ψ̂c = ln
(

t
q− t

)
. (5.32)

When t = 0 or t = q, ψ̂c is −∞ or +∞, respectively. In the setting of Lunardon (2018),
i.e. when mi = m and si = (m+ 1)/2, the success probability of the Bernoulli random
variable Yi1|Si simplifies to π = exp(ψ)/{exp(ψ)+1}. The distribution of the sufficient
statistic T given Si is therefore Binomial with denominator q and success probability
π . The conditional distribution of T can also be obtained using the convolution method
following Butler and Stephens (2017, §2). This will be particularly useful for general
mi and si where the Binomial conditional distribution of T no longer holds. In fact, the
conditional distribution of T will be Poisson binomial.

By noting that T converges in probability to qπ by the weak law of large numbers, we
find that ln{t/(q− t)} p−→ ψ by Slutsky’s theorem and the Continuous mapping theorem,
so ψ̂c is consistent. As the conditional maximum likelihood estimator depends on the data
only through the sufficient statistic, its bias and variance can be calculated using (5.24)
and (5.25) but replacing ψ̂(T ) by ψ̂c(T ).

5.3.1.3 Modified profile maximum likelihood

Davison (2003, §12) showed that for a linear exponential family in canonical form, the
modified profile log-likelihood function of Barndorff-Nielson (1983) reduces to (see Sec-
tion 2.1.5)

lmp(ψ) = l(ψ, λ̂ψ)+
1
2

ln{det jλλ (ψ, λ̂ψ)}, (5.33)

where l(ψ, λ̂ψ) is the profile log-likelihood obtained from (5.20) by substituting the con-
strained maximum likelihood estimator of λ and where jλλ (ψ,λ ) is the observed infor-
mation per observation for the λ components and is given by the negative of the second
derivative of the log-likelihood function with respect to λ . In the setting mi = m and
si = (m+1)/2, jλλ (ψ,λ ) becomes the q×q matrix with ith diagonal element

− ∂ 2l(ψ,γ)

∂γ2 =
exp(ψ + γ)(

1+ exp(ψ + γ)
)2 +m

exp(γ)(
1+ exp(γ)

)2 , (5.34)

and zero elsewhere, and where we observed in Section 5.3.1.1 that the solution of (5.21),
λ̂ψ = γ̂ψ , is not available in closed form. This means that there is no closed form expres-
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sion for (5.33) and we calculate the maximum modified profile log-likelihood estimator,
ψ̂mp, numerically and evaluate its bias and variance using (5.24) and (5.25), respectively,
by replacing ψ̂(T ) with ψ̂mp(T ).

5.3.1.4 Firth’s adjusted score equations method

When θ is the canonical parameter of an exponential family model like in the model
considered here, Firth (1993) showed that the adjusted score equations estimator of θ ,
obtained as the solution of (2.37), is equivalent to the maximiser of the penalised log-
likelihood function

l∗(θ) = l(θ)+
1
2

ln{det i(θ)}, (5.35)

where i(θ) = E{ j(θ)} is the Fisher information matrix. In the setting mi = m and si =

(m+1)/2, the second order partial derivatives of l(ψ,λi) are

∂ 2l(ψ,λi)

∂ψ2 = −
q

∑
i=1

exp(ψ +λi)(
1+ exp(ψ +λi)

)2 (5.36)

∂ 2l(ψ,λi)

∂ψ∂λi
= − exp(ψ +λi)(

1+ exp(ψ +λi)
)2 (5.37)

∂ 2l(ψ,λi)

∂λ 2
i

= − exp(ψ +λi)(
1+ exp(ψ +λi)

)2 −m
exp(λi)(

1+ exp(λi)
)2 . (5.38)

Since the above derivatives do not depend on the data, the Fisher information matrix
coincides with the observed information and is given by

i(ψ,λi) =


∑

q
i=1Vi1 V11 · · · Vq1

V11 (V11 +V12) · · · 0
...

... . . . ...
Vq1 0 · · · (Vq1 +Vq2)

 , (5.39)

where Vi1 =
(

exp(ψ + λi)
)
/
(
1+ exp(ψ + λi)

)2 and Vi2 = m
(

exp(λi)
)
/
(
1+ exp(λi)

)2,
i = 1, . . . ,q. The determinant of i(ψ,λi) is obtained using the identity (see Magnus and
Neudecker, 2007, Chapter 1, p.g. 28)

If D is invertible, then: det

(
A B

C D

)
= det(D)det(A−BD−1C), (5.40)
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where A, B, C, and D are matrices of dimension n× n, n×m, m× n, and m×m respec-
tively, and simplifies to

deti(ψ,λi) =

( q

∏
i=1

(Vi1 +Vi2)

)( q

∑
i=1

Vi1Vi2

Vi1 +Vi2

)
. (5.41)

Therefore the penalty function that needs to be added to the log-likelihood function is

1
2

ln{det i(ψ,λi)}=
1
2

q

∑
i=1

ln(Vi1 +Vi2)+
1
2

ln
( q

∑
i=1

Vi1Vi2

Vi1 +Vi2

)
. (5.42)

The score equations for the penalised log-likelihood of Firth (1993), l∗(ψ,λi), with re-
spect to λi and ψ involve cumbersome expressions and have no closed form solution so
the penalised log-likelihood of Firth (1993) estimator of ψ , denoted by ψ̂∗ is obtained
numerically. The bias and variance of ψ̂∗ are calculated using (5.24) and (5.25), respec-
tively.

5.3.2 Binary matched pairs model

The binary matched pairs model is a special case of the binomial matched pairs model
when m = 1. This implies that in the setting of Lunardon (2018), si = 1, and so a = d = 0,
where a,b,c and d denote the number of pairs of the form (0,0),(0,1),(1,0) and (1,1)
respectively, with a+ b+ c+ d = q. Note that ∑

q
i=1 yi1 = c+ d, ∑

q
i=1 yi2 = b+ d and

∑
q
i=1(yi1 +yi2) = b+c+2d. We call pairs of the form (0,0) and (1,1) concordant, while

pairs of the form (0,1) and (1,0) are called discordant. In this case, γ̂ψ = −ψ/2 and so
the profile log-likelihood for ψ is (see Davison, 2003, Example 12.23)

lp(ψ) = ψt−2q ln{1+ exp(ψ/2)}, (5.43)

which is maximised at

ψ̂ = 2ln
(

t
q− t

)
= 2ln

(
c
b

)
. (5.44)

Alternatively, ψ̂ can be obtained by substituting m = 1 in (5.23). Davison (2003) showed
that ψ̂ converges in probability to 2ψ as q→ ∞, thus it is inconsistent.
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Only discordant pairs enter the conditional log-likelihood and it is given by

lc(ψ) = cψ− (b+ c) ln{exp(ψ)+1}, (5.45)

which is maximised at
ψ̂c = ln

(
c
b

)
, (5.46)

which converges in probability to ψ as q→ ∞, as noted by Davison (2003, Example
12.23), so it is consistent.

Substituting γ̂ψ =−ψ/2 in (5.34) gives jλλ (ψ, λ̂ψ)= 2
(

exp(ψ/2)
)
/
(
1+exp(ψ/2)

)2,
and in this case Davison (2003, Example 12.23) showed that

lmp(ψ) =
1
4

ψ(q+4t)−3q ln{1+ exp(ψ/2)}, (5.47)

which is maximized at

ψ̂mp = 2ln
(

q+4t
5q−4t

)
= 2ln

(
b+5c
c+5b

)
, (5.48)

where the latter converges in probability to 2 ln
[
{1+5exp(ψ)}/{5+exp(ψ)}

]
as q→∞.

Note that when c = 0 or b = 0, ψ̂mp is 2 ln(1/5) or 2 ln(5), respectively, i.e. ψ̂mp is finite.
Although ψ̂mp is inconsistent, Davison (2003) showed that it is less biased than ψ̂ .

5.3.3 Penalised likelihood based on adjusted responses method

In order to avoid infinite estimates of ψ , as is the case with ψ̂ , ψ̂c and ψ̂mp (for m 6= 1),
when all of the yi1 observations are zero or one, we propose to adjust the log-likelihood
function by adding a small number δ > 0 to each success, yi1 and yi2, and to each failure,
1− yi1 and mi− yi2. The penalised log-likelihood function based on adjusted responses
for θ = (ψ,λ1, . . . ,λq)

ᵀ becomes

la(θ) =
q

∑
i=1

ψ(yi1 +δ )+
q

∑
i=1

λi(yi1 + yi2 +2δ )

−
q

∑
i=1

[
(1+2δ ) ln{1+ exp(ψ +λi)}+(mi +2δ ) ln{1+ exp(λi)}

]
. (5.49)
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When mi = m and si = (m+1)/2, the score equations for the above log-likelihood func-
tion with respect to γ and ψ simplify respectively to

m+1+4δ

2
− (1+2δ )

exp(ψ + γ)

1+ exp(ψ + γ)
− (m+2δ )

exp(γ)
1+ exp(γ)

= 0, (5.50)

t +qδ −q(1+2δ )
exp(ψ + γ)

1+ exp(ψ + γ)
= 0, (5.51)

where we set the constrained penalised maximum likelihood estimator of λi, based on
adjusted responses, for a fixed value of ψ , denoted by λ̂i,ψ,a, to be γ̂ψ,a because it will
be identical for all i = 1, . . . ,q. The simultaneous solution of (5.50) and (5.51) give the
penalised maximum likelihood estimators of γ and ψ , based on adjusted responses

γ̂a = ln
[

q(m+1+2δ )−2t
q(m−1+2δ )+2t

]
, (5.52)

ψ̂a = ln
[

(t +qδ ){q(m−1+2δ )+2t}
{q(m+1+2δ )−2t}{q(1+δ )− t}

]
. (5.53)

Note that when δ = 0, ψ̂a = ψ̂ . Note also that when t = 0 or t = q, ψ̂a is finite, while
when t = q/2, ψ̂a = 0. When m = 1,

ψ̂a = 2ln

[
t +qδ

q(1+δ )− t

]
. (5.54)

Since ψ̂a depends on the data only through the sufficient statistic t, its bias and variance
are computed using (5.24) and (5.25), respectively.

5.3.3.1 Probability limit of the penalised likelihood estimator based on adjusted
responses

In this section we obtain the probability limit of the penalised log-likelihood estimator
based on adjusted responses and derive the relationship that δ should satisfy in order to
make this estimator consistent. We also show how the modified profile log-likelihood
estimator (when m = 1) and the conditional log-likelihood estimator can be recovered for
particular values of δ .
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When m = 1, as q→ ∞, ψ̂a converges in probability to

2 ln

(
δ{exp(ψ)+1}+ exp(ψ)

δ{exp(ψ)+1}+1

)
, (5.55)

while for a general m, we find that as q→ ∞, ψ̂a converges in probability to

ln

([
δ{exp(ψ)+1}+ exp(ψ)

][
{m−1+2δ}{exp(ψ)+1}+2exp(ψ)

][
δ{exp(ψ)+1}+1

][
{m+1+2δ}{exp(ψ)+1}−2exp(ψ)

] )
. (5.56)

Similar to Table 12.3 of Davison (2003), Table 5.6 compares the limiting values of ψ̂ ,
ψ̂c, ψ̂mp and ψ̂a when m= 1 for a set of values of ψ ranging from 0 to 5 and a set of values
of δ ranging from 0.05 to 0.50. We note that for any given ψ , there exists a value of δ for
which the limit of ψ̂a is closer to the truth than ψ̂mp. In other words, there is evidence that
there exists a δ value such that ψ̂a converges to the truth faster than ψ̂mp. These values of
δ decrease as the true value of ψ increase. Observe also that when δ = 0.25, the limiting
value of ψ̂a coincides with that of ψ̂mp. In fact substituting δ = 0.25 in (5.55), we find
that ψ̂a converges in probability to the same limit of ψ̂mp given in Section 5.3.2. This
means that the penalised log-likelihood estimator based on adjusted responses recovers
the modified profile log-likelihood estimator when m = 1 and δ = 0.25, i.e. ψ̂a = ψ̂mp.

Table 5.6: Probability limits of profile, conditional, modified profile and adjusted log-likelihood
based on adjusted responses estimators of the log odds ratio ψ in the binary matched pairs model
when m = 1. For each ψ , the value in bold face corresponds to the limiting value closest to the

truth if we ignore ψ̂c.

ψ 0 0.5 1 1.5 2.0 2.5 3 4 5

Limit of ψ̂ 0 1 2 3 4 5 6 8 10
Limit of ψ̂c 0 0.5 1 1.5 2 2.5 3 4 5
Limit of ψ̂mp 0 0.66 1.27 1.81 2.24 2.56 2.79 3.05 3.16

Limit of ψ̂a δ

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

0
0
0
0
0
0
0
0
0
0

0.91
0.83
0.76
0.71
0.66
0.62
0.58
0.55
0.52
0.49

1.79
1.62
1.49
1.37
1.27
1.19
1.12
1.05
0.99
0.94

2.63
2.36
2.14
1.96
1.81
1.68
1.57
1.47
1.39
1.32

3.41
3.00
2.69
2.44
2.24
2.07
1.93
1.81
1.70
1.60

4.09
3.52
3.12
2.81
2.56
2.36
2.19
2.05
1.92
1.81

4.66
3.93
3.44
3.08
2.79
2.56
2.37
2.21
2.07
1.95

5.44
4.43
3.82
3.38
3.05
2.79
2.57
2.39
2.24
2.10

5.83
4.65
3.97
3.51
3.16
2.88
2.65
2.46
2.30
2.16
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When m = 1, in order to make ψ̂a consistent we need to equate the ratio inside the
logarithm of (5.55) with

√
exp(ψ) which simplifies to the equation

[
exp(ψ)−1

][
δ

2{exp(ψ)}2 +{2δ
2−1}{exp(ψ)}+δ

2]= 0. (5.57)

When ψ = 0, there is no adjustment because there is no bias so we consider the positive
solution of the quadratic equation [δ 2{exp(ψ)}2+{2δ 2−1}{exp(ψ)}+δ 2] = 0 in terms
of δ which simplifies to

δ =

√
exp(ψ)

1+ exp(ψ)
. (5.58)

Substituting (5.58) into (5.54) gives us an implicit equation in ψ̂a which when solved
numerically gives the same estimate as ψ̂c. This means that the value of δ that achieves
consistency of ψ̂a is the one that recovers ψ̂c. This is disadvantageous because we inherit
exactly the same problems with conditional log-likelihood (i.e. infinite estimates) if we
attempt to tune δ to make ψ̂a consistent. The value of δ in terms of t and q that recovers
ψ̂c is obtained by equating (5.54) with ψ̂c and simplifies to

δ =

√
t(3qt−2t2−q2)

q2(2t−q)
. (5.59)

Observe that when t = 0 or t = q, δ = 0 and so ψ̂a = ψ̂ , while when t = q/2, δ is infinite.
For a general m, the relationship that δ should satisfy in order to make ψ̂a consistent

is found by equating the ratio inside the logarithm of (5.56) with exp(ψ) which simplifies
to the equation

δ
{

exp(ψ)
}3{m−1+2δ

}
−

{
exp(ψ)

}2{2+δ (1−m−2δ )
}

+
{

exp(ψ)
}{

2+δ (1−m−2δ )
}
−δ (m−1+2δ ) = 0,

(5.60)

with no closed form solution. The value of δ in terms of t, q and m that recovers ψ̂c

satisfies the equation

2q2
δ

2(q−2t)+q2
δ
{

q(m−1)+2t(1−m)
}
−2t(q2−3tq+2t2) = 0. (5.61)

Figure 5.4 shows a plot of δ , the root of (5.60), against ψ for m = 1, m = 3, m = 11 and
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m = 39. This plot shows that there is a scaled logistic relationship between δ and ψ and
that the best choice of δ lies in the range 0 < δ < 0.5. Given the true value of ψ , as
m increases, the value of δ that makes ψ̂a consistent decreases to zero. This is expected
because we know from standard asymptotic theory that the maximum likelihood estimator
is asymptotically consistent.

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

ψ

δ

m=1
m=3
m=11
m=39

Figure 5.4: Plot of the value of δ , that makes the penalised log-likelihood based on
adjusted responses estimator, ψ̂a, consistent, against ψ for m = 1, m = 3, m = 11 and

m = 39.

5.3.4 Indirect inference estimation of the log odds ratio

Suppose that ψ̂ is some initial estimator of ψ , not necessarily the maximum likelihood
estimator, then the simplest method of bias reduction of ψ̂ via indirect inference relies on
solving the equation

ψ̃ = ψ̂−Bψ̂(ψ̃,λ ), (5.62)

with respect to ψ̃ where Bψ̂(ψ̃,λ ) = Eψ̃,λ (ψ̂)− ψ̃ is the bias function of ψ̂ evaluated
at ψ̃ and λ = λ1, . . . ,λq, as described in Section 2.2.3. We call ψ̃ the indirect inference
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estimator of ψ . Alternatively, (5.62) can be written as

ψ̂ = Eψ̃,λ (ψ̂). (5.63)

Since we want to reduce the bias of ψ̂a when mi = m and si = (m+ 1)/2, our indirect
inference estimator ψ̃ is the solution of

ψ̂a = Eψ̃,γ(ψ̂a). (5.64)

There are two possible estimators of γ to use to plug in Eψ̃,γ(ψ̂a): the penalised maxi-
mum likelihood estimator based on adjusted responses, γ̂a, or the constrained penalised
maximum likelihood estimator based on adjusted responses, γ̂ψ,a. As the expectation of
ψ̂a can be obtained using complete enumeration, two versions of ψ̃ , ψ̃a1 and ψ̃a2, can be
defined

ψ̂a(T ) =
q

∑
u=0

ψ̂a(u)Pr(T = u; ψ̃a1, γ̂a), (5.65)

ψ̂a(T ) =
q

∑
u=0

ψ̂a(u)Pr(T = u; ψ̃a2, γ̂ψ,a), (5.66)

where Pr(T = u; ψ̃a1, γ̂a) and Pr(T = u; ψ̃a2, γ̂ψ,a) are the unconditional density of the
sufficient statistic T which is binomial with denominator q and success probabilities
exp(ψ̃a1+ γ̂a)/

{
1+exp(ψ̃a1+ γ̂a)

}
and exp(ψ̃a2+ γ̂ψ,a)/

{
1+exp(ψ̃a2+ γ̂ψ,a)

}
, respec-

tively. A third version of ψ̃ , ψ̃a∗, can be obtained by using the conditional density pr(T =

u|Si;ψ) which is binomial with denominator q and success probability exp(ψ)/{exp(ψ)+

1},

ψ̂a(T ) =
q

∑
u=0

ψ̂a(u)Pr(T = u|Si; ψ̃a∗). (5.67)

No closed form solution exists for any of the above three estimators, so we solve numeri-
cally and calculate their expectation and variance using (5.24) and (5.25). For t ∈ {0,q},
ψ̃a1, ψ̃a2 and ψ̃a∗ have no solution. In fact the expectations in the right hand side of
(5.65), (5.66) and (5.67) are all bounded below by ψ̂a(0) and above by ψ̂a(q). This means
that when the binary observations are all zero or one the indirect inference estimator is
not defined which is unfortunate because even though we overcome the problem of in-
finite estimates at t = 0 and t = q by introducing a penalised likelihood estimator based
on adjusted responses, when we attempt to reduce the bias of the later the same problem
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appears again at those boundary values of t.

5.3.5 Complete enumeration study

In this section we reproduce the complete enumeration study in Lunardon (2018, Table
1) which compares the finite sample bias and variance of estimators derived from pro-
file, conditional, modified profile and penalized (Firth (1993)) likelihoods, denoted by
ψ̂ , ψ̂c, ψ̂mp and ψ̂∗, respectively. We enrich this study by adding the penalised max-
imum likelihood estimator based on adjusted responses, ψ̂a, and the indirect inference
estimator based on ψ̂a using the conditional model, denoted by ψ̃a∗, for a set of 20 values
of δ ranging from 0.05 to 1.00. The comparison in Lunardon (2018, Table 1) also as-
sesses the coverage probability and length of 95% confidence intervals for ψ based on the
chi-squared approximation to the distribution of W∗(ψ) and to the distributions of the pro-
file, conditional and modified profile log-likelihood ratios, denoted by W (ψ), Wc(ψ) and
Wmp(ψ), respectively. We extend this comparison by adding the coverage probability and
length of 95% confidence intervals for ψ based on the chi-squared approximation to the
distribution of the penalised log-likelihood ratio based on adjusted responses, denoted by
Wa(ψ). The exact bias and variance of estimators and the exact coverage probability and
average length of confidence intervals is obtained through complete enumeration because
the estimators and confidence intervals all depend on the sufficient statistic T = ∑

q
i=1Yi1

and so the distribution of T given S1 = s1, . . . ,Sq = sq can be computed numerically fol-
lowing Butler and Stephens (2017). These summaries however, are computed only for
t ∈ {1, . . . ,q−1} since when t ∈ {0,q}, ψ̂ , ψ̂c and ψ̂mp (for m 6= 1) are infinite.

Tables 5.7-5.12 report the bias and variance of estimators, while Tables 5.13-5.18
report the coverage probability and average length of confidence intervals with nomi-
nal level 95% when the true log odds ratio ψ is unity, with m ∈ {1,3,11,39} and q ∈
{30,100,1000}.

Overall, for fixed δ the numerical value of the bias and variance of the estimator ψ̂a

decrease as m increases. In many cases, however this means that the bias becomes more
negative, i.e. the magnitude of the bias increases with m. This suggests that for any
combination of q and m, there exists a particular value of δ , above which the bias of
ψ̂a does not improve. In fact for any combination of m and q, there exists a value of δ

such that ψ̂a has minimum bias which is smaller than the bias of the estimators ψ̂ , ψ̂c,
ψ̂mp and ψ̂∗; for example, for q = 30, m = 1 this optimal δ in terms of bias is 0.45,
for the combinations q = 30,m = 39 and q ≥ 100,m ≥ 11, the optimal value of δ that
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gives minimum bias becomes smaller than 0.05. For q = 30, at the optimum δ value, the
estimator ψ̂a has smaller bias and variance than ψ̂c. This is also true for other values of q,
except that it is not very clear from Tables 5.7-5.12 because we consider a specific set of
values for δ ; for example, for q = 100 and m = 11, at δ = 0.045, ψ̂a has bias and variance
-0.03 and 0.47, respectively (both multiplied by 10), while for q = 1000 and m = 1, at
δ = 0.444, ψ̂a has bias and variance 0.00 and 0.04, respectively (both multiplied by 10).
This optimal value of δ decrease as m increases, but for a fixed m, as q increase above
30, the optimum δ value remain constant. This behaviour can be seen more clearly from
Table 5.19 where the optimum value of δ that minimizes the bias of ψ̂a was chosen from a
finer set of δ values. For the values of m and q chosen in Table 5.19, the effect of fixing m

and allowing q to increase is a larger optimal δ , while fixing q and increasing m decreases
this optimal δ value. However, the pattern in Table 5.19 suggest that as both q and m are
allowed to diverge, the optimal δ value becomes close to zero and this makes intuitive
sense because we know that δ = 0 gives rise to the maximum likelihood estimator ψ̂

which is asymptotically unbiased when both m and q tend to ∞.
Nevertheless, the bias results for the estimator ψ̃a∗ show a marked improvement over

ψ̂ , ψ̂mp and ψ̂c, for all values of q and m. When ψ̃a∗ is compared with ψ̂∗, the former has
smaller bias and variance for m = 1 and m = 3 for all values of q. When compared with
ψ̂a, the bias of ψ̃a∗ is reduced for all values of δ except the optimal one. The interesting
result to note here is that as δ increases, the bias and variance of ψ̃a∗ approach that of ψ̂c

for all combinations of q and m considered. To wrap up this comparison of estimators,
if we were to choose a δ based on ψ̂a∗, then it will be the one that is close to (but not
equal to) zero because it will give the smallest bias and variance. However, ψ̂a∗ does not
perform better than ψ̂a all the time. In fact, if we were to choose a δ based on ψ̂a, then it
will be the optimal δ that minimizes the bias of ψ̂a because the bias and variance of ψ̂a at
this optimal δ is smaller than that of any other estimator in the table for any combination
of q and m. Having said that, in practice we are only given a data set and we don’t know
the particular δ for that data set so ψ̃a∗ will be a good choice because its bias and variance
are very competitive regardless of the value of δ .

Concerning the coverage probability and average length of 95% confidence intervals,
Lunardon (2018) noted that intervals derived from Wmp(ψ) and W∗(ψ) are consistent with
those from Wc(ψ) for m≥ 3. The coverage probability and average length of confidence
intervals derived from Wa(ψ) show an improvement over those derived from Wc(ψ) for
particular values of δ (shown in bold face in Tables 5.13-5.18). We considered 20 values
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of δ ranging from 0.31 to 0.50 for m = 1, 0.06 to 0.25 for m = 3 and 0.01 to 0.20 for
m = 11 and m = 39. For those particular values of δ in bold face, the coverage probabil-
ity derived from Wa(ψ) is closer to the nominal coverage of 95% than that derived from
Wc(ψ). This agrees with the fact that ψ̂a performs better than ψ̂c in terms of bias and
variance for some optimal value of δ . As the value of δ increase the average length of
confidence intervals derived from Wa(ψ) decreases which is expected because the vari-
ance (and hence standard error) of ψ̂a becomes smaller as δ becomes larger.

In conclusion it has been shown how, in the binomial matched pairs model, finite
estimates of the log odds ratio are produced in cases where the observations are either
all equal to zero or all equal to one by penalising the log-likelihood function through the
additive adjustment of a tuning parameter δ > 0 to each success and failure. This value δ

was then used as a parameter that could be tuned to improve the bias and/or variance of
the penalised log-likelihood estimator based on adjusted responses. The indirect inference
method was applied to further reduce the bias of ψ̂a. The method can be applied in
principle to any parametric model. We are also free to use estimators other than ψ̂a as
initial estimates. Indeed the setting considered here where mi and si are fixed to m and
(m+1)/2, respectively is a special case and perhaps a large scale simulation study would
be useful to account for different stratum sizes and totals.
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Table 5.7: Binomial matched observations with true log odds ratio ψ = 1. Second to sixth
columns show the bias and variance (in parentheses) of estimators derived from profile,

conditional, modified profile, penalised (Firth) and penalised based on adjusted responses
log-likelihoods, with all entries multiplied by 10; seventh column show the bias and variance (in
parentheses) of the indirect inference ψ̂a∗ using the conditional model, with all entries multiplied

by 10.

ψ̂ ψ̂c ψ̂mp ψ̂∗ ψ̂a ψ̃a∗

δ q = 30,m = 1
0.05

10.89 (7.87) 0.44 (1.97) 2.91 (2.33) 2.76 (2.27)

8.49 (5.58) 0.08 (1.80)
0.10 6.65 (4.25) 0.17 (1.85)
0.15 5.16 (3.39) 0.22 (1.88)
0.20 3.94 (2.78) 0.26 (1.90)
0.25 2.91 (2.33) 0.29 (1.91)
0.30 2.03 (1.99) 0.31 (1.92)
0.35 1.27 (1.72) 0.33 (1.92)
0.40 0.60 (1.50) 0.34 (1.93)
0.45 0.01 (1.33) 0.35 (1.93)
0.50 -0.52 (1.18) 0.36 (1.94)
0.55 -0.99 (1.06) 0.37 (1.94)
0.60 -1.42 (0.95) 0.38 (1.94)
0.65 -1.81 (0.87) 0.38 (1.95)
0.70 -2.16 (0.79) 0.39 (1.95)
0.75 -2.49 (0.72) 0.39 (1.95)
0.80 -2.79 (0.66) 0.40 (1.95)
0.85 -3.06 (0.61) 0.40 (1.95)
0.90 -3.32 (0.57) 0.40 (1.95)
0.95 -3.55 (0.53) 0.41 (1.95)
1.00 -3.77 (0.49) 0.41 (1.96)

δ q = 30,m = 3
0.05

3.56 (3.06) 0.44 (1.97) 0.69 (1.82) 0.48 (1.72)

2.26 (2.30) 0.15 (1.82)
0.10 1.24 (1.84) 0.22 (1.87)
0.15 0.41 (1.53) 0.27 (1.89)
0.20 -0.29 (1.30) 0.30 (1.91)
0.25 -0.88 (1.13) 0.32 (1.92)
0.30 -1.40 (0.99) 0.34 (1.93)
0.35 -1.85 (0.88) 0.35 (1.93)
0.40 -2.25 (0.79) 0.37 (1.94)
0.45 -2.61 (0.71) 0.37 (1.94)
0.50 -2.94 (0.64) 0.38 (1.95)
0.55 -3.23 (0.59) 0.39 (1.95)
0.60 -3.50 (0.54) 0.39 (1.95)
0.65 -3.74 (0.50) 0.40 (1.95)
0.70 -3.97 (0.46) 0.40 (1.95)
0.75 -4.18 (0.43) 0.41 (1.95)
0.80 -4.37 (0.40) 0.41 (1.95)
0.85 -4.56 (0.37) 0.41 (1.96)
0.90 -4.72 (0.35) 0.41 (1.96)
0.95 -4.88 (0.33) 0.42 (1.96)
1.00 -5.03 (0.31) 0.42 (1.96)
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Table 5.8: Binomial matched observations with true log odds ratio ψ = 1. Second to sixth
columns show the bias and variance (in parentheses) of estimators derived from profile,

conditional, modified profile, penalised (Firth) and penalised based on adjusted responses
log-likelihoods, with all entries multiplied by 10; seventh column show the bias and variance (in
parentheses) of the indirect inference ψ̂a∗ using the conditional model, with all entries multiplied

by 10.

ψ̂ ψ̂c ψ̂mp ψ̂∗ ψ̂a ψ̃a∗

δ q = 30,m = 11
0.05

1.28 (2.23) 0.44 (1.97) 0.46 (1.94) 0.09 (1.74)

0.08 (1.62) 0.11 (1.81)
0.10 -0.85 (1.26) 0.19 (1.85)
0.15 -1.60 (1.02) 0.24 (1.88)
0.20 -2.22 (0.85) 0.27 (1.90)
0.25 -2.74 (0.73) 0.30 (1.91)
0.30 -3.19 (0.63) 0.32 (1.92)
0.35 -3.58 (0.55) 0.34 (1.93)
0.40 -3.92 (0.49) 0.35 (1.93)
0.45 -4.22 (0.44) 0.36 (1.94)
0.50 -4.49 (0.40) 0.37 (1.94)
0.55 -4.73 (0.36) 0.38 (1.94)
0.60 -4.95 (0.33) 0.39 (1.95)
0.65 -5.15 (0.30) 0.39 (1.95)
0.70 -5.34 (0.28) 0.40 (1.95)
0.75 -5.50 (0.26) 0.40 (1.95)
0.80 -5.66 (0.24) 0.40 (1.95)
0.85 -5.80 (0.22) 0.41 (1.95)
0.90 -5.94 (0.21) 0.41 (1.96)
0.95 -6.06 (0.20) 0.41 (1.96)
1.00 -6.17 (0.18) 0.42 (1.96)

δ q = 30,m = 39
0.05

0.68 (2.04) 0.44 (1.97) 0.44 (1.96) 0.03 (1.74)

-0.52 (1.46) 0.09 (1.80)
0.10 -1.44 (1.12) 0.17 (1.85)
0.15 -2.18 (0.90) 0.23 (1.88)
0.20 -2.79 (0.74) 0.26 (1.90)
0.25 -3.31 (0.62) 0.29 (1.91)
0.30 -3.75 (0.53) 0.31 (1.92)
0.35 -4.13 (0.46) 0.33 (1.93)
0.40 -4.47 (0.41) 0.34 (1.93)
0.45 -4.77 (0.36) 0.36 (1.94)
0.50 -5.03 (0.32) 0.37 (1.94)
0.55 -5.27 (0.29) 0.37 (1.94)
0.60 -5.48 (0.26) 0.38 (1.95)
0.65 -5.68 (0.24) 0.39 (1.95)
0.70 -5.85 (0.22) 0.39 (1.95)
0.75 -6.02 (0.20) 0.40 (1.95)
0.80 -6.17 (0.19) 0.40 (1.95)
0.85 -6.30 (0.17) 0.40 (1.95)
0.90 -6.43 (0.16) 0.41 (1.95)
0.95 -6.55 (0.15) 0.41 (1.96)
1.00 -6.66 (0.14) 0.41 (1.96)
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Table 5.9: Binomial matched observations with true log odds ratio ψ = 1. Second to sixth
columns show the bias and variance (in parentheses) of estimators derived from profile,

conditional, modified profile, penalised (Firth) and penalised based on adjusted responses
log-likelihoods, with all entries multiplied by 10; seventh column show the bias and variance (in
parentheses) of the indirect inference ψ̂a∗ using the conditional model, with all entries multiplied

by 10.

ψ̂ ψ̂c ψ̂mp ψ̂∗ ψ̂a ψ̃a∗

δ q = 100,m = 1
0.05

10.24 (2.11) 0.12 (0.53) 2.79 (0.69) 2.74 (0.68)

8.08 (1.57) 0.02 (0.52)
0.10 6.36 (1.23) 0.04 (0.52)
0.15 4.96 (0.99) 0.06 (0.52)
0.20 3.78 (0.82) 0.07 (0.52)
0.25 2.79 (0.69) 0.08 (0.52)
0.30 1.93 (0.59) 0.08 (0.52)
0.35 1.19 (0.51) 0.09 (0.52)
0.40 0.53 (0.45) 0.09 (0.53)
0.45 -0.05 (0.40) 0.09 (0.53)
0.50 -0.57 (0.35) 0.10 (0.53)
0.55 -1.03 (0.32) 0.10 (0.53)
0.60 -1.46 (0.29) 0.10 (0.53)
0.65 -1.84 (0.26) 0.10 (0.53)
0.70 -2.19 (0.24) 0.10 (0.53)
0.75 -2.51 (0.22) 0.11 (0.53)
0.80 -2.81 (0.20) 0.11 (0.53)
0.85 -3.08 (0.18) 0.11 (0.53)
0.90 -3.33 (0.17) 0.11 (0.53)
0.95 -3.56 (0.16) 0.11 (0.53)
1.00 -3.78 (0.15) 0.11 (0.53)

δ q = 100,m = 3
0.05

3.23 (0.84) 0.12 (0.53) 0.48 (0.51) 0.42 (0.50)

2.05 (0.66) 0.04 (0.52)
0.10 1.09 (0.54) 0.06 (0.52)
0.15 0.30 (0.45) 0.07 (0.52)
0.20 -0.37 (0.38) 0.08 (0.52)
0.25 -0.95 (0.33) 0.09 (0.52)
0.30 -1.45 (0.29) 0.09 (0.53)
0.35 -1.89 (0.26) 0.10 (0.53)
0.40 -2.29 (0.23) 0.10 (0.53)
0.45 -2.64 (0.21) 0.10 (0.53)
0.50 -2.96 (0.19) 0.10 (0.53)
0.55 -3.25 (0.18) 0.10 (0.53)
0.60 -3.52 (0.16) 0.11 (0.53)
0.65 -3.76 (0.15) 0.11 (0.53)
0.70 -3.99 (0.14) 0.11 (0.53)
0.75 -4.19 (0.13) 0.11 (0.53)
0.80 -4.39 (0.12) 0.11 (0.53)
0.85 -4.57 (0.11) 0.11 (0.53)
0.90 -4.73 (0.10) 0.11 (0.53)
0.95 -4.89 (0.10) 0.11 (0.53)
1.00 -5.04 (0.09) 0.11 (0.53)
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Table 5.10: Binomial matched observations with true log odds ratio ψ = 1. Second to sixth
columns show the bias and variance (in parentheses) of estimators derived from profile,

conditional, modified profile, penalised (Firth) and penalised based on adjusted responses
log-likelihoods, with all entries multiplied by 10; seventh column show the bias and variance (in
parentheses) of the indirect inference ψ̂a∗ using the conditional model, with all entries multiplied

by 10.

ψ̂ ψ̂c ψ̂mp ψ̂∗ ψ̂a ψ̃a∗

δ q = 100,m = 11
0.05

0.96 (0.61) 0.12 (0.53) 0.15 (0.52) 0.05 (0.51)

-0.13 (0.46) 0.03 (0.52)
0.10 -0.99 (0.36) 0.05 (0.52)
0.15 -1.70 (0.30) 0.06 (0.52)
0.20 -2.30 (0.25) 0.07 (0.52)
0.25 -2.80 (0.21) 0.08 (0.52)
0.30 -3.24 (0.19) 0.09 (0.52)
0.35 -3.62 (0.16) 0.09 (0.53)
0.40 -3.95 (0.15) 0.09 (0.53)
0.45 -4.25 (0.13) 0.10 (0.53)
0.50 -4.51 (0.12) 0.10 (0.53)
0.55 -4.75 (0.11) 0.10 (0.53)
0.60 -4.97 (0.10) 0.10 (0.53)
0.65 -5.17 (0.09) 0.11 (0.53)
0.70 -5.35 (0.08) 0.11 (0.53)
0.75 -5.52 (0.08) 0.11 (0.53)
0.80 -5.67 (0.07) 0.11 (0.53)
0.85 -5.81 (0.07) 0.11 (0.53)
0.90 -5.94 (0.06) 0.11 (0.53)
0.95 -6.07 (0.06) 0.11 (0.53)
1.00 -6.18 (0.06) 0.11 (0.53)

δ q = 100,m = 39
0.05

0.36 (0.55) 0.12 (0.53) 0.12 (0.53) 0.01 (0.51)

-0.72 (0.41) 0.03 (0.52)
0.10 -1.58 (0.32) 0.05 (0.52)
0.15 -2.29 (0.26) 0.06 (0.52)
0.20 -2.87 (0.22) 0.07 (0.52)
0.25 -3.37 (0.18) 0.08 (0.52)
0.30 -3.80 (0.16) 0.08 (0.52)
0.35 -4.17 (0.14) 0.09 (0.53)
0.40 -4.50 (0.12) 0.09 (0.53)
0.45 -4.79 (0.11) 0.10 (0.53)
0.50 -5.05 (0.10) 0.10 (0.53)
0.55 -5.29 (0.09) 0.10 (0.53)
0.60 -5.50 (0.08) 0.10 (0.53)
0.65 -5.69 (0.07) 0.10 (0.53)
0.70 -5.87 (0.07) 0.11 (0.53)
0.75 -6.03 (0.06) 0.11 (0.53)
0.80 -6.18 (0.06) 0.11 (0.53)
0.85 -6.31 (0.05) 0.11 (0.53)
0.90 -6.44 (0.05) 0.11 (0.53)
0.95 -6.56 (0.05) 0.11 (0.53)
1.00 -6.67 (0.04) 0.11 (0.53)
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Table 5.11: Binomial matched observations with true log odds ratio ψ = 1. Second to sixth
columns show the bias and variance (in parentheses) of estimators derived from profile,

conditional, modified profile, penalised (Firth) and penalised based on adjusted responses
log-likelihoods, with all entries multiplied by 10; seventh column show the bias and variance (in
parentheses) of the indirect inference ψ̂a∗ using the conditional model, with all entries multiplied

by 10.

ψ̂ ψ̂c ψ̂mp ψ̂∗ ψ̂a ψ̃a∗

δ q = 1000,m = 1
0.05

10.02 (0.20) 0.01 (0.05) 2.74 (0.07) 2.74 (0.07)

7.93 (0.15) 0.00 (0.05)
0.10 6.25 (0.12) 0.00 (0.05)
0.15 4.88 (0.10) 0.01 (0.05)
0.20 3.72 (0.08) 0.01 (0.05)
0.25 2.74 (0.07) 0.01 (0.05)
0.30 1.90 (0.06) 0.01 (0.05)
0.35 1.16 (0.05) 0.01 (0.05)
0.40 0.51 (0.04) 0.01 (0.05)
0.45 -0.07 (0.04) 0.01 (0.05)
0.50 -0.59 (0.04) 0.01 (0.05)
0.55 -1.05 (0.03) 0.01 (0.05)
0.60 -1.47 (0.03) 0.01 (0.05)
0.65 -1.85 (0.03) 0.01 (0.05)
0.70 -2.20 (0.02) 0.01 (0.05)
0.75 -2.52 (0.02) 0.01 (0.05)
0.80 -2.81 (0.02) 0.01 (0.05)
0.85 -3.08 (0.02) 0.01 (0.05)
0.90 -3.34 (0.02) 0.01 (0.05)
0.95 -3.57 (0.02) 0.01 (0.05)
1.00 -3.79 (0.01) 0.01 (0.05)

δ q = 1000,m = 3
0.05

3.12 (0.08) 0.01 (0.05) 0.40 (0.05) 0.40 (0.05)

1.97 (0.06) 0.00 (0.05)
0.10 1.04 (0.05) 0.01 (0.05)
0.15 0.26 (0.04) 0.01 (0.05)
0.20 -0.40 (0.04) 0.01 (0.05)
0.25 -0.97 (0.03) 0.01 (0.05)
0.30 -1.47 (0.03) 0.01 (0.05)
0.35 -1.91 (0.03) 0.01 (0.05)
0.40 -2.30 (0.02) 0.01 (0.05)
0.45 -2.65 (0.02) 0.01 (0.05)
0.50 -2.97 (0.02) 0.01 (0.05)
0.55 -3.26 (0.02) 0.01 (0.05)
0.60 -3.53 (0.02) 0.01 (0.05)
0.65 -3.77 (0.01) 0.01 (0.05)
0.70 -3.99 (0.01) 0.01 (0.05)
0.75 -4.20 (0.01) 0.01 (0.05)
0.80 -4.39 (0.01) 0.01 (0.05)
0.85 -4.57 (0.01) 0.01 (0.05)
0.90 -4.74 (0.01) 0.01 (0.05)
0.95 -4.89 (0.01) 0.01 (0.05)
1.00 -5.04 (0.01) 0.01 (0.05)
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Table 5.12: Binomial matched observations with true log odds ratio ψ = 1. Second to sixth
columns show the bias and variance (in parentheses) of estimators derived from profile,

conditional, modified profile, penalised (Firth) and penalised based on adjusted responses
log-likelihoods, with all entries multiplied by 10; seventh column show the bias and variance (in
parentheses) of the indirect inference ψ̂a∗ using the conditional model, with all entries multiplied

by 10.

ψ̂ ψ̂c ψ̂mp ψ̂∗ ψ̂a ψ̃a∗

δ q = 1000,m = 11
0.05

0.85 (0.06) 0.01 (0.05) 0.04 (0.05) 0.03 (0.05)

-0.20 (0.04) 0.00 (0.05)
0.10 -1.05 (0.04) 0.00 (0.05)
0.15 -1.74 (0.03) 0.01 (0.05)
0.20 -2.33 (0.02) 0.01 (0.05)
0.25 -2.82 (0.02) 0.01 (0.05)
0.30 -3.26 (0.02) 0.01 (0.05)
0.35 -3.63 (0.02) 0.01 (0.05)
0.40 -3.96 (0.01) 0.01 (0.05)
0.45 -4.26 (0.01) 0.01 (0.05)
0.50 -4.52 (0.01) 0.01 (0.05)
0.55 -4.76 (0.01) 0.01 (0.05)
0.60 -4.98 (0.01) 0.01 (0.05)
0.65 -5.17 (0.01) 0.01 (0.05)
0.70 -5.35 (0.01) 0.01 (0.05)
0.75 -5.52 (0.01) 0.01 (0.05)
0.80 -5.67 (0.01) 0.01 (0.05)
0.85 -5.81 (0.01) 0.01 (0.05)
0.90 -5.95 (0.01) 0.01 (0.05)
0.95 -6.07 (0.01) 0.01 (0.05)
1.00 -6.18 (0.01) 0.01 (0.05)

δ q = 1000,m = 39
0.05

0.25 (0.05) 0.01 (0.05) 0.01 (0.05) 0.00 (0.05)

-0.80 (0.04) 0.00 (0.05)
0.10 -1.64 (0.03) 0.00 (0.05)
0.15 -2.33 (0.03) 0.01 (0.05)
0.20 -2.90 (0.02) 0.01 (0.05)
0.25 -3.39 (0.02) 0.01 (0.05)
0.30 -3.82 (0.02) 0.01 (0.05)
0.35 -4.19 (0.01) 0.01 (0.05)
0.40 -4.51 (0.01) 0.01 (0.05)
0.45 -4.80 (0.01) 0.01 (0.05)
0.50 -5.06 (0.01) 0.01 (0.05)
0.55 -5.29 (0.01) 0.01 (0.05)
0.60 -5.50 (0.01) 0.01 (0.05)
0.65 -5.70 (0.01) 0.01 (0.05)
0.70 -5.87 (0.01) 0.01 (0.05)
0.75 -6.03 (0.01) 0.01 (0.05)
0.80 -6.18 (0.01) 0.01 (0.05)
0.85 -6.32 (0.01) 0.01 (0.05)
0.90 -6.44 (0.00) 0.01 (0.05)
0.95 -6.56 (0.00) 0.01 (0.05)
1.00 -6.67 (0.00) 0.01 (0.05)

147



Table 5.13: Binomial matched observations with true log odds ratio ψ = 1. Second to sixth
columns show the coverage probability and average length (in parentheses) of confidence

intervals with nominal level 95% derived from profile, conditional, modified profile, penalized
(Firth) and penalised based on adjusted responses log-likelihood ratios, with all coverage

probabilities multiplied by 100.

W Wc Wmp W∗ Wa

δ q = 30,m = 1
0.31

57.8 (2.4) 96.2 (1.7) 85.0 (1.8) 93.0 (1.7)

92.0 (1.7)
0.32 92.0 (1.7)
0.33 92.0 (1.7)
0.34 92.0 (1.6)
0.35 92.0 (1.6)
0.36 96.2 (1.6)
0.37 96.2 (1.6)
0.38 96.2 (1.6)
0.39 96.2 (1.6)
0.40 96.2 (1.6)
0.41 96.2 (1.6)
0.42 96.2 (1.6)
0.43 96.2 (1.5)
0.44 96.2 (1.5)
0.45 96.2 (1.5)
0.46 97.8 (1.5)
0.47 97.8 (1.5)
0.48 97.8 (1.5)
0.49 95.6 (1.5)
0.50 95.6 (1.5)

δ q = 30,m = 3
0.06

85.0 (1.9) 96.2 (1.7) 96.2 (1.7) 96.2 (1.6)

92.0 (1.7)
0.07 92.0 (1.7)
0.08 92.0 (1.7)
0.09 92.0 (1.7)
0.10 92.0 (1.7)
0.11 96.2 (1.6)
0.12 96.2 (1.6)
0.13 96.2 (1.6)
0.14 96.2 (1.6)
0.15 96.2 (1.6)
0.16 96.2 (1.6)
0.17 96.2 (1.6)
0.18 96.2 (1.5)
0.19 97.8 (1.5)
0.20 95.6 (1.5)
0.21 95.6 (1.5)
0.22 95.6 (1.5)
0.23 95.6 (1.5)
0.24 95.6 (1.5)
0.25 95.6 (1.5)

148



Table 5.14: Binomial matched observations with true log odds ratio ψ = 1. Second to sixth
columns show the coverage probability and average length (in parentheses) of confidence

intervals with nominal level 95% derived from profile, conditional, modified profile, penalized
(Firth) and penalised based on adjusted responses log-likelihood ratios, with all coverage

probabilities multiplied by 100.

W Wc Wmp W∗ Wa

δ q = 30,m = 11
0.01

92.0 (1.8) 96.2 (1.7) 96.2 (1.7) 93.9 (1.7)

96.2 (1.7)
0.02 96.2 (1.7)
0.03 96.2 (1.7)
0.04 96.2 (1.6)
0.05 96.2 (1.6)
0.06 93.9 (1.6)
0.07 93.9 (1.6)
0.08 95.6 (1.6)
0.09 95.6 (1.5)
0.10 95.6 (1.5)
0.11 95.6 (1.5)
0.12 95.6 (1.5)
0.13 95.6 (1.5)
0.14 96.1 (1.5)
0.15 96.1 (1.4)
0.16 96.1 (1.4)
0.17 96.1 (1.4)
0.18 96.1 (1.4)
0.19 91.7 (1.4)
0.20 91.8 (1.4)

δ q = 30,m = 39
0.01

96.2 (1.7) 96.2 (1.7) 96.2 (1.7) 93.9 (1.6)

96.2 (1.7)
0.02 93.9 (1.7)
0.03 93.9 (1.6)
0.04 93.9 (1.6)
0.05 95.6 (1.6)
0.06 95.6 (1.6)
0.07 95.6 (1.5)
0.08 95.6 (1.5)
0.09 95.6 (1.5)
0.10 95.6 (1.5)
0.11 96.1 (1.5)
0.12 96.1 (1.4)
0.13 96.1 (1.4)
0.14 91.7 (1.4)
0.14 91.7 (1.4)
0.16 91.8 (1.4)
0.17 91.8 (1.4)
0.18 91.8 (1.4)
0.19 91.8 (1.3)
0.20 91.8 (1.3)
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Table 5.15: Binomial matched observations with true log odds ratio ψ = 1. Second to sixth
columns show the coverage probability and average length (in parentheses) of confidence

intervals with nominal level 95% derived from profile, conditional, modified profile, penalized
(Firth) and penalised based on adjusted responses log-likelihood ratios, with all coverage

probabilities multiplied by 100.

W Wc Wmp W∗ Wa

δ q = 100,m = 1
0.31

15.0 (1.3) 94.6 (0.9) 77.3 (1.0) 77.3 (1.0)

88.4 (0.9)
0.32 88.4 (0.9)
0.33 88.4 (0.9)
0.34 92.3 (0.9)
0.35 92.3 (0.9)
0.36 91.8 (0.9)
0.37 94.6 (0.9)
0.38 94.6 (0.9)
0.39 94.6 (0.9)
0.40 94.6 (0.9)
0.41 95.7 (0.9)
0.42 95.7 (0.8)
0.43 95.7 (0.8)
0.44 96.9 (0.8)
0.45 96.9 (0.8)
0.46 95.7 (0.8)
0.47 96.4 (0.8)
0.48 96.4 (0.8)
0.49 96.4 (0.8)
0.50 96.4 (0.8)

δ q = 100,m = 3
0.06

69.9 (1.0) 94.6 (0.9) 93.9 (0.9) 95.7 (0.9)

88.4 (0.9)
0.07 88.4 (0.9)
0.08 88.4 (0.9)
0.09 91.8 (0.9)
0.10 91.8 (0.9)
0.11 94.6 (0.9)
0.12 94.6 (0.9)
0.13 94.6 (0.9)
0.14 95.7 (0.9)
0.15 95.7 (0.9)
0.16 95.7 (0.9)
0.17 96.9 (0.8)
0.18 95.7 (0.8)
0.19 95.7 (0.8)
0.20 96.4 (0.8)
0.21 96.4 (0.8)
0.22 94.7 (0.8)
0.23 95.1 (0.8)
0.24 95.1 (0.8)
0.25 95.1 (0.8)
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Table 5.16: Binomial matched observations with true log odds ratio ψ = 1. Second to sixth
columns show the coverage probability and average length (in parentheses) of confidence

intervals with nominal level 95% derived from profile, conditional, modified profile, penalized
(Firth) and penalised based on adjusted responses log-likelihood ratios, with all coverage

probabilities multiplied by 100.

W Wc Wmp W∗ Wa

δ q = 100,m = 11
0.01

91.8 (0.9) 94.6 (0.9) 94.6 (0.9) 94.6 (0.9)

93.9 (0.9)
0.02 93.9 (0.9)
0.03 95.7 (0.9)
0.04 94.6 (0.9)
0.05 95.7 (0.9)
0.06 95.7 (0.9)
0.07 94.7 (0.8)
0.08 94.7 (0.8)
0.09 95.1 (0.8)
0.10 92.6 (0.8)
0.11 92.8 (0.8)
0.12 92.8 (0.8)
0.13 92.8 (0.8)
0.14 89.5 (0.8)
0.15 89.5 (0.8)
0.16 89.5 (0.8)
0.17 85.0 (0.8)
0.18 85.0 (0.8)
0.19 85.0 (0.7)
0.20 79.4 (0.7)

δ q = 100,m = 39
0.01

93.9 (0.9) 94.6 (0.9) 94.6 (0.9) 94.6 (0.9)

94.6 (0.9)
0.02 95.7 (0.9)
0.03 95.7 (0.9)
0.04 94.7 (0.9)
0.05 94.7 (0.8)
0.06 95.1 (0.8)
0.07 92.6 (0.8)
0.08 92.8 (0.8)
0.09 92.8 (0.8)
0.10 89.5 (0.8)
0.11 89.5 (0.8)
0.12 85.0 (0.8)
0.13 85.0 (0.8)
0.14 85.0 (0.8)
0.15 79.4 (0.8)
0.16 79.4 (0.7)
0.17 79.4 (0.7)
0.18 72.5 (0.7)
0.19 72.5 (0.7)
0.20 64.7 (0.7)
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Table 5.17: Binomial matched observations with true log odds ratio ψ = 1. Second to sixth
columns show the coverage probability and average length (in parentheses) of confidence

intervals with nominal level 95% derived from profile, conditional, modified profile, penalized
(Firth) and penalised based on adjusted responses log-likelihood ratios, with all coverage

probabilities multiplied by 100.

W Wc Wmp W∗ Wa

δ q = 1000,m = 1
0.31

0.0 (0.4) 95.0 (0.3) 6.3 (0.3) 6.3 (0.3)

34.4 (0.3)
0.32 39.8 (0.3)
0.33 48.2 (0.3)
0.34 56.7 (0.3)
0.35 62.2 (0.3)
0.36 70.0 (0.3)
0.37 77.0 (0.3)
0.38 81.1 (0.3)
0.39 86.3 (0.3)
0.40 89.1 (0.3)
0.41 92.3 (0.3)
0.42 94.6 (0.3)
0.43 95.5 (0.3)
0.44 96.1 (0.3)
0.45 96.0 (0.3)
0.46 95.7 (0.3)
0.47 94.8 (0.3)
0.48 92.5 (0.3)
0.49 90.5 (0.3)
0.50 88.0 (0.3)

δ q = 1000,m = 3
0.06

4.1 (0.3) 95.0 (0.3) 91.2 (0.3) 91.2 (0.3)

34.4 (0.3)
0.07 42.5 (0.3)
0.08 53.9 (0.3)
0.09 62.2 (0.3)
0.10 70.0 (0.3)
0.11 77.0 (0.3)
0.12 83.0 (0.3)
0.13 87.7 (0.3)
0.14 91.3 (0.3)
0.15 94.5 (0.3)
0.16 95.8 (0.3)
0.17 96.1 (0.3)
0.18 95.5 (0.3)
0.19 94.0 (0.3)
0.20 92.5 (0.3)
0.21 89.3 (0.3)
0.22 85.0 (0.3)
0.23 81.5 (0.3)
0.24 75.3 (0.3)
0.25 68.1 (0.3)
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Table 5.18: Binomial matched observations with true log odds ratio ψ = 1. Second to sixth
columns show the coverage probability and average length (in parentheses) of confidence

intervals with nominal level 95% derived from profile, conditional, modified profile, penalized
(Firth) and penalised based on adjusted responses log-likelihood ratios, with all coverage

probabilities multiplied by 100.

W Wc Wmp W∗ Wa

δ q = 1000,m = 11
0.01

79.1 (0.3) 95.0 (0.3) 95.0 (0.3) 95.0 (0.3)

86.2 (0.3)
0.02 91.2 (0.3)
0.03 94.1 (0.3)
0.04 95.4 (0.3)
0.05 94.9 (0.3)
0.06 92.4 (0.3)
0.07 87.9 (0.3)
0.08 81.5 (0.3)
0.09 75.3 (0.3)
0.10 65.6 (0.3)
0.11 54.6 (0.3)
0.12 43.3 (0.3)
0.13 35.1 (0.2)
0.14 25.1 (0.2)
0.15 16.9 (0.2)
0.16 12.0 (0.2)
0.17 7.2 (0.2)
0.18 4.0 (0.2)
0.19 2.4 (0.2)
0.20 1.2 (0.2)

δ q = 1000,m = 39
0.01

93.6 (0.3) 95.0 (0.3) 95.0 (0.3) 95.0 (0.3)

95.0 (0.3)
0.02 94.1 (0.3)
0.03 91.3 (0.3)
0.04 86.5 (0.3)
0.05 79.5 (0.3)
0.06 70.6 (0.3)
0.07 57.4 (0.3)
0.08 46.1 (0.3)
0.09 35.1 (0.3)
0.10 25.1 (0.2)
0.11 16.9 (0.2)
0.12 10.6 (0.2)
0.13 6.2 (0.2)
0.14 2.9 (0.2)
0.15 1.4 (0.2)
0.16 0.6 (0.2)
0.17 0.3 (0.2)
0.18 0.1 (0.2)
0.19 0.0 (0.2)
0.20 0.0 (0.2)
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5.3.6 Analysis of crying babies data

In this section we illustrate the methods discussed above in a general setting by providing
a real-data example with different stratum sizes. We re-analyse the crying of babies data
set given in Cox (1970, Example 1.2) which we include in Table 5.20. The data come
from an experiment intended to assess the effectiveness of rocking motion on the crying
of babies and were collected according to a matched case-control design with one case
and mi controls per stratum, where i = 1, . . . ,18 and mi takes on various values from 5 to
9. On each of 18 days babies not crying at a specified time in a hospital were served as
subjects. On each day one baby chosen at random formed the experimental group and the
remainder were controls. The binary response was whether the baby was crying or not
at the end of a specified period. In Table 5.20, not crying is taken as a "success" and the
observed numbers yi2 and yi1 are therefore the numbers of babies in the two groups not
crying. The number of non crying babies in the experimental group is t = 15.

The estimates of the log odds ratio ψ and its standard error are reported in Table 5.21.
Davison (1988) obtained the maximum likelihood and conditional maximum likelihood
estimates while Lunardon (2018) obtained the estimates of ψ derived from the modified
profile and penalised (Firth) log-likelihoods. We found the penalised based on adjusted
responses log-likelihood and indirect inference estimates for 20 values of δ ranging from
0.05 to 1.00. As the true log odds ratio ψ is unknown, it is difficult to decide which es-
timator should be preferred however, there is an important observation to note. As δ ap-
proaches 1, the indirect inference estimates of ψ approach the conditional log-likelihood
estimates and the standard errors of ψ̂a∗ approach that of ψ̂c. This observation has been
noted before in the complete enumeration study in terms of bias and variance in the spe-
cific setting where the ith stratum sample size was fixed. Even though this observation
has not been proved analytically, the results based on the crying babies data show that,
at least numerically, it may also hold for a general binary matched pairs with different
stratum sizes.

The standard errors of the estimates in Table 5.21, except for ψ̂c, are obtained using the
Fisher information matrix evaluated at the given estimate of ψ . In particular, for the maxi-

mum likelihood estimator the standard error is obtained using
√

diag{i−1(ψ̂, λ̂1, . . . , λ̂18)},
where i is the Fisher information matrix. For the conditional maximum likelihood estima-
tor the standard error is obtained using

√
(−∂ 2lc(ψ)/∂ψ2)−1, evaluated at ψ̂c. For the

modified profile likelihood estimator, ψ̂mp, the standard error is obtained using
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√
(∂ 2lmp(ψ)/∂ψ2)−1, evaluated at ψ̂mp, i.e. using the Hessian. For the penalised (Firth)

and penalised based on adjusted responses likelihood estimators, the standard errors are

obtained using
√

diag{i−1(ψ̂∗, λ̂1,∗, . . . , λ̂18,∗)} and
√

diag{i−1(ψ̂a, λ̂1,a, . . . , λ̂18,a)}, re-
spectively. Finally, for the indirect inference estimator the standard error is obtained
using

√
(−∂ 2lc(ψ)/∂ψ2)−1, evaluated at ψ̃a∗. However according to Kuk (1995), to

obtain the estimated standard error for the indirect inference estimator we need a further
correction of the Fisher information using sandwich estimators of the variance based on
the Godambe information because the second Bartlett identity no longer holds. Similarly,
a Godambe information matrix would be better to use for the estimated standard error of
the modified profile likelihood estimator. The estimated standard error reported in Lu-
nardon (2018) for ψ̂∗ is obtained using the Hessian matrix and is slightly different to our
result.

To assess the reliability of the estimators we compute their actual bias and variance,
conditioning on the observed totals as in Lunardon (2018, Table 2), for a set of values
of ψ ranging from -3 to 3. The conditional distribution of the sufficient statistic T =

∑
18
i=1Yi1, which represents the total number of babies not crying in the experimental group,

is the distribution of the sum of independent Bernoulli random variables with different
probabilities. To calculate this distribution we use the R function dkbinom which gives
the mass function of the sum of k independent Binomial random variables, with possibly
different probabilities. This function implements the convolution algorithm of k binomials
described in Butler and Stephens (2017).

The results reported in Table 2 of Lunardon (2018) are incorrect because Lunardon
(2018) computes the conditional bias and variance of ψ̂c, ψ̂ and ψ̂mp for t ∈ {1, . . . ,17}
but without rescaling and normalizing the conditional distribution of T . The corrected
conditional summaries are reported in Table 5.22 with the addition of the penalised log-
likelihood estimator based on adjusted responses, ψ̂a, and the indirect inference estimator,
ψ̂a∗, for various values of δ . We observe that for ψ ∈ {−2,−1,0,1,2} there exists a value
of δ in the range 0.01 < δ < 0.20 such that ψ̂a is less biased than any of ψ̂ , ψ̂c, ψ̂mp and
ψ̂∗. In fact the effect of increasing the absolute value of ψ is to decrease the optimal δ

value in terms of the bias of ψ̂a. For ψ = 3, the maximum likelihood estimator seems to
be the least biased but this is due to the effect of infinite estimates at t = 0 and t = 18.
In other words, removing these infinite estimates significantly lowers the average of the
estimates for t ∈ {1, . . . ,17}. This is also true for the conditional log-likelihood estimator,
ψ̂c.
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Overall, for ψ ∈ {−2,−1,0,1} the indirect inference estimator is an improvement
over the penalised log-likelihood estimator based on adjusted responses in terms of bias
for all values of δ considered. We notice that there exists a δ value in the range 0.01 <

δ < 0.20 such that ψ̂a∗ is less biased than ψ̂a. In fact the indirect inference estimator
for ψ ∈ {−2,−1,0,1} is competitive for all δ values considered, which makes it the best
choice amongst estimators. However, for ψ ∈ {−3,2,3} the best choice of δ is the largest
possible, in this case δ = 1. It is worth noting that as in the complete enumeration study
in Tables 5.7-5.12, it is also the case here that we observe that the bias and variance of the
indirect inference estimator approaches that of the conditional log-likelihood estimator as
δ increase to 1.

Table 5.23 reports the unconditional bias and variance of the modified profile, pe-
nalised (Firth) and penalised based on adjusted responses log-likelihood estimators for
t ∈ {0, . . . ,18}. Even though ψ̂∗ has smaller bias and variance than ψ̂mp for all value of
ψ , we again observe as in Table 5.22 that there exists a value of δ such that ψ̂a is less
biased than ψ̂∗ for all values of ψ . We may conclude that ψ̂a is preferable over ψ̂∗ as its
variance is also decreased at the optimal δ value for all values of ψ considered (except
for ψ = 0). The relationship between the optimal δ value and the true value of ψ coin-
cides with that in the conditional case (Table 5.22), i.e. the optimal δ , in terms of bias,
decreases as the absolute value of ψ increases. Note that the indirect inference estimator
has no solution at t = 0 and t = 18, and so it is excluded from the unconditional summaries
in Table 5.23.
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Table 5.20: The crying of babies data.

Day i No. of control babies mi No. not crying yi2 No. of experimental babies No. not crying yi1

1 8 3 1 1
2 6 2 1 1
3 5 1 1 1
4 6 1 1 0
5 5 4 1 1
6 9 4 1 1
7 8 5 1 1
8 8 4 1 1
9 5 3 1 1

10 9 8 1 0
11 6 5 1 1
12 9 8 1 1
13 8 5 1 1
14 5 4 1 1
15 6 4 1 1
16 8 7 1 1
17 6 4 1 0
18 8 5 1 1

Table 5.21: Crying babies real data example: estimates of ψ and its standard error (in
parentheses) derived from profile, conditional, modified profile, penalised (Firth), penalised

based on adjusted responses log-likelihoods and indirect inference, respectively.

δ ψ̂ ψ̂c ψ̂mp ψ̂∗ ψ̂a ψ̃a∗

0.05

1.432 (0.734) 1.256 (0.686) 1.270 (0.689) 1.156 (0.666)

1.174 (0.656) 1.157 (0.669)
0.10 0.986 (0.602) 1.184 (0.674)
0.15 0.841 (0.561) 1.201 (0.676)
0.20 0.726 (0.529) 1.212 (0.678)
0.25 0.633 (0.502) 1.220 (0.680)
0.30 0.555 (0.480) 1.226 (0.681)
0.35 0.490 (0.461) 1.230 (0.682)
0.40 0.435 (0.445) 1.234 (0.682)
0.45 0.387 (0.430) 1.237 (0.683)
0.50 0.345 (0.417) 1.239 (0.683)
0.55 0.309 (0.405) 1.241 (0.684)
0.60 0.277 (0.395) 1.243 (0.684)
0.65 0.249 (0.385) 1.245 (0.684)
0.70 0.224 (0.376) 1.246 (0.684)
0.75 0.201 (0.368) 1.247 (0.684)
0.80 0.181 (0.361) 1.248 (0.685)
0.85 0.162 (0.354) 1.248 (0.685)
0.90 0.146 (0.347) 1.249 (0.685)
0.95 0.131 (0.341) 1.250 (0.685)
1.00 0.117 (0.335) 1.251 (0.685)
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Table 5.22: Crying babies real data example: conditional bias and variance (in parentheses) of
estimators as the true log odds ratio ψ varies; estimators derived from profile, conditional,

modified profile, penalised (Firth), penalised based on adjusted responses log-likelihoods and
indirect inference are denoted by ψ̂ , ψ̂c, ψ̂mp, ψ̂∗, ψ̂a, ψ̃a∗, respectively, and all entries are

multiplied by 10. For ψ̂a and ψ̃a∗, the smallest bias value in each column is given in bold face.

ψ

−3 −2 −1 0 1 2 3

ψ̂ -8.97 (9.56) -5.59 (7.60) -2.02 (4.48) 0.37 (4.40) 2.47 (6.25) 2.30 (5.71) -2.53 (2.98)
ψ̂c -0.05 (4.18) -0.69 (4.01) -0.12 (3.00) 0.36 (3.30) 0.88 (4.65) -0.71 (4.06) -6.36 (2.06)
ψ̂mp -0.79 (3.89) -1.39 (4.22) -0.42 (3.23) 0.34 (3.42) 1.00 (4.75) -0.51 (4.13) -6.12 (2.10)
ψ̂∗ 0.56 (3.35) -0.62 (3.77) -0.17 (2.94) 0.07 (3.02) -0.12 (3.75) -2.71 (2.95) -9.04 (1.42)

ψ̂a δ

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10
0.15
0.20
1.00

-7.51 (7.96)
-6.23 (6.77)
-5.09 (5.86)
-4.07 (5.14)
-3.13 (4.56)
-2.28 (4.08)
-1.49 (3.68)
-0.76 (3.35)
-0.08 (3.06)
0.55 (2.81)
3.22 (1.96)
5.28 (1.46)

17.07 (0.19)

-4.99 (6.83)
-4.44 (6.21)
-3.94 (5.68)
-3.46 (5.23)
-3.01 (4.84)
-2.59 (4.51)
-2.20 (4.21)
-1.82 (3.94)
-1.46 (3.71)
-1.12 (3.50)
0.37 (2.69)
1.59 (2.16)
9.53 (0.37)

-1.88 (4.27)
-1.75 (4.07)
-1.62 (3.88)
-1.49 (3.71)
-1.37 (3.55)
-1.26 (3.41)
-1.15 (3.27)
-1.04 (3.14)
-0.94 (3.02)
-0.84 (2.90)
-0.37 (2.43)
0.03 (2.06)
3.28 (0.45)

0.22 (4.17)
0.08 (3.95)
-0.06 (3.75)
-0.18 (3.57)
-0.30 (3.41)
-0.41 (3.26)
-0.51 (3.12)
-0.61 (2.99)
-0.71 (2.86)
-0.80 (2.75)
-1.18 (2.28)
-1.48 (1.92)
-2.73 (0.41)

1.86 (5.56)
1.31 (4.99)
0.80 (4.53)
0.33 (4.15)
-0.10 (3.82)
-0.50 (3.54)
-0.87 (3.29)
-1.22 (3.07)
-1.55 (2.88)
-1.86 (2.71)
-3.18 (2.07)
-4.21 (1.65)
-9.52 (0.29)

1.02 (4.77)
-0.10 (4.06)
-1.08 (3.52)
-1.95 (3.10)
-2.74 (2.75)
-3.47 (2.47)
-4.13 (2.24)
-4.73 (2.04)
-5.30 (1.87)
-5.82 (1.72)
-7.99 (1.21)
-9.63 (0.92)

-17.70 (0.13)

-4.27 (2.41)
-5.77 (2.00)
-7.06 (1.69)
-8.20 (1.46)
-9.22 (1.27)

-10.14 (1.12)
-10.97 (1.00)
-11.73 (0.90)
-12.43 (0.82)
-13.07 (0.75)
-15.70 (0.50)
-17.65 (0.37)
-26.96 (0.05)

ψ̃a∗ δ

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10
0.15
0.20
1.00

2.72 (2.60)
2.26 (2.93)
1.97 (3.14)
1.75 (3.29)
1.57 (3.41)
1.43 (3.50)
1.31 (3.57)
1.21 (3.63)
1.12 (3.69)
1.05 (3.73)
0.77 (3.88)
0.59 (3.96)
0.05 (4.16)

0.51 (3.00)
0.37 (3.17)
0.28 (3.28)
0.20 (3.36)
0.14 (3.43)
0.08 (3.48)
0.03 (3.53)
-0.01 (3.57)
-0.04 (3.60)
-0.08 (3.63)
-0.21 (3.74)
-0.29 (3.80)
-0.62 (3.99)

0.13 (2.64)
0.11 (2.67)
0.10 (2.69)
0.09 (2.71)
0.08 (2.72)
0.07 (2.74)
0.06 (2.75)
0.06 (2.76)
0.05 (2.77)
0.04 (2.78)
0.02 (2.83)
0.00 (2.86)
-0.09 (2.98)

-0.01 (2.83)
0.02 (2.88)
0.04 (2.92)
0.07 (2.95)
0.08 (2.97)
0.10 (2.99)
0.11 (3.01)
0.13 (3.03)
0.14 (3.04)
0.15 (3.06)
0.19 (3.11)
0.23 (3.14)
0.35 (3.28)

-0.62 (3.30)
-0.40 (3.57)
-0.25 (3.74)
-0.14 (3.87)
-0.05 (3.96)
0.02 (4.03)
0.08 (4.09)
0.14 (4.15)
0.18 (4.19)
0.23 (4.23)
0.38 (4.35)
0.48 (4.43)
0.83 (4.63)

-3.75 (2.46)
-3.16 (2.83)
-2.80 (3.06)
-2.54 (3.22)
-2.34 (3.34)
-2.19 (3.43)
-2.05 (3.51)
-1.94 (3.57)
-1.85 (3.62)
-1.77 (3.66)
-1.48 (3.80)
-1.30 (3.87)
-0.78 (4.04)

-10.41 (1.17)
-9.55 (1.39)
-9.04 (1.52)
-8.68 (1.61)
-8.40 (1.68)
-8.19 (1.73)
-8.02 (1.78)
-7.87 (1.81)
-7.75 (1.84)
-7.64 (1.86)
-7.27 (1.93)
-7.06 (1.97)
-6.44 (2.06)
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Table 5.23: Crying babies real data example: unconditional bias and variance (in parentheses) of
estimators as the true log odds ratio ψ varies; estimators derived from modified profile, penalised

(Firth) and penalised based on adjusted responses log-likelihoods are denoted by ψ̂mp, ψ̂∗, ψ̂a,
respectively, and all entries are multiplied by 10. For ψ̂a, the smallest bias value in each column

is given in bold face.

ψ

−3 −2 −1 0 1 2 3

ψ̂mp -2.65 (6.86) -1.50 (4.52) -0.42 (3.23) 0.35 (3.44) 1.46 (6.60) 4.26 (17.04) 7.10 (21.60)
ψ̂∗ -1.13 (5.82) -0.72 (4.03) -0.17 (2.95) 0.07 (3.03) 0.18 (4.55) 0.18 (7.49) -1.48 (7.45)

ψ̂a δ

0.030
0.040
0.045
0.050
0.060
0.100
0.150
0.200

-7.87 (12.84)
-6.46 (10.22)
-5.83 (9.26)
-5.24 (8.46)
-4.18 (7.19)
-0.82 (4.39)
2.17 (2.84)
4.42 (2.04)

-4.09 (6.29)
-3.60 (5.71)
-3.36 (5.46)
-3.14 (5.23)
-2.71 (4.83)
-1.21 (3.68)
0.30 (2.81)
1.53 (2.24)

-1.62 (3.89)
-1.49 (3.71)
-1.43 (3.63)
-1.37 (3.56)
-1.26 (3.41)
-0.84 (2.90)
-0.37 (2.43)
0.03 (2.06)

-0.05 (3.77)
-0.18 (3.58)
-0.24 (3.50)
-0.30 (3.42)
-0.41 (3.26)
-0.79 (2.75)
-1.18 (2.28)
-1.48 (1.93)

1.13 (5.47)
0.63 (4.87)
0.40 (4.63)
0.17 (4.41)
-0.25 (4.03)
-1.67 (3.00)
-3.03 (2.25)
-4.08 (1.78)

2.07 (8.88)
0.75 (6.98)
0.17 (6.30)
-0.36 (5.74)
-1.32 (4.86)
-4.24 (2.96)
-6.77 (1.93)
-8.62 (1.39)

1.13 (8.79)
-1.30 (6.37)
-2.31 (5.56)
-3.22 (4.91)
-4.80 (3.95)
-9.28 (2.08)

-12.85 (1.23)
-15.33 (0.83)

5.4 Discussion and further work

For the matched gamma pairs model, we compared several estimators of the parameter of
interest and derived the asymptotic bias corrected and adjusted profile log-likelihood es-
timators and showed that the latter coincides with the indirect inference estimator exactly
and that it is unbiased. It was shown that the asymptotic bias corrected estimator was a
substantial improvement over the modified profile log-likelihood estimator. We also es-
tablished that the adjusted profile log-likelihood estimator is consistent when the stratum
sample size is fixed while the dimension of the nuisance parameter is allowed to increase
to infinity. This solved the incidental parameter problem of Neyman and Scott (1948) for
this model.

The performance of the estimators considered can be extended by considering other
values for the true parameter of interest than one. Possible future work for this model is
to derive the empirical bias-reducing adjusted estimators iRBM and eRBM of Kosmidis
and Lunardon (2020) and compare their performance with the other estimators.

For the binomial matched pairs model, we evaluated the performance of a new pe-
nalised log-likelihood estimator of the log odds ratio which is based on an additive ad-
justment, δ > 0, to the responses so as to avoid infinite estimates which is inherited by the
maximum likelihood and conditional likelihood estimators. We calculated the probability
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limit of this estimator and showed that the maximum likelihood, conditional and modified
profile log-likelihood estimators, when m = 1 for the latter, can be retrieved from this new
estimator for certain values of δ . It was found that indirect inference estimation based on
the new estimator is competitive for a wide range of values of δ .

It is worth investigating numerically whether, for a general value of m, there exists a
δ that recovers the modified profile log-likelihood estimator of ψ from the penalised log-
likelihood estimator based on adjusted responses, because this will imply that ψ̂mp could
be retrieved from ψ̂a for any value of m not just in the special case of the binary matched
pairs model where m = 1. One future direction is to investigate the performance of the
estimators of the log odds ratio outside the setting of Lunardon (2018) for a general mi and
si. This is possible since in this general setting the distribution of the sufficient statistic
T = ∑

q
i=1 yi1 can be obtained using the convolution method of Butler and Stephens (2017)

and is Poisson binomial. Obtaining the probability limit of the indirect inference estimator
in the setting of Lunardon (2018) is desired. The complete enumeration study in Section
5.3.5 may be expanded by considering other values of ψ , e.g. ψ ∈ {−3,−2,−1,0,1,2,3}.
Just like in the matched gamma pairs, the iRBM and eRBM estimators may be derived
for this model and compared and contrasted with the others. Finally, yet another possible
future direction would be to investigate the performance of an alternative adjustment to
the log-likelihood function where a small number δ > 0 is added to each success but
subtracted from each failure.
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Chapter 6

Discussion and further work

6.1 Summary of the thesis

The current thesis examines the applicability, evaluates the performance and compares
various bias reduction methods proposed in the literature, such as the bias-reducing ad-
justed score equations of Firth (1993), indirect inference of Kuk (1995) and reduced-bias
M estimation of Kosmidis and Lunardon (2020), in terms of their impact on estimation
and inference, in some parametric non-standard models used in econometrics and statis-
tics, such as those used for sample selected, censored or stratified observations.

In particular, we studied the Heckit regression model in Chapter 3, which is also re-
ferred to as the Tobit II model, which handles non-randomly selected samples where
the observed range of the dependent variable is censored. We reviewed the methods
of maximum likelihood and Heckman two-step estimation and derived the empirical
bias-reducing adjustments of Kosmidis and Lunardon (2020). We compared the perfor-
mance of these estimation methods alongside the indirect inference method of Kuk (1995)
through a simulation study. The parameter setting we chose for our simulation study im-
plied that the Heckman two-step estimator suffered from sever multicollinearity and that
the indirect inference, iRBM and eRBM estimators were useful in reducing the bias of
the ML estimator and improving the coverage probabilities of Wald-type confidence in-
tervals, when the sample size is small. While the adjusted score equations approach of
Firth (1993) was not possible to implement for the Heckit model because it required nu-
merical approximation of integrals, the indirect inference and reduced-bias M estimation
methods were easier to implement though they are computationally expensive and may
not converge for all samples. Chapter 4 focuses on the Weibull accelerated failure time
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model, where the adjusted score equations approach of Firth (1993) is not applicable, and
examines the performance of indirect inference and empirical bias-reducing adjustments,
which were straightforward to implement and converged for all samples, and compares
them with the standard ML estimation method. It was found that, when the censoring
level is moderate, the indirect inference and the empirical bias-reducing penalised log-
likelihood estimator (iRBM) reduce the small sample bias of the ML estimator and im-
prove the coverage probability of Wald-type confidence intervals. The results of these
two chapters opens the door to further research on general Tobit and accelerated failure
time models where the methods of indirect inference of Kuk (1995) and reduced-bias
M estimation of Kosmidis and Lunardon (2020) are applicable and have the potential of
significant bias reduction. The Tobit models are broadly used in many fields, such as
econometrics and political and social sciences, for modelling censored and sample se-
lected data. Accelerated failure time models are frequently encountered when modelling
failure time data such as in biomedicine and even in engineering and reliability studies.

Finally, Chapter 5 considers two stratified models, the matched gamma pairs model
and the binomial matched pairs model and investigates the performance of current meth-
ods in the literature for handling the estimation of a scalar parameter of interest in the
presence of a set of nuisance (incidental) parameters whose dimension becomes large rel-
ative to the stratum sample size. The challenge with such models is that the maximum
likelihood estimator of the parameter of interest, is not in general consistent. This is well
known as the incidental parameter problem since Neyman and Scott (1948). The methods
considered in the literature for handling nuisance parameters ranges from those that mod-
ify the profile log-likelihood function such as the approximate conditional and modified
profile log-likelihoods of Cox and Reid (1987) and Barndorff-Nielson (1983), respec-
tively, to those that modify the initial estimating equation like the approach of McCullagh
and Tibshirani (1990) and Firth (1993), and others that, in contrast, solve the biased esti-
mating equation without modification and then adjust the bias of the resulting estimator
as in the indirect inference approach of Kuk (1995). The empirical bias-reducing adjust-
ment of Kosmidis and Lunardon (2020) on the hand, can be thought of as either a method
that adjusts the initial estimating function or as a method that adjusts the log-likelihood
function, when estimation is through maximum likelihood. For the matched gamma pairs
model we reviewed the profile, approximate conditional profile and modified profile log-
likelihood methods of estimation of the parameter of interest which all yield biased and
inconsistent estimates. We derived the adjusted profile log-likelihood of McCullagh and
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Tibshirani (1990) and showed that it yields an unbiased and consistent estimator of the pa-
rameter of interest. The indirect inference estimator was also derived which was identical
to the adjusted profile log-likelihood estimator of McCullagh and Tibshirani (1990). This
solved the incidental parameter problem of Neyman and Scott (1948) for the matched
gamma pairs model. The case of the binomial matched pairs model was more challeng-
ing because the ML, exact conditional and modified profile log-likelihood estimators of
the parameter of interest, the log odds ratio, may be infinite. We proposed a penalised
version of the log-likelihood function based on adjusted responses which always results
in a finite estimator of the log odds ratio. The probability limit of this new estimator is
derived and it was shown that in certain settings the ML, exact conditional and modified
profile log-likelihood estimators drop out as special cases of the former. The indirect in-
ference estimation method was then used to reduce the bias of the penalised maximum
likelihood estimator based on adjusted responses. The performance of all these methods
was compared through a complete enumeration study and it was found that the indirect
inference estimator was very competitive in terms of bias reduction in the estimation of
the log odds ratio when the stratum sample size is fixed while allowing the dimension of
the nuisance parameter to increase. The binomial matched pairs model, and in particular
the special case of the binary matched pairs model, is very popular in biostatistics and
matched case-control studies, and even though the methods of Firth (1993) and Kosmidis
and Lunardon (2020) are applicable to this model, the former may be harder to apply
in other stratified models. This gives scope to extend the framework of reduced-bias M
estimation of Kosmidis and Lunardon (2020) to stratified settings where bias reduction is
beneficial.

6.2 Further work

In this section we list briefly some topics for future research in the area of Tobit, accel-
erated failure time, and stratified models, most of which have already been mentioned in
more detail in the discussion and further work sections of each chapter.

1. Expand the simulation study in Chapter 3 for the Heckit model to include a case
where the Heckman two-step estimator does not suffer from multicollinearity prob-
lems and examine the performance of indirect inference of Kuk (1995) and empiri-
cal reduced-bias M estimation of Kosmidis and Lunardon (2020) in comparison to
the ML and Heckman two-step estimation methods. The simulation study may also
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be expanded by considering the sensitivity of the results to the degree of censoring
in the data.

2. Implement the empirical bias-reducing adjusted estimating functions for the Heck-
man two-step estimator of the Heckit (Tobit II) model. Since the Heckman two-step
estimator can suffer from serious collinearity problems as noticed in our simulation
study in Chapter 3, and hence give rise to biased estimates with huge standard
errors, it is of interest to propose methods that have the potential of effectively
reducing estimation bias when collinearity problems arise. As shown in Section
3.7.2, we derived the empirical bias-reducing penalty for adjusting the Heckman
two-step estimator and it only remains to optimise the resulting empirical bias-
reducing penalised log-likelihood of Kosmidis and Lunardon (2020) which can be
easily implemented in R.

3. Study the performance of bias reduction methods such as the indirect inference of
Kuk (1995) and empirical reduced-bias M estimation of Kosmidis and Lunardon
(2020) for general Tobit models, such as the Roy (Tobit V) model.

4. Extend the methods of indirect inference and empirical bias-reducing penalty to the
frailty Weibull accelerated failure time model.

5. Implement indirect inference and empirical bias-reducing adjusted estimating func-
tions in general accelerated failure time models with other failure time distributions,
such as the log-normal or log-logistic distributions. The empirical bias-reducing
adjustments have been derived in Section 4.6.3 and can be easily implemented nu-
merically in R.

6. Develop statistical software for the implementation of the empirical bias-reducing
penalty for the Heckit and Weibull accelerated failure time models.

7. Explore further the properties of the penalised log-likelihood estimator of the log
odds ratio based on adjusted responses and the indirect inference estimator in a
more general setting outside that of Lunardon (2018).

8. Consider alternative adjustments to the log-likelihood function of the binomial
matched pairs model. One example is that were a small number is added to each
success but subtracted from each failure.

9. Examine the performance of bias reduction methods for handling nuisance param-
eters in stratified accelerated failure time models.

10. Investigate the performance of the reduced-bias estimator from empirically adjusted
estimating functions for general M estimation in other stratified settings.
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Appendix A

Algebraic derivations for the Heckit
model

In this Appendix, we show how some of the expectations in Section 3.4.1 are obtained.
The expectation of the two random variables yS

i
[
yO

i − γᵀzi
]5 and yS

i
[
yO

i − γᵀzi
]6 in

(3.66) and (3.67) involves bivariate integrals. However, using the Law of iterated expec-
tation (see Johnston and DiNardo, 1997, Appendix B.5), these two expectations can be
reduced to univariate integrals. For example,

EY S
i ,Y
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[(
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)5
]

= Φ(ai)
∫

∞
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(
yO

i − γ
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)5
f (yO

i |yS
i = 1)dyO

i , (A.1)

where the third equality above follows since EY O
i |Y S

i =0

[
Y S

i

(
Y O

i −γᵀzi

)5
]
= 0. The integral

in (A.1) can be obtained by exploiting the moments of the random variable Y O|Y S = 1.
The moment generating function of the conditional random variable Y O|Y S = 1 is derived
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in Bierens (2007, Appendices 1 and 2, p.10-14) and is given by

MY O|Y S=1(t) =
∫

∞

−∞

exp(tyO)
φ
[
(yO− γᵀZ)/σ

]
σΦ(βᵀX)

Φ
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∫
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βᵀX +ρ(u∗+ tσ)√

1−ρ2
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du∗, (A.2)

where in the second equality we make the substitution u = (yO− γᵀZ)/σ , in the third
equality we make use of the relation exp(tσu)φ(u) = exp(t2σ2/2)φ(u− tσ) and in the
last equality we make the substitution u∗ = u− tσ . Using the product rule of differentia-
tion and the identity (see Bierens, 2007, Appendix 1 for a derivation)

∫
∞

−∞

φ(x)φ(a+bx)dx =
φ
(
a/
√

1+b2
)

√
1+b2

, (A.3)

the first partial derivative of the moment generating function in (A.2) may be written as

∂

∂ t
MY O|Y S=1(t) = (γᵀZ + tσ2)MY O|Y S=1(t)+ρσ exp[tγᵀZ +(t2

σ
2)/2]

φ(βᵀX +ρtσ)

Φ(βᵀX)
,

(A.4)
and hence the expectation (first moment) of Y O|Y S = 1 is

E
[
Y O|Y S = 1

]
=

∂

∂ t
MY O|Y S=1(t)

∣∣∣∣
t=0

= γ
ᵀZ +ρσ

φ(βᵀX)

Φ(βᵀX)

= γ
ᵀZ +ρσm2(β

ᵀX). (A.5)

Higher order moments of Y O|Y S = 1 may be obtained by successive differentiation of
(A.4) and after some algebra the second, third, fourth, fifth and sixth moments have the
form
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Using (A.5)-(A.9) it may be shown after some algebra that∫
∞
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where ai = βᵀxi and similarly using (A.5)-(A.10) it may be shown that∫
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Multiplying (A.11) and (A.12) by Φ(ai) we obtain respectively the expectation of yS
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]5 and yS
i
[
yO

i − γᵀzi
]6.

The expectation of yS
i m2(bi)

[
yO

i − γᵀzi
]4 can be obtained by exploiting the definition

of bi in (3.14) to rewrite the expectation of yS
i b2

i m2(bi)
[
yO

i − γᵀzi
]2 as follows

E
{

yS
i b2

i m2(bi)
[
yO

i − γ
ᵀzi
]2}

=
a2

i
(1−ρ2)

E
{

yS
i m2(bi)

[
yO

i − γ
ᵀzi
]2}

+
2ρai

σ(1−ρ2)
E
{

yS
i m2(bi)

[
yO

i − γ
ᵀzi
]3}

+
ρ2

σ2(1−ρ2)
E
{

yS
i m2(bi)

[
yO

i − γ
ᵀzi
]4}

. (A.13)

Substituting (3.65), (3.58) and (3.61) in (A.13) and rearranging we obtain the required
expectation.

By exploiting the definition of bi in (3.14), the expectation of yS
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Substituting (3.61) and (3.68) in the above we get the required expectation.
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Using (3.61) and (3.68) and the definition of bi, the expectation of yS
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while using (3.68) and the definition of bi, the expectation of yS
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i (6−a2
i )
]
−6ρ

2(1−a2
i )+3

}
φ(ai).

(A.16)

Substituting (3.65), (A.15), (3.69), (A.16) and (3.68) in the third Bartlett identity
E
[
(∂ 2li/∂ (σ2)2)(∂ li/∂ρ)

]
+E
[
∂ 3li/∂ (σ2)2∂ρ

]
+E
[
(∂ li/∂σ2)2(∂ li/∂ρ)

]
+

2E
[
(∂ li/∂σ2)(∂ 2li/∂σ2∂ρ)

]
= 0, we obtain an equation in one unknown which is the

expectation of yS
i m2(bi)

[
yO

i − γᵀzi
]5.

The expectation of yS
i bim2(bi)

[
yO

i − γᵀzi
]4 is easily obtained by substituting (3.70) in

(A.16).
The expectations of yS

i bim2
2(bi), yS

i bim2
2(bi)

[
yO

i − γᵀzi
]
, yS

i bim2
2(bi)

[
yO

i − γᵀzi
]2 and

yS
i bim2

2(bi)
[
yO

i − γᵀzi
]3 may be written respectively as

E
{

yS
i bim2

2(bi)
}
=

ai√
1−ρ2

E
{

yS
i m2

2(bi)
}
+

ρ

σ
√

1−ρ2
E
{

yS
i m2

2(bi)
[
yO

i −γ
ᵀzi
]}
, (A.17)

E
{

yS
i bim2

2(bi)
[
yO

i − γ
ᵀzi
]}

=
ai√

1−ρ2
E
{

yS
i m2

2(bi)
[
yO

i − γ
ᵀzi
]}

+
ρ

σ
√

1−ρ2
E
{

yS
i m2

2(bi)
[
yO

i − γ
ᵀzi
]2}

, (A.18)
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E
{

yS
i bim2

2(bi)
[
yO

i − γ
ᵀzi
]2}

=
ai√

1−ρ2
E
{

yS
i m2

2(bi)
[
yO

i − γ
ᵀzi
]2}

+
ρ

σ
√

1−ρ2
E
{

yS
i m2

2(bi)
[
yO

i − γ
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, (A.19)

E
{
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i bim2

2(bi)
[
yO
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ᵀzi
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=
ai√

1−ρ2
E
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yS
i m2

2(bi)
[
yO
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ᵀzi
]3}

+
ρ

σ
√

1−ρ2
E
{

yS
i m2

2(bi)
[
yO

i − γ
ᵀzi
]4}

. (A.20)
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Appendix B

Algebraic derivations for the matched
gamma pairs model

In this appendix we derive the expectations required for the calculation of the P(ψ,λ )

and Q(ψ,λ ) matrices of Firth (1993) adjusted score equations in Section 5.2.3.
Since Yi1∼Gamma(m,λi/ψ) and Yi2∼Gamma

(
m,1/(ψλi)

)
using the rate parametriza-

tion, E[Yi1− (mψ/λi)] = E[Yi2−mψλi] = 0. The second central moments of Yi1 and Yi2

are given respectively by mψ2/λ 2
i and mψ2λ 2

i . The third central moments of Yi1 and Yi2

are 2mψ3/λ 3
i and 2mψ3λ 3

i , respectively.

E(x3) =
1

ψ6

q

∑
i=1

E
{[

λi

(
Yi1−

mψ

λi

)
+

1
λi

(
Yi2−λimψ

)]3}
=

1
ψ6

q

∑
i=1

E
{

λ
3
i

(
Yi1−

mψ

λi

)3

+
1

λ 3
i

(
Yi2−λimψ

)3}
=

1
ψ6

q

∑
i=1

4mψ
3

=
4qm
ψ3 ,

Where the second equality above follows because the expectation of the other terms of
the cubic are null. Now for ease of presentation of the forthcoming expressions, let ci1 :=
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yi1− (mψ/λi) and di2 := yi2−λimψ . For r = 1, . . . ,q,

x2wr =
1

ψ5

(
1

λ 2
r

yr2− yr1

)( q

∑
i=1

[
λici1 +

1
λi

di2

])2

=
1

ψ5

(
1

λ 2
r

dr2− cr1

)( q

∑
i=1

[
λici1 +

1
λi

di2

])2

=
1

ψ5

(
1

λ 2
r

dr2− cr1

)( q

∑
i=1

[
λici1 +

1
λi

di2

]2

+
q

∑
i=1

q

∑
j=1
j 6=i

[
λici1 +

1
λi

di2

][
λ jc j1 +

1
λ j

d j2

])
.

The expectation of the second term of the last equality above is zero since i 6= j. If i 6= r

then the expectation of the first term is also zero. If i = r then the expectation of the
first term is E

[
(D3

r2/λ 4
r )−λ 2

r C3
r1
]
/ψ5 =

[
(2mψ3λ 3

r /λ 4
r )−λ 2

r (2mψ3/λ 3
r )
]
/ψ5 = 0. For

r,s = 1, . . . ,q,

xwrws =
1

ψ4

(
1

λ 2
r

yr2− yr1

)(
1

λ 2
s

ys2− ys1

)( q

∑
i=1

[
λici1 +

1
λi

di2

])
=

1
ψ4

(
1

λ 2
r

dr2− cr1

)(
1

λ 2
s

ds2− cs1

)( q

∑
i=1

[
λici1 +

1
λi

di2

])
.

When r 6= s, E(xwrws) = 0. When r = s but is not equal to i, E(xw2
r ) = 0. When

i = r = s, E(xw2
r ) = E

[
(D3

r2/λ 5
r )+λrC3

r1
]
/ψ4 =

[
(2mψ3λ 3

r /λ 5
r )+λr(2mψ3/λ 3

r )
]
/ψ4 =

4m/(ψλ 2
r ). For r,s, t = 1, . . . ,q,

wrwswt =
1

ψ3

(
1

λ 2
r

dr2− cr1

)(
1

λ 2
s

ds2− cs1

)(
1

λ 2
t

dt2− ct1

)
.

If r 6= s 6= t or any two of r,s and t are equal, then the expectation of the above re-
duces to zero. If r = s = t then E(w3

r ) = E
[
(D3

r2/λ 6
r )−C3

r1
]
/ψ3 =

[
(2mψ3λ 3

r /λ 6
r )−

(2mψ3/λ 3
r )
]
/ψ3 = 0.

− zx =
2

ψ5

( q

∑
i=1

q

∑
j=1

[
λici1 +

1
λi

di2 +mψ

][
λ jc j1 +

1
λ j

d j2

])
.

If i 6= j, E(−zx) = 0. If i = j, E(−zx) = 2∑
q
i=1 E

[
λ 2

i C2
i1 +(D2

i2/λ 2
i )
]
/ψ5 = 4mq/ψ3. For
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r = 1, . . . ,q,
1
ψ

xwr =
1

ψ4

(
1

λ 2
r

dr2− cr1

)( q

∑
i=1

[
λici1 +

1
λi

di2

])
.

E(xwr/ψ) = 0 whether i = r or not.

E
(

2
ψλ 3

r
xyr2

)
=

2
ψ3λ 3

r
E
{ q

∑
i=1

yr2

[
λi

(
yi1−
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)
+

1
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(
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)]}
=

2
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r
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2
ψ3λ 3

r
E
[

1
λr

yr2

(
yr2−λrmψ

)]
=

2m
ψλ 2

r
,

where the third equality follows since the expectation of the term inside the sum is non
zero only when i = r and where we used the fact that the second raw moment of Yi2 is
m(m+1)ψ2λ 2

i .

− zwr =
2

ψ4

(
1

λ 2
r

dr2− cr1

)( q

∑
i=1

[
λici1 +

1
λi

di2 +mψ

])
.

The expected value of the above is null whether i = r or not.

1
ψ

wrws =
1

ψ3

(
1

λ 2
r

dr2− cr1

)(
1

λ 2
s

ds2− cs1

)
.

When r 6= s, E(wrws/ψ) = 0. When r = s, E(wrws/ψ) = E
[
(D2

r2/λ 4
r ) +C2

r1
]
/ψ3 =

2m/ψλ 2
r , for r = 1, . . . ,q.

2
ψλ 3

r
yr2ws =

2
ψ2λ 3

r
yr2

(
1

λ 2
s

ys2− ys1

)
.

If r 6= s, the expectation of the above is zero by independence. If r = s, 2E
[
Yr2Ws

]
/(ψ2λ 3

r )=

2E
[
(Y 2

r2/λ 2
r )−Yr2Yr1

]
/(ψ2λ 3

r ) = 2m/λ 3
r .
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