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AN UNFITTED HYBRID HIGH-ORDER METHOD WITH CELL
AGGLOMERATION FOR ELLIPTIC INTERFACE PROBLEMS\ast 

ERIK BURMAN\dagger , MATTEO CICUTTIN\ddagger , GUILLAUME DELAY\ddagger , AND ALEXANDRE ERN\ddagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . We design and analyze a Hybrid High-Order (HHO) method on unfitted meshes to
approximate elliptic interface problems by means of a consistent penalty method \`a la Nitsche. The
curved interface can cut through the mesh cells in a rather general fashion. Robustness with respect
to the cuts is achieved by using a cell agglomeration technique, and robustness with respect to the
contrast in the diffusion coefficients is achieved by using a different gradient reconstruction on each
side of the interface. A key novel feature of the gradient reconstruction is to incorporate a jump
term across the interface, thereby releasing the Nitsche penalty parameter from the constraint of
being large enough. Error estimates with optimal convergence rates are established. A robust cell
agglomeration procedure limiting the agglomerations to the nearest neighbors is devised. Numerical
simulations for various interface shapes corroborate the theoretical results.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . elliptic interface problems, interfaces, Hybrid High-Order method, a priori esti-
mates, simulations, cell agglomeration
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\bfD \bfO \bfI . 10.1137/19M1285901

1. Introduction. Generating meshes to solve problems posed on domains with
a curved boundary and/or interfaces separating subdomains with different properties
can be a difficult task. The use of unfitted meshes that do not fit the boundary and
interfaces greatly simplifies the meshing process since such meshes can be chosen in
a very simple manner. For instance, one can consider meshing a rectangular or cubic
domain that contains the actual physical domain. The analysis of finite element meth-
ods (FEM) on unfitted meshes was started in [3, 4]. An important advance achieved
in [26] was to double the polynomial unknowns in the cells cut by the interface and to
use a consistent penalty method inspired by Nitsche's method [34] to weakly enforce
the jump conditions at the interface or the Dirichlet conditions at the curved bound-
ary. We refer the reader, e.g., to [11, 8] for further advances and overviews on the
topic. One difficulty with the penalty method is the presence of small cuts, that is,
of mesh cells having only a small fraction of their volume on one side of the interface.
Small cuts have an adverse effect on the conditioning of the method and can even
hamper convergence (see [18] for a recent discussion on the subject). There are essen-
tially two ways to cure the issue of small cuts: one can either consider adding some
stabilization such as the ghost penalty technique devised in [7] or one can agglomerate
cells in the vicinity of small cuts in such a way that the newly created mesh presents
no small cuts [29, 36]; see also [2, 9]. Cell agglomeration is somewhat delicate in the
context of conforming FEM since it requires a careful handling of hanging nodes and
specific mesh structures as in [27], whereas this technique is somewhat more natural
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when combined with discretization methods supporting polyhedral meshes such as,
e.g., discontinuous Galerkin methods.

In the present work, we devise and analyze a novel Hybrid High-Order (HHO)
method to approximate elliptic interface problems on unfitted meshes. Robustness
with respect to small cuts is achieved by using a cell agglomeration technique as
mentioned above, whereas robustness with respect to the contrast in the diffusion
coefficients is achieved by using a different gradient reconstruction on each side of the
interface. HHO methods have been introduced and analyzed for diffusion and locking-
free linear elasticity problems on fitted meshes in [20, 21]. As shown in [16], these
methods are closely related to hybridizable discontinuous Galerkin (HDG) methods
and to nonconforming Virtual element methods (ncVEM). An unfitted HHO method
for elliptic problems with a curved boundary or an interface has been proposed and
analyzed in [9]. The idea therein was to extend the consistent penalty method from
[26] to the HHO context and to use the polyhedral capabilities of HHO to deploy a cell
agglomeration procedure to handle small cuts. To this purpose the HHO unknowns
(comprising both cell and face polynomials) were doubled in the cells cut by the
interface, whereas no unknowns were attached to the interface or the curved boundary.
Moreover a mixed-order polynomial setting was considered with the cell unknowns
being of one degree higher than the face unknowns. In addition the Nitsche-type
consistency terms at the interface were evaluated using the unknowns from the less
diffusive side thereby achieving robustness with respect to contrasted coefficients in
the spirit of [12, 23]. In the present work, we achieve three important advances
with respect to [9]. First, the gradient reconstruction operators in the cut cells are
modified by adding a jump term on the less diffusive side of the interface. This offers
the crucial advantage of releasing the penalty parameter from any constraint of being
large enough with respect to the size of the constant from a discrete trace inequality.
As a consequence, contrary to the classical Nitsche's method where this coefficient
has to be tuned to make the scheme stable, we can set this parameter to any simple
value (for instance, we can set it to one). Second, we revise and extend the cell
agglomeration procedure to ensure that agglomerated cells do not propagate further
than nearest neighbors. We observe that the present cell agglomeration procedure is
of (much) broader interest than HHO methods and even unfitted methods. Finally, we
present for the first time numerical simulations on unfitted HHO methods illustrating
the cell agglomeration procedure, the optimality and robustness of the error estimates,
and the conditioning of the system matrix.

Let us put our work in perspective with the literature. Recalling that HHO and
HDG methods are closely related, we first mention that eXtended HDG (X-HDG)
methods have been proposed in [25, 24] where an additional trace variable is intro-
duced at the interface or the curved boundary. In [17, 35], HDG methods without an
additional trace variable are devised and analyzed, whereby a transferring technique
is used to approximate the data on the curved boundary or the jump conditions across
the interface. In contrast, these conditions are enforced herein at the boundary or
interface by means of a consistent penalty method. Concerning, more specifically,
HHO methods, the gradient reconstruction in the cut cells differs from [9] since the
present reconstruction incorporates a jump term. As mentioned above, this offers
the crucial advantage of releasing the penalty parameter from any constraint of being
large enough. Incidentally, we point out that this idea has common features with
the parameter-free Nitsche's method devised recently in [31] for unfitted FEM. These
links are further discussed below. Another extension with respect to [9] is to allow for
reconstructions having full polynomial order without being necessarily curl-free, as
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AN UNFITTED HHO METHOD WITH CELL AGGLOMERATION A861

motivated by the future treatment of nonlinear problems (not considered herein yet;
see, e.g., [6, 1] for fitted HHO methods in nonlinear mechanics). Finally, we mention
that the present unfitted method can be used as well on geometries with a curved
boundary that is then immersed within the mesh. A fitted HHO method for diffusion
problems with curved boundaries is assessed numerically in [5].

This work is organized as follows. We present the model elliptic interface problem
and the unfitted HHO method in section 2. The numerical analysis leading to optimal
and robust error estimates is presented in section 3. Implementation aspects, and,
in particular, the cell agglomeration procedure, are covered in section 4. Finally,
numerical simulations which confirm the theoretical convergence rates and illustrate
the robustness of the method with respect to small cuts and contrasted coefficients
are discussed in section 5.

2. Model problem and unfitted HHO method. In this section we present
the elliptic interface problem and its discretization by the unfitted HHO method.

2.1. Model problem. Let \Omega be a polyhedral domain in \BbbR d, d \in \{ 2, 3\} (open,
bounded, connected, Lipschitz subset of \BbbR d), and consider a partition of \Omega into two
disjoint subdomains \Omega = \Omega 1 \cup \Omega 2 with the interface \Gamma := \partial \Omega 1 \cap \partial \Omega 2. As in [9] the
interface \Gamma is assumed to be a smooth (d - 1)-dimensional manifold of class C2 that
is not self-intersecting. This assumption can be relaxed at the price of additional
technical points that are not further explored herein. The unit normal vector \bfitn \Gamma 

to \Gamma conventionally points from \Omega 1 to \Omega 2. For a smooth enough function v defined
on \Omega 1 \cup \Omega 2, we denote its jump across \Gamma as JvK\Gamma := v| \Omega 1

 - v| \Omega 2
. Our goal is to

approximate the solution u \in H1(\Omega 1 \cup \Omega 2) = \{ v \in L2(\Omega ) | v| \Omega i
\in H1(\Omega i), i \in \{ 1, 2\} \} 

of the following elliptic interface problem:

 - \nabla \cdot (\kappa \nabla u) = f in \Omega 1 \cup \Omega 2,(2.1a)

JuK\Gamma = gD on \Gamma ,(2.1b)

J\kappa \nabla uK\Gamma \cdot \bfitn \Gamma = gN on \Gamma ,(2.1c)

u = 0 on \partial \Omega ,(2.1d)

with f \in L2(\Omega ), gD \in H
1
2 (\Gamma ), and gN \in L2(\Gamma ). For simplicity, we consider a homo-

geneous Dirichlet boundary condition on \partial \Omega . To avoid technicalities we assume that
the diffusion coefficient \kappa is scalar-valued and that \kappa i := \kappa | \Omega i

is constant for each
i \in \{ 1, 2\} . To fix the ideas, we assume that \kappa 1 \leq \kappa 2. Our analysis covers the strongly
contrasted case where \kappa 1 \ll \kappa 2.

2.2. Unfitted meshes. Let (\scrT h)h>0 be a family of meshes of \Omega . The meshes
can have cells that are polyhedra in \BbbR d with planar faces, and hanging nodes are
also possible. The mesh cells are taken to be open sets in \BbbR d. For all T \in \scrT h, hT

denotes the diameter of the cell T and \bfitn T the unit normal on \partial T pointing outward
T . We set conventionally h := maxT\in \scrT h

hT . The mesh faces are collected in the set
\scrF h. Assumptions on the mesh regularity and how the interface cuts the mesh cells
are stated in section 3.1.

Let us define the partition \scrT h = \scrT 1
h \cup \scrT \Gamma 

h \cup \scrT 2
h , where the subsets

\scrT i
h := \{ T \in \scrT h | T \subset \Omega i\} \forall i \in \{ 1, 2\} ,(2.2a)

\scrT \Gamma 
h := \{ T \in \scrT h | T \cap \Gamma \not = \emptyset \} (2.2b)

collect, respectively, the mesh cells inside the subdomain \Omega i, i \in \{ 1, 2\} (the uncut
cells), and those cut by the interface \Gamma (the cut cells). For every cut cell T \in \scrT \Gamma 

h and
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A862 E. BURMAN, M. CICUTTIN, G. DELAY, AND A. ERN

all i \in \{ 1, 2\} , we define

(2.3) T i := T \cap \Omega i, T\Gamma := T \cap \Gamma .

For all i \in \{ 1, 2\} , the boundary \partial (T i) of the subcell T i is decomposed as

(2.4) \partial (T i) = (\partial T )i \cup T\Gamma , (\partial T )i := \partial T \cap (\Omega i \setminus \Gamma ).

An illustration is presented in the left panel of Figure 2.1. To unify the notation, for
every uncut cell T \in \scrT i

h , i \in \{ 1, 2\} , we set

(2.5) T i := T, T\=\imath := \emptyset , (\partial T )i := \partial T, (\partial T )\=\imath := \emptyset , T\Gamma := \emptyset ,

where \=\imath = 3 - i (so that \=1 = 2 and \=2 = 1).

(\partial T )1
(\partial T )2

\Gamma 

T\Gamma 

T 1
T 2

The cell decomposition. A cut cell.

\Gamma \bullet 
\bullet 

\bullet 

\bullet 

\bullet 

\bullet 

\bullet 

\bullet 

\bullet \bullet 
\bullet \bullet 

\bullet 
\bullet 

An uncut cell.

\bullet 

\bullet 

\bullet 

\bullet 

\bullet 

\bullet 
\bullet \bullet 
\bullet 

Fig. 2.1. Basic notation for a cut cell T \in \scrT \Gamma 
h (left). Local degrees of freedom (k = 0) for a

cut (center) and an uncut (right) cell.

2.3. The local discrete problem. We now describe the local unknowns and
operators needed to formulate the unfitted HHO method. For a subset S \subset \BbbR d con-
sisting of one mesh (sub)cell or one mesh (sub)face, we denote \BbbP \ell (S) (resp., \BbbP \ell (S;\BbbR d))
the space composed of the restriction to S of scalar-valued (resp., vector-valued) poly-
nomials of total degree at most \ell \geq 0. Moreover, for a subset S \subset \BbbR d, we denote
(\cdot , \cdot )S the L2(S)-inner product with appropriate Lebesgue measure and \| \cdot \| S the in-
duced norm. Whenever S = \emptyset , we abuse the notation by writing \BbbP \ell (S) := \{ 0\} and
(\cdot , \cdot )S := 0.

Let k \geq 0 be the polynomial degree of the method. For every uncut cell T \in \scrT i
h ,

i \in \{ 1, 2\} , the local discrete HHO unknowns are a pair of functions: one polynomial
of degree at most (k+1) attached to the cell T and one polynomial of degree at most
k attached to each face F \in \scrF \partial T , where \scrF \partial T comprises all the faces composing the
boundary \partial T of the cell T . We use the notation \^vT := (vT , v\partial T ) \in \BbbP k+1(T )\times \BbbP k(\scrF \partial T )
with \BbbP k(\scrF \partial T ) :=

\prod 
F\in \scrF \partial T

\BbbP k(F ). In the original HHO method from [21, 20], equal-
order unknowns are considered (i.e., polynomials of degree at most k on faces and
cells). In unfitted HHOmethods it is also possible to consider equal-order unknowns in
the uncut cells, but mixed-order unknowns are needed in the cut cells (i.e., polynomials
of degree at most k on faces and k+1 in cells). For simplicity, we consider mixed-order
unknowns everywhere.

For every cut cell T \in \scrT \Gamma 
h , we double the HHO unknowns as in [9] so as to have

the usual HHO unknowns available on each subcell, up to the interface \Gamma where there
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are no unknowns. Thus the local HHO unknowns in every cut cell T \in \scrT \Gamma 
h are

\^vT := (\^vT 1 , \^vT 2) := (vT 1 , v(\partial T )1 , vT 2 , v(\partial T )2) \in \^Uk
T := \^Uk

T 1 \times \^Uk
T 2 ,(2.6)

with \^Uk
T i := \BbbP k+1(T i) \times \BbbP k(\scrF (\partial T )i), \scrF (\partial T )i := \{ F i := F \cap \Omega i | F \in \scrF \partial T \} is the

collection of the (sub)faces composing (\partial T )i, and \BbbP k(\scrF (\partial T )i) :=
\prod 

F i\in \scrF (\partial T )i
\BbbP k(F i),

i \in \{ 1, 2\} . The HHO unknowns for cut and uncut cells are shown in the center and
right panels of Figure 2.1. For every geometric entity, the number of points represents
the number of degrees of freedom attached to it. To unify the notation between cut
and uncut cells, we define \^Uk

T as in (2.6) for all T \in \scrT i
h , i \in \{ 1, 2\} . With this abuse

of notation we have \^vT := (vT , v\partial T , 0, 0) for all T \in \scrT 1
h and \^vT := (0, 0, vT , v\partial T ) for

all T \in \scrT 2
h .

Let T \in \scrT h. As usual in HHO methods, the two local ingredients are a recon-
struction operator and a stabilization operator. In every cut cell T \in \scrT \Gamma 

h there are

two gradient reconstruction operators \bfitG k
T i : \^Uk

T \rightarrow \BbbG k(T i;\BbbR d), i \in \{ 1, 2\} , where
\BbbG k(T i;\BbbR d) is composed of the restriction to T i of \BbbR d-valued polynomial functions
with the requirement that (\bfitq \cdot \bfitn T )| (\partial T )i \in \BbbP k(\scrF (\partial T )i) for all \bfitq \in \BbbG k(T i;\BbbR d). Possi-

ble choices are \BbbG k(T i;\BbbR d) := \BbbP k(T i;\BbbR d) and \BbbG k(T i;\BbbR d) := \nabla \BbbP k+1(T i). The former
choice leads to a larger reconstruction space and is more suitable in the case of non-
linear problems [6, 1]. The latter choice is the one made in the original HHO methods
[21, 20] and is also made in [9] for unfitted HHO methods. For every cut cell T \in \scrT \Gamma 

h

and every \^vT \in \^Uk
T , letting JvT K\Gamma := vT 1  - vT 2 , we set

(\bfitG k
T 1(\^vT ), \bfitq )T 1 := (\nabla vT 1 , \bfitq )T 1 + (v(\partial T )1  - vT 1 , \bfitq \cdot \bfitn T )(\partial T )1  - (JvT K\Gamma , \bfitq \cdot \bfitn \Gamma )T\Gamma ,(2.7)

(\bfitG k
T 2(\^vT ), \bfitq )T 2 := (\nabla vT 2 , \bfitq )T 2 + (v(\partial T )2  - vT 2 , \bfitq \cdot \bfitn T )(\partial T )2(2.8)

for all \bfitq \in \BbbG k(T 1;\BbbR d) in (2.7) and all \bfitq \in \BbbG k(T 2;\BbbR d) in (2.8). Note that\bfitG k
T 2(\^vT ) only

depends on \^vT 2 , whereas \bfitG k
T 1(\^vT ) depends on both \^vT 1 and \^vT 2 owing to the jump

term on the right-hand side of (2.7). The difference in the reconstruction between
the two subdomains is important in the highly contrasted case where \kappa 1 \ll \kappa 2 (recall
our convention that \kappa 1 \leq \kappa 2). Using the above conventions on the notation, we
can consider the same definitions for every uncut cell T \in \scrT i

h , i \in \{ 1, 2\} , leading to
(\bfitG k

T i(\^vT ), \bfitq )T i := (\nabla vT i , \bfitq )T i + (v(\partial T )i  - vT i , \bfitq \cdot \bfitn T )(\partial T )i for all \bfitq \in \BbbG k(T i;\BbbR d), and

\bfitG k
T\=\imath (\^vT ) = 0. Recalling that T i := T and (\partial T )i := \partial T , \bfitG k

T i(\^vT ) corresponds to the
usual HHO gradient reconstruction in the uncut cells. Furthermore, to weakly enforce
the matching between cell- and face-based HHO unknowns, we consider for all T \in \scrT h
the stabilization bilinear forms \^sT i , i \in \{ 1, 2\} , such that for all \^vT i , \^wT i \in \^Uk

T i ,

(2.9) \^sT i(\^vT i , \^wT i) := \kappa ih
 - 1
T

\Bigl( 
\Pi k

(\partial T )i(vT i  - v(\partial T )i), wT i  - w(\partial T )i

\Bigr) 
(\partial T )i

,

where \Pi k
(\partial T )i denotes the L2-orthogonal projector onto \BbbP k(\scrF (\partial T )i). Owing to the

above conventions, in every uncut cell T \in \scrT i
h , \^sT i(\^vT i , \^wT i) corresponds to the usual

HHO stabilization with mixed-order unknowns (similar to the HDG stabilization from
Lehrenfeld and Sch\"oberl [30, 33]), whereas \^sT\=\imath (\^vT\=\imath , \^wT\=\imath ) = 0.

The discrete HHO bilinear and linear forms read for all \^vT , \^wT \in \^Uk
T as

\^aT (\^vT , \^wT ) :=
\sum 

i\in \{ 1,2\} 

\Bigl\{ 
\kappa i(\bfitG 

k
T i(\^vT ),\bfitG 

k
T i( \^wT ))T i+\^sT i(\^vT i , \^wT i)

\Bigr\} 
+\^s\Gamma T (\^vT , \^wT ),(2.10)

\^\ell T ( \^wT ) :=
\sum 

i\in \{ 1,2\} 

(f, wT i)T i + \kappa 1(gD, \phi T ( \^wT ))T\Gamma + (gN , wT 2)T\Gamma ,(2.11)

D
ow

nl
oa

de
d 

04
/2

3/
21

 to
 1

93
.6

0.
23

8.
99

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A864 E. BURMAN, M. CICUTTIN, G. DELAY, AND A. ERN

with

(2.12) \^s\Gamma T (\^vT , \^wT ) := \kappa 1h
 - 1
T (JvT K\Gamma , JwT K\Gamma )T\Gamma , \phi T ( \^wT ) := h - 1

T JwT K\Gamma  - \bfitG k
T 1( \^wT )\cdot \bfitn \Gamma .

Note that for every cut cell T \in \scrT \Gamma 
h , the stabilization bilinear forms \^sT i , i \in \{ 1, 2\} , do

not couple the HHO unknowns from both sides of the interface, whereas the gradient
reconstruction in T 1 couples them. The coupling also occurs by means of the penalty
bilinear form \^s\Gamma T which weakly enforces the jump conditions across the interface. The
quantity \phi T ( \^wT ) defined in (2.12) is designed so that the formulation has optimal
consistency properties.

Remark 2.1 (gradient reconstruction). The gradient reconstruction operators
defined in (2.7)--(2.8) are one of the main novelties of the present work. They differ
from those considered in [9] where the two gradient reconstructions in a cut cell need
to be evaluated simultaneously. The main advantage of the present reconstructions
is that the incorporation of the jump term in (2.7) allows one to avoid the need for
a large enough penalty parameter scaling the bilinear form \^s\Gamma T . This is why we have
taken this parameter equal to one in (2.12).

2.4. The global discrete problem. We define the global discrete space

\^Uk
h :=

\prod 
T\in \scrT h

\BbbP k+1(T 1)\times 
\prod 

F\in \scrF h

\BbbP k(F 1)\times 
\prod 

T\in \scrT h

\BbbP k+1(T 2)\times 
\prod 

F\in \scrF h

\BbbP k(F 2),(2.13)

recalling that T i := T \cap \Omega i and F i := F \cap \Omega i, i \in \{ 1, 2\} . For all \^vh \in \^Uk
h and all

T in \scrT h, we denote \^vT := (vT 1 , v(\partial T )1 , vT 2 , v(\partial T )2) the components of \^vh respectively
attached to T 1, (\partial T )1, T 2, and (\partial T )2. Recalling the above conventions on the uncut
cells, we have \^vT := (vT , v\partial T , 0, 0) for all T \in \scrT 1

h and \^vT := (0, 0, vT , v\partial T ) for all

T \in \scrT 2
h . We denote \^Uk

h0 to be the subspace of \^Uk
h where all degrees of freedom

attached to the faces composing \partial \Omega are null. The global discrete problem reads as
follows: Find \^uh \in \^Uk

h0 such that

(2.14) \^ah(\^uh, \^wh) = \^\ell h( \^wh) \forall \^wh \in \^Uk
h0,

where the bilinear and linear forms are defined by summing all the local contributions,
i.e., for all \^vh, \^wh \in \^Uk

h0, we set \^ah(\^vh, \^wh) :=
\sum 

T\in \scrT h
\^aT (\^vT , \^wT ) and \^\ell h( \^wh) :=\sum 

T\in \scrT h

\^\ell T ( \^wT ).
The discrete problem (2.14) can be solved efficiently by locally eliminating all

the cell-based unknowns by means of a static condensation procedure. This local
elimination leads to a global transmission problem on the mesh skeleton involving
only the face-based unknowns. The resulting stencil couples unknowns attached to
neighboring faces (in the sense of cells). Once this global transmission problem is
solved, one can recover the values of the cell-based unknowns in every cell by local
solves. We refer the reader, e.g., to [15].

2.5. Variants. Let us give two variants of the scheme based on the use of other
gradient reconstructions. The contents of this section are not used in what follows
and can be skipped at first reading.

A first variant is to define the gradient reconstructions in the cut cells in such a
way that the two subdomains play symmetric roles. In this case one replaces (2.7)--
(2.8) with the single definition

(2.15) ( \widetilde \bfitG k
T i(\^vT ), \bfitq )T i := (\nabla vT i , \bfitq )T i +(v(\partial T )i  - vT i , \bfitq \cdot \bfitn T )(\partial T )i  - 

1

2
(JvT K\Gamma , \bfitq \cdot \bfitn \Gamma )T\Gamma 
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AN UNFITTED HHO METHOD WITH CELL AGGLOMERATION A865

for all \^vT \in \^Uk
T and all \bfitq \in \BbbG k(T i;\BbbR d), i \in \{ 1, 2\} , and the bilinear and linear forms

become

\widetilde aT (\^vT , \^wT ) :=
\sum 

i\in \{ 1,2\} 

\Bigl\{ 
\kappa i( \widetilde \bfitG k

T i(\^vT ), \widetilde \bfitG k
T i( \^wT ))T i + \^sT i(\^vT i , \^wT i)

\Bigr\} 
+ \widetilde s\Gamma T (\^vT , \^wT ),

\widetilde \ell T ( \^wT ) :=
\sum 

i\in \{ 1,2\} 

(f, wT i)T i + (gD, \widetilde \phi T ( \^wT ))T\Gamma + (gN , \{ wT \} \Gamma )T\Gamma ,

with the penalty bilinear form \widetilde s\Gamma T (\^vT , \^wT ) := \kappa 2h
 - 1
T (JvT K\Gamma , JwT K\Gamma )T\Gamma (now scaled

with \kappa 2, recalling that \kappa 1 \leq \kappa 2), \widetilde \phi T ( \^wT ) := \kappa 2h
 - 1
T JwT K\Gamma  - \{ \kappa \widetilde \bfitG k

T ( \^wT )\} \Gamma \cdot \bfitn \Gamma , and the

average values \{ wT \} \Gamma := 1
2 (wT 1+wT 2), \{ \kappa \widetilde \bfitG k

T ( \^wT )\} \Gamma := 1
2 (\kappa 1

\widetilde \bfitG k
T 1( \^wT )+\kappa 2

\widetilde \bfitG k
T 2( \^wT ))

at the interface. The error analysis (which proceeds as in section 3 but is omitted for
brevity) leads to error estimates with optimal convergence rates but lacking robustness
in the highly contrasted case where \kappa 1 \ll \kappa 2.

A second variant, which is closer in spirit to the Nitsche-type approach and the
unfitted HHO method previously devised in [9], is to set

( \v \bfitG k
T i(\^vT ), \bfitq )T i := (\nabla vT i , \bfitq )T i + (v(\partial T )i  - vT i , \bfitq \cdot \bfitn T )(\partial T )i

for all \^vT \in \^Uk
T , \bfitq \in \BbbG k(T i;\BbbR d), i \in \{ 1, 2\} . Owing to the absence of the jump term

in the gradient reconstruction, the consistency error analysis (which proceeds as in
section 3 but is omitted for brevity) shows that the bilinear and linear forms should
now be written as

\v aT (\^vT , \^wT ) :=
\sum 

i\in \{ 1,2\} 

\Bigl\{ 
\kappa i( \v \bfitG 

k
T i(\^vT ), \v \bfitG 

k
T i( \^wT ))T i + \^sT i(\^vT i , \^wT i)

\Bigr\} 
 - \^n\Gamma 

T (\^vT , \^wT ) + \eta \^s\Gamma T (\^vT , \^wT ),

\v \ell T ( \^wT ) :=
\sum 

i\in \{ 1,2\} 

(f, wT i)T i + \kappa 1(gD, \phi \eta ,T ( \^wT ))T\Gamma + (gN , wT 2)T\Gamma ,

where \eta > 0 is a user-dependent parameter, \^s\Gamma T is still defined by (2.12),

\^n\Gamma 
T (\^vT , \^wT ) := \kappa 1(JvT K\Gamma ,\nabla wT 1 \cdot \bfitn \Gamma )T\Gamma + \kappa 1(\nabla vT 1 \cdot \bfitn \Gamma , JwT K\Gamma )T\Gamma ,

and \phi \eta ,T ( \^wT ) := \eta h - 1
T JwT K\Gamma  - \nabla wT 1 \cdot \bfitn \Gamma . As is standard in this situation, the need

to bound the Nitsche-type bilinear form \^n\Gamma 
T to ensure coercivity makes it necessary

to take a value for \eta that is large enough, depending on the constant from a dis-
crete trace inequality. Note that the handling of the diffusion coefficients on both
sides of the interface is inspired from [12, 23] and leads to robust error estimates in
the highly contrasted case. However, avoiding a large enough penalty parameter is
highly beneficial in practice and is the key motivation for introducing the novel recon-
structions (2.7)--(2.8). Similar ideas in the context of unfitted FEM were discussed in
[31].

3. Analysis. In this section we establish stability and error estimates for the
unfitted HHO method introduced in the previous section.

3.1. Admissible meshes. The unfitted HHO method is to be deployed on
shape-regular polyhedral mesh sequences, i.e., for all h > 0, \scrT h admits a matching
simplicial submesh \scrT \prime 

h such that any cell (or face) of \scrT \prime 
h is a subset of a cell (or face) of

\scrT h. Moreover, there exists a mesh-regularity parameter \rho > 0 such that for all h > 0,
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A866 E. BURMAN, M. CICUTTIN, G. DELAY, AND A. ERN

all T \in \scrT h, and all S \in \scrT \prime 
h such that S \subset T , we have \rho hS \leq rS and \rho hT \leq hS , where

rS denotes the inradius of the simplex S. In the numerical experiments presented in
section 5, we start with structured meshes, which then become (locally) polyhedral
after the cell agglomeration procedure. Three additional assumptions on the mesh are
needed. The first one quantifies how well the interface cuts the mesh cells, the second
one quantifies how well the mesh resolves the interface, and the third one requires the
mesh to not be excessively graded. In what follows, B(\bfitx , r) denotes the ball of center
\bfitx and radius r.

Assumption 3.1 (cut cells). There is \delta \in (0, 1) such that, for all T \in \scrT \Gamma 
h and all

i \in \{ 1, 2\} , there is \~\bfitx T i \in T i such that B(\~\bfitx T i , \delta hT ) \subset T i.

Assumption 3.2 (resolving \Gamma ). There is \gamma \in (0, 1) such that, for all T \in \scrT \Gamma 
h ,

there is a point \v \bfitx T \in \BbbR d such that setting T \dagger := B(\v \bfitx T , \gamma 
 - 1hT ) we have the following

properties: (i) T \subset T \dagger ; (ii) for all \bfits \in T\Gamma , d(\v \bfitx T , T\bfits \Gamma ) \geq \gamma hT , where T\bfits \Gamma is the
tangent plane to \Gamma at the point \bfits ; (iii) for all F \in \scrF \partial T , there is \bfitx F \in T \dagger such that
d(\bfitx F , F ) \geq \gamma hT .

For all T \in \scrT h, let the neighboring layers \Delta j(T ) \subset \BbbR d be defined by induction as

\Delta 0(T ) := T and \Delta j+1(T ) := \{ T \prime \in \scrT h | T \prime \cap \Delta j(T ) \not = \emptyset \} for all j \in \BbbN .
Assumption 3.3 (mild mesh grading). There is n0 \in \BbbN such that for all T \in \scrT h,

the ball T \dagger introduced in Assumption 3.2 satisfies T \dagger \subset \Delta n0(T ).

Let us now briefly comment on the foundations and consequences of Assump-
tions 3.1 and 3.2. It is shown in [9, Lemma 6.4] that if the mesh is fine enough, it is
possible to devise a cell agglomeration procedure so that, choosing the parameter \delta 
small enough (depending on the regularity parameter \rho ), Assumption 3.1 is fulfilled.
In the present work we improve on the procedure outlined in [9] by adding a third step
that guarantees that there is no propagation of the cell agglomeration. More details
are given in section 4.3. The role of Assumption 3.1 in the analysis is to provide the
following discrete (inverse) inequalities.

Lemma 3.4 (discrete (inverse) inequalities). Let Assumption 3.1 be fulfilled. Let
\ell \in \BbbN . There is cdisc, depending on \rho , \delta , and \ell , such that, for all T \in \scrT h, all i \in \{ 1, 2\} 
and all vT i \in \BbbP \ell (T i), the following inequalities hold true:

\bullet (discrete trace inequality) \| vT i\| (\partial T )i + \| vT i\| T\Gamma \leq cdisch
 - 1

2

T \| vT i\| T i .

\bullet (discrete inverse inequality) \| \nabla vT i\| T i \leq cdisch
 - 1
T \| vT i\| T i .

\bullet (discrete Poincar\'e inequality) Assuming that (vT i , 1)B(\~\bfitx Ti ,hT ) = 0, we have
\| vT i\| T i \leq cdischT \| \nabla vT i\| T i .

Proof. The discrete trace inequality is shown in [9, Lemma 3.4]. The proof of
the other two inequalities uses similar arguments. For brevity we only sketch the
proof of the inverse inequality. Since this inequality is classical in uncut cells (see,
e.g., [19, Lemma 1.44]), we consider a cut cell T \in \scrT \Gamma 

h . Invoking an inverse in-
equality in B(\~\bfitx T i , hT ) (with constant c0) followed by the inequality \| vT i\| B(\~\bfitx Ti ,hT ) \leq 
c1\| vT i\| B(\~\bfitx Ti ,\delta hT ) leads to \| \nabla vT i\| T i \leq \| \nabla vT i\| B(\~\bfitx Ti ,hT ) \leq c0h

 - 1
T \| vT i\| B(\~\bfitx Ti ,hT ) \leq 

c0c1h
 - 1
T \| vT i\| B(\~\bfitx Ti ,\delta hT ) \leq c0c1h

 - 1
T \| vT i\| T i .

It is shown in [9, Lemma 6.1] that if the mesh is fine enough with respect to the
curvature of the interface, points (i) and (ii) of Assumption 3.2 hold true. Moreover,
point (iii) of this assumption can be established by invoking the shape-regularity of the
mesh as shown in the proof of [9, Lemma 3.3]. The role of Assumption 3.2 is to provide
a multiplicative trace inequality that is needed to establish optimal approximation
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AN UNFITTED HHO METHOD WITH CELL AGGLOMERATION A867

properties on the faces and on the interface within the cut cells. We only state this
inequality and refer the reader to [9, Lemma 3.3] for the proof. Notice that the
argument of the proof classically invokes a cone condition and that the inequality
is stated on the ball T \dagger since this is the geometric object in which approximation
properties are derived.

Lemma 3.5 (multiplicative trace inequality). Let Assumption 3.2 be fulfilled.
There is cmtr > 0, depending on \rho and \gamma , such that for all T \in \scrT h, all v \in H1(T \dagger ),
and all i \in \{ 1, 2\} ,

(3.1) \| v\| (\partial T )i\cup T\Gamma \leq cmtr

\Bigl( 
h
 - 1

2

T \| v\| T \dagger + \| v\| 
1
2

T \dagger \| \nabla v\| 
1
2

T \dagger 

\Bigr) 
.

Remark 3.1 (constant cdisc). The constant cdisc from Lemma 3.4 can depend,
as stated, on \rho , \delta , and \ell . We leave to future work the study of the dependence
of cdisc on \delta and \ell . Concerning \delta , we merely point out at this stage that the cell
agglomeration procedure allows that \delta remains comparable to \rho . An illustration
of the moderate impact of \delta on the condition number is presented in section 5.3.
Concerning \ell , we notice that we are using here moderate polynomial degrees (up to
3 in our experiments), and that another important issue to be addressed with the
use of high-order methods is a finer control of quadrature errors on the cut cells, as
further discussed in section 5. Interestingly, we point out that under suitable (mild)
assumptions on the cut cell geometry, inverse and trace inequalities with optimal
dependence on the polynomial degree can be proven; see [14, 13].

In what follows we use the convention A \lesssim B to abbreviate the inequality A \leq 
CB for positive real numbers A and B, where the constant C only depends on the
polynomial degree k \geq 0, the mesh parameters \rho , \delta , \gamma and n0, and the above constants
cdisc and cmtr.

3.2. Stability and well-posedness. For all T \in \scrT h and all \^vT \in \^Uk
T , we define

the local seminorm

| \^vT | 2\^aT
:=

\sum 
i\in \{ 1,2\} 

\kappa i

\Bigl\{ 
\| \nabla vT i\| 2T i + h - 1

T \| v(\partial T )i  - vT i\| 2(\partial T )i

\Bigr\} 
+ \kappa 1h

 - 1
T \| JvT K\Gamma \| 2T\Gamma .(3.2)

Lemma 3.6 (stability). Let Assumption 3.1 be fulfilled. We have | \^vT | 2\^aT
\lesssim 

\^aT (\^vT , \^vT ) for all T \in \scrT h and all \^vT \in \^Uk
T .

Proof. Owing to (2.7), we infer that

\| \nabla vT 1\| 2T 1 =(\nabla vT 1 ,\nabla vT 1)T 1

=(\bfitG k
T 1(\^vT ),\nabla vT 1)T 1 - (v(\partial T )1  - vT 1 ,\nabla vT 1 \cdot \bfitn T )(\partial T )1+(JvT K\Gamma ,\nabla vT 1\bfitn \Gamma )T\Gamma .

The Cauchy--Schwarz inequality, \nabla vT 1 \cdot \bfitn T \in \BbbP k(\scrF (\partial T )1), and the discrete trace in-
equality from Lemma 3.4 to bound \| \nabla vT 1\| (\partial T )1\cup T\Gamma lead to

\| \nabla vT 1\| 2T 1 \lesssim \| \bfitG k
T 1(\^vT )\| 2T 1 + h - 1

T \| \Pi k
(\partial T )1(v(\partial T )1  - vT 1)\| 2(\partial T )1 + h - 1

T \| JvT K\Gamma \| 2T\Gamma .

Similar arguments lead to

\| \nabla vT 2\| 2T 2 \lesssim \| \bfitG k
T 2(\^vT )\| 2T 2 + h - 1

T \| \Pi k
(\partial T )2(v(\partial T )2  - vT 2)\| 2(\partial T )2 .

Therefore, we have
\sum 

i\in \{ 1,2\} \kappa i\| \nabla vT i\| 2T i + \kappa 1h
 - 1
T \| JvT K\Gamma \| 2T\Gamma \lesssim \^aT (\^vT , \^vT ), and it re-

mains to bound
\sum 

i\in \{ 1,2\} \kappa ih
 - 1
T \| v(\partial T )i - vT i\| 2(\partial T )i . Let i \in \{ 1, 2\} . Since v(\partial T )i - vT i =
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\Pi k
(\partial T )i(v(\partial T )i  - vT i) - (I  - \Pi k

(\partial T )i)(vT i) and recalling the definition (2.9) of the stabi-

lization bilinear form \^sT i , we need only bound h - 1
T \| (I  - \Pi k

(\partial T )i)(vT i)\| 2(\partial T )i . Invoking
the discrete trace inequality and the discrete Poincar\'e inequality from Lemma 3.4, we
have

h - 1
T \| (I  - \Pi k

(\partial T )i)(vT i)\| 2(\partial T )i

\leq h - 1
T \| (I  - \Pi 0

(\partial T )i)(vT i)\| 2(\partial T )i \leq h - 1
T \| (I  - \Pi 0

(\partial T )i)(vT i  - vT i)\| 2(\partial T )i

\leq h - 1
T \| vT i  - vT i\| 2(\partial T )i \lesssim h - 2

T \| vT i  - vT i\| 2T i \lesssim \| \nabla vT i\| 2T i ,

where vT i is the mean value of vT i over B(\~\bfitx T i , hT ). This concludes the proof.

Letting \| \^vh\| 2\^ah
:=
\sum 

T\in \scrT h
| \^vT | 2\^aT

, a classical argument shows that we define a

norm on \^Uk
h0 (recall that all the unknowns attached to boundary faces are null by

definition of \^Uk
h0). This norm is in spirit close to the broken H1-norm used in discon-

tinuous Galerkin methods.

Corollary 3.7 (well-posedness). If Assumption 3.1 is fulfilled, we have

(3.3) \| \^vh\| 2\^ah
\lesssim \^ah(\^vh, \^vh) \forall \^vh \in \^Uk

h0,

and the discrete problem (2.14) is well-posed.

Proof. The coercivity property (3.3) follows by summing over the mesh cells the
bound from Lemma 3.6, and well-posedness follows from the Lax--Milgram lemma.

Remark 3.2 (weights). The jump term \| JvT K\Gamma \| T\Gamma in (3.2) is weighted by the
factor \kappa 1 and not \kappa 2 (recall that \kappa 1 \leq \kappa 2). This is possible because the gradient
reconstruction in T 2 does not involve the jump across \Gamma .

3.3. Approximation. For all v \in H1(\Omega 1\cup \Omega 2), we set vi := v| \Omega i
. To perform the

error analysis, we assume that there is a real number t \in ( 12 , k+1] such that the exact
solution satisfies ui \in Ht+1(\Omega i) for all i \in \{ 1, 2\} . Let Ei : Ht+1(\Omega i) \rightarrow Ht+1(\BbbR d),
i \in \{ 1, 2\} , be a stable extension operator. For all T \in \scrT h, we define

Ik+1
T i (vi) := (\Pi k+1

T \dagger (Ei(vi)))| T i \in \BbbP k+1(T i),(3.4)

\^IkT (v) := (\^IkT 1(v), \^IkT 2(v)) := (Ik+1
T 1 (v1),\Pi 

k
(\partial T )1(v1), I

k+1
T 2 (v2),\Pi 

k
(\partial T )2(v2)) \in \^Uk

T ,(3.5)

where \Pi k+1
T \dagger denotes the L2-orthogonal projector onto \BbbP k+1(T \dagger ). Note that we do

not project using the subcell T i but the larger set T \dagger from Assumption 3.2 so as to
invoke the optimal approximation properties of Ik+1

T i (see, for instance, [9, Lemma
5.6]). Indeed if this assumption is fulfilled, we have for all v \in L2(\Omega ) such that
vi \in Ht+1(\Omega i), i \in \{ 1, 2\} , and all T \in \scrT h,

\| vi  - Ik+1
T i (vi)\| T i + h

1
2

T \| vi  - Ik+1
T i (vi)\| (\partial T )i + hT \| \nabla (vi  - Ik+1

T i (vi))\| T i

+h
3
2

T \| \nabla (vi  - Ik+1
T i (vi))\| (\partial T )i \lesssim ht+1

T | Ei(vi)| Ht+1(T \dagger ),(3.6)

h
1
2

T \| Jv  - Ik+1
T (v)K\Gamma \| T\Gamma \lesssim ht+1

T

\sum 
j\in \{ 1,2\} 

| Ej(vj)| Ht+1(T \dagger ).(3.7)

It is convenient to define a discrete lifting operator \bfitL k
T 1 : L2(\Gamma ) \rightarrow \BbbG k(T 1;\BbbR d) for

all T \in \scrT \Gamma 
h such that, for all g \in L2(\Gamma ) and all \bfitq \in \BbbG k(T 1;\BbbR d),

(3.8) (\bfitL k
T 1(g), \bfitq )T 1 := (g, \bfitq \cdot \bfitn \Gamma )T\Gamma .

With the above abuse of notation, we set \bfitL k
T 1(g) := 0 for all T \in \scrT i

h , i \in \{ 1, 2\} .
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Lemma 3.8 (approximation for gradient reconstruction). Let Assumptions 3.1
and 3.2 be fulfilled. For all v \in L2(\Omega ) such that vi \in Ht+1(\Omega i), i \in \{ 1, 2\} , and for all
T \in \scrT h, we have

\| \bfitdelta T 1(v)\| T 1 + h
1
2

T \| \bfitdelta T 1(v)\| (\partial T )1\cup T\Gamma \lesssim ht
T

\sum 
j\in \{ 1,2\} 

| Ej(vj)| Ht+1(T \dagger ),(3.9)

\| \bfitdelta T 2(v)\| T 2 + h
1
2

T \| \bfitdelta T 2(v)\| (\partial T )2\cup T\Gamma \lesssim ht
T | E2(v2)| Ht+1(T \dagger ),(3.10)

with \bfitdelta T 1(v) := \bfitG k
T 1(\^IkT (v)) +\bfitL k

T 1(JvK\Gamma ) - \nabla v1 and \bfitdelta T 2(v) := \bfitG k
T 2(\^IkT (v)) - \nabla v2, and

with \bfitG k
T 1 and \bfitG k

T 2 defined in (2.7) and (2.8), respectively. (Note that \bfitdelta T 1(v) depends
on v1 and v2, whereas \bfitdelta T 2(v) only depends on v2.)

Proof. Let us set \bfitdelta \prime T 1(v) := \bfitG k
T 1(\^IkT (v))+\bfitL k

T 1(JvK\Gamma ) - \nabla Ik+1
T 1 (v1). Owing to (2.7)

and (3.8), we have

\| \bfitdelta \prime T 1(v)\| 2T 1 = (\Pi k
(\partial T )1(v1) - Ik+1

T 1 (v1), \bfitdelta 
\prime 
T 1(v)\cdot \bfitn T )(\partial T )1 + (Jv - Ik+1

T (v)K\Gamma , \bfitdelta \prime T 1(v)\cdot \bfitn \Gamma )T\Gamma .

Since (\bfitdelta \prime T 1(v)\cdot \bfitn T )| (\partial T )1 \in \BbbP k(\scrF (\partial T )1) owing to the assumption on the reconstruction

space \BbbG k(T i;\BbbR d), we can replace \Pi k
(\partial T )1(v1) by v1 in the first term on the right-

hand side. The Cauchy--Schwarz inequality and the discrete trace inequality from
Lemma 3.4 lead to

\| \bfitdelta \prime T 1(v)\| T 1 + h
1
2

T \| \bfitdelta 
\prime 
T 1(v)\| (\partial T )1\cup T\Gamma \lesssim \| \bfitdelta \prime T 1(v)\| T 1

\lesssim h
 - 1

2

T

\Bigl( 
\| v1  - Ik+1

T 1 (v1)\| (\partial T )1 + \| Jv  - Ik+1
T (v)K\Gamma \| T\Gamma 

\Bigr) 
.

Invoking (3.6)--(3.7) together with \bfitdelta T 1(v) = \bfitdelta \prime T 1(v)+\nabla (Ik+1
T 1 (v1) - v1) and a triangle

inequality then proves (3.9). The proof of (3.10) uses similar arguments.

3.4. Error estimate. Recall that u and \^uh are the solutions to (2.1) and (2.14),
respectively. We set ui := u| \Omega i

, i \in \{ 1, 2\} .

Lemma 3.9 (consistency and boundedness). For all \^vh \in \^Uk
h0, we define the

consistency error as \scrD h(\^vh) :=
\sum 

T\in \scrT h

\bigl\{ 
\^aT (\^I

k
T (u), \^vT ) - \^\ell T (\^vT )

\bigr\} 
. Assume that there

is t \in ( 12 , k + 1] such that ui \in Ht+1(\Omega i) for all i \in \{ 1, 2\} . Then we have

| \scrD h(\^vh)| \lesssim 
\Bigl( \sum 

T\in \scrT h

\| \bfitg T \| 2\ast T + \| \xi T \| 2\#T

\Bigr) 1
2\times \| \^vh\| \^ah

,

where

\| \bfitg T \| 2\ast T := \kappa 1

\Bigl( 
\| \bfitdelta T 1(u)\| 2T 1 + hT \| \bfitdelta T 1(u)\| 2(\partial T )1\cup T\Gamma 

\Bigr) 
+ \kappa 2

\Bigl( 
\| \bfitdelta T 2(u)\| 2T 2 + hT \| \bfitdelta T 2(u)\| 2(\partial T )2

\Bigr) 
,(3.11)

\| \xi T \| 2\#T :=
\sum 

i\in \{ 1,2\} 

\kappa ih
 - 1
T \| ui  - Ik+1

T i (ui)\| 2(\partial T )i + \kappa 1h
 - 1
T \| Ju - Ik+1

T (u)K\Gamma \| 2T\Gamma ,(3.12)

with \bfitdelta T 1(u) := \bfitG k
T 1(\^IkT (u)) +\bfitL k

T 1(gD) - \nabla u1 and \bfitdelta T 2(u) := \bfitG k
T 2(\^IkT (u)) - \nabla u2.
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Proof. Rearranging the terms and using the PDE satisfied by the exact solution
in \Omega 1 \cup \Omega 2, we have \scrD h(\^vh) = \Psi 1 +\Psi 2 with

\Psi 1 :=
\sum 
T\in \scrT h

\biggl\{ \sum 
i\in \{ 1,2\} 

\Bigl( 
\kappa i(\bfitG 

k
T i(\^IkT (u)),\bfitG 

k
T i(\^vT ))T i + (\nabla \cdot (\kappa i\nabla ui), vT i)T i

\Bigr) 
+ \kappa 1(\bfitL 

k
T 1(gD),\bfitG k

T 1(\^\bfitv T ))T 1  - (gN , vT 2)T\Gamma 

\biggr\} 
,

\Psi 2 :=
\sum 
T\in \scrT h

\sum 
i\in \{ 1,2\} 

\^sT i(\^IkT i(u), \^vT i) + \kappa 1h
 - 1
T (JIk+1

T (u)K\Gamma  - gD, JvT K\Gamma )T\Gamma .

Using an integration by parts for \nabla \cdot (\kappa i\nabla ui), the definitions (2.7)--(2.8) of the gradient
reconstructions and the fact that

\sum 
T\in \scrT h

(v(\partial T )i ,\nabla ui\cdot \bfitn T )(\partial T )i = 0, i \in \{ 1, 2\} (since

ui \in H
3
2+\varepsilon (\Omega i) by assumption), we infer that

\Psi 1 =
\sum 
T\in \scrT h

\biggl\{ 
 - \kappa 1((\bfitG 

k
T 1(\^IkT (u)) +\bfitL k

T 1(gD))\cdot \bfitn \Gamma , JvT K\Gamma )T\Gamma 

+ (\kappa 1\nabla u1\cdot \bfitn \Gamma , vT 1)T\Gamma  - (\kappa 2\nabla u2\cdot \bfitn \Gamma , vT 2)T\Gamma + ((\kappa 2\nabla u2  - \kappa 1\nabla u1)\cdot \bfitn \Gamma , vT 2)T\Gamma 

+ \kappa 1(\bfitdelta T 1(u),\nabla vT 1)T 1 + \kappa 1(\bfitdelta T 1(u)\cdot \bfitn T , v(\partial T )1  - vT 1)(\partial T )1

+ \kappa 2(\bfitdelta T 2(u),\nabla vT 2)T 2 + \kappa 2(\bfitdelta T 2(u)\cdot \bfitn T , v(\partial T )2  - vT 2)(\partial T )2

\biggr\} 
=
\sum 
T\in \scrT h

\biggl\{ 
 - \kappa 1(\bfitdelta T 1(u)\cdot \bfitn \Gamma , JvT K\Gamma )T\Gamma 

+
\sum 

i\in \{ 1,2\} 

\kappa i(\bfitdelta T i(u),\nabla vT i)T i + \kappa i(\bfitdelta T i(u)\cdot \bfitn T , v(\partial T )i  - vT i)(\partial T )i

\biggr\} 
.

Moreover, recalling the definition of the stabilization bilinear forms \^sT i , that of \^IkT i(u),
and since JuK\Gamma = gD, we have

\Psi 2 =
\sum 
T\in \scrT h

\biggl\{ \sum 
i\in \{ 1,2\} 

\kappa ih
 - 1
T (\Pi k

(\partial T )i(ui  - Ik+1
T i (u)), v(\partial T )i  - vT i)(\partial T )i

+ \kappa 1h
 - 1
T (JIk+1

T (u) - uK\Gamma , JvT K\Gamma )T\Gamma 

\biggr\} 
.

We conclude the proof by invoking the Cauchy--Schwarz inequality and the definition
of \| \^vh\| \^ah

.

Theorem 3.10 (error estimate). Let Assumption 3.1 be fulfilled. Assume that
there is t \in ( 12 , k + 1] such that ui \in Ht+1(\Omega i) for all i \in \{ 1, 2\} . Then we have\sum 

T\in \scrT h

\sum 
i\in \{ 1,2\} 

\kappa i\| \nabla (ui  - uT i)\| 2T i \lesssim 
\sum 
T\in \scrT h

\sum 
i\in \{ 1,2\} 

\kappa i\| \nabla (ui  - Ik+1
T i (ui))\| 2T i

+
\sum 
T\in \scrT h

\Bigl( 
\| \bfitg T \| 2\ast T + \| \xi T \| 2\#T

\Bigr) 
,(3.13)

with \| \bfitg T \| \ast T and \| \xi T \| \#T defined in (3.11) and (3.12), respectively. Moreover, if
Assumptions 3.2 and 3.3 are also fulfilled, then we have\sum 

T\in \scrT h

\sum 
i\in \{ 1,2\} 

\kappa i\| \nabla (ui  - uT i)\| 2T i \lesssim h2t
\sum 

i\in \{ 1,2\} 

\kappa i| ui| 2Ht+1(\Omega i)
.(3.14)
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AN UNFITTED HHO METHOD WITH CELL AGGLOMERATION A871

Proof. For all T \in \scrT h, we define the discrete error \^eh \in \^Uk
h0 such that \^eT :=

\^IkT (u)  - \^uT \in \^Uk
T for all T \in \scrT h. Then we have \scrD h(\^eh) = \^ah(\^eh, \^eh). Lemmas 3.6

(stability) and 3.9 (consistency and boundedness) give

\| \^eh\| \^ah
\lesssim 

\Biggl( \sum 
T\in \scrT h

\| \bfitg T \| 2\ast T + \| \xi T \| 2\#T

\Biggr) 1
2

.

Since \nabla (ui  - uT i) = \nabla (ui  - Ik+1
T i (ui)) +\nabla eT i , invoking the triangle inequality leads

to (3.13). Let us now prove (3.14). The bounds (3.6)--(3.7) and Lemma 3.8 (approxi-
mation for gradient reconstruction) imply that\sum 

T\in \scrT h

\sum 
i\in \{ 1,2\} 

\kappa i\| \nabla (ui  - uT i)\| 2T i \lesssim h2t
\sum 
T\in \scrT h

\sum 
i\in \{ 1,2\} 

\kappa i| Ei(ui)| 2Ht+1(T \dagger ).

Since T \dagger \subset \Delta n0(T ) for all T \in \scrT h, owing to Assumption 3.3, we infer that for all
i \in \{ 1, 2\} ,

\sum 
T\in \scrT h

| Ei(ui)| 2Ht+1(T \dagger ) \lesssim | ui| 2Ht+1(\Omega i)
. This concludes the proof.

4. Implementation aspects. The unfitted HHO method is implemented in
ProtoN, which is a slim, fast prototyping library to test major modifications within
the DiSk++ library1 [15]. For simplicity we focus on a two-dimensional setting with
unfitted meshes composed of quadrangles. We assume that the boundary of every
cell is cut at most twice and that every face is cut at most once. These assumptions
are classical when implementing unfitted methods (see, for instance, [26]) and can be
satisfied if the unfitted mesh is fine enough. Moreover, we assume that the interface
is specified by means of a level-set function.

As in DiSk++, polynomial basis functions associated with the mesh cells and faces
are used. The cell polynomials are centered at the barycenter of the cell and are scaled
by its diameter. The face basis functions associated with a subface F i, i \in \{ 1, 2\} ,
are taken to be Legendre polynomials scaled by | F i|  - 1/2. This eases the computation
of the stabilization term since the face mass matrix that has to be inverted is the
identity matrix. Moreover, this improves the conditioning of the stiffness matrix.

Remark 4.1 (three-dimensional (3D)). Since the fitted polyhedral HHO method
is already implemented for 3D problems in DiSk++, developing 3D unfitted HHO
methods essentially requires taking into account the richer cut configurations that
can occur.

4.1. Mesh data structure and preprocessing. The mesh data structure
hinges on the features developed for fitted HHO methods (see [15, section 3]). It
is independent from the space dimension and from the shape of the elements. Com-
pared with DiSk++, some changes in the mesh data structure were introduced so as
to provide additional information concerning the cut cells. This information which is
stored for each cell contains the following:

\bullet The status of the cell (in \scrT 1
h , \scrT 2

h , or \scrT \Gamma 
h ).

\bullet A flag indicating whether or not the cell has a small cut and on which side of
the interface the small cut occurs. The criterion for a small cut is (in a slight
variation with respect to the requirement of Assumption 3.1)

| T i| \leq \alpha | T | ,(4.1)

with user-parameter \alpha \in (0, 1
2 ) (we set \alpha := 0.3 in section 5).

1See https://github.com/wareHHOuse.
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\bullet The list of neighboring cells to be used in the agglomeration procedure.
\bullet A list of points representing the interface to be used for numerical integration.
\bullet A list of quadrature weights and points if the cell results from agglomeration.

In practice the mesh preprocessing follows the following steps:
\bullet We detect in which subdomain are the nodes, the faces, and the cells of the
mesh and whether or not they are cut. Moreover, we compute the intersection
points between the faces and the interface. This initializes the representation
of the interface inside the cut cells.

\bullet We use the criterion (4.1) to select the cells that have to be agglomerated.
We also store the knowledge of which subcell is small. This is used when we
need to find suitable neighbors to these cells.

\bullet For every small cut cell, we compute the list of its neighbors, that is,

(4.2) \Delta (T ) := \Delta 1(T ) \setminus \{ T\} ,

i.e., \Delta (T ) is the collection of the cells distinct from T that share at least a
point with T . It is useful to store separately the neighbors sharing a face and
the neighbors sharing only a node. Since we consider Cartesian meshes, this
routine can be specialized for optimization.

\bullet We refine the representation of the interface. For every cell, the segment
representation that was defined on the first step above is divided into 2nint

segments for a user-specified parameter nint \geq 1. For instance, nint = 1 in
Figure 4.1c and nint = 2 in Figures 4.1a and 4.1b. In practice we want to have
nint large enough to mitigate the geometric error induced from the fact that
we consider a low-order representation of the interface in combination with
a high-order discretization method (see Figure 5.6 for an illustration). The
position of the points on the interface is determined by a bisection method
using the level-set representation of the interface.

\bullet We finally agglomerate the small cut cells as described in section 4.3.

4.2. Quadratures. During the assembly phase (and to compute errors when
reporting convergence rates), integrals over the subcells T i, i \in \{ 1, 2\} , and over the
interface T\Gamma need to be evaluated for every cut cell T \in \scrT \Gamma 

h . This operation is done by
using the list of points representing the interface (the red squares in Figure 4.1). The
quadrature points and weights over the interface are obtained by gathering all the
Gauss--Legendre quadrature points and weights over all the segments composing this
list of points. Furthermore, each subcell is decomposed into several triangles, and the
quadrature points and weights for the subcell are then obtained by gathering all the
Dunavant [22] quadrature points and weights of the subtriangles. In order to build
this subtriangulation, a point is fixed and triangles are formed such that one vertex is
this fixed point and the two other vertices are vertices of the polygonal cut subcell T i,
i \in \{ 1, 2\} . Hence we use points located on (\partial T )i and on T\Gamma , i.e., the black triangles
and the red squares shown in Figure 4.1. In practice, since we consider quadrangular
meshes, the fixed point is either the midpoint of a face (if two opposite faces are cut;
see Figure 4.1a) or a vertex of the cut cell (if two adjacent faces are cut; see Figures
4.1b and 4.1c). This choice of fixed points can reduce the number of negative weights
if the mesh is fine enough.

Remark 4.2 (alternative). One can also devise quadratures from an isoparamet-
ric representation for the interface, as, e.g., in [32].

4.3. The cell agglomeration procedure. The starting point of the procedure
is an initial shape-regular mesh fulfilling Assumption 3.2, but not necessarily Assump-
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(a) Cutting opposite faces. (b) Cutting adjacent faces. (c) Interface with corner.

Fig. 4.1. Subtriangulation of a cut cell. The interface is represented by red squares. The center
of subtriangulation of the subcells is indicated by a blue star and a green circle. The other vertices
of the subcells are indicated by black triangles. (Figure in color online.)

tion 3.1. We consider the partition \scrT h = \scrT 1
h \cup \scrT \Gamma 

h \cup \scrT 2
h as in (2.2). We further partition

the set of the cut cells as

(4.3) \scrT \Gamma 
h = \scrT ok

h \cup \scrT ko,1
h \cup \scrT ko,2

h ,

where \scrT ok
h contains all the cut cells without small cuts and \scrT ko,i

h contains all the

cut cells with a small subcell in \Omega i, i \in \{ 1, 2\} . Recall that the subsets \scrT ko,1
h and

\scrT ko,2
h are disjoint owing to [9, Lemma 6.2] if the unfitted mesh is fine enough and

the parameter \delta in Assumption 3.1 is small enough. Here the small-cut criterion is
the simpler condition (4.1). Nonetheless, we observed in all our experiments that the
subsets \scrT ko,1

h and \scrT ko,2
h were indeed disjoint.

The cell agglomeration procedure needs to fulfill two goals. First, every agglom-
erated cell must be free of small cuts. Second, if two cells T and T \prime are agglomerated,
they must have a common neighbor. Note that this second condition allows for diago-
nal agglomeration if needed (see, for instance, Figure 5.2). The procedure is outlined
in Algorithm 1. In stage 1, for every cell T in \scrT ko,1

h (having a small cut in \Omega 1), we

find a neighbor \scrN 1(T ) \in (\scrT 1
h \cup \scrT ok

h \cup \scrT ko,2
h ) \cap \Delta (T ). The existence of \scrN 1(T ) follows

from [9, Lemma 6.3] (if the mesh is fine enough and the parameter \delta small enough),
and by construction the agglomerated cell T \cup \scrN 1(T ) has no small cuts. We denote\widetilde \scrT hko,2 to be the subset composed of the cells in \scrT ko,2

h that have not been chosen

as neighbors during stage 1. In stage 2, for every cell T in \widetilde \scrT hko,2 (having a small
cut in \Omega 2 and that has not yet been agglomerated after stage 1), we find a neighbor
\scrN 2(T ) \in (\scrT 2

h \cup \scrT ok
h \cup \scrT ko,1

h ) \cap \Delta (T ). The existence of \scrN 2(T ) again follows from [9,
Lemma 6.3] under the same conditions, and by construction T \cup \scrN 2(T ) has no small
cuts. However, the actual agglomerated cell may be larger than T \cup \scrN 2(T ) (i.e., some
chain of agglomerations can occur), and the goal of stage 3 is to modify \scrN 1(T ) for
some cells in \scrT ko,1

h to avoid this. The idea is that if a cell in \scrT ko,1
h is at the same

time pointing (by means of \scrN 1 in stage 1) to a cell in \scrT ko,2
h and is pointed to by a cell

in \widetilde \scrT hko,2 (by means of \scrN 2 in stage 2), then the pointer \scrN 1(T ) is changed unless the
cell \scrN 1(T ) belongs to \scrT ko,2

h and is not pointed to by another cell. After completion

of stage 3, all the agglomerated cells are collected in the subset \scrT agglo
h , and the final

mesh produced by the procedure is

\widetilde \scrT h = ((\scrT h\setminus \{ T,\scrN 1(T ) | T \in \scrT ko,1
h \} )\setminus \{ T,\scrN 2(T ) | T \in \widetilde \scrT hko,2\} ) \cup \scrT agglo

h .(4.4)
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Algorithm 1. Cell agglomeration procedure.

Require: Mesh \scrT h satisfying Assumption 3.2.
1. For every T \in \scrT ko,1

h , find a suitable neighbor \scrN 1(T ) \in (\scrT 1
h \cup \scrT ok

h \cup \scrT ko,2
h )\cap \Delta (T ).

2. For every T \in \widetilde \scrT hko,2, find a suitable neighbor \scrN 2(T ) \in (\scrT 2
h \cup \scrT ok

h \cup \scrT ko,1
h )\cap \Delta (T ).

3. For every T \in \scrT ko,1
h , set \scrN 1(T ) := T \prime if the following two conditions are met:

(3.a) there is T \prime \in \widetilde \scrT hko,2 such that \scrN 2(T
\prime ) = T ;

(3.b) \scrN 1(T ) /\in \scrT ko,2
h or there is T \prime \prime \in \scrT ko,1

h \setminus \{ T\} such that \scrN 1(T ) = \scrN 1(T
\prime \prime ).

Otherwise, do not modify \scrN 1(T ).

4. Generate a new mesh \widetilde \scrT h as in (4.4).

Lemma 4.1 (cell agglomeration). Every agglomerated cell is in \Delta 1(T
\#) for some

T\# \in \scrT h.

Proof. Assume that a cell T \in \scrT ko,1
h is chosen by a cell T \prime \in \widetilde \scrT hko,2, i.e., T =

\scrN 2(T
\prime ), so that condition (3.a) of Algorithm 1 is fulfilled. By definition of the subset\widetilde \scrT hko,2, T \prime has not been chosen by any cell in stage 1. Hence there is no propagation

of the agglomeration in the direction of T \prime . Let us now consider the propagation in
the direction of T . Recall that according to stage 1, \scrN 1(T ) is in \scrT 1

h \cup \scrT ok
h \cup \scrT ko,2

h . If,
actually, \scrN 1(T ) \in \scrT 1

h \cup \scrT ok
h , then condition (3.b) is fulfilled so that we set \scrN 1(T ) :=

T \prime . Hence the agglomerated cell contains T and T \prime , and potentially any other cell\widetilde T2 \in \widetilde \scrT hko,2 such that \scrN 2( \widetilde T2) = T . Hence all these cells are in \Delta 1(T ). Otherwise,
\scrN 1(T ) \in \scrT ko,2

h . Then, there are two possibilities. Either there is T \prime \prime \in \scrT ko,1
h such

that \scrN 1(T ) = \scrN 1(T
\prime \prime ). In this case condition (3.b) is again fulfilled, so that we set

\scrN 1(T ) := T \prime , and the agglomerated cell is again in \Delta 1(T ). Otherwise, there is no
such T \prime \prime , so that condition (3.b) is not fulfilled, which means that the agglomerated

cell is composed of T \prime , T = \scrN 2(T
\prime ), \scrN 1(T ), and potentially any other cell \widetilde T2 \in \widetilde \scrT hko,2

such that \scrN 2( \widetilde T2) = T . Again all these cells are in \Delta 1(T ). Finally, the reasoning is
similar if one considers a cell T \in \scrT ok

h \cup \scrT 1
h \cup \scrT 2

h which is pointed to by a cell from

\scrT ko,1
h and a cell from \widetilde \scrT hko,2.

Remark 4.3 (stage 3). Algorithm 1 without stage 3 has been proposed in [9,
section 6]. In this case one can show that every agglomerated cell is in \Delta 2(T

\#) for
some T\# \in \scrT h (instead of \Delta 1(T

\#)). Indeed, a cell T in \scrT ko,2
h can choose a cell T \prime in

\scrT ko,1
h that chooses a cell T\# in \scrT ko,2

h \cup \scrT 1
h \cup \scrT ok

h . And similarly, another cell \~T in \scrT ko,2
h

can choose a cell \~T \prime in \scrT ko,1
h that chooses T\#. The agglomeration cannot propagate

further since if a cell in \scrT ko,1
h chooses T as a neighbor, then T does not look for a

neighbor and does not choose T \prime (see the definition of \widetilde \scrT hko,2). Furthermore, another
benefit of stage 3 is the reduction whenever possible of the size of the agglomerated
cells by promoting the agglomeration of pairs of cells, one from \scrT ko,1

h and the other

from \widetilde \scrT hko,2. See Figure 5.3 for an illustration of the three stages.

Remark 4.4 (choice of neighbor). When looking for a neighbor in stages 1 and 2
in Algorithm 1, picking a neighbor that shares at least one common face is preferred.
If there are no such neighbors, then diagonal agglomeration by means of a neighbor
sharing only a point is performed (see Figure 5.2). Moreover, in the case where several
cells sharing at least one common face (resp., no common faces) with some T \in \scrT ko,i

h

are available, the cell having the smallest (positive) area in \Omega \=\imath (i.e., the smallest | T\=\imath | )
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is chosen. This way, the cells in \scrT ko,1
h tend (whenever possible) to be agglomerated

with cells from \scrT ko,2
h . This reduces the total number of agglomerations as well as the

triggering of stages 2 and 3.

5. Numerical experiments. We present numerical experiments to illustrate
the cell agglomeration procedure and the convergence rates of Theorem 3.10. We also
study the condition number of the stiffness matrix (after static condensation).

In all the experiments we consider the unit square domain \Omega := (0, 1)2 with
homogeneous Cartesian meshes of step size h = 2 - N with N \in \{ 3, 4, 5, 6, 7\} . Note
that here the mesh size h refers to the number of subdivisions of each side of \Omega before
the cell agglomeration procedure. The interface is represented by a level-set function
\Phi so that \Gamma := \{ (x, y) \in \Omega | \Phi (x, y) = 0\} , \Omega 1 := \{ (x, y) \in \Omega | \Phi (x, y) < 0\} , and
\Omega 2 := \{ (x, y) \in \Omega | \Phi (x, y) > 0\} . We consider a circular interface and a flower-like
interface for which the level-set functions are, respectively,

\Phi C(x, y) := (x - a)2 + (y  - b)2  - R2,(5.1)

\Phi F (x, y) := (x - a)2 + (y  - b)2  - R2 + c cos(n\theta ),(5.2)

with \theta := arctan( y - b
x - a ) if x \geq a, \theta := \pi + arctan( y - b

x - a ) if x < a, where a, b, c \in (0, 1).

5.1. Agglomeration procedure. We test the agglomeration procedure de-
tailed in section 4.3. The circular interface is first considered with R := 1/3 and
a = b := 0.5 in (5.1). We plot the interface and the mesh obtained after the cell
agglomeration procedure in Figure 5.1. As expected, each agglomerated cell is in the
neighborhood of one of the cells of the original mesh, i.e., there is no propagation of
the agglomeration. We also remark that all the agglomerations have been done by
using cells sharing one face (see Remark 4.4).

(a) The full mesh. (b) A zoom.

Fig. 5.1. Circular interface (h = 1/16). The interface is represented by red squares. Agglomer-
ated cells are highlighted in blue. The arrows indicate how the agglomerations have been performed.
(Figure in color online.)

We give more details on the cell agglomeration procedure in Table 5.1. We note
that for meshes that are fine enough, there are almost as many cells in \scrT ko,1

h as in
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\scrT ko,2
h , each subset being composed of about 35\% of the cells in \scrT \Gamma 

h . However, since

the cells in \scrT ko,1
h look in order of priority for neighbors in \scrT ko,2

h , there are far fewer

cells in\widetilde \scrT hko,2 than in \scrT ko,2
h . We also notice that stage 3 of Algorithm 1 is never active

here, i.e., \#(\widetilde \scrT hko,1) = 0, where \widetilde \scrT ko,1
h is the collection of the cells T \in \scrT ko,1

h such that
\scrN 1(T ) is modified during stage 3.

Table 5.1
Circular interface. Details on the cell agglomeration process for the various unfitted meshes:

number of mesh cells, cut cells, and cells in the subsets \scrT ok
h , \scrT ko,1

h , \scrT ko,2
h , \widetilde \scrT ko,2

h , and \widetilde \scrT ko,1
h .

h - 1 \scrT h \scrT \Gamma 
h \scrT ok

h \scrT ko,1
h \scrT ko,2

h
\widetilde \scrT ko,2
h

\widetilde \scrT ko,1
h

8 64 20 8 8 4 0 0
16 256 44 8 24 12 0 0
32 1024 84 44 24 16 0 0
64 4096 172 56 68 48 8 0
128 16384 340 120 108 112 24 0
256 65536 684 184 260 240 48 0

We now test a flower-like interface with the parameters R := 1/3, a := 0.47,
b := 0.46, n := 12, and c := 0.015 in (5.2). We present in Figure 5.2 the mesh
after the agglomeration process. As expected the agglomerated cells are contained in
the neighborhood of one cell of the original mesh. Interestingly, we observe that one
agglomeration has been done with a diagonal neighbor, i.e., a neighbor that shares a
node and no faces. Indeed, considering the right panel of Figure 5.2, the cell in the
bottom left corner is in \scrT ko,2

h and all its neighbors sharing at least one face are either

in \scrT ko,2
h or in \scrT 1

h . A diagonal agglomeration is then considered.

Fig. 5.2. Flower-like interface (h = 1/16). The interface is represented by red squares. Agglom-
erated cells are highlighted in blue. The arrows indicate how the agglomerations have been performed.
Left: global view. Right: zoom near the cell where a diagonal agglomeration has occurred. (Figure
in color online.)

We give more details on the cell agglomeration procedure in Table 5.2. The results
are very similar to those reported in Table 5.1. The main difference is that stage 3
of Algorithm 1 is active in some cases. A zoom on the cells where this stage is used
is provided in Figure 5.3 (for h = 1/8). The light blue cells are the ones in \scrT ko,1

h ,

the dark blue cells are the ones in \scrT ko,2
h . A black arrow pointing from T to T \prime means
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that T chooses T \prime as a neighbor for the agglomeration. The interface is indicated by
red points. We can see on the left of the picture that a cell in \scrT ko,1

h is chosen as a
neighbor in stage 2. This cell had already chosen another neighbor during stage 1.
Since this other neighbor is also chosen by another cell in \scrT ko,1

h (the one at the top of
the picture), stage 3 is active and the cell at the left does not agglomerate any more
with the cell in the center. This reduces the size of the agglomerated cells.

Table 5.2
Flower-like interface. Details on the cell agglomeration process for the various unfitted meshes:

number of mesh cells, cut cells, and cells in the subsets \scrT ok
h , \scrT ko,1

h , \scrT ko,2
h , \widetilde \scrT ko,2

h , and \widetilde \scrT ko,1
h .

h - 1 \scrT h \scrT \Gamma 
h \scrT ok

h \scrT ko,1
h \scrT ko,2

h
\widetilde \scrT ko,2
h

\widetilde \scrT ko,1
h

8 64 22 4 11 7 2 1
16 256 46 13 19 14 3 0
32 1024 100 24 40 36 14 3
64 4096 194 42 79 73 27 3
128 16384 388 119 139 130 48 1
256 65536 784 221 286 277 95 0

(a) Stage 1. (b) Stage 2. (c) Stage 3.

Fig. 5.3. Flower-like interface (h = 1/8). Illustration of the first three stages of the cell
agglomeration procedure. (Figure in color online.)

5.2. Convergence rates. We now study the convergence of the method with
respect to h. A static condensation procedure is used to decrease the total number
of degrees of freedom. For the circular interface, we report in Table 5.3 the total
number of degrees of freedom (after static condensation) and the ratio of the system
size before and after static condensation. This highlights the benefits of performing
static condensation. In the results presented hereafter, the linear systems are solved
by a conjugate gradient method. The tolerance is fixed to 10 - 14, and we consider a
diagonal preconditioner. Moreover, the gradients are reconstructed in the full vector-
valued polynomial space \BbbG k(T i;\BbbR d) = \BbbP k(T i;\BbbR d) for k \in \{ 0, 1, 2, 3\} .

We first consider the circular interface with the exact solution:

u1(r) :=
r6

\kappa 1
, u2(r) :=

r6

\kappa 2
+R6

\biggl( 
1

\kappa 1
 - 1

\kappa 2

\biggr) 
,(5.3)

with a = b := 0.5, r2 := (x - 0.5)2 + (y - 0.5)2, and R := 1/3. Note that there are no
jumps across the interface (gD = 0 and gN = 0), but the diffusion coefficient can be
highly contrasted (i.e., \kappa 1 \ll \kappa 2). A similar test case is proposed in [10].
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Table 5.3
Circular interface. Number of degrees of freedom (dofs) of the condensed stiffness matrix and

ratio of dofs between noncondensed and condensed matrices after agglomeration of the mesh (using
nint = 4 for the interface discretization).

k = 0 k = 1 k = 2 k = 3
h - 1 dofs ratio dofs ratio dofs ratio dofs ratio
8 116 2.76 232 2.76 348 2.95 464 3.20
16 484 2.61 968 2.61 1452 2.79 1936 3.01
32 2020 2.57 4040 2.57 6060 2.74 8080 2.97
64 8092 2.53 16184 2.53 24276 2.70 32368 2.91
128 32588 2.52 65176 2.52 97764 2.68 130352 2.89
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Fig. 5.4. Circular interface. Left: convergence for nint = 10, \kappa 1 = 1, and \kappa 2 = 104. Right:
robustness with respect to contrast (\kappa 1 = 1, h = 1/64, nint = 10).

We first test the convergence of the error with respect to the mesh size h with
\kappa 1 = 1 and \kappa 2 = 104. The numerical results are reported in Figure 5.4. We recover
the expected convergence rates for the cell error H1-seminorm. Moreover, the er-
ror measured in the L2-norm also fulfills optimal convergence rates (not shown for
brevity).

We then evaluate the robustness of the method with respect to the contrast of
the coefficients \kappa 1 and \kappa 2. We consider \kappa 1 = 1 and \kappa 2 = 10\ell with \ell \in \{ 0, 2, 4, 6\} . The
results are reported in Figure 5.4. We observe that the method is robust with respect
to the contrast between \kappa 1 and \kappa 2 since the cell error H1-seminorm remains bounded
when the contrast increases.

Let us now consider the flower-like interface with parameters R := 0.31, a = b :=
0.5, n := 4, c := 0.04, and the following discontinuous solution:

u1(x, y) := cos(\pi x) cos(\pi y), u2(x, y) := sin(\pi x) sin(\pi y).(5.4)

For this test case, we set \kappa 1 = \kappa 2 := 1. The shape of the interface, the agglomer-
ated mesh (for h = 1/16), and the cell component of the numerical solution at the
quadrature nodes are presented in Figure 5.5.

We test the convergence of the cell error in the H1-seminorm for the polynomial
orders k \in \{ 0, 1, 2, 3\} . Owing to the lack of mesh resolution, we do not consider
the case with h = 1/8. The results are reported in the left panel of Figure 5.6 for
nint = 10. We observe that we recover the expected optimal convergence rates. The
value of nint is an important parameter when using high-order polynomials since a
low-order representation of the interface can slow the convergence of the method when
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Fig. 5.5. Flower-like interface. Left: mesh and shape of the interface (h = 1/16). Right: cell
component of the discrete solution at the quadrature nodes (h = 1/16, k = 0).
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Fig. 5.6. Flower-like interface. Left: convergence for different values of k (nint = 10). Right:
convergence for different values of nint (k = 3).

jumps are considered [28]. To illustrate this point, we compare different values of nint

in the right panel of Figure 5.6 for k = 3. We see that for nint small, we do not
have optimal convergence of the error. Indeed, some geometric error is introduced
by the linear piecewise representation of the interface. This error is lowered when
choosing nint larger. A more efficient technique could be the use of a higher-order
representation of the immersed interface like in [32].

5.3. Square interface problem: Condition number. As a final numerical
experiment, we evaluate the condition number cond(K) := \lambda max

\lambda min
of the stiffness matrix

K, where \lambda max and \lambda min are, respectively, the maximum and minimum eigenvalues
of K which are computed with the use of the Spectra library.2 The stiffness ma-
trix considered is the one that we use to solve the linear system, i.e., we use static
condensation. We consider \kappa 1 = \kappa 2 = 1.

We consider the square interface defined by the level-set function \Phi S(x, y) :=
max(x - 0.5, y  - 0.5) - (0.25 + a) with parameter a \in (0, 0.1); see Figure 5.7. When
a \rightarrow 0, this configuration maximizes the number of badly cut cells (and the number

2See https://spectralib.org/.
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Fig. 5.7. Square interface (h = 1/16). Left: full mesh. Right: zoom around the left top corner.
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Fig. 5.8. Square interface. Condition number of the stiffness matrix. Left: as a function of h
(a = 0.01). Right: as a function of the cut parameter a (h = 1/64).

of small subfaces). We consider a fixed unfitted 64 \times 64 square mesh. Even if we
agglomerate some mesh cells, there are small cut faces since there is no agglomeration
of faces (the faces are unchanged during the agglomeration procedure, except for the
ones that are withdrawn). For instance, the large square around the corner is an
octagon (and not a square) since it has eight faces (see Figure 5.7). In a similar
way, the agglomerated cells along the interface are hexagons, not rectangles. In this
configuration, for a small enough, a corresponds to the length of the smallest subface,
and our goal is to explore the behavior of the condition number of the stiffness matrix
when a \rightarrow 0.

The results are reported in Figure 5.8. The right panel shows that the condition
number does not diverge when a \rightarrow 0, even if some faces are cut with very tiny subsets.
We think that the scaling of the face basis functions associated with a subcell F i,
i \in \{ 1, 2\} , by | F i|  - 1/2 tames the potential ill-conditioning of the matrix due to the
small-cut faces. The left panel in Figure 5.8 presents the evolution of the condition
number as a function of h. When h \rightarrow 0, the condition number grows like O(h - 2)
which is the usual rate for second-order elliptic differential operators. Moreover, the
condition number remains reasonable when k increases. This result is different from
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the one reported for cutFEM in [37], where strong growth of the condition number
with increasing polynomial degree was observed.
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