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Abstract

Quantitative pharmacokinetic analysis of Positron Emission Tomography

(PET) data typically requires a dynamic scan of at least one hour, which

poses a challenge for both clinical and research studies. Instead, in standard

practice, a static 10 minute scan is used to calculate the standardised uptake

value ratio (SUVR). SUVR approximates tracer binding but is biased by blood

flow changes, rendering it unsuitable for longitudinal studies. In this thesis,

the availability of magnetic resonance imaging (MRI) data, simultaneously ac-

quired from a PET-MR scanner is exploited to reduce the time required for

accurate PET quantification.

The main body of this work comprises the development of a framework

to incorporate blood flow information from arterial spin labelled (ASL) MRI

data into the existing simplified reference tissue model (SRTM) to replace the

early phase of the PET data, reducing the acquisition time. This reduced

acquisition time (RT-) SRTM was evaluated on [18F]-florbetapir data for the

estimation of both regional average and voxelwise amyloid burden (BPND),

and was validated against the gold standard BPND using a 60 minute scan.

The first step of the RT-SRTM requires the PET tracer delivery param-

eter, R1, to be estimated from the ASL cerebral blood flow (CBF) maps.

Several methods were evaluated: linear regression using region as a covariate,

multi-atlas propagation with image fusion, and deep learning based regression

using a convolutional neural network. The RT-SRTM was shown to facili-

tate accurate regional voxelwise quantification in half the acquisition time (30

minutes).
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Additionally, deep learning based regression was used to learn the model

which maps ASL-CBF and dynamic PET data to BPND in a single step (SS-

DL). The SS-DL model exploits all available information, and avoids noise

sensitive voxelwise fitting. This allows the acquisition time to be cut to 15

minutes, and facilitates accurate voxelwise BPND quantification on a time-

scale manageable for almost all patients and studies.
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The novel methodologies developed in this thesis, along with the analysis per-

formed have several direct impacts on research. This work has quantified the

error and bias inherent in using the standardised uptake value ratio (SUVR)

to estimate amyloid burden, which is the current standard practice. This may

influence how future research studies are designed and analysed, as well as

influencing the analysis of on-going studies such as Insight46. Furthermore,

the reduced acquisition time methods developed in this work (RT-SRTM and

SS-DL) provide a potential solution to the pressing, unmet need for a method

of accurately quantifying amyloid burden within an acquisition time which

is both tolerable and cost-effective. Furthermore, the comparison of cerebral

blood flow estimation using arterial spin labelled (ASL) magnetic resonance

imaging (MRI) with that derived from dynamic amyloid positron emission

tomography (PET) data highlights the potential to use either method as an

imaging biomarker, and provides an insight into the limitations of each tech-

nique. All of the methods developed and conclusions drawn in this thesis can

potentially be translated into clinical practice in the future.

The work within this thesis has already been disseminated through one

published peer reviewed journal paper, with two more under development.

Where possible open source code is used and sufficient detail is given to allow

other researchers to implement the methods described. This work has also

been presented at a series of international conferences, namely the Medical

Image Computing and Computer Assisted Intervention Conference (MICCAI

2016,2017,2018), the PET and SPECT/MR Conference (PSMR 2017,2018),
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the Functional Neuroreceptor Mapping of the Living Brain Symposium (NRM

2018) and the Human Amyloid Imaging Conference (HAI 2018).
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Nomenclature

General Phamacokinetic modelling

VT = CT
Cp

: volume of distribution in target tissue which is the ratio of the

tracer concentration in the target tissue, CT , to the concentration held in

blood plasma, Cp.

DV R = VT
VND

: distribution volume ratio, where VND is the non-displaceable

volume of distribution.

BPND =DV R−1: non-displaceable binding potential.

Ccompartment: tracer concentration within each compartment.

knumber: rate constant of the rate of change between compartments.

Specific notation used in chapters 5-9

t = ts, te: this indicates the start (ts) and end (te) times of the scan where

t= 0 at injection. For the gold standard method ts, te = 0,60 minutes.

R1 = K1
K1′ : the rate constant of tracer delivery to the target tissue (K1) relative

to the reference tissue (K ′1)

k2: rate constant from target tissue to blood.

BPND = fNDBmax
kD

: the non-displaceable binding potential, where fND is the

tissue free fraction, kD is the equilibrium dissociation constant and Bmax is

the available target concentration. Since fND and kD remain constant across

subjects, BPND is proportional to the target density.

R∗1, k∗2, BP ∗ND: these are the gold standard parameter values estimated using

the SRTM on PET data from t= 0,60 minutes.

CT (t): a vector containing the tracer concentration in the target tissue over
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time.

CR(t): a vector containing the tracer concentration in the reference tissue over

time.

CpopR (t): a matrix containing the reference region concentration over time for

a population of subjects

C
pop
R (t): a vector containing the mean population tracer concentration over

time.

C‡T (t) =CT (t)−R1CR(t): C‡T (t) is a dummy variable to group the pre-defined

values together.
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Chapter 1

Introduction

Positron Emission Tomography (PET) facilitates the quantification of a range

of important biomarkers through the injection and detection of targeting radio-

tracers. To interpret the measured signal and derive the biological parameters

of interest, data are collected dynamically from injection, covering radiotracer

delivery to tissue, interaction with the target, and tracer washout. This pro-

vides a map of the spatio-temporal concentration of the tracer in vivo. A

pharmacokinetic model which describes these processes may then be fitted to

these dynamic data to estimate the biological parameters such as radiotracer

target density.

Depending on the radiotracer administered, the dynamic data acquisition

time required to fit the model may be 60 minutes or more. This is prohibitive

in a clinical context due to patient discomfort, restrictions on scanner time

availability, and the increased chance of subject motion which corrupts the

data. Consequently a simplified technique is commonly employed.

The standardised uptake value ratio (SUVR) is a measure of relative tracer

uptake which can be calculated from a static scan lasting approximately 10

minutes. SUVR is calculated by dividing the tracer concentration within the

tissue of interest by the concentration in a reference region. The reference

region consists of tissue considered to be free of the radiotracer target and

represents the non-displaceable (ND) tracer concentration (i.e. tracer in the

tissue which is not bound to the intended target). When the ratio of the tracer
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concentration within the target tissue and the reference tissue has reached a

steady-state, SUVR approximates the distribution volume ratio (DVR). The

DVR is related to the density of the imaging target and can also be estimated

from pharmacokinetic modelling, see section 3.2.

However, as SUVR is calculated from a single static scan, the tracer

concentration present during the acquisition will depend on the delivery and

washout rates of the tracer, as well as on target density. Tracer delivery and

washout are intrinsically linked to blood flow, and since blood flow can change

during the progression of disease (Benedictus et al., 2016), and indeed fluc-

tuate over the course of a day (Parkes et al., 2004), SUVR estimates may be

confounded.

The influence of cerebral blood flow (CBF) changes on SUVR estimates

has been highlighted in longitudinal Alzheimer’s disease studies in which

the target of interest was the protein amyloid-β (van Berckel et al., 2013).

Amyloid-β is an early indicator of disease onset and a therapeutic target,

hence accurately quantifying amyloid-β density is of paramount importance.

Here, variation in blood flow has been shown to cause spurious changes in

SUVR which are unrelated to target density (van Berckel et al., 2013; Cselényi

and Farde, 2015). Conversely, target density estimates derived from pharma-

cokinetic modelling of dynamic data starting from radiotracer injection can

account for blood flow, as tracer delivery is parameterised within the model.

Dynamic PET data can be divided into two phases: the early phase,

in which the signal is dominated by tracer delivery to tissue (Hsiao et al.,

2012), and the late phase, which contains information related to tracer binding

and washout, and is where SUVR is estimated. The intrinsic correlation be-

tween tracer delivery and CBF has been demonstrated for an amyloid-β tracer

in Chen et al. (2015). Therefore, if CBF can be measured independently from

the PET acquisition, then the data acquisition time may be reduced such that

only the late phase data are acquired to estimate the remaining parameters.

The gold standard for the measurement of CBF uses radiolabelled water
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as a PET tracer (H2O15-PET). However, this approach requires invasive arte-

rial blood sampling, and the data cannot generally be acquired concurrently

with another PET study as the signal from the two tracers cannot easily be

distinguished; therefore the overall acquisition time would likely increase.

Arterial Spin Labelling (ASL)-magnetic resonance imaging (MRI) is a

non-invasive imaging technique which applies a magnetic ‘tag’ to arterial blood,

such that it can be used as an endogenous contrast agent. ASL can be used

to estimate CBF, as validated by comparison with the gold standard H2O15-

PET (Fan et al., 2016). Whilst the accuracy of the technique is dependent on

the implementation, high quantitative accuracy has been achieved when ASL

data are normalised to a reference region (Goetti et al., 2014).

The introduction of combined PET-MRI scanners, which facilitate simul-

taneous acquisition, means that ASL and PET data can be acquired con-

currently. By combining CBF information from ASL, to provide early phase

delivery information, with the dynamic late PET data, the total acquisition

time can be significantly reduced. Thus amyloid-β burden can be accurately

quantified in a clinically feasible time frame, increasing patient comfort and

throughput without sacrificing quantitative accuracy.

1.1 Motivation and Aim

The potential to provide robust PET target density estimates within a clini-

cally feasible time frame means that longitudinal studies could be carried out

without results being confounded by changes in blood flow. Furthermore, this

would also increase the volume and range of patients eligible due to the re-

duced scan time. The main aim of this work was to explore ways in which the

blood flow information from ASL-MRI can be combined with dynamic PET

data to improve PET quantification. In this work the methods are applied to

amyloid PET data for the imaging of Alzheimer’s disease (AD), as this is a

patient population who would find long scans particularly challenging and in

which changes in blood flow are inherent both in disease progression and nor-
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mal ageing. However, the techniques used are not amyloid specific and could

be applied to any PET tracer with similar biokinetics.

1.2 Outline
This thesis is structured as follows: the relevant background and theory of AD

and the imaging modalities used are given in chapter 2, while chapter 3 reviews

current quantification techniques for PET and their limitations including the

susceptibility of simplified techniques to changes in blood flow, and chapter 4

describes how blood flow can be quantified using MRI. Chapter 5 then de-

scribes a methodology to exploit the simultaneous measurement of blood flow

using MRI and PET to reduce the overall data acquisition time from 60 to 30

minutes, by adapting a standard kinetic model (RT-SRTM). Chapter 6 looks

in more detail at the correlation between measures from PET and MRI, which

are related to blood flow, such that in chapter 7 the RT-SRTM can be opti-

mised and validated against the gold standard. Chapters 8 and 9 then explore

novel image processing techniques to extend the proposed methodology for use

on a voxelwise basis.

1.3 Thesis Contributions
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Brian F Hutton, and Sébastien Ourselin. Reduced acquisition time

PET pharmacokinetic modelling using simultaneous ASLâĂŞMRI:

proof of concept. Journal of Cerebral Blood Flow and Metabolism,

page 271678X18797343, sep 2018c. ISSN 15597016. doi: 10.1177/

0271678X18797343. URL http://www.ncbi.nlm.nih.gov/pubmed/

30182792
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Chapter 2

General Background and

Theory

This chapter describes the importance of imaging in Alzheimer’s disease and

the role played by both positron emission tomography (PET) and magnetic

resonance imaging (MRI). It also gives the basic theory behind these imaging

techniques in addition to the motivation for simultaneous PET-MRI and the

instrumentation which facilitates acquisition.

2.1 Imaging in Alzheimer’s Disease
Alzheimer’s Disease (AD) is the leading cause of dementia, which affects over

45 million people worldwide, a number which is expected to double every 20

years due to an increasing and ageing population (Prince et al., 2015). There

is currently no cure, and available treatments may relieve symptoms and slow,

but not stop, progression1.

The leading model for the progression of AD is based on the amyloid

cascade hypothesis (Karran et al., 2011). Here, the disease begins with the

deposition of the mis-folded protein amyloid-beta (Aβ) throughout the brain.

This protein, if not cleared, builds up over time, forming plaques which are

thought to initiate a cascade including deposition of tau, neuroinflammation

1National Institute for Health and Care Excellence (NICE): Donepezil, Galantamine,
Rivastigmine and Memantine for the treatment of Alzheimer’s Disease,https://www.nice.
org.uk/guidance/ta217/resources 2016

https://www.nice.org.uk/guidance/ta217/resources
https://www.nice.org.uk/guidance/ta217/resources
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leading to synaptotoxicity and neuronal cell death (atrophy) and cognitive

decline. There is much debate about whether the deposition of Aβ and tau is

independent, causative or linked via an upstream process (Jack et al., 2013)

and whilst other, more complex, theories have been proposed, the accumulation

of Aβ is still thought to be a central process within the disease (Herrup, 2015)

and Aβ accumulation has been shown to occur approximately 15 years before

symptom onset (Bateman et al., 2012).

Figure 2.1: The hypothetical model of biomarker abnormality originally proposed
in Jack et al. (2010) and updated in Jack et al. (2013) (Reproduced from Jack et al.
(2013) with permission by Elsevier.)

According to the theoretical model proposed in Jack et al. (2010), and

updated based on available evidence in Jack et al. (2013), there are several

biomarkers of AD which become abnormal at different points along the pro-

gression of the disease. Figure 2.1 shows these biomarkers and the order in

which they appear to become abnormal: 1) Aβmeasured in cerebral spinal fluid

(CSF) (CSF Aβ42), closely followed by 2) Aβ measured using PET (Amyloid

PET), then 3) tau protein in CSF (CSF tau), followed much later by 5) atrophy

measured using MRI and hypo-metabolism from Fluorodeoxyglucose (FDG)

PET, and eventually 6) cognitive impairment.

The model proposed by Jack et al. (2013) takes into account the different

detection thresholds associated with each of the biomarkers. This is used to
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address the fact that tau deposition is often seen from post mortem studies

before Aβ accumulation is seen. Consequently figure 2.1 shows CSF tau as the

first biomarker to start to rise, however it reaches the detection threshold after

CSF Aβ42 and amyloid PET. This could potentially be revised following the

introduction of tau targeting PET tracers (Hahn et al., 2017).

From the model in Jack et al. (2013) it is clear that early detection of

Aβ is essential both for early diagnosis and as a potential target for ther-

apy (Liu-Seifert et al., 2015). Imaging biomarkers are vital for the diagnosis

and monitoring of AD, as they allow the disease to be studied in a minimally

invasive manner at multiple time points. From the biomarkers highlighted by

Jack et al. (2010) it is clear that the use of both PET and MRI are essential

for detecting and monitoring the disease.

2.2 Positron Emission Tomography (PET)

PET uses exogenous tracers which have two properties: a chemical structure

such that they target particular biological substances or processes when intro-

duced into the body (usually injected intravenously), and a positron emitting

nucleus. When an emitted positron meets an electron they annihilate, produc-

ing two 511 keV photons which travel in opposite directions. These photons

can be measured by PET scanner detectors, and can be used to reconstruct

the spatial distribution of the tracer in the body based on the position of

the annihilation events. Due to the small concentration of tracer required to

construct an image this technique provides a minimally invasive method to

measure biological processes in vivo without causing changes to the processes

or targets being measured. Common examples of processes imaged using PET

include glucose metabolism (FDG), blood flow (H2O15 or radio-water) and

protein deposition (e.g. amyloid and tau). The following brief explanation of

PET imaging is adapted from Bailey et al. (2005).
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2.2.1 PET detection

Each annihilation event results in two approximately collinear photons, thus

when two photons are detected within a given period of time (coincidence

window) they are considered to come from a single event. A line of response

(LOR) is drawn between the two points at which the photons were detected as

it is assumed that the event occurred somewhere along this line. To maximise

the number of photons detected, PET detectors are typically arranged in a

ring around the patient. If the time at which each of the photons was detected

is measured with sufficient accuracy then the difference in timing can be used

to reduce the likely position of the annihilation event along the LOR, as the

difference in detection time is directly related to the distance that each photon

has to travel. If this information is used in image reconstruction it is known

as time-of-flight (TOF) PET.

Standard clinically used PET detectors consist of a series of components:

• The scintillation crystal: converts the 511keV photon to lower energy

visible photons, where the number of photons is proportional to the

energy deposited in the crystal.

• The photomultiplier tube (PMT): converts the scintillation photons into

photoelectrons which are then multiplied to produce a current which is

also proportional to the energy of the detected photon. Some modern

scanners use alternatives to PMTs, see section 2.4.

• The electronics: which include coincidence, timing and positioning cir-

cuits, and write the data to a file. If the position and timing for each

detected event are recorded then this is a list-mode acquisition, resulting

in a list-mode file. This allows the user to have full control over the

image reconstruction.

PET detectors are generally arranged into cylindrical rings such that the de-

tected LORs may be drawn in 3D.



2.2. Positron Emission Tomography (PET) 40

2.2.2 PET reconstruction

To reconstruct the detected photons into images of the tracer distribution

the origin of the annihilation photons must be estimated. The most straight-

forward method of PET image reconstruction is filtered back projection (FBP).

Here the detected photons are back projected along the LOR where each po-

sition along this line is given equal value. The image is then filtered to reduce

blurring (remove low frequencies) and control noise (remove high frequencies).

This technique is computationally fast and is linear, thus the reconstruction is

not influenced by the tracer distribution. However for FBP there is no way to

model the imperfect and stochastic nature of the photon emission and detec-

tion process. Instead iterative reconstruction methods can be used, the most

common of which is ordered subset expectation maximisation (OSEM).

For iterative reconstruction methods, an estimate of the image is forward

projected to the detectors and compared with the detected counts, and an

update of the image estimate is generated. This is repeated until convergence

or until an adequate image is estimated. For OSEM only a subset of image

projections are used to update the estimate each time, making it more com-

putationally efficient. The number of iterations and subsets are defined by

the user, where an iteration is completed when all subsets have been used to

update the estimate. The higher the number of iterations the closer the es-

timated image is to the maximum likelihood solution, however the noise also

increases such that the choice of the iterations and subsets is a compromise

between noise and accuracy. TOF information can be incorporated such that

the probability of the location of the emission event along the LOR is no longer

uniform but can be isolated to a region in the order of a few cms, speeding up

convergence which reduces the noise and increases the contrast to noise ratio.

During the image reconstruction several processes should be modelled to

improve accuracy of the reconstructed tracer distribution.

Normalisation. For normalisation the detectors are uniformly irradiated pro-

ducing a map where the difference in intensities is determined only by the dif-
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ferent sensitivities of the detectors, either intrinsic or geometric. The inverse

of this map can then be used in the reconstruction to account for this effect.

Randoms. Random coincidences occur when two photons from independent

annihilation events are detected within the same coincidence window. This

causes the incorrect LOR to be drawn between the detected photons, and the

event origin to be incorrectly estimated. The randoms rate depends on the rate

of single photon detections (singles) on each detector pair and on the length of

the timing window. The higher the singles rate and the longer the coincidence

window, the higher the randoms rate. The randoms rate is usually estimated

using a delayed coincidence channel where the timing signal from one channel

is delayed before going to the coincidence circuits (Markiewicz et al., 2017). In

this case there will be no true coincidences, as the data has been delayed, so

all coincidences can be counted as randoms and subtracted from the prompt

channel to leave true and scattered coincidences.

Scatter. These are detected photons which have undergone scatter which

causes a change in photon direction and a loss of energy. Compton scatter

is the primary scatter process for photons of 511 keV. Some scatter events can

be removed from the reconstruction process by only accepting events within an

energy range centred on 511 keV (energy window) however some scattered pho-

tons will still fall within this range (scatter fraction) (Zaidi and Koral, 2004).

The scatter fraction is generally modelled using an analytical simulation for

each LOR using the attenuation map (see attenuation below), the scatter prob-

ability at a point is given by the Klein-Nishina formula and the efficiencies of

the detectors which define the LOR (Ollinger, 1996). This methodology was

extended to 3D voxelwise scatter estimation by Markiewicz et al. (2017) for a

parallelised implementation on the graphics processing unit (GPU).

Attenuation. Photons that undergo photoelectric absorption and scatter

which are consequently not detected are said to be attenuated. The number of

photons lost to attenuation will depend on the electron density of the object

and the distance through which the photons travel. This is because Compton
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scattering, which is the main contributor to attenuation in PET, is caused

by the interaction of a photon with a charged particle, in this case electrons.

Attenuation in PET is usually estimated using Computed Tomography (CT)

data, as the contrast of these images is dependent on electron density. How-

ever in CT the photon energies used are in the order of 100keV, rather than

511keV as in PET, consequently a bilinear mapping process is often employed

to convert CT images from Houndsfield units to attenuation (µ) maps (Burger

et al., 2002).

Dead time. This is defined as the time required between events to accurately

detect them as separate events. This is particularly important in dynamic

scanning where high count rates are measured soon after injection.

Decay correction. This accounts for the exponential radioactive decay of the

tracer over time which is determined by the half-life of the radionuclide used.

The counts recorded in the PET data are corrected to the time of injection

(t= 0).

Partial Volume Effects. The partial volume effect (PVE) in PET comprises

two components; the tissue fraction effect, due to the representation of tissue

in voxels in the order of mm, and the intrinsic resolution of the scanner which

causes blurring of the signal in the image. The resolution of the scanner is

quantified by using the full width half maximum (FWHM) of the point spread

function (PSF). Contributions to the size of the FWHM include the size of

the scintillation detector elements, the positron range in tissue, acolinearity

of the annihilation photons, decoding of multiplexed signal from crystal to

photodiode, depth of gamma penetration into scintillator crystals, and the

non-uniform sampling of the space within the scanner (Moses, 2011). Partial

volume correction (PVC) can be applied within the reconstruction by mod-

elling the PSF, or post reconstruction on the image itself (Erlandsson et al.,

2012).
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2.2.3 PET-CT

Modern clinical whole-body PET scanners are almost always combined with a

CT scanner as a hybrid modality. CT provides anatomical information through

three-dimensional (3D) x-ray transmission scans in which the contrast is pro-

vided by differences in electron density within the imaged object. This allows

the PET uptake to be localised within the anatomy, and the electron density

information can be used in PET reconstruction to model attenuation and scat-

ter. Whilst this is a hybrid imaging technique, PET/CT scanners are designed

for sequential acquisition as CT is a significantly short acquisition. This can

cause issues for PET reconstruction if the patient position is different between

scans.

Since the contrast in CT is determined by the electron densities within

the imaged object, there is excellent contrast between bone and soft tissue.

However, there is poor contrast between different soft tissues; this is a problem

for studying conditions such as Alzheimer’s disease, which involve soft tissue

changes in the brain which cannot be detected using CT, so additional imaging

is required.

2.3 Magnetic Resonance Imaging (MRI)
MRI is a highly versatile imaging modality which is used for a wide range

of tasks including both structural and functional imaging. MRI is widely

acknowledged to have superior soft tissue contrast compared to CT and is

routinely used in neuroimaging. MRI exploits the effects of magnetic fields

in manipulating hydrogen nuclei, or spins, which are abundant in the human

body. The signal recorded in MRI is related to the proton density, binding of

the spins in tissue, and the chemical environment surrounding the spins and

can therefore be used to create images in which the contrast is dependent on

any combination of these effects.

Furthermore, MRI is not a purely anatomical imaging modality like CT.

MRI can also be used to measure a wide range of parameters including tissue
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diffusivity and structural connectivity (diffusion weighted MRI), the concentra-

tion of deoxyhaemoglobin to infer brain activation and functional connectivity

(functional MRI), the relative concentrations of metabolites (spectroscopy),

and blood flow (arterial spin labelled MRI). Each of these measurements has

the potential to be combined with PET images to give complementary infor-

mation and to improve the characterisation of disease. A brief description of

the basic theory behind the image acquisition is given here.

2.3.1 Nuclear magnetic resonance- origin of the signal

MRI uses magnetic fields to manipulate the spins of nuclei, or ‘spins’, with

unpaired protons. Most commonly hydrogen nuclei are targeted, largely due

to their abundance in the human body. MRI utilises three magnetic fields 1)

the main, uniform magnetic field, B0, which remains constant and is usually

1.5 or 3T in whole-body clinical scanners, 2) the spatially varying directional

gradients (Gx/y/z) and 3) the radiofrequency (RF) pulses (B1 field).

Under normal conditions, the magnetic moments of the spins within the

body are randomly oriented such that they cancel out and the net magneti-

sation is zero. However, when placed within a magnetic field, the spins will

either align or anti-align their intrinsic magnetic moment with the external

field, where the proportion of spins in each orientation is described by the

Boltzmann distribution. Aligning with the magnetic field requires less energy

than opposing it, and the Boltzmann distribution determines that the stronger

the magnetic field, the greater the proportion of aligned spins. The resulting

magnetisation determines the available signal.

2πf =−γgyroB (2.1)

The frequency at which the nuclei precess in the magnetic field is known

as the Larmor frequency (f) and is related to the magnetic field strength, B,

through the gyromagnetic ratio, γgyro, which is a constant for each type of

nucleus, equation 2.1. The Larmor frequency is the resonant frequency of the
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system, and a circularly polarised RF pulse oscillating at the Larmor frequency

can tip the net magnetisation of the spins from the direction of the B0 field

(usually denoted z) to produce a transverse component of the signal in the

x−y plane, see figure 2.2. This allows the signal from the spins to be detected

as their signal in the z-direction is negligible compared to the magnitude of

the B0-field. The angle through which the magnetisation is tipped is known

as the flip angle.
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Figure 2.2: The effect of an RF pulse oscillating at the Larmor frequency on the
net magnetisation of spins. The flip angle illustrated here is 90°.

The net magnetisation of the spins in the x-y plane can then be detected

in a receive coil, as it undergoes free inductive decay, until all the spins return

to their equilibrium position. The signal decays through two simultaneous and

independent mechanisms; spin-lattice relaxation and spin-spin relaxation.

Spin-lattice relaxation is the longitudinal recovery of the magnetisation

in the direction of B0. Here the energy of the anti-aligned spins absorbed

from the RF pulse is dissipated via the surrounding tissue, or ‘lattice’, to re-

align with the external B0 field. This random process can be described as an

exponential recovery and T1 is defined as the time taken for the magnetisation

in the z direction to recover to 1/e of its equilibrium value.

Spin-spin relaxation is the decay of the transverse magnetisation due to

the dephasing of spins. Here the energy is transferred between spins as they in-

teract with one another. Pure spin-spin relaxation occurs when the magnetic

fields of two nearby nuclei combine to produce a local magnetic field, with

which they realign themselves. This process is repeated many times across all
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of the spins until they are all completely dephased, and the transverse magneti-

sation is zero. This process is described by an exponential decay where T2 is

defined as the time it takes after the RF pulse for the transverse magnetisation

to decay to 1/e of its value.

Further dephasing of spins occurs due to local inhomogeneities in the

static field caused by intrinsic defects in the magnet and differences in magnetic

susceptibilities in the imaged object, such as at air-tissue interfaces. In this

case T2* is used in the place of T2, to indicate that dephasing is due to both

spin-spin interaction and B0 inhomogeneities.

2.3.2 Creating a magnetic resonance image

Phase and frequency encoding. To create an image, the measured signals

must contain spatial information. Frequency and phase encoding use the re-

lationship between the Larmor frequency and the applied magnetic field to

encode this information into the image.

For phase encoding, a spatially varying magnetic field gradient is applied

along one of the scanner axes, for example the y-axis, in addition to the con-

stant, homogeneous, B0 field (z direction). This gradient field, Gy ensures

that the spins experience different magnetic field strengths depending on their

y-position, and hence they precess at different frequencies, as defined by equa-

tion 2.1. When the gradient is switched off the spins return to their original

Larmor frequencies, however their phase is dependent on their position along

the y-axis.

Frequency encoding works by the same principle, except that the gradient

is not turned off before the signal is recorded. This means that during the

acquisition, the spins precess at a frequency determined by their position (in

this case along the x-direction) within the gradient field.

The encoding gradients are applied orthogonally to one another such that

along the y-axis the spins will have different phases, and along the x-axis they

will precess at different frequencies. This gives each position on the x-y plane

a unique phase-frequency signature, which is used to calculate its position in
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space.

Basic pulse sequences. Magnetic resonance (MR) images are acquired using

a combination of RF pulses and gradients arranged into a pulse sequence.

The pulse sequence dictates the ordering and duration of the RF pulses and

gradients which will determine the contrast seen in the resulting image.

The measured signal acquired during the read out portion of the pulse

sequence is encoded into the frequency space (k-space) through the frequency

encoding gradient. The pulse sequence needs to be repeated a number if times

to fill k- space. Here the duration of the sequence is defined as the repetition

time (TR). The final image is produced by applying a Fourier transform to

the k-space data.

One of the most basic pulse sequences is the spin echo (SE) sequence. In a

SE sequence a 90° RF excitation pulse flips the magnetisation in the z-direction

(Mz) into the transverse plane, and a subsequent 180° RF pulse refocuses the

spins to compensate for T2* decay. This produces a signal ‘echo’ at the echo

time (TE) after the initial 90° pulse, having applied the 180° pulse at TE/2.

In the SE sequence the 180° pulse compensates for the dephasing due to

local B0 inhomogeneities, therefore the signal decay is characterised by the

relaxation constant T2 rather than T2*. However, overall the measured signal

will depend on the proton density (PD), T1 and T2 of the tissue being imaged.

The weighting of the image, which determines which property dominates the

image contrast, can be defined by altering TE and TR, as shown by figure 2.3.

The gradient echo (GE) is another basic pulse sequence in which the spin

rephasing which creates the echo is achieved using gradient reversal. Here

a negative gradient is applied directly after the RF excitation pulse and this

causes rapid spin dephasing. A positive gradient is then applied which reverses

the dephasing to form an echo. It should be noted that only the dephasing

due to the negative gradient is reversed, and not the dephasing due to local

field inhomogeneities, so the transverse signal decay is described by T2* rather

than T2.
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Figure 2.3: Schematics showing how TE and TR can be used to select the contrast
in a spin echo (SE) sequence.

In the inversion recovery (IR) sequence the RF excitation pulse is pre-

ceeded by an inversion pulse, which is normally 180°, where the time between

the inversion and the excitation pulse is called the inversion time (TI). Here

the initial longitudinal magnetisation (M0) is inverted such that Mz = −M0,

and will recover along the z direction at a rate determined by T1. By choosing

an appropriate TI, it is possible to null the initial magnetisation of a specific

tissue of a given T1, and therefore eliminate its contribution to the image sig-

nal. For instance, TI can be chosen to null the signal from fluid (long TI) or

fat (short TI) based on their T1.

Clinical pulse sequences. In clinical applications basic sequences are rarely

adopted, as covering adequate portions of anatomy with sufficient spatial reso-

lution would require impractically long acquisition times. A number of strate-
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gies have been devised to decrease the time required to complete the image

volume acquisition. These include multi-slice imaging, where multiple non-

contiguous 2D slices are acquired at the same time, and parallel imaging and

partial Fourier approaches, which allow k-space undersampling using differ-

ent strategies to reconstruct the image. Since the encoding of the image is

based on the production of signal echoes, another way to accelerate conven-

tional imaging is by acquiring a number of echoes during a single TR, and

using each echo to encode a different line of k-space. For a SE sequence this is

achieved by adding n refocusing 180° pulses after the first one, thus producing

n consecutive echoes; this sequence is called Turbo or Fast Spin Echo (FSE).

It is also possible to collect multiple echoes by reversing the frequency

encoding gradient multiple times during a TR, and use the phase encoding

to cover multiple lines of k-space. This approach is referred to as echo planar

imaging (EPI), and can be applied to both SE and GE sequences. This type of

sequence allows very short acquisitions but is prone to a number of artefacts,

largely due to its sensitivity to susceptibility effects and B0 inhomogeneity.

Instead of a stack of 2D slices, image volumes can be obtained by perform-

ing 3D acquisitions, and this enables isotropic (or close to isotropic) voxels. In

3D imaging an additional phase encoding gradient is added such that a volu-

metric k-space can be acquired. Covering 3D k-space requires a large number

of echoes to be encoded, and therefore fast imaging acquisitions are employed.

One way to accelerate image acquisition is to use spoilers which are either

RF pulses or gradients applied to dephase residual tranverse magnetisation be-

fore the next excitation pulse is applied. The spoiled gradient echo (SPGR) is

a basic GE sequence with additional spoilers to destroy the residual transver-

sal magnetisation after readout. This sequence reaches a steady state for the

longitudinal magnetisation, and the T1 weighting increases with flip angle.
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2.3.3 3D T1-weighted imaging for brain volume mea-

surements

In the model of progression for Alzheimer’s disease proposed by Jack et al.

(2013) brain atrophy, measured using structural MRI, is a key biomarker which

tracks closely with progressive cognitive impairment. To measure atrophy in

different brain regions, volume measurements of the regions must be made from

high resolution structural scans. T1-weighted 3D structural imaging is widely

performed using magnetisation-prepared variants of SPGR sequences such as

the magnetisation prepared rapid acquisition by gradient echo (MP-RAGE),

as recommended by the Alzheimer’s Disease Neuroimaging Initiative (ADNI)2.

MP-RAGE includes an addition 180° inversion ‘preparation’ pulse to ensure

T1 weighting at short TRs, and allows 3D high spatial resolution images to

be obtained in approximately 5 minutes. The brain regions can then be de-

lineated either manually on the images, or using automated parcellation algo-

rithms which segment and label the brain images based on an atlas. Common

approaches to automated T1 parcellation include multi-atlas propagation tech-

niques such as geodesic information flows (GIF) (Cardoso et al., 2015). Here

multi-atlas propagation with image fusion is used to generate tissue label maps

in the space of the patient’s T1 image, see section 8.2.2.

2.4 Simultaneous PET-MRI

2.4.1 Motivation

Whilst CT images are ideal for providing electron density information for image

reconstruction, the clinical information obtained can be limited, particularly

when applied in neuroimaging. By contrast, MRI has the capability to provide

structural images with excellent soft tissue contrast as well as a wealth of other

clinically useful information. Each of the different types of MR imaging has the

potential to be combined with PET images to give complementary information

and to improve the disease detection and characterisation.
2http://adni.loni.usc.edu/methods/mri-tool/mri-analysis/
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Combining PET and MRI images has several other advantages, including

improvements in PET image quality using structural MRI data for partial

volume correction (Thomas et al., 2011), and reconstruction with anatomical

priors (Vunckx et al., 2012). There is also a potential dose reduction if MRI is

used in place of CT, since MRI uses non-ionising rather than ionising radiation,

which is particularly important for paediatric or pregnant patients.

PET and MRI data from separate sessions can be combined through image

registration to remap the imaging data into a common space, and a whole-body

sequential PET-MRI scanner has been developed by Philips (Zaidi et al., 2011)

to minimise movement between the scans. Further advantages associated with

simultaneous acquisition include:

• Temporal alignment of the scans: this ensures that the biological state of

the patient (e.g. blood flow) has not changed between scans (Fan et al.,

2016).

• Optimised acquisition time: the longer acquisition time required for MRI

(typically 30 minutes for a neurological brain protocol or up to 60 minutes

for research studies (Lane et al., 2017)) allows the PET acquisition time

(approximately 10 minutes for a brain scan) to be extended to improve

quantification, see chapter 3.

• Motion estimation: patient motion can be estimated from MRI data,

due to its high temporal resolution, and applied to PET data (Catana,

2015).

• Inherent spatial registration of the two modalities: this makes it easier to

combine the information from the datasets. This is particularly impor-

tant outside the brain, where differences in positioning between separate

scans result in non-rigid deformations which can be difficult to estimate.

• Reduced number of hospital visits for the patient: as two scans are per-

formed in a single session. This is particularly important for patients

who require general anaesthesia for scans such as young children.
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2.4.2 Challenges

There are several challenges which must be addressed when considering simul-

taneous PET-MRI acquisition, such as developing compatible instrumentation,

performing attenuation correction of the PET data, and the clinical implemen-

tation of this new workflow.

Instrumentation. The largest obstacle to overcome is how to physically com-

bine PET and MRI hardware into a single bore system (Vandenberghe and

Marsden, 2015). Firstly, there are physical constraints due to the space re-

quirements for both systems and the difficulty of fitting one inside the other

whilst ensuring adequate space for the patient.

Furthermore, once the systems are combined, interference from one sys-

tem to another must be minimised. The MRI scanner produces a high strength

static magnetic field, time varying magnetic fields and RF pulses to generate

images. The static magnetic field will interfere with the functionality of a

standard PMT’s due to the influence of the field on the path of the charged

electrons. Furthermore, the changing fields causes eddy currents in any con-

ductive components which also leads to interference, vibration and heating,

and the RF pulses cause further interference which can reduce the detected

PET count rate.

In turn the PET hardware can affect the operation of the MRI scanner,

as any changes in magnetic susceptibility affect the uniformity of the static

field and spatial linearity of the changing field. This effect is compounded

by eddy currents induced in PET hardware, which produces further magnetic

distortion. Finally, since the MRI scanner detects the signal to create the

image as RF from the patient, any other sources of RF, such as unshielded

power cables, can affect the recorded signal.

Driven by the advantages of simultaneous PET-MRI acquisition, whole-

body scanners are now commercially available. This first was the Siemens

Biograph mMR (Delso et al., 2011), which uses MR compatible Avalanche

photodiodes (APD)s in place of traditional PMTs, mounted between the MR
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body coil and the gradient coils. More recently the GE Signa PET/MR (Levin

et al., 2016) was released, which uses silicon photomultiplier (SiPM)s instead

of APDs; these have a better timing resolution, facilitating TOF PET recon-

struction (Roncali and Cherry, 2011).

Attenuation and Scatter correction. As described in section 2.2.2, PET

image reconstruction requires photon attenuation and scatter to be taken into

account. In PET-CT both effects were estimated using the electron density

information from the CT data, which is unavailable for PET-MR. Instead,

synthetic CTs, or pseudo CTs, can be generated from MR data or estimated

from the PET emission data (Nuyts et al., 1999). MRI based techniques

include assigning population attenuation coefficients for bone, soft tissue and

air to segmented MR images (Keereman et al., 2010), and synthesising the

CT using a database of MRI-CT pairs using deep learning (Ladefoged et al.,

2019) or based on their similarity to the target MRI scan using multi-atlas

propagation (Burgos et al., 2015), see chapter 8 for details. In a review of

available techniques conducted by Ladefoged et al. (2017) it was concluded

that the issue of MR attenuation correction (AC) for adult brains has been

solved to a quantitatively acceptable degree.

Clinical Implementation. As with any new imaging modality, the final chal-

lenge for PET-MRI is practical implementation. Combining these two modal-

ities requires new imaging protocols, room design, safety procedures, differ-

ent patient workflows, and specialised staff training as dual training in both

modalities is rare (Parikh et al., 2015). As the number of simultaneous scan-

ners installed increases, 7 scanners in the UK as of 20173, there is a growing

need to understand both modalities, in order to determine the key applications

for simultaneous PET-MR imaging (Bailey et al., 2018).

3https://mrc.ukri.org/publications/browse/review-of-pet-within-the-medical-imaging-landscape

https://mrc.ukri.org/publications/browse/review-of-pet-within-the-medical-imaging-landscape


Chapter 3

Review of Amyloid PET

Quantification Theory

Literature

This chapter covers the theory of quantification techniques which have been

applied to amyloid PET data in the literature. It also reviews the comparative

literature to assess the accuracy and suitability of the various techniques, as

well as their limitations, to determine the appropriate gold standard approach.

3.1 Introduction to Amyloid PET Tracers
The first tracer successfully developed for imaging amyloid-β plaques in hu-

mans was 11C Pittsburgh compound B (PiB), which was developed by modi-

fying a thioflavin based histological dye used for post mortem staining (Klunk

et al., 2004). Unlike FDG which is incorporated into a cell through glucose

transporters where it remains trapped, the PiB radioligand binds reversibly to

amyloid-β protein. Due to the short half life of 11C (approximately 20 min-

utes), such tracers are not considered to be clinically viable, so this led to the

development of three 18F radiotracers which have been approved for clinical

use; Florbetapir (Amyvid, Eli Lilly and Company), Florbetaben (Neuraceq,

Piramal Imaging), and Flutemetamol (Vizamyl, GE Healthcare), see Morris

et al. (2016) for details. Since it was developed first, most of the validation of
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quantification methods has been carried out using PiB data, as demonstrated

in the following review. More recent work using 18F-Florbetapir is also in-

cluded in the review as this tracer is used for the experimental parts of this

thesis.

For amyloid tracers, once injected into the blood stream a proportion of

the tracer is carried in the blood plasma, and may be transferred across the

blood brain barrier (BBB). Initially the tracer is free within the tissue i.e. it is

unbound. However it will then undergo either specific or non-specific binding.

Specific binding occurs when the tracer molecule interacts with its target,

which in this case means that the radioligand binds to the amyloid-β protein

which forms the plaques in the brain. For amyloid tracers this is a reversible

process such that the tracer will become unbound and eventually washed out

of the tissue (Price et al., 2005; Choi et al., 2009). Non-specific binding, which

is an undesirable but often unavoidable process where the tracer binds with

non-target materials, also occurs across the brain.

The tracer may also be metabolised in the body and converted into an-

other compound, referred to as a metabolite. These metabolites are carried in

the blood and could contribute to the PET signal, confounding the results. In

general it is assumed that metabolites will not cross the BBB (Klunk et al.,

2004; Choi et al., 2009), thus their contribution to the signal in the brain is

negligible. However, a significant proportion of the activity in the vasculature

will contain metabolites which must be considered within the analysis.

3.2 Quantification of Dynamic PET data

3.2.1 Background theory

Pharmacokinetic Modelling Nomenclature. For amyloid PET quantifi-

cation, the aim is to determine the amount of aβ deposition across the brain.

Consequently the quantification is analogous to neuro-recepter studies as it is

the density of target binding sites which is of interest. Pharmacokinetic (PK)

models describe the processes of tracer uptake, binding and washout mathe-
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matically, and are used to generate physiologically meaningful metrics such as

the density of the tracer target. Generally pharmacokinetic modelling is ap-

plied to reconstructed PET images, though it is also possible to perform direct

reconstruction of kinetic parameters from dynamic PET data. This approach

can reduce noise in the parameter estimates and even provide motion informa-

tion (Jiao et al., 2017), though this is currently rarely used in practice. The

notation used in this thesis follows that recommended by Innis et al. (2007)

for in vivo imaging of reversibly binding radioligands.

In general the density of the tracer target is expressed either as the vol-

ume of distribution in target tissue (VT ), or the binding potential (BP ). VT
represents the ratio of the unmetabolised tracer concentration in target tissue

(CT ) compared to that in plasma (CP ) at equilibrium, as described by equa-

tion (3.1), and has units of mL · cm−3. The volume of distribution in tissue

can be divided by the non-displaceable (ND) volume of distribution to give

the DVR (equation(3.2)). Here, non-displaceable is used to mean tracer which

is not bound to the target, as this tracer cannot be displaced by adding more

unlabelled tracer which binds to the same target, and includes both free and

non-specifically bound tracer.

VT = CT
Cp

(3.1)

DV R = VT
VND

= CT
CND

(3.2)

Binding potential represents the receptor density multiplied by the tracer

affinity to the target, and is often defined as the ratio of specifically bound

tracer to non-displaceable tracer (BPND), equation (3.3), which is unitless.

Since the affinity is an intrinsic property of the tracer, and is therefore con-

stant across subjects, differences in BPND reflect differences in target density.

Equation (3.3) demonstrates how, by definition, BPND and DV R are closely

related. The way in which these parameters (VT , DV R, BPND) are calculated
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depends on the PK model used.

BPND = VT −VND
VND

=DV R−1 (3.3)

Compartmental Modelling Nomenclature. Compartmental models are

based on the assumptions that the system can be broken down into distinct

compartments where each compartment consists of a chemical species in a

physical space (e.g. unmetabolised amyloid tracer within brain tissue), the

tracer is uniformly distributed within each compartment, and the tracer ex-

changes between the compartments at a fixed rate. The tracer concentration

within each compartment is denoted here by Ccompartment and the rate con-

stants which describe the exchange of tracer between the compartments by

knumber. Here, models are defined by the number of tissue compartments

(TC) and the number of k parameters (P), and the concentration of tracer in

plasma is not considered to be a compartment. Depending on the complexity

of the tracer kinetics in vivo, a different number of compartments and rate

constants may be included in the model in different configurations.

One of the simplest kinetic models is the 1 tissue compartment 2 parame-

ter (1T2P or 1TC) model, which is set up as in figure 3.1. The model is driven

by the arterial input function (AIF) which is the concentration of the parent

(unmetabolised) tracer in blood plasma (CP (t)) which is the tracer input into

the system. Generally arterial blood plasma is used instead of whole blood

as only the tracer held in plasma is available to exchange with tissue. This is

normally measured via invasive arterial blood sampling using in vitro analysis.

The tracer concentration in tissue, CT (t), is taken from the PET imaging data

acquired dynamically over time to cover the tracer delivery to tissue and sub-

sequent wash out. This dynamic data can also be referred to as a time activity

curve (TAC) which can either be defined for a single voxel, or by region using

a spatial average of voxels based on anatomical segmentation.

There are 2 rate constants associated with the 1TC model; K1 which is

the transfer rate constant from plasma to tissue (mL · cm−3 ·min−1), and k2
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Cp(t) 
K1 

k2 

CT(t) 

Figure 3.1: 1 tissue compartment model, where Cp and CT are the tracer concen-
trations in blood plasma and tissue respectively, K1 is the transfer rate constant
from blood to tissue (mL · cm−3 ·min−1), and k2 is the transfer rate constant from
tissue to blood (min−1).

(min−1) which is the rate constant in the opposite direction. These parameters

are assumed to remain constant over the PET acquisition and are estimated

by fitting the model to the measured data.

Equation 3.4 is the differential equation derived from the 1T2P model.

This can be solved for CT by applying the inverse Laplace transform to yield

equation 3.5. More complex kinetic models, with additional tissue compart-

ments and associated rate constants, may be set up and solved in a similar

way.

dCT (t)
dt

= Cp(t)K1−CT (t)k2 (3.4)

CT (t) =
∫ t

0
Cp(t)K1−CT (t)k2 = Cp(t)K1⊗ e−k2t (3.5)

In general, PK models are formulated such that the concentration of tracer

in tissue (CT ) at a given time (t) is the result of a tracer input function and a

tissue response function, (R), equation 3.6. The parameters of the model can

be estimated by solving the differential equations for exchange between com-

partments. This is generally performed by applying non-linear least squares

fit to minimise the difference between the fitted model and the data.

CT (t) = Cp(t)⊗R(t) (3.6)
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3.2.2 Pharmacokinetic modelling using arterial blood

sampling

Compartmental PK modelling. The first successful human trials to show

that a PET tracer can be used to image amyloid plaques were carried out

by Klunk et al. (2004) using 11C-PiB. Following this semi-quantitative first in

human study, Price et al. (2005) carried out a full kinetic analysis of 15 subjects

(5 healthy controls, 5 mild cognitive impairment and 5 clinically diagnosed AD)

to assess the suitability of various quantitative measures.

Price et al. (2005) used the DVR as the outcome measure of interest to

quantify the amyloid burden, see equation (3.2). Here, the non-displaceable

volume of distribution (VND) was determined by fitting the models to the

reference regions, in which it is considered that there is no specific binding and

is therefore non-displaceable.

Three compartmental models of different complexities were used by Price

et al. (2005), the most complex being the three-tissue six-parameters (3T6P)

model which was based on the work by Koeppe et al. (1994), and can be

described as in figure 3.2a. Here, the first of the three tissue compartments

represents free tracer within the tissue which exchanges with the blood plasma

(CF ). The tracer can then either be taken into specific binding sites (CS) in

the presence of amyloid, or non specific binding sites (CNS). Due to the large

number of parameters and the difficulty in distinguishing between the specific

and non-specific binding compartments this model is unstable and difficult to

fit.

The 3T6P model can be simplified by assuming that the free and non-

specific binding compartments reach rapid equilibrium and are thus indistin-

guishable, which reduces the model to two tissues and 4 parameters (2T4P),

figure 3.2b. This makes the model easier to fit, and was used by Price et al.

(2005) as the primary model configuration. The differential equations can be

set up as follows:
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dCF+NS(t)
dt

=Cp(t)K1−CF+NS(t)k2 +CS(t)k4−CF+NS(t)k3

=Cp(t)K1−CF+NS(t)(k2 +k3) +CS(t)k4

(3.7)

dCS(t)
dt

= CF+NS(t)k3−CS(t)k4 (3.8)

CT (t) = CF+NS(t) +CS(t) (3.9)

The volume of distribution is defined at equilibrium where dCF+NS
dt = dCS

dt = 0.

CF+NS and CS can then be found by combining and rearranging equation (3.7)

and equation (3.8) and then substituted into equation (3.9) to give CT . Using

equation (3.1), this result can then be divided by CP to give the volume of

distribution for the 2T4P model as given in equation (3.10). Compartmental

modelling in this way allows the volume of distribution to be estimated through

the fitted rate constants, even if the tracer never reaches true equilibrium.

VT (t) = K1
k2

(1 + k3
k4

) (3.10)

Cp(t)

K1

k2

CT(t)

CF(t)

CNS(t)

CS(t)
k3

k4
k5 k6

(a) 3 tissue 6 parameter
model (3T6P)

Cp(t)
K1

k2 CT(t)

CF+NS(t) CS(t)
k3

k4

(b) 2 tissue 4 parameter
model (2T4P)

Figure 3.2: Schematics showing compartmental models used in Price et al. (2005)

Graphical PK models. As an alternative to compartmental models, which

make assumptions about the behaviour of the tracer, data driven techniques

may be used. Such techniques generalise the function in equation 3.6 to an

arbitrary number of compartments. Graphical analysis techniques are one such

example where tissue concentration and arterial plasma curves are combined

and transformed into a single plot which approaches linearity under certain



3.2. Quantification of Dynamic PET data 61

conditions. This allows simple fitting of the linear data where the gradient

is used to estimate the volume of distribution. There are many formulations

of graphical analysis, however for the case of reversible binding, such as for

amyloid tracers, the most commonly used are the Logan (Logan et al., 1990)

and Ichise (Ichise et al., 2002) techniques. While graphical analysis methods

are independent of any particular model structure, the slope can be interpreted

in terms of a combination of model parameters for some model structure.

The Logan plot takes the general form of equation (3.11) (Logan et al.,

1990). This form can be interpreted using the 2T4P model such that the

volume of distribution is defined as in equation (3.10). To derive the volume

of distribution the linear portion of the curve must be fitted, where linearity

occurs at some time t > t′ where t = 0 at tracer injection. In general t′ is

defined as the point at which the tissue compartments and blood plasma reach

equilibrium such that the intercept (int) becomes constant. For many tracers

linearity is often reached before equilibrium allowing the length of the dynamic

acquisition to be reduced. For the Ichise technique, the equations for Logan

analysis are solved using multi-linear regression.

∫ T
0 CT (t)dt
CT (T ) = VT

∫ T
0 Cp(t)dt
CT (T ) + int (3.11)

Comparison of quantification methods using arterial sampling. In

Price et al. (2005), the 3T6P, 2T4P, 1T2P, Logan and Ichise analysis methods

were applied to 90 minute dynamic PET imaging, all using metabolite cor-

rected arterial samples to provide the input function. Analysis showed that

the most complex model, 3T6P, often failed, giving negative parameter val-

ues as the data did not support a model with this number of parameters. The

2T4k model yielded the lowest Akaike information criteria (AIC) and increased

stability under test-retest conditions, and was taken to be the gold standard

for comparison with other techniques. The authors concluded that the two-

tissue Logan analysis was a viable alternative as it minimised the fitting error

effectively, and was robust, as demonstrated by the low test-retest variability.
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Cp(t)
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k2 CT(t)
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(a) Full reference tissue
model (RTM)
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k2
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(b) Simplified
Reference Tissue
Model (SRTM)

Figure 3.3: Schematics showing the compartments and exchange constants for
reference tissue models

More recently, in a similar study for [18F]-florbetapir data, Golla et al.

(2018) compared performance of the 3T6P, 2T4P, 1T2P models on data ac-

quired from eight participants with probable AD. Again the 2T4P models had

the lowest AIC and was considered to be stable under test-retest conditions

provided 90 minutes of data was used. This was consistent with the findings

of Price et al. (2005) for 11C-PiB data, supporting the use of similar analysis

techniques for the two tracers.

3.2.3 Simplified PK models (without arterial sampling)

The methodology of Price et al. (2005) required arterial sampling to provide

the plasma concentration for the analysis. However, these data are often not

available, as this is a highly invasive procedure which not only introduces addi-

tional risk to the patient, but also requires specialist personnel and equipment

for analysis. Therefore, simpler techniques for kinetic analysis were explored

by Lopresti et al. (2005).

There are two ways to derive the input information from the images alone;

either a region of interest (ROI) can be drawn directly around the carotid

arteries in the image or a reference tissue region, in which specific binding

is negligible, is used as a surrogate for the input function. Due to the small

diameter of the carotid arteries, the arterial ROI method is highly susceptible

to PVE caused by blurring of the signal due to the limited resolution of PET

data, and generally requires manual segmentation of the vessels. The PET
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signal must then be corrected for metabolites as there is no way to distinguish

metabolite from parent tracer signal, and metabolites don’t bind to the tracer

target. Lopresti et al. (2005) used a population based metabolite correction on

the image derived carotid input function with Logan analysis. When compared

against the gold standard using arterial samples the method was found to be

accurate but not reproducible due to difficulties in defining the artery region.

A methodology to overcome these problems which combines high resolution

MRI to define the arteries and the simultaneous estimation method (Wong

et al., 2001) has been proposed (Sari et al., 2018), however this has not been

validated for amyloid tracers.

The reference tissue model (RTM). The use of a reference tissue within

the analysis of amyloid data was suggested by Price et al. (2005) as it was used

to represent non-displaceable binding for DVR calculation. The cerebellum

was selected as there was no significant difference in uptake in this region

between healthy controls and AD subjects (Price et al., 2005; Klunk et al.,

2004). Furthermore, post mortem histological studies show very low levels of

fibrillar amyloid in this region (Joachim et al., 1989). When using a reference

region it is assumed that the non-displaceable volume of distribution (VND),

i.e. the contribution of free and non-specifically bound tracer, is uniform across

the brain, equation (3.12). Here, a prime is used to denote the rate constants

in the reference tissue.

K ′1
k′2

= K1
k2

= VND (3.12)

In the reference tissue model (RTM), the reference region is used in lieu of

an arterial input function and the model is set up as in figure 3.3a, where the

target tissue contains 2 compartments, and the reference tissue is considered

to be a single tissue compartment containing free and non-specifically bound

tracer only (Blomqvist et al., 1989; Lammertsma et al., 1996). Since the ref-

erence region is a 1TC model, the differential equation can simply be set up

as in equation (3.13), which can be re-arranged for Cp(t) negating the need to
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measure an arterial input function.

dCR(t)
dt

=K ′1Cp(t)−k′2CR(t) (3.13)

In the RTM non-displaceable binding potential (BPND) is the param-

eter of interest to determine amyloid burden, which was previously defined

in equation (3.3). The volume of distribution for a 2TC model is given in

equation (3.10), and can be combined with the non-displaceable volume of

distribution in equation (3.12) to give equation (3.14).

BPND = VT
VND

−1 =
K1
k2

(1 + k3
k4

)
K′1
k′2

−1 = k3
k4

(3.14)

The differential equations for the target tissue can be set up as for the

2T4P model, see equations (3.7-3.9). By combining these equations with (3.13)

it is possible to derive a relationship between CT and CR that does not include

CF+NS , CS or CP but which contains 6 parameters.

To reduce the total number of free parameters the relative tracer delivery

parameter R1 is defined as in equation (3.15) as K1 and K ′1 only appear as

a ratio. Furthermore, k′2 can be redefined by rearranging equation (3.12) and

substituting in equation (3.15), as in equation (3.16). This leaves 4 parameters

to fit in the model: R1, k2, k3, and BPND.

R1 =K1/K
′
1 (3.15)

k′2 = k2
R1

(3.16)

The simplified reference tissue model (SRTM). The RTM can be fur-

ther simplified by assuming that the free and nonspecific binding compartment

quickly reaches equilibrium with the specific binding compartment, making

them indistinguishable. This leads to the simplified reference tissue model

(SRTM), as described by figure 3.3b (Lammertsma and Hume, 1996). In this
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case, equation (3.13) remains unchanged, but the equations with the target tis-

sue can be reduced to equation (3.17), where k2a is the apparent rate constant

for transfer from the specific compartment to plasma.

dCT (t)
dt

=K1CP (t)−k2aCT (t) (3.17)

The total tracer volume of distribution using the SRTM should be equal

to that found using the RTM, as shown by equation (3.18). This can be re-

arranged for k2a, where K1 cancels, and substituted into equation (3.17) along

with equations (3.13) and (3.16) to give equation (3.19).

VT = K1
k2a

= K1
k2

(1 +BPND) (3.18)

dCT (t)
dt

=R1
dCR(t)
dt

+k2CR(t)− k2
(1 +BPND)CT (t) (3.19)

As previously the inverse Laplace transform can then be used to derive the

operational equation for the SRTM, given by equation (3.20). The model now

contains only three parameters: R1, k2, and BPND. This model is more robust

and converges faster than the RTM making it better suited for fitting noisy

PET data, as demonstrated by its use in the comparison paper of Lopresti

et al. (2005).

CT (t) =R1CR(t) + (k2−R1
k2

1 +BPND
)CR(t)⊗ e−

k2
1+BPND

t (3.20)

Reference tissue input for graphical analysis. The reference region can

also be incorporated into graphical analysis (Logan et al., 1996) to derive the

binding potential. This technique can be implemented using a population

average value of backflux rate constant from the reference region to vascular

space (k′2), which must be derived from a compartmental model with arterial

sampling. Lopresti et al. (2005) used the average k′2 derived from the 2T4P
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model to fix this parameter.

Comparison of simplified quantification methods. In the comparative

study of simplified methods carried out by Lopresti et al. (2005) Logan analysis

with an arterial input function was used as the gold standard (Price et al.,

2005), which was compared with Logan analysis using carotid ROI input,

reference tissue Logan analysis and the SRTM. It was found that the carotid

ROI method gave the closest result to the gold standard method, although the

difficulty in defining the region meant that it was not very reproducible. The

reference tissue Logan approach resulted in negatively biased DVR estimates,

particularly for patients with a high amyloid burden. The SRTM was found to

be more reproducible than using the carotid ROI input method and less biased

than the reference Logan technique, however the authors concluded that the

suitable choice of technique depends on the kind of study to be performed.

Following on from this study, various implementations of the SRTM have

been applied to 11C-PiB data. Yaqub et al. (2008) compared several versions,

including the SRTM2 (Wu and Carson, 2002) in which the value of k′2 is fixed

using a subject-specific average value, since it should be the same across all

non-reference region voxels. This is performed by re-writing the operational

equation (3.20) in terms of k′2 then running the fit in two stages; first the

equation is fitted for each brain voxel and a global value of k′2 is found by

averaging across valid voxels, then the model is re-fitted using the fixed k′2

to derive R1 and BPND. Yaqub et al. (2008) compared the SRTM, SRTM2,

reference tissue Logan and Ichise graphical analysis and found that the SRTM2

using fixed k′2 was the most accurate and consequently this methodology was

used for PiB data by Zhou et al. (2007). For this implementation Zhou et al.

(2007) used simultaneous fitting of all ROIs to a single value of k′2 rather than

a 2-step process.

In Yaqub et al. (2008), the implementation of the SRTM used the basis

function pursuit method proposed by Gunn et al. (1997) to solve the non-linear

term, in equation(3.20). For this method the operational equation is re-written



3.3. Quantification of static PET data 67

in terms of R1, φ and θ, as in equation (3.21). Here a set of basis functions

are generated using a physiologically plausible range for k2 and BPND to pre-

calculate the non-linear term. The optimisation is performed by finding the

best basis function based on the sum of squared differences (SSD) as described

by algorithm (3.1). This allows the problem to be linearised, which facilitates

faster and more robust optimisation compared to non-linear fitting.

CT (t) =R1CR(t) +φCR(t)⊗ e−θt

where

φ= k2−R1k2/(1 +BPND), θ = k2/(1 +BPND)

(3.21)

Following the conclusions of Yaqub et al. (2008), the SRTM proposed by

Zhou et al. (2007) was used for the first human 18F-Florbetapir studies (Wong

et al., 2010), and many subsequent studies (Hsiao et al., 2012; Chen et al.,

2015; Sojkova et al., 2015b). Validation of the SRTM against the gold standard

2T4P model for [18F]-florbetapir data was recently carried out by Golla et al.

(2018). Evaluation on 8 controls and 8 AD subjects showed that the SRTM

provided a reliable estimate of BPND for [18F]-florbetapir. This methodology

has also successfully been applied to ‘coffee-break’ data, where the patient

takes a break from scanning in the middle of the acquisition and the missing

data is interpolated (Heeman et al., 2019; Bullich et al., 2018).

3.3 Quantification of static PET data
For the quantification techniques described in section 3.2, dynamic PET data

must be acquired from injection of the tracer for between 60 and 90 minutes,

depending on the kinetics of the tracer. Once this data has been acquired

and reconstructed into time frames modelling software must be applied. This

requires scanner availability and patient compliance to facilitate the long ac-

quisition time, plus the availability of kinetic modelling software and expertise

to apply it. In general, radiopharmaceutical manufacturers aim to develop

tracers in which a static acquisition and simple analysis is enough to quantify
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Algorithm 3.1 SRTM with basis functions
1: For each subject:
2: CR(t): measured reference region concentration
3: nbasis: number of basis functions
4: Bi(t) = CR⊗ e−θt: basis functions (i= 1 : nbasis)
5: w = frame duration

e−λt
: weights

6: W = diag(
√
w): weighting matrix

7: for i= 1 : nbasis do
8: A= [CR Bi]
9: [Q,R] = qr(W ·A)

10: M(2i−1 : 2i, :) =R\QT
11: end for

12: For each region/voxel:
13: CT (tj): measured region/voxel concentration
14: nf : number of frames (j = 1 : nf )

15: for i= 1 : nbasis do

16:
[
R1
φ

]
=M(2i−1 : 2i, :) ·W ·CT (tj)

17: ĈT (tj) =R1CR(tj) +φBi(tj)
18: SSDi = ∑nf

j=1W · (CT (tj)− ĈT (tj))2

19: end for

20: imin = find(min(SSD))

21:
[
R1
φ

]
=M(2imin−1 : 2imin, :) ·W ·CT (tj)

22: k2 = φ+R1 · θ
23: BPND = k2

θ −1

the target density.

3.3.1 Standardised uptake value ratio (SUVR)

SUVR is a semi-quantitative measure of uptake, which requires approximately

10 minutes of static PET data. The name SUVR is derived from the standard-

ised uptake value (SUV) commonly used in FDG PET quantification, where

the measured activity concentration is normalised to the concentration if the

tracer were uniformly distributed in the body. However since the SUVR is a

ratio, the unit which converts tracer concentrations into SUV’s cancel out such

that it is sometimes referred to as relative uptake instead.
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SUVR is intended to approximate estimates of DVR derived from the

full dynamic PET data, by calculating the ratio of CT to CR at steady-state.

The definition of DVR is given in equation (3.2), where CT and CND are

measured at equilibrium such that dCt
dt = dCND

dt = 0. Assuming the same set

up as the SRTM with 2TC in the target tissue and 1 in the reference region,

equations (3.13) and (3.17) can be re-arranged as in equations (3.22,3.23) such

that their ratio is equal to DVR, as given by equation (3.24).

CR(t) = K ′1Cp(t)
k′2

= VNDCp(t) (3.22)

CT (t) = K1Cp(t)
k2a

= VTCp(t) (3.23)

SUVR(t) = CT (t)
CR(t) = VT

VR
=DV R (3.24)

3.3.2 Limitations of SUVR Quantification

By definition equation (3.24) is only valid at equilibrium, however many trac-

ers will not reach equilibrium in vivo. Instead, often SUVR will be calculated

when the tracer has reached a steady-state where CT
CR

= const, also known as

transient or pseudo equilibrium. This occurs approximately 50 minutes after

injection for amyloid tracers (Cselényi and Farde, 2015). However, since the

tracer concentration in the target tissue will always be higher than than in the

reference tissue, due to higher binding and slower washout CT = βCR where

β > 1. This means that dCT
dt = β dCRdt . As a result SUVR will overestimate DVR,

particularly at higher DVR values. This phenomenon has been discussed at

length in the literature (Carson et al., 1993; Slifstein, 2008; van Berckel et al.,

2013) and was demonstrated for [18F]-florbetapir data through simulation (Ot-

toy et al., 2017a) and by comparison to the 2T4P model (Ottoy et al., 2017b).

Based on the SRTM, Alves et al. (2017) derived an expression to relate DVR

to SUVR which was dependent on k′2, dCR/dt, k2, and dCT /dt. This demon-

strates that the error in SUVR is determined by both tracer binding and blood
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flow.

In some cases the fact that SUVR can overestimate the true DVR at high

DVR values could be considered advantageous. Lopresti et al. (2005) found

that SUVR had a higher effect size when discriminating between AD subjects

and control groups compared to modelling approaches using dynamic data.

However this is an issue for longitudinal studies where changes in blood flow

affect the delivery of the tracer to tissue and consequently alter the tracer

concentration in the tissue when a static image is acquired. This has been

highlighted in longitudinal studies, where changes in blood flow have caused

spurious changes in SUVR values which do not reflect imaging target abun-

dance (van Berckel et al., 2013; Cselényi and Farde, 2015).

There are a large number of factors which can affect CBF in healthy

controls (Clement et al., 2017). Parkes et al. (2004) showed that blood flow

varies both over the course of a week (67-80 ml/min/100g in grey matter), and

even through a single day (64-84 ml/min/100g in grey matter). Parkes et al.

(2004) also demonstrated that CBF changes with normal ageing, reducing

by approximately 0.45% per year. Furthermore, a significant reduction in

CBF is seen in patients with AD, where groups differences are in the order of

20% (Steketee et al., 2016).

Cselényi and Farde (2015) showed how CBF changes influence SUVR,

where they demonstrated a significantly higher blood flow component in the

AD group compared to healthy controls. Cselényi and Farde (2015) went on

to show that for each 0.1 unit decrease in R1, there is a 0.04 unit increase in

SUVR. van Berckel et al. (2013) found significant longitundinal changes in R1

in patients with AD, and through simulation using parameters derived from

clinical studies suggested that longitudinal changes measured using SUVR may

in fact be due to changes in blood flow, rather than amyloid deposition. This

bias from CBF changes is related to the lack of tracer equilibrium, conse-

quently these limitations apply to any such tracer, including amyloid trac-

ers (van Berckel et al., 2013) and tau (Hahn et al., 2017).
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The estimates derived by kinetic modelling are not biased by blood flow, as

the full dynamic curve contains blood flow information, which is parameterised

within the model. Furthermore there is not requirement for the tracer to reach

equilibrium as amyloid burden estimates can be derived from the fitted rate

constants. However, the long scan duration is prohibitive for routine clinical

use, where time is limited, and data integrity is risked by the increased chance

of subject motion, therefore a choice must be made between accuracy and

feasibility in a clinical setting.

3.4 Selection of a Gold Standard for Amyloid

Quantification
Both Price et al. (2005) and Golla et al. (2018) found that the 2T4P model with

arterial blood sampling to derive the AIF was the best model for 11C-PiB and

[18F]-florbetapir quantification respectively, as it accurately reflected the ki-

netics of the tracer in vivo whilst being stable enough to generate reproducible

results. However, Golla et al. (2018) also found that difficulties in measuring

the tracer parent fraction from the blood samples affected the estimation of

VT and thus recommended using a reference tissue input if possible.

When accurate arterial blood sampling data are not available, Yaqub et al.

(2008) showed that, for 11C-PiB data, the SRTM2 was the most accurate

and stable model, and as such it has been used in several 11C-PiB and [18F]-

florbetapir studies (Zhou et al., 2007; Wong et al., 2010; Hsiao et al., 2012;

Chen et al., 2015; Sojkova et al., 2015a). Golla et al. (2018) showed that the

SRTM (not SRTM2) using the basis function approach is stable and accurate

enough for use on [18F]-florbetapir data1 and was selected as the gold standard

here.

Limitations of the SRTM as a gold standard. The theoretical assump-

tions of the SRTM and their effect on quantification were explored by Salinas
1Details of SRTM implementations tested are not included in Golla et al. (2018) but

were given in a personal communication with the lead author. The authors found that the
SRTM2 did not give better results than the SRTM, so the SRTM is recommended
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et al. (2014). The four key assumptions which were tested were 1) there is

no displaceable component in the reference region, 2) the target and reference

region can be described by one tissue compartment kinetics, 3) the blood vol-

ume contribution to the tissues is negligible, 4) the VND is the same in the

target region as in the reference region.

Assumption 1) can be justified by the findings in Ottoy et al. (2017b) and

Golla et al. (2018) where no significant difference in cerebellar grey matter

binding was found between healthy controls and subjects with Alzheimer’s

disease. Salinas et al. (2014) concluded from their simulations that assumption

2) could only produce a small bias provided the target and reference region

contain the same number of compartments. Golla et al. (2018) (and Price et al.

(2005) for 11C-PiB) showed that both the target and reference tissue could be

described by 2 compartment kinetics, thus validating the assumption. It is

worth noting that for the SRTM2 formulation higher biases are anticipated

than for the SRTM when this assumption is violated (Wu and Carson, 2002).

Currently there are no data to determine whether assumptions 3) and 4)

are satisfied. Salinas et al. (2014) found that the violation of assumption 3),

where it is assumed that the blood volume is negligible, will produce a bias

that is more or less constant across a wide range of BPND values and therefore

will have little impact unless blood volume constitutes a significant portion

of the total tissue signal. Golla et al. (2018) incorporate the blood volume

(VB) into their 2T4P model however the authors do not discuss the proportion

of the signal which originates from blood so it is difficult to determine the

magnitude of the bias. Equally the non-displaceable volume of distribution is

estimated by Golla et al. (2018) but not discussed, presumably due to the high

correlation between the SRTM and the 2T4P model.

One other limitation of the SRTM is its instability when fitting regions

which have a low BPND. This leads to k2 being numerically unidentifiable

which can propagate to the estimates of BPND and R1, however this can be

minimised by careful selection of the rage of basis functions generated (Gunn
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et al., 1997). This effect is shown in the study by Golla et al. (2018) where

the correlation between the 2T4P model is higher for the AD group than the

healthy controls (who generally had a very low amyloid burden). However, the

authors considered the correlation for both groups to be good (r2 = 0.93 for

AD, r2 = 0.73 for control, and r2 = 0.83 overall).

3.5 Conclusion
A wide variety of quantification approaches have been applied to amyloid PET

data, and these vary greatly in complexity. In general it has been shown that

the best model for the data is the 2T4P model, as this can accurately describe

the tracer kinetics in vivo.

However, since the 2T4P model requires arterial sampling to generate

the Arterial Input Function (AIF) which is invasive and can be unreliable,

it is not suitable for routine use. The SRTM has been shown to offer a good

compromise between quantitative accuracy and stability compared to the 2T4P

model and is therefore taken as the non-invasive gold standard. However this

still requires a long dynamic acquisition lasting approximately 60 minutes for

[18F]-florbetapir, which is challenging for many patients and reduces scanner

throughput. Consequently SUVR is the most common metric used clinically,

as this only requires a static 10 minutes acquisition and is simple to calculate.

However it has been shown that the estimates of amyloid burden derived from

SUVR contain significant bias which is related to blood flow and target density.

As a result there is a pressing clinical need for a method which can produce

accurate estimates of amyloid burden within a clinically feasible time frame

which could potentially be achieved if blood flow can be estimated during a

shortened PET acquisition.



Chapter 4

Blood flow modelling and

quantitative ASL

This chapter covers the background and theory behind blood flow modelling,

including an extension to the Renkin-Crone model, which can be applied to

extraction-limited tracers to estimate blood flow. Arterial spin labelling (ASL)

MRI is also introduced as a non-invasive method of measuring blood flow. A

brief description of the application of blood flow models to ASL data is also

covered, along with an overview of the considerations and challenges associated

with ASL based quantification of cerebral blood flow.

4.1 Introduction
Perfusion can broadly be defined as the steady state delivery of nutrients to an

organ. Perfusion can be described using several parameters, the most common

being specific blood flow and blood volume. When considering the brain,

specific blood flow is referred to as cerebral blood flow (CBF) and is a rate

defined as the quantity of blood reaching a unit tissue volume per unit time.

It is normally measured in ml/min/100g assuming a mean brain density of

1g/ml. Conversely, blood volume (or cerebral blood volume in the brain)

is the proportion of blood in a mixed blood/tissue volume, and is normally

expressed as a percentage of the volume or in ml of blood per 100g of tissue.

This chapter looks at how CBF can be quantified in vivo using physiological
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models.

4.2 Blood flow modelling
Blood flow modelling to derive CBF from imaging data was formalised for the

analysis of H2O15-PET (radio-water) data, where the tracer is injected intra-

venously and behaves like blood water. H2O15-PET is generally considered to

be the gold standard measurement of CBF in vivo (Fan et al., 2016).

4.2.1 Indicator dilution theory

The PET models are based on indicator dilution theory (Meier and Zierler,

1954), which describes a system which has one input artery delivering blood,

one vein removing the blood, and a network of capillaries in between which

perfuse the tissue, as shown in figure 4.1. In this system, the different paths the

blood can take through the capillary bed have different transit times, defined

as the time taken to get from A to V. However, the model assumes that these

transit times are constant, this is known as the stationarity of flow. This model

also assumes that the indicator (or tracer) introduced into the system, behaves

in the same way as the fluid already in the system and that the tracer is not

recirculated.

The Fick principle states that when the system is in a steady state, i.e

the tracer does not accumulate within the capillary, then the flux in is equal

to the flux out. In this case the flux in is the arterial input (φa), and the flux

out is the combination of the flux into the tissue (φT ), and the tracer removed

through the venous outflow (φv).

φT = φa−φv = F (CA(t)−CV (t)) = dCT (t)
dt

(4.1)

By definition φ = F ×C, where F is the blood flow and C is the tracer

concentration. A model for changing concentration of tracer in tissue with

time (dCTdt ) can be derived by combining indicator dilution theory with the

Fick principle, as expressed in equation (4.1).
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Figure 4.1: schematic of capillary system

λ= CT
Cv

(4.2)

It may be assumed that the H2O15 can freely diffuse into the tissue, and

that it becomes well mixed within the brain. The latter assumption means that

the tissue concentration CT is equal to the outflowing venous concentration

Cv if the difference in water density between these two regions is corrected for,

equation (4.2). The factor λ is known as the blood-brain partition coefficient,

and generally a brain averaged value is used despite it being tissue dependent,

as it is non-trivial to measure (Alsop et al., 2015). This can be combined with

equation (4.1) to give the Kety-Schmidt model in equation (4.3).

dCT (t)
dt

= FCA(t)− F
λ
CT (t) (4.3)

Equation (4.3) then takes the form of the 1TC model described in sec-

tion 3.2, where K1 =F and k2 = F
λ . CBF can then be estimated either through

non-linear optimisation, through a basis function approach, through graphical

analysis, or through autoradiography, where static PET images are combined
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with dynamic blood sampling (Fan et al., 2016).

4.2.2 The Renkin Crone model

The Renkin-Crone capillary model, a development of the indicator dilution

theory, is commonly used in PET and MRI to describe the exchange of sub-

stances between blood and tissue where the tracer is not assumed to be freely

diffusible. It was developed independently to model extraction of potassium

from the blood (Renkin, 1959) and to measure vessel permeability to inulin

and sucrose (Crone, 1963).

K1 

k2 

CT  , ΦT 
  

Cv , Φv 

F 

Ca , Φa 

Figure 4.2: Illustration of the 1 tissue compartment Renkin-Crone model

The Renkin-Crone model is set up in the same way as for indicator dilution

theory, with one tissue compartment, and two blood compartments (venous

and arterial), but here two rate constants (K1 and k2) are also included, see

figure 4.2. The rate constants reflect the transfer of tracer between the blood

and tissue compartment in ml/min/100g.

Enet = CA(t)−CV (t)
CA(t) (4.4)

The net extraction fraction, Enet which is the fraction of the tracer which is

extracted, can be defined as in equation (4.4). However, Enet is not necessarily

a useful parameter, as Cv will contain both tracer which has passed back from

tissue to blood, as well as tracer which was not taken up in tissue. To get the

unidirectional extraction fraction Eu, which is the extraction of tracer from

blood to tissue, consider the case at t= 0. Here, CT = 0, therefore there is no

flow of the tracer from tissue to blood, and Enet =Eu. Under these conditions,

the 1 tissue compartment model (equation (3.4)), the Kety-Schmidt model
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(equation (4.1)), and equation (4.4) can be combined to give a relationship

between the rate constant K1 and the cerebral blood flow, equation (4.5).

dCT (t= 0)
dt |CT=0

=K1CA(t) = F (CA(t)−CV (t)) = FEuCA(t) =⇒ K1 = FEu

(4.5)

The Renkin-Crone model seeks to express the extraction fraction in terms

of other physiological parameters. This is achieved by modelling the capillary

as a rigid tube, and expressing tracer uptake into tissue as a diffusive process

described by Fick’s first law of diffusion. Under these assumptions, the Renkin-

Crone model is given as equation (4.6), where PS is the vessel permeability

surface area product.

Eu = 1− e−
PS
F =⇒ K1 = FEu = F (1− e−

PS
F ) (4.6)

The Renkin-Crone model demonstrates that the relationship between K1

and flow is non-linear, and depends on the permeability of the vessel to the

tracer, and on the surface area over which it can exchange. This model implies

that if PS is low compared to F , then K1 becomes independent of flow, as the

delivery of the tracer is limited by extraction rather than flow. Conversely, as
PS
F exceeds 3, the exponential term tends to zero, and K1 is approximately pro-

portional to F , reducing back to the one compartment model in equation (4.3).

4.3 Magnetic Resonance Imaging based mea-

surement of Blood Flow
There are several methods for measuring CBF using MRI, a notable exam-

ple being dynamic susceptibility contrast (DSC) MRI. Here a contrast agent

is injected intravenously to shorten the T2 and T2* of the blood, allowing

the tracer concentration to be measured over time from dynamic T2 or T2*

weighted imaging, such that the CBF can be estimated across the brain. How-

ever, techniques which don’t require an exogenous contrast agent are beneficial
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for PET-MR imaging, as the injection of the contrast agent, in addition to the

PET tracer injection, can make the clinical workflow more complex.

Alternatively, phase contrast (PC) MRI can be used to measure the flow

flux in the arteries which feed the brain to measure whole brain CBF com-

pletely non-invasively. This has been used to scale H2O15-PET data to remove

the need for arterial sampling during simultaneous PET-MR scans (Ssali et al.,

2018). However, PC-MRI on its own only gives whole brain CBF values.

ASL is currently the only technique which can measure CBF on a voxel-

wise basis non-invasively.

4.3.1 Principles of Arterial Spin Labelling
ASL-MRI uses magnetically tagged blood as an endogenous contrast agent to

measure cerebral blood flow non-invasively. This requires the acquisition of

control images, with no tagging of the blood, and of label images in which the

arterial blood has been magnetically tagged, see figure 4.3.

−

a) Control image b) Label image c) CBF image

∝!

B0

Figure 4.3: Illustration of ASL acquisition for cerebral blood flow mapping, show-
ing a) the control image where the arterial blood net magnetisation (red arrow)
remains aligned with the external B0 field, then b) the label image where the ar-
terial blood is tagged using an RF pulse, and finally c) showing that the difference
between the control and label images is proportional to perfusion.

For the control image, with no tagging of the arterial blood, the spins are

aligned to the scanner’s static magnetic field (B0), therefore there is maximum

signal available for the image acquisition. The label image is then acquired by

first applying a RF pulse to a region in the neck, to locally alter the orientation

of the spins, giving them a magnetic ‘tag’. The labelled arterial blood which

passes through this region then flows into the brain and exchanges with the
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tissue, and the label image is acquired.

In the label image there will be a loss of signal caused by the tagged

blood, as the orientation of its spins is different to surrounding static tissue.

The signal difference between the control and label image is proportional to

the CBF, as the higher the blood flow in a region, the more tagged blood is

present, and the greater the signal loss.

Since blood constitutes about 2-4% of the volume in the brain, and about

1% of the blood water is replaced each second, the signal to noise ratio (SNR)

in ASL is very low (Golay, 2013). Consequently, multiple pairs of control

and labelled images are acquired to average over several cardiac outputs and

to increase SNR. A variety of labelling and readout schemes are available for

ASL, as well as different quantification models, with different levels of accuracy,

complexity, and acquisition time. The optimal selection of the acquisition and

processing protocol depends on scanner hardware and the available acquisition

time, and recommendations for clinical implementation have been published

in a consensus paper (Alsop et al., 2015).

4.3.2 Models for Arterial Spin Labelling
Kinetic modelling is required to convert the perfusion maps created from the

difference between the control-label pairs into an absolute measure of CBF.

The model can be formulated to account for the delivery of the labelled spins

to tissue, signal decay and washout, and the acquisition process. The following

derivation is adapted from Golay (2013) and Chappell et al. (2018).

CT (t) =
∫ t

0

dCT (t)
dt

=
∫ t

0
FCA(t)− F

λ
CT (t) (4.7)

Equation (4.3) models the change in tracer (or label) concentration over

time. This can be integrated over time as in equation(4.7) to solve for CT .

Just as for the 1TC model described in chapter 3.2, this can be reformulated

using the Laplace transform to give equation (4.8).

CT (t) = FCA(t)⊗ e−
F
λ t (4.8)



4.3. Magnetic Resonance Imaging based measurement of Blood Flow 81

In ASL, CT is not directly measured but instead it is the difference in

signal between the control (SIcontrol) and label (SIlabel) images, as described

in equation(4.9). To equate ∆M directly to flow, the system can be modelled

as in equation (4.10), where Ca is the arterial input function, and R(t) is the

tissue response function.

∆M = SIcontrol−SIlabel ∝ CT (4.9)

For ASL, the arterial input function CA can normally be modelled as a

top-hat function due to the nature of the labelling, which is applied in close

proximity to the tissue to minimise dispersion. The total signal is twice the ar-

terial magnetisation of the blood (M0,a) as the signal has been inverted, making

the difference between the control and label magnetisation equal to 2αM0,a.

Here α is the labelling efficiency (α ≤ 1), which is the proportion of arterial

blood which is tagged. This signal decays over time with the T1 of blood and

is modelled differently for pulsed ASL (PASL) and pseudo-continuous ASL

(pCASL), see section 4.3.3.

∆M = FCA(t)⊗R(t− τ)dt= FCA(t)⊗ r(t− τ)m(t− τ)dt (4.10)

The tissue response function, R(t), can be subdivided into two terms,

namely r(t) = e−
ft
λ which accounts for the outflow of spins from the tissue as

calculated in equation (4.8), and m(t) = e
−t
T1 which models the T1 decay of the

magnetisation of the spins within the tissue.

Equation (4.10) is the general kinetic model for ASL proposed by Buxton

et al. (1998), however a simplified version of this model is more commonly

applied, as recommended by Alsop et al. (2015). In this case the following

three simplifying assumptions are made: the whole labelled bolus is delivered

to the target tissue (delay time between labelling and acquisition must be

greater than the time taken for the bolus to reach the tissue), there is no
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outflow of labelled blood water, as the tissue water pool is much larger than

the blood water pool (allowing r(t) to be ignored), and the decay of the label

signal is determined by the T1 of blood (negating the need to model signal

decay separately in blood and in tissue, but errors can become significant if

the label spends extended periods in the tissue prior to readout). Under these

assumptions the model can be simplified to give equation (4.11) (for pCASL

data), where the 6000 is simply for conversion into units of ml/min/100g, τ

is the labelling duration and PLD is the post labelling delay, i.e. the time

between blood labelling and image acquisition.

CBF = 6000λ
2α

∆M
S0

ePLD/T1blood

T1blood(1− e−τ/T1blood)
[ml/100g/min] (4.11)

4.3.3 ASL quantification considerations

Recommendations on how to acquire and quantify ASL data were published

by Alsop et al. (2015) and are referenced extensively below.

Labelling scheme. ASL labelling techniques are generally divided into three

categories; continuous ASL (CASL), pseudo continuous ASL (pCASL), and

pulsed ASL (pASL).

For CASL, the labelling pulse occurs continuously in a thin labelling plane

positioned near the parotid gland. This allows a bolus of blood to be labelled

as the blood flows through the neck. The main drawback of CASL is that long

RF pulses are demanding on hardware and would require extra coils; this is

a barrier to implementation (Borogovac and Asllani, 2012), therefore CASL is

not used on clinical scanners.

As a solution to this, pCASL uses a train of short, shaped RF pulses in

combination with gradients to create the effect of a continuous pulse, without

requiring specialised hardware. This technique can also be adapted to label

individual blood vessels rather than all of the vessels which pass through the

labelling plane, potentially yielding additional diagnostic information (Boro-
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govac and Asllani, 2012).

The third implementation of labelling is pASL, which uses short pulses

to label spins within an inversion slab (volume) to create the bolus, instead

of using a longer labelling pulse applied in a plane as in CASL. Due to the

use of a labelling slab, where all spins are labelled at the same time, the T1

decay of the signal across the labelled bolus must be taken into account in the

modelling. The most inferior part of the bolus will take longer to reach the

tissue than the inferior part, as it is physically further from the tissue, and

hence will have decayed more.

In general, pCASL labelling is the preferred labelling scheme over pASL

as a higher signal can be achieved. This is due to a combination of T1 decay

across the labelling slab in pASL and the longer labelling durations achievable

in pCASL.

Labelling delay and duration. To allow the labelled bolus to reach the

tissue there must be a delay between labelling and image acquisition, often

referred to as the post labelling delay (PLD). For pCASL this is well defined,

as the labelling pulse has a known duration, τ , and the PLD is the time be-

tween the end of the labelling and the beginning of the acquisition. For PASL

the label duration is short, making the PLD difficult to estimate, which affects

quantification. If a QUIPSS-II (Quantitative imaging of perfusion using a sin-

gle subtraction, second version) pulse is applied to saturate the tail of the bolus

and give a defined end time, then the PLD is defined making quantification

possible.

Buxton et al. (1998) originally proposed that images could be acquired

at multiple PLDs within a single experiment. This allows the estimation of

arterial transit time (ATT) as well as CBF, which means that differences

in transit time across the brain and between patients can be accounted for.

However, as this approach requires many more images to be acquired and more

complex modelling this technique was not recommended by Alsop et al. (2015),

although it continues to be used in research. In an attempt to minimise the
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effects of ATT on CBF estimation Alsop et al. (2015) recommended different

PLDs depending on the demographics of the patient being scanned, to ensure

that the bolus has reached the tissue before imaging while minimising signal

loss due to T1 decay.

Background suppression and crusher gradients. In a typical ASL ex-

periment the difference between label and control images constitutes <1% of

the signal in each voxel. This results in a low SNR and makes the technique

highly sensitive to motion of the static tissue. Background suppression can

be used to increase the SNR and reduce the sensitivity of the measurement

to motion by applying 180° inversion pulses across the brain. The 180° pulses

are timed such that image acquisition occurs as the signal from static tissue

passes through zero, minimising its contribution to the image.

Another unwanted signal which can affect quantification comes from vas-

cular artefacts, caused by labelled spins remaining in large arteries during

readout. This signal can be removed using crusher gradients which dephase it,

but this can reduce SNR. As a general rule this approach is not recommended

by Alsop et al. (2015), as it results in a decreased SNR, and the PLD can be

selected to minimise the amount of label left in the blood. However, Alsop

et al. (2015) suggest crusher gradients may be useful in specific cases, such as

when the artefacts will obscure other pathologies.

Readout schemes. The ideal image readout scheme would be a 3D acquisi-

tion, which would maximise the efficiency of background suppression and SNR,

which is insensitive to field inhomogeneities, and fast enough to allow full cov-

erage of the brain. Alsop et al. (2015) recommend segmented (multi-shot) 3D

readout schemes such as 3D gradient and spin echo (GRASE) or Rapid Ac-

quisition with Refocused Echoes (RARE stack of spirals, also known as turbo

or fast SE, see chapter 2.3.2), as they have high SNR, low sensitivity to T2*

effects, and single excitation per TR, which maximises the efficiency of back-

ground suppression. Single shot 3D sequences were not considered by Alsop

et al. (2015) due to the lack of evidence available at the time of the review to
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evaluate them, and to the presence of image blurring due to signal decay over

the acquisition. 2D readouts can be used, but the background suppression will

not work as effectively as it relies on acquiring the image when the tissue signal

passes through zero, which will not be the case for all 2D slices. EPI based

readouts have been used extensively in the literature and in clinical practice,

but it is important to note that they are sensitive to differences in T2*, which

causes distortion and signal loss near air/tissue interfaces.

Estimation of other model parameters. For absolute quantification the

equilibrium magnetisation of arterial blood (M0,a) is needed as this is included

in the arterial input function. Instead of measuring this directly, as finding a

pure arterial voxel at the resolution used in ASL is impossible, this is estimated

by measuring the equilibrium magnetisation in tissue (S0) and dividing it by

the blood-brain partition coefficient (λ). This is generally done on a voxel by

voxel basis, either by acquiring a proton density image with a long TR, or by

fitting a series of saturation recovery images acquired at different saturation

times for both T1 and S0.

For simplicity, Alsop et al. (2015) recommend set values for the remaining

parameters in equation (4.11), namely labelling efficiency, blood-brain parti-

tion coefficient, and T1 of blood.

4.4 Conclusion
This chapter demonstrates that a simple model can be used to estimate abso-

lute CBF from ASL data, however when doing so it is important to consider

the many assumptions that have been made and whether they are valid. Fur-

thermore, for ASL there are many different acquisition and processing method-

ologies that can be used which will affect the resulting CBF estimation. Alsop

et al. (2015) made recommendations on how to select a suitable combination

to ensure that reasonable CBF maps are produced. However it is important

to note that Alsop et al. (2015) considered availability and ease of use, as

well as accuracy, when making the recommendations and as such following the
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recommendations may not produce optimal CBF estimations.



Chapter 5

Simplified Reference Tissue

Model with reduced acquisition

time

Chapter 3 reviewed the available techniques for PET quantification, and

demonstrated the trade-off between quantitative accuracy and acquisition

time, due to the importance of accounting for tracer delivery and washout.

In this chapter, a novel approach for combining blood flow information from

simultaneously acquired MRI into PET pharmacokinetic modelling to signifi-

cantly reduce the acquisition time required for quantification is described. This

method is referred to as the reduced acquisition time simplified reference tissue

model (RT-SRTM). For this preliminary study the framework was evaluated

for [18F]-florbetapir on a small cohort of healthy older subject and was initially

published in Scott et al. (2016).

5.1 Introduction
As described in section 3.2.3, the simplified reference tissue model (SRTM)

is commonly applied to the kinetic modelling of neurological PET data, as it

is a robust model which doesn’t require invasive blood samples. The model

contains three parameters: R1 which is the delivery of tracer to the target tissue

relative to the reference region, k2 which is the rate constant from target tissue
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to blood, and the parameter of interest BPND which represents the amyloid

burden when analysing amyloid PET data.

The SRTM is generally fitted to 60 minutes or more of data, which may

approximately be divided into two phases. In the early phase the signal is

dominated by the delivery of the tracer. This data contains information about

blood flow (Hsiao et al., 2012), and is therefore important for the estimation

of R1. The later part of the signal, i.e. 20:60 minutes post injection, con-

tains more information about the binding of the tracer to the target and its

subsequent washout, which is essential for the estimation of k2 and BPND.

Consequently, if the blood flow information can be estimated indepen-

dently from the PET data, then the acquisition time can be reduced, as scan-

ning during the early phase can be omitted. The estimation of BPND then

requires three steps: the estimation of R1 from another source, the extrapola-

tion of the reference region curve, CR, as the model contains a convolution term

which requires the full time series from injection to compute, and the fitting

of the modified SRTM using ASL derived R1 and the extrapolated reference

region.

ASL-MRI, introduced in chapter 4.3, is a non-invasive imaging technique

which can be used to estimate cerebral blood flow (CBF), as validated by com-

parison with the gold standard radiolabelled water PET (Fan et al., 2016).

Since PET-R1 is related to CBF, the ASL-CBF maps can be used in the first

step of the framework: deriving R1 from another source. The introduction of

simultaneous PET-MRI scanners means that ASL and late phase PET data

can be acquired concurrently. By incorporating CBF information from ASL

into the PET pharmacokinetic modelling to provide early phase delivery in-

formation, the total acquisition time can be significantly reduced, increasing

patient comfort and throughput, without sacrificing quantitative accuracy.

In this work the framework was implemented using PET data acquired for

30 minutes (from t=30:60 minutes post injection) with concurrently acquired

ASL-MRI.The t= 30:60 minute time window was selected to represent the
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late phase of the data. For comparison, the standardised uptake value ratio

(SUVR), see section 3.3, was also calculated as this is the current clinically

used metric for amyloid burden estimation.

5.2 Methods

5.2.1 Gold standard PET kinetic modelling

The SRTM (Lammertsma and Hume, 1996) was used as the gold standard for

PET pharmacokinetic modelling, as it is commonly applied in amyloid stud-

ies (Wong et al., 2010; Hsiao et al., 2012; Chen et al., 2015; Sojkova et al.,

2015b) and has been validated against pharmacokinetic modelling with arte-

rial sampling for [18F]-florbetapir (Golla et al., 2018). The SRTM employs a

reference region, which is considered to be devoid of the imaging target, to

replace the plasma input function. Cerebellar grey matter was used as it is

assumed to be devoid of amyloid-β Klunk et al. (2004).

The operational equation between the tracer concentration in the target

tissue CT (t) and the reference region CR(t) can be formulated as in equa-

tion (5.1) for the implementation using basis functions Gunn et al. (1997).

Here t denotes time with tracer injection at t = 0, and ⊗ represents the con-

volution operator.

CT (t) =R1CR(t) +φCR(t)⊗ e−θt

where

φ= k2−R1k2/(1 +BPND), θ = k2/(1 +BPND)

(5.1)

The SRTM contains three parameters: R1, which is the rate constant of

tracer delivery to the target tissue relative to the reference tissue; k2, which is

the rate constant from target tissue to blood; and the non-displaceable binding

potential BPND, which is proportional to target density i.e. the density of

amyloid-β, see supplementary materials.

An in-house implementation of the SRTM using the basis function method

was fitted to the PET data to derive regional gold standard parameter esti-
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mates, denoted by an asterisk, of BP ∗ND, k∗2 and R∗1 from dynamic PET data

conventionally acquired for t ∈ [0,60] minutes, denoted here as t = 0,60 min-

utes.

5.2.2 RT-SRTM framework

A summary of the framework is shown in figure 5.1.

Step 1: Estimating relative tracer delivery (R1) from ASL-CBF. R1

is defined as R1 = K1/K ′1 where K1 is the transfer rate constant from blood

to target tissue and K ′1 is the transfer rate constant from blood to reference

tissue. According to the Renkin-Crone capillary model (Renkin, 1959; Crone,

1963), introduced in chapter 4.2, the relationship between tracer delivery, K1,

and blood flow, F , can be described as:

K1 = EF = (1− e−
PS
F )F (5.2)

The Renkin-Crone model includes a term for the net extraction of the

tracer from the capillaries, E, which is dependent on the vessel permeability

surface area product, PS. Under common physiological flow conditions, where

PS/F is high (≥ 3), the relationship between K1 and flow F is approximately

linear. If we assume that PS is sufficiently high, the relationship between K1

and F , and in turn the relationship between R1 and F , can be approximated

as a linear function Chen et al. (2015), as expressed in equation (5.3).

R1 = K1
K ′1

= β0 +β1
F

F ′
(5.3)

ASL can be used to measure the CBF, F , and may be converted into an R1

estimate to use in the RT-SRTM, using the relationship from equation (5.3),

where F ′ indicates the CBF measured in the reference region.

In this study, linear regression between R1 and CBF was performed in a

group of subjects to determine whether this approximation is valid. The slope

and intercept of the linear regression, β0 and β1, can account for systematic

differences between the modalities and an extraction fraction of E < 100%.
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The derived β0 and β1 can then be applied to a different group of subjects to

convert ASL-CBF to a derived R1 value.

Step 2: Extrapolating reference region curve (CR). To compute the

convolution term in equation (5.1), CR must be known from injection, at t= 0,

to the end of the scan, t = 60. However, when reducing the acquisition time,

CR is only measured between ts and te. Here the scaled mean CR method to

estimate the whole reference input CR(t) for t∈ [0,60] is used. For this method

a mean population reference region curve, CpopR (t), is scaled to the subject’s

measured CR(t). The scaling factor, α, is determined by a least squares fit

of CpopR (t),t ∈ [ts, te] to CR(t),t ∈ [ts, te]. The subject’s CR(t),t ∈ [0,60] is then

calculated by multiplying C
pop
R (t),t ∈ [0,60] by α, as in equation (5.4). The

extrapolated values are only used where measured data is not available, i.e for

CR(t) t 6∈ ts, te.

CR(t)≈ αCpopR (t) =K ′1e
−k′2t⊗γCpopp (t) (5.4)

The scaled mean CR method models the reference tissue as a single tissue

compartment, as given by equation (3.5), which can then be re-written as in the

right hand side of equation (5.4). Looking at the underlying assumptions of this

approach, this method uses a population based arterial input function, Cpopp (t),

with a subject specific scaling factor, γ, and a population based washout rate,

k′2, whilst allowing for a subject specific tracer delivery rate, K ′1. This method

provides a simple way to extrapolate the measured CR and the inclusion of

scaled population based arterial input functions and reference tracer washout

rates is supported by their use in the literature (Logan et al., 1996; Schain

et al., 2016).

Step 3: Fitting the RT-SRTM. To apply the modifications from steps 1

and 2 to the SRTM with reduced acquisition time, the operational equation in

(5.1) is re-written as in equation (5.5). This groups the measured parameter

CT (t), with the derived CR(t) and derived R1 into a dummy variable, C‡T (t),

as they are determined prior to fitting.
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C‡T (t) = CT (t)−R1CR(t) = φCR(t)⊗ e−θt

where

φ= k2−R1
k2

(1 +BPND) , θ = k2
(1 +BPND)

(5.5)

To solve equation (5.5) for a reduced acquisition time where t ∈ [ts, te],

the basis function approach (Gunn et al., 1997) is used to pre-calculate the

convolution term using the extrapolated CR(t), t ∈ [0,60] with a range of bio-

logically plausible values for θ. A least squares fit to the pre-determined data,

C‡T (t = ts, te), is performed for each θ to estimate φ, and the instance of θ

which yields the lowest sum of squares difference is selected. BPND and k2 are

then derived from φ, θ and the CBF-derived R1. The pseudo code for this is

shown in algorithm 5.2.

5.2.3 Data acquisition and pre-processing

PET acquisition and image reconstruction. List mode PET data were

acquired for 60 minutes following intravenous injection of [18F]-florbetapir,

which targets amyloid-β. For PET image reconstruction, simultaneously ac-

quired structural T1- and T2-weighted MR images were used to synthesise CT

data and calculate the attenuation map (µ-map) (Burgos et al., 2015), as vali-

dated by Ladefoged et al. (2017). The µ-map was propagated into PET space

by registering the T1-weighted image to a static PET frame reconstructed

at t=55:60 minutes (reconstructed using the scanner standard UTE derived

µ-map).

Dynamic PET data were binned into 31 time frames (15s× 4, 30s× 8,

60s× 9, 180s× 2, 300s× 8), and reconstructed into 2× 2× 2mm voxels using

the manufacturer’s software. An ordinary Poisson ordered subset expectation

maximisation (OP-OSEM) algorithm was used with 3 iterations, 21 subsets,

and a 3.5mm Gaussian filter, accounting for dead-time, attenuation, scatter,

randoms and normalisation.
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Algorithm 5.2 RT-SRTM with basis functions
1: For each subject:
2: CR(t): extrapolated reference region concentration
3: R1: derived from ASL-CBF
4: nbasis: number of basis functions
5: Bi(t) = CR⊗ e−θt: basis functions (i= 1 : nbasis)
6: Bi(tk): basis functions for measured time frames (k = ts : te)
7: w = frame duration

e−λt
: weights

8: W = diag(
√
w): weighting matrix

9: W (tk) =W (ts : te): weighting matrix for measured time frames

10: for i= 1 : nbasis do
11: A= [Bi(tk)]
12: [Q,R] = qr(W (tk) ·A)
13: M(i, :) =R\QT
14: end for

15: For each region/voxel:
16: CT (tk): measured region/voxel concentration
17: C‡T (tk) = CT (tk)−R1CR(tk)

18: for i= 1 : nbasis do
19: [φ] =M(i, :) ·W (tk) ·C‡T (tk)
20: ĈT (tk) =Bi(tk) ·φ
21: SSDi = ∑te

k=tsW (tk) · (CT (tj)− ĈT (tj))2

22: end for

23: imin = find(min(SSD))
24: φ=M(imin, :) ·W (tk) ·C‡T (tk)
25: k2 = φ+R1 · θ
26: BPND = k2

θ −1

ASL acquisition and CBF quantification. CBF was estimated from a

pseudo-continuous ASL (PCASL) acquisition with the following parameters:

3D GRASE readout (Günther et al., 2005) with 36 partitions and a re-

constructed voxel size of 1.88× 1.88× 4 mm, TE/TR=20.3/4000ms, 4-shot

with turbo-factor/EPI-factor=14/28, bandwidth 2298Hz/pixel; 10 control-

label pairs were acquired with a pulse duration (τ) and post labelling de-

lay (PLD) both equal to 1800ms. The acquisition duration was 5min 20s

(t = 55,60). CBF maps were computed with equation (5.6) (Buxton et al.,

1998)
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CBF = 6000λ
2α

∆S
S0

ePLD/T1blood

T1blood(1− e−τ/T1blood)
[ml/100g/min] (5.6)

with 0.9 ml/g for the plasma/tissue partition coefficient (λ), a blood T1 of

1650 ms (T1blood), and a labelling efficiency of 0.85 (α) as recommended in the

ASL consensus paper (Alsop et al., 2015). ∆S is the signal difference between

the control and label images, S0 maps were estimated by fitting saturation

recovery images acquired with the same sequence at three different saturation

times (1,2,4s) using NiftyFit (Melbourne et al., 2016).

Regional analysis. Figure 5.1 shows the data pre-processing stages where

T1-weighted images were parcellated (Cardoso et al., 2015) into 17 regions:

amygdala, brainstem, caudate, cerebellum (white and grey separately), cere-

bral white matter, hippocampus, pallidum, putamen, thalamus and 6 corti-

cal grey matter regions, with left and right hemispheres combined. The T1-

weighted image was rigidly registered to both ASL and PET space (Modat

et al., 2014a), and the transformation was propagated to the parcellation. Re-

gional average CBF values were calculated (negative CBF values were excluded

from averaging), and the PET time activity curves were averaged across the

region prior to kinetic modelling. PET data acquired during 30:60 minutes

were used to evaluate the proposed method.

For comparison, regional SUVR values were calculated from a static image

for t= 50 : 60 minutes created by summing the last two reconstructed dynamic

PET frames (t = 50 : 55 and t = 55 : 60 minutes). Regional averages were

calculated using the registered parcellation and divided by the mean cerebellar

grey matter tracer concentration. As for the kinetic modelling, cerebellar grey

matter was used as the reference region. To compare SUVR with BPND,

SUVR−1 was used, as SUVR approximates DVR which is equal to BPND +1.

5.2.4 Data

The data used here consisted of the first 20 subjects scanned for Insight46, a

neuroimaging sub-study of the Medical Research Council National Survey of
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Figure 5.1: Overview- parcellation is registered to PET and ASL to calculate
regional average values. ASL data is converted into CBF-derived R1 values using
the linear regression relationship. A population reference tissue time activity curve
of 0:60 mins combined with the measured reference tissue data (30:60 mins) is used
with the CBF-derived R1 and the measured PET tissue data (30:60 mins), to apply
the modified simplified reference tissue model to estimate BPND.

Health and Development Lane et al. (2017). These 20 subjects had a mean age

of 69.5 years (range 69.3-69.8 years) with an MMSE score of≥28. A description

of the full cohort can be found in appendix A. The 20 subjects were randomly

divided into a training set and a testing set, see figure 5.2. The training set

was used to estimate the relationship between ASL-CBF and PET-R1 (n=5)

and to generate a population mean CR for the reference region extrapolation

(n=14), and the testing set was used to apply the complete framework (n= 6).

Figure 5.2 also shows the proportion of subjects found to be amyloid

positive (aβ+) as defined using whole cortical grey matter SUVR with whole

cerebellum reference region and a cut-off of 1.077. Whilst the group assignment

of subjects was performed randomly (positivity was determined subsequent to

this analysis), the aβ+ subjects are evenly split between groups and comprise

15% of the dataset which is comparable to the positivity rate across the whole

Insight46 study (18.6%).
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Whole dataset
20 subjects (3 aβ+ [15%])

PET & ASL
11 subjects

PET only
9 subjects

Training set
14 subjects (2 aβ+ [15%])

CBF and R1 relationship
5 subjects (1 aβ+ [20%])

PET & ASL
5 subjects

PET only
9 subjects

CR extrapolation
14 subjects (2 aβ+ [15%])

PET & ASL 
5 subjects

PET & ASL
5 subjects

PET only
9 subjects

Testing set
6 subjects (1 aβ+ [17%])

PET & ASL
6 subjects

PET only
0 subjects

PET only
0 subjects

Figure 5.2: Division of data for training and testing

5.2.5 Statistical Analysis

To compare different techniques with the gold standard, mean square error

(MSE = 1
n

∑n
i=1(Yi−Y ∗i )2) and mean error (ME = 1

n

∑n
i=1(Yi−Y ∗i )) were used,

where n is the number of estimates, Y ∗i is the gold standard estimate or mea-

sured value and Yi is the estimate being evaluated. To compare different

techniques, statistical significance was tested using paired, 2-tailed Wilcoxon

signed-rank test for MSE (as the data are not normally distributed), and paired

2-tailed t-tests for ME.

5.3 Results

5.3.1 Comparison of proposed method with gold stan-

dard

Figure 5.3a shows BPND estimated using the proposed RT-SRTM with ASL-

CBF and 30:60 minutes of PET data plotted against the gold standard using

the SRTM and the full 60-minutes of dynamic PET data. Linear regression

of all subjects and regions shows that the proposed method offers a good

approximation of the gold standard as it closely follows the line of identity (blue

dashed line), which is within the 95% confidence interval (CI) of the regression

(shaded area). Furthermore, the Pearson correlation coefficient shows a high

linear correlation (r=0.9480, p < 0.001, 95% CI [0.9228, 0.9650]) and a paired
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(b) SUVR−1

Figure 5.3: Estimated amyloid burden against the gold standard value calculated
using full PET time series.

t-test shows that the estimate of BPND using the RT-SRTM is not significantly

different from the gold standard (p=0.2674).

The alternative measure used in clinical practice, SUVR−1, was calcu-

lated from PET data over 50:60 mins for comparison, Figure 5.3b. Whilst the

overall correlation is still high (r=0.9209), a clear bias is shown as SUVR−1

overestimates the binding potential at higher values. The mean error (ME)

quantifies the bias between the estimates and the gold standard which is sig-

nificantly higher for SUVR−1 (ME=0.0721, p <0.001), indicative of the sys-

tematic overestimation, compared to −0.0071 for the proposed method. The

proposed method also has a lower mean square error (0.0039 compared to

0.0153 for SUVR− 1, p = 0.0313), and variance (0.0039 compared to 0.0103

for SUVR−1).

Figures 5.4 and 5.5 show BPND maps for an amyloid positive and amyloid

negative subject respectively, comparing the gold standard with the proposed

method and SUVR− 1 regionally. The proposed RT-SRTM with ASL-CBF

shows good agreement with the gold standard, with slight overestimation of

the cortical white matter in both cases. This is reduced when using the gold
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standard R∗1 in the RT-SRTM rather than deriving R1 from ASL. For the

SUVR−1 estimation, amyloid burden is greatly overestimated within both

grey and white matter structures, particularly in the amyloid positive subject.

The difference map shows that the errors in the proposed method are far lower

than for SUVR−1.
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Figure 5.4: Example amyloid positive (Aβ+) subject (subject 6). Top: Regional
average binding potential maps for (left to right) gold standard, proposed method
using gold standard R1, proposed method using ASL and SUVR−1. Bottom:
difference maps compared to gold standard.

5.3.2 Influence of CBF-derived R1 estimation on amy-

loid quantification

Whilst Figure 5.3a demonstrates a high similarity between binding potential

estimation using the gold standard and the proposed method, there is a noise

component which introduces variation around the line of identity. This is due

to noise in the PET data, noise in the CBF-derived R1 estimate from the ASL

data, and inaccuracies in the estimation of the reference tissue input.

To demonstrate the influence of the CBF-derived R1 estimate using ASL

data, the proposed method was applied using the R∗1 estimated using the gold

standard technique instead of the CBF-derived R1. The population input

function and 30:60 mins PET data were used as before. This represents the

optimal case in which R1 can be determined exactly from the ASL data. Fig-
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Figure 5.5: Example amyloid negative (Aβ−) subject (subject 2). Top: Regional
average binding potential maps for (left to right) gold standard, proposed method
using gold standard R1, proposed method using ASL and SUVR−1. Bottom:
difference maps compared to gold standard.

ure 5.6a shows that the variance in the binding potential estimate has been

reduced (from 0.0039 to 0.0020), a narrower 95% CI in the regression. This

is expected since the CBF map from the ASL is noisy, and linear regression

performed to determine the relationship between CBF and R1 was performed

with only 5 subjects, and therefore may not be generalisable. Furthermore,

the differences shown in the white matter regions in figures 5.4 and 5.5 when

using CBF-derived R1 or R∗1 suggest that the relationship may vary regionally.

Nevertheless, for the data used in this study the estimation of R1 from CBF is

sufficiently accurate that the BPND estimates between the proposed method

using CBF-derived R1 and gold standard R1 are comparable and there is a

reduced bias in the estimates comapred to SUVR−1.

Figure 5.6b compares BPND estimation using 30:60 mins PET data only

(with extrapolated CR) to the gold standard to demonstrate the need of a

CBF-derived R1. Due to the lack of data to support the kinetic modelling, the

results are noisy and extreme parameter estimates occurred for some regions.

These points have skewed the linear regression such that it no longer follows

the identity line, with a wide 95% CI.
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(a) 30:60 mins PET + gold standard R1
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(b) 30:60 mins PET data only

Figure 5.6: Estimated binding potential plotted against the gold standard value
calculated using full PET time series

5.3.3 Influence of CR extrapolation on amyloid quantifi-

cation

The remaining errors in BPND estimation in figure 5.6a are due either to

errors in the extrapolation of the reference region or the uncertainty in fitting

the model to fewer datapoints. Figure 5.7 shows the extrapolated reference

region curves for the six subjects. The scaled mean CR method works well

for most subjects, however it greatly underestimates the peak for subject 4.

This is likely to be due to the strict assumptions that a population arterial

input function and washout rate can be used to describe an individual subject.

Figure 5.6a shows that this propagates into the estimate of BPND as this

subject consistently falls outside the 95% confidence interval in the regression

across all subjects.

5.4 Discussion and Conclusion
This work demonstrates that the proposed RT-SRTM using just 30:60 minutes

of PET data together with blood flow information from ASL produces esti-

mates of amyloid burden which are comparable to full pharmacokinetic mod-
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Figure 5.7: Extrapolated reference regions (CR)

elling of 0:60 minutes of [18F]-florbetapir PET data. The proposed method

is more accurate than the simplified estimate of amyloid burden, SUVR−1,

which showed a positive bias especially at higher binding potential values.

The results of the proposed technique depend on the CBF-derived R1

estimate from the ASL data. The ASL data used here were acquired for only

5 minutes without motion correction, and thus susceptible to artefacts and

noise. Linear regression between CBF and R1 using just 5 subjects could

produce errors which may propagate to the binding potential estimation and

cannot account for potential regional differences in the relationship.

Furthermore, the scaled mean CR method for extrapolating CR works

well for most subjects but the strict assumption that population values can

be scaled to fit a subject was violated in one case, suggesting a more flexible
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approach may be required in the future. However, the technique shows promise

and has the potential to be applied to other PET tracers which bind to other

biological targets of interest.



Chapter 6

Correlation of PET tracer

delivery and ASL cerebral blood

flow

Chapter 5 introduces a framework for reduced acquisition time PET quantifi-

cation (RT-SRTM) which requires the ASL-CBF maps to be converted into the

relative PET tracer delivery rate constant, R1. This chapter reviews the exist-

ing literature which evaluates the correlation between PET based CBF mea-

surement, PET-R1, and ASL-CBF. Then the relationship between PET-R1

and ASL-CBF is tested using [18F]-florbetapir PET data with simultaneously

acquired ASL-MRI. This work has been published in Scott et al. (2018c).

6.1 Introduction
The first step of the RT-SRTM method proposed in chapter 5 is to convert

ASL-CBF maps into PET-R1 maps. This was achieved using the theoretical

Renkin-Crone model, described in chapter 4.2, which offers a way to equate

the tracer delivery rate constant, K1, to CBF. This model can also be adapted

for the parameter of interest, R1, by normalising to the reference region. When

applying this model in chapter 5, it was assumed that the extraction of the

tracer from the blood plasma into the tissue was sufficiently high that the

Renkin-Crone model could be reduced to a linear regression (equation (5.3)),
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however there was limited data available to validate this assumption.

There is currently no published experimental data directly comparing

amyloid PET K1 or R1 with ASL-CBF. However, the gold standard CBF

measurement H2O15-PET (also known as water-PET) has been compared to

amyloid PET K1, R1 and ASL-CBF, so it is used here as an intermediate step

to determine which factors influence the correlation between these parameters.

6.1.1 Comparison of ASL-CBF with H2O15-PET

Fan et al. (2016) carried out an extensive review of literature which com-

pares the CBF estimated using H2O15-PET with ASL. This review highlights

the difficulty in drawing definite conclusions from multiple studies due to the

wide range of study designs, ASL acquisition implementations, and analysis

techniques used. Whilst recommendations have been issued in an attempt to

standardise ASL acquisition and analysis (Alsop et al., 2015), this has yet to

have a significant impact on comparative ASL to H2O15-PET literature. Fur-

thermore, since the recommendations were designed to be easily implementable

across many sites, it has been suggested that the recommended methodology

may not be optimal for quantifying CBF using ASL (van Osch et al., 2017).

Overall, Fan et al. (2016) found a high correlation between whole brain

CBF estimated by the two modalities (e.g r2 = 0.6, Heijtel et al. (2014)),

however regional correlation tended to be much lower (e.g r2 = 0.34, van Golen

et al. (2014)). Physiological, acquisition, and processing effects all influence

the correlation between the two modalities. Here it is assumed that most of

the variability comes from ASL, as H2O15-PET is the gold standard of CBF

measurement and different H2O15-PET acquisition and processing techniques

generally produce consistent results (Boellaard et al., 2006)

Physiological effects. There are two primary physiological factors which af-

fect the accuracy of ASL-derived CBF measurements; differences in flow rates,

and differences in ATT.

In areas of the brain with lower flow rates there will be fewer labelled

spins delivered to the tissue, and therefore the signal difference between the
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control and label images is smaller, decreasing the already low SNR. In healthy

subjects this is observed in the 2-3.6 times lower flow rates in white matter

tissue compared to grey matter (Van Osch et al., 2009). Zhang et al. (2014)

showed that simultaneous ASL (pCASL) and H2O15-PET yield similar mean

white matter CBF values, but the ASL gives a much higher coefficient of

variation (56% for ASL compared to 29% for PET). This indicates that, in

this case, lower SNR leads to increased variability.

Furthermore, the ATT is longer in white matter compared to grey matter,

which means that for single inversion time techniques the labelled bolus may

not have reached in the tissue before image readout. This was demonstrated

by Ye et al. (2000) who found no significant difference in CBF estimation

between ASL (using CASL) and H2O15-PET in a cortical grey matter region,

but a statistically significant 30% difference in cortical white matter.

Increased ATT is also a hallmark of ageing and disease and, as for the

white matter regions, this can lead to images acquired before the bolus has

reached some brain regions (Fan et al., 2017), or to the signal decaying before

it reaches the tissue. This physiological effect will influence the choice of

parameters selected for the acquisition.

Acquisition effects. Overall, Fan et al. (2016) found that global ASL-CBF

literature values were generally within 15% of the PET-CBF values, however

the systematic errors depended on the choice of labelling scheme. It was found

that pCASL tends to overestimate CBF, whereas PASL underestimates. This

may be due to intrinsic differences in the labelling schemes, or could be related

to differences in the delay between labelling and readout between the two

techniques.

In general longer delay times between labelling and readout are desirable,

as this ensures that the bolus has had enough time to reach the tissue (Fan

et al., 2017). Otherwise signal can remain in the arteries, causing an overes-

timation of the CBF in the surrounding area compared to H2O15-PET. This

was noted in the study by Heijtel et al. (2014), which showed that ASL over-
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estimated CBF in deep cortical tissues which are highly vascularised. This

effect was reduced when applying crusher gradients which remove the signal

in the blood vessels, however this approach was not recommended in the ASL

consensus paper (Alsop et al., 2015), as it greatly reduces the overall SNR.

Whilst an increased delay between labelling and readout ensures that the

bolus has reached the tissue, it is important to consider that the longer the

delay, the lower the measured SNR. This is because the signal of the tagged

spins is decaying at a rate determined by the T1 of the surrounding blood

or tissue. It also means that any blood which arrives to the tissue early will

decay with the T1 of tissue rather than blood, where the T1 of tissue is much

shorter than that of blood. This is known as the T1 effect and could introduce

regional errors depending on ATT, unless more complex, multi compartmental

modelling is applied (Parkes and Tofts, 2002).

The readout method used also has a large influence on the regional ASL-

CBF values. Alsop et al. (2015) recommend segmented 3D sequences such as

3D GRASE to maximise SNR and the efficiency of background suppression,

whilst minimising the influence of local field inhomogeneities which affect echo

planar imaging (EPI) sequences. Kilroy et al. (2014) performed a head-to-

head comparison between pCASL with 3D GRASE and 2D EPI readouts.

This showed that 3D GRASE had better repeatability over time and better

consistency between patient groups compared to 2D EPI. However, when com-

paring both methods to H2O15-PET, the results suggested a better correlation

between H2O15-PET and the 2D EPI readout than 3D GRASE, although this

difference did not reach statistical significance.

Processing effects. The literature also shows that there are methods to re-

duce the errors between H2O15-PET and ASL-CBF. The simplest way to ac-

count for global errors is to normalise the CBF values to a reference region, as

performed in Goetti et al. (2014). Here the cerebellum was used as the refer-

ence region, and the correlation between PET and ASL-CBF rose from r= 0.27

for absolute values to r = 0.67 for relative CBF. The main challenge with this
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approach is defining an appropriate reference region, however for comparison

with R1, which includes a reference region by definition, this approach is ideal.

PVEs also have an influence on both PET and ASL estimates of CBF.

Here, the limited spatial resolution of the PET scanner, combined with the

finite voxel size used to represent both modalities will introduce a dependance

of CBF estimates on region size and the surrounding voxel intensities. In

comparative literature this is generally addressed by smoothing the ASL-CBF

maps to match the resolution of the PET data (van Golen et al., 2014).

Finally, it is trivial to see that the larger the temporal gap between the

H2O15-PET scan and the ASL-MRI, the higher the chance that the CBF of

the patient has changed, affecting the correlation between the two modalities.

When performing comparison between H2O15-PET and ASL-CBF, it is not

always possible to conduct the studies at the same time or even on the same

day. Figure 6.1 shows how the correlation coefficient between H2O15-PET and

ASL decreases as the time elapsed between scans increases. This makes it diffi-

cult to separate intrinsic differences between the techniques from physiological

CBF fluctuations over time, particularly as there are so many uncontrolled

factors, such as caffeine, which can influence CBF (Clement et al., 2017). This

demonstrates the importance of simultaneous acquisitions for confounder-free

comparisons.

6.1.2 Comparison of amyloid PET-R1 with H2O15-PET

The only direct comparison of H2O15-PET CBF with R1 generated from [18F]-

florbetapir PET data was performed by Ottoy et al. (2017a), who analysed

39 subjects (10 healthy controls, 19 patients with mild cognitive impairment

(MCI), and 10 patients with AD), with an unspecified delay between PET

scans. Ottoy et al. (2017a) calculated R1 from dynamic data using a 2T4P

model, with the arterial input function derived from arterial blood samples.

Ottoy et al. (2017a) found statistically significant Pearson correlations between

PET-R1 and H2O15-CBF for all 8 regions analysed.

The findings of Ottoy et al. (2017a) are supported by multiple similar
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Figure 4. Pearson correlation coefficient (R2) between [15O]-water PET and ASL MRI

perfusion measurements reported in comparison studies, plotted against the time elapsed

between the PET and MRI scans. Correlations are presented for both absolute and

relative CBF metrics, as well as for healthy volunteers (green) and patient populations

(gray). Across studies, Spearman rank correlation revealed an inverse relationship

between the reported R2 values and the elapsed time (=0.77, P=0.003). ASL: arterial spin

© 2016 by International Society for Cerebral Blood Flow and Metabolism

Figure 6.1: Pearson correlation coefficient between H2O15-PET and ASL reported
in comparison studies, as a function of the time elapsed between scans. Reproduced
from Fan et al. (2016) with permission.

studies which used 11C-PiB data to estimate R1 (Bilgel et al., 2019; Chen et al.,

2015; Rodell et al., 2013; Ponto et al., 2019). The largest study was conducted

by Bilgel et al. (2019). In this study, which included 149 subjects (143 healthy

controls, 4 patients with MCI and 2 patients with AD), the SRTM was used

to calculate 11C-PiB R1, and H2O15 and 11C-PiB acquisitions were performed

consecutively in the same session. The median Pearson correlation across

all subjects was 0.67, although there was no separate analysis to determine

whether this correlation varied between the large healthy control group and

the MCI and AD subjects. This study also went on to show that R1 can be

used as a marker of change in CBF over time, although the correlation between

the longitudinal change in 11C-PiB R1 and H2O15 reduced to 0.42.

Chen et al. (2015) also conducted both 11C-PiB and H2O15 imaging in

a single session for 19 subjects (6 healthy controls, 8 patients with MCI and

5 patients with AD). Various methodologies were employed to quantify the

amyloid PET data, including the 2T4P model with arterial sampling, recom-

mended in Price et al. (2005) for K1 estimation, and the SRTM for R1. The

standard single tissue model was applied to the H2O15-PET using K1 as a
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direct estimate of CBF.

Comparison was performed between 11C-PiB and H2O15 absolute quan-

tification estimates (K1), and relative quantification estimates (R1) across 13

regions and one combined cortical region using Spearman’s correlation coeffi-

cient (ρ). Direct comparison of 11C-PiB and H2O15-PET K1s showed a low

correlation across most regions, with only the subcortical white matter achiev-

ing a statistically significant correlation (ρ= 0.699).

However, when comparing the relative K1 for H2O15-PET with R1 from

the SRTM fit of 11C-PiB, all regions achieved significance with ρ≥ 0.839. This

is partly due to the reduction of bias achieved when normalising to a reference

tissue, and to the increased stability of the SRTM compared to more complex

kinetic models.

Finally, Rodell et al. (2013) and Ponto et al. (2019) carried out similar

comparison studies including 13 subjects (8 healthy controls and 6 patients

with AD) and 24 subjects (an unspecified mix of healthy controls and patients

with MCI), respectively. Both studies used the SRTM to generate R1 from
11C-PiB data and again found a good correlation between H2O15 CBF and
11C-PiB R1, with Ponto et al. (2019) reporting a mean R2 value of 0.817.

Rodell et al. (2013) also reported that group differences in estimated CBF

between healthy controls and patients with AD, reduced when normalising to

a reference region. This could be an issue if using R1 to distinguish between

groups but it is not an issue in this case, as the correlation of 11C-PiB R1 with

H2O15 CBF is the parameter of interest.

6.1.3 Correlation of R1 and ASL for amyloid PET/MR

data
The available literature shows that, at least on a regional basis, there is ev-

idence of correlations between ASL-CBF and H2O15-PET CBF, as well as

between H2O15-PET CBF and amyloid PET R1. This suggests that there

should also be a correlation between ASL-CBF and amyloid PET R1. How-

ever, the comparative literature on ASL-CBF and H2O15-PET CBF suggests
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that the relationship may vary by region and is strongly influenced by how

the ASL data is acquired and processed. This relationship is explored here for

simultaneously acquired [18F]-florbetapir PET R1 and pCASL ASL-CBF.

6.2 Methods

6.2.1 Data
The data used within the current chapter and chapter 7 is drawn from two

studies; imaging data were collected from 60 cognitively normal subjects partic-

ipating in Insight 46 (1946), a neuroimaging sub-study of the Medical Research

Council National Survey of Health and Development (Lane et al., 2017), and 4

subjects from a study of young onset Alzheimer’s Disease (YOAD) with an in-

termediate or high certainty diagnosis (McKhann et al., 2011), see appendix A

for more details.

All subjects underwent 60 minutes of simultaneous amyloid PET and

multi-modal MR imaging on a Siemens Biograph mMR PET/MR scanner. Of

the 64 subjects used for analysis, (mean age 69.6 years, range 61.7-70.5 years),

45 had both PET and ASL data, and for 19 the ASL data were missing, either

due to repetition of other scans (4) or imaging artefacts (15).

The subjects were divided into 2 sets; an optimisation set containing 39

subjects, and a testing set containing the remaining 25 subjects, see figure 6.2.

The clinically diagnosed YOAD subjects were evenly split between the two sets,

as were amyloid positive (aβ+) subjects from Insight 46. Amyloid positivity

was defined using mean cortical grey matter SUVR with a whole cerebellum

reference region, see appendix A.3 for details.

Within the optimisation set the 20 subjects with PET and ASL data were

used in this chapter to derive the relationship between PET-R1 and ASL-CBF.

6.2.2 CBF estimation with ASL-MRI
ASL data were acquired and processed as described in section 5.2.3, before

being resampled into a 2x2x2 mm3 grid to improve the parcellation into brain

regions and to match the PET data. ASL data were all checked before inclu-
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Whole dataset
64 subjects (11 aβ+ [17%])

PET & ASL
45 subjects

PET only
19 subjects

Optimisation set
39 subjects (6 aβ+ [15%])

CBF and R1 relationship
20 subjects (4 aβ+ [20%])

PET & ASL
20 subjects

PET only
19 subjects

CR extrapolation
39 subjects (6 aβ+ [15%])

PET & ASL 
20 subjects

PET & ASL
20 subjects

PET only
19 subjects

Testing set
25 subjects (5 aβ+ [20%])

PET & ASL
25 subjects

PET only
0 subjects

PET only
0 subjects

Used in chapter 7

Used in chapter 7

Figure 6.2: Division of data for optimisation

sion in analysis, see appendix B.2 for details. All subjects used were visually

assessed to ensure that motion was minimal, that the fitting of the M0 maps

was successful, and that there were no major artefacts. However, some com-

mon artefacts were accepted due to their high prevalence, namely fat shift and

flow, as described in section 6.3.2.

6.2.3 Dynamic PET acquisition and reconstruction

List mode PET data were acquired for 60 minutes following intravenous injec-

tion of [18F]-florbetapir, which targets amyloid-β. For PET image reconstruc-

tion, simultaneously acquired structural T1- and T2-weighted MR images were

used to synthesise CT data and calculate the attenuation map (µ-map) (Bur-

gos et al., 2015), as validated in Ladefoged et al. (2017). The µ-map was

propagated into PET space by registering the T1-weighted images to a full

60-minute non-attenuation corrected reconstructed PET image.

Dynamic PET data were binned into 31 time frames (15s× 4, 30s× 8,

60s×9, 180s×2, 300s×8), and reconstructed into 2×2×2mm3 voxels using

the open source NiftyPET package (Markiewicz et al., 2017), see Appendix B.

Spatial smoothing was applied to the images to reduce noise in the time activity

curves. A 2mm Gaussian filter was found empirically to be sufficient to reduce

noise in the regional time activity curves.
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6.2.4 Regional analysis framework

Analysis was performed as described in section 5.2.3, using 16 regions for anal-

ysis with cerebellar grey matter as a separate reference region. Gold standard

PET-R∗1 was then correlated against relative ASL-CBF (rCBF).

6.2.5 Linear regression between ASL-CBF and PET-R1

Linear regression between R1 and CBF was performed to determine whether

the linear approximation in equation (5.3) is valid. The slope and intercept of

the linear regression, β0 and β1, can account for systematic differences between

the modalities and an extraction fraction of E < 100%, see section 4.2.2. The

derived β0 and β1 can then be applied to a different group of subjects to convert

ASL-CBF to a derived R1 value.

Due to systematic errors in ASL-CBF estimates in certain regions of the

brain, multi-linear analysis was also performed to determine whether β0 and

β1 may be region dependent. Multi-linear regression has the capacity to model

interaction terms between ASL-CBF and the region, and can be described as

in equation 6.1.

R1 = β0 +β1
F

F ′
+
regions∑
n=2

βnI[regionn]

+
2×regions∑

m=regions+1
βm×

F

F ′
× I[regionm]

(6.1)

Here I[regionn] is equal to 1 when regionn is being considered, and 0 otherwise.

Two further multi-linear analyses were also performed i) using the subject as

a covariate, and ii) using both subject and regions as covariates, to determine

their relative influence on R1 estimation.
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(a) PET-R1 Vs ASL-CBF- single lin-
ear regression (black dashed line).
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(b) Residual normality plot for (a).
Inset: histogram of residuals
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(c) PET-R1 Vs ASL-CBF- multi-
linear regression (black dashed lines).
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Figure 6.3: Correlation of PET-R1 with ASL-CBF for 20 optimisation set subjects.
Linear regression was calculated and applied to the ASL-CBF data to show the
residual error in the fit.

6.3 Results

6.3.1 Global relationship between ASL-CBF and PET-

R1

Figure 6.3a shows the relationship between PET-R1 and ASL-CBF across the

16 regions for the 20 optimisation set subjects. Linear regression shows a

statistically significant correlation between the two parameters (ρ= 0.349,p <

0.001), however there is some variability which is not explained by the linear

model. Noise and artefacts in the ASL data are considered to be the main

causes of variability, however violations of the model assumptions may also

contribute.

Residual analysis was performed to determine whether a non-linear model

could be fitted to the data, as suggested by equation (5.2). The normality plot
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for the residual error in figure 6.3a is shown in figure 6.3b. This demonstrates

that the residuals follow an approximately normal distribution, which supports

the use of a linear model. However, there is some deviation from normality at

the extremes, which is also illustrated by the histogram inset in figure 6.3b.

This shows that there are some outlying positive residuals which skew the

distribution.

6.3.2 Regional relationship between ASL-CBF and

PET-R1

Using tissue type as a covariate. The literature reviewed in section 6.1.1

suggests that the bias within the ASL estimate of CBF may be region depen-

dent. To investigate this, first the tissue type was used as a covariate in the

linear regression. Figure 6.4 shows the same data as figure 6.3a, but this time

a single linear regression has been applied for each tissue type. Figure 6.4

demonstrates similar relationships between PET-R1 and ASL-CBF for grey

matter, deep grey matter and white matter. The overestimation due to vas-

cular signal in deep grey matter seen by Heijtel et al. (2014) is not seen here.

This can be explained by the longer delay between labelling and acquisition,

which was 1800ms in this work compared to 1525ms in Heijtel et al. (2014).

However, when looking at the correlations it is clear that the strongest rela-

tionship between PET-R1 and ASL-CBF is seen for grey matter regions. This

is likely to be due to the higher blood flow in these regions which increases the

SNR.

Figure 6.4 also shows that the correlation between PET-R1 and ASL-CBF

in the brainstem is very weak. The brainstem as a region was not reported sep-

arately in the comparative literature reviewed in section 6.1.1, however Warn-

ert et al. (2014) performed some optimisation work specifically for ASL of the

brainstem. Warnert et al. (2014) showed that the brainstem is a challenging

region in which to perform ASL based CBF measurements due to its high vas-

cularity, shorter transit time (approximately 100ms shorter than grey matter),

and lower perfusion relative to grey matter. Warnert et al. (2014) recommend
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Figure 6.4: Correlation of PET-R1 with ASL-CBF for 20 optimisation set subjects
with a linear regression performed for each tissue type. 4 indicates Aβ-positive
subjects and # Aβ-negative

using a multi-TI ASL acquisition with a 2 compartment model to account for

the shorter transit time and T1 effect. Consequently, a single TI measurement

analysed using the single compartment method results in a noisy measurement.

Whilst figure 6.4 shows reasonable correlations for the individual tissue

types, multi-linear regression using the tissue type as a covariate doesn’t ex-

plain a significant amount of the variation in the data. This multi-linear re-

gression resulted in an R2 value of 0.163 (adjusted R2 = 0.144), which is higher

than that of the single linear regression (0.062, adjusted R2 = 0.063), but is still

relatively small. Consequently other covariates were explored to understand

the relationship between PET-R1 and ASL-CBF.

Using brain region as a covariate. To quantify the regional variation in

the relationship between ASL-CBF and PET-R1, multi-linear analysis was

also performed using the region name as a covariate. This was found to ex-

plain much more of the variation than the single linear regression and gave an

R2 value of 0.650 (adjusted R2 = 0.613), compared to 0.062 (adjusted R2 =

0.063) for single linear regression. Figure 6.3d shows that the residual error

using multi-linear regression using brain region is lower and more normally

distributed than single linear regression.
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Figure 6.5: Regional plots of ASL-CBF normalised to the reference region against PET-R1
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Figure 6.3c shows the multi-linear regression by region, demonstrating the

variability in slope and intercept between regions. These differences can mainly

be attributed to regional differences in bolus transit times, meaning that the

ASL label image is acquired before the bolus exchanges with the tissue, but

could also be related to partial volume effects in small structures. Acquiring

ASL data with multiple post-labelling delay times can be used to reduce some

of this variability and would be particularly helpful when transit time changes

are caused by pathology which cannot be modelled.

Figure 6.5 shows the relationship between ASL-CBF and PET-R1 by re-

gion if linear regression is performed on each region individually. This shows

that some regions, such as the cortical grey matter regions on the top row,

have a strong correlation between the two metrics. The high correlation in

cerebellar white matter seen on the third row of figure 6.5 demonstrates that

it is possible to generate robust estimations of CBF in white matter using this

acquisition protocol. However, for the cerebral white matter the correlation is

much lower, indicating that there may be some other influence on this region.

Figure 6.6 demonstrates how the flow artefact (seen in 85% of ASL images

reviewed) manifests. This artefact is due to blood flow during an MR acqui-

sition which causes artefacts through 2 different processes; inflow and velocity

induced phased effects. Inflow effects refer to the blood flowing through the

imaging slice, and therefore for SE sequences a bolus of blood may not re-

ceive both the 90° and 180° pulses leading to signal loss. Alternatively, for GE

sequences a fresh fully relaxed bolus can enter the imaging slice and receive

the 90° pulse, and even if it moves out of the slice it will still contribute to

the signal, as the gradients are not slice selective, leading to high intensity

signals. Velocity induced phase effects arise due to the movement of the blood

spins while the gradients are being applied, leading to continuously changing

resonant frequencies, and inducing signal loss and ghosting of the vessels in

the image. These effects cause both bright and dark flow artefacts in the con-

trol and label images, which propagate through to the CBF estimation and
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(a) Typical bright flow artefact (CBF scale 0-90ml/min/100g)

(b) Bright and dark flow artefacts (CBF scale 0-80ml/min/100g)

(c) Outlier subject showing very bright flow artfact (CBF scale 0-120ml/min/100g)

Figure 6.6: Examples of subjects with flow artefacts affecting the CBF estimation.
This shows that the affected regions include the accumbens (red), pallidum (green),
putamen (yellow), and cerebral white matter (pink).
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Figure 6.7: Top: CBF map overlaid on T1 showing fat shift artefact, Bottom: par-
cellation over T1 showing that the artefact appears in the occipital region (purple)

are compounded by patient motion. Figure 6.6a, is a typical example of this

artefact with bright streaks cutting vertically through the accumbens (red),

pallidum (green), putamen (yellow), and cerebral white matter (pink) on both

sides of the brain. An example of a dark flow artefact is shown in figure 6.6b,

however this can more easily be masked out in regional CBF estimates as it

results in negative values.

The images of the subject shown in figure 6.6c demonstrate a large bright

flow artefact, which is causing high CBF estimates. This subject is the outlier

point seen in many brain regions in figure 6.6c.

The other recurrent artefact seen in many of the images is fat shift as

shown in figure 6.7, which is a form of chemical shift artefact. This type of

artefact is caused by atomic electrons shielding the nucleus from the applied

magnetic field altering the resonant frequency of the nucleus. The magnitude

of the shift depends on the chemical environment of the nucleus and is a

particular issue in fat, which is a large molecule causing a large frequency shift

compared to water. Whilst the acquisition does include fat suppression, in

some cases this is imperfect, and the artefact manifests as a shift of the fat
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from the back of the head into the posterior of the brain. This is because

the 3D GRASE readout is implemented such that there is an EPI readout in

the x-y plane, with the phase direction in y. Due to the small bandwidth per

pixel in the phase direction, small shifts in frequency result in large spatial

shifts in image space. However, the high correlation in the occipital region

shows that the fat shift artefact seen in figure 6.7 does not affect the regional

average values. This is because the artefact causes a negative CBF value to be

generated which can easily be excluded from regional averaging as a negative

flow rate is not physiologically possible.

Whilst some regions show low correlations due to artefacts, the linear

model is able to describe most of the variation in the data, and demonstrates

strong linear relationships in some tissue regions. Where the correlation be-

tween PET-R1 and ASL-CBF is low, estimates of PET-R1 derived from ASL-

CBF will tend towards an average R1 value. Based on this the multi-linear

regression using region as a covariate was considered to be the best model

available to describe the data and to predict PET-R1 values from ASL-CBF.

6.3.3 Additional covariates

To quantify the subject specific component of the relationship between nor-

malised ASL-CBF and R1, which cannot be modelled in a new set of sub-

jects, multi-linear regression with the subject as a covariate was performed.

This gave an R2 value of 0.436 (adjusted R2 = 0.358), indicating that there is

some variation between subjects, but that this accounts for less of the varia-

tion than the variation between regions. Finally, multi-linear regression using

both region and subject as covariates yielded an R2 value of 0.862 (adjusted

R2 = 0.824), showing that most of the variation can be explained by these two

parameters. Including amyloid status as an additional covariate did not give

any additional information.
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6.4 Conclusions
This comparison between ASL-CBF and PET-R1 demonstrates that the re-

lationship between blood flow and tracer delivery for [18F]-florbetapir can be

adequately approximated using a multi-linear regression using brain region as a

covariate. This conclusion is supported by the theoretical relationship between

blood flow and tracer delivery which was established using the Renkin-Crone

model, and supporting literature which compares ASL-CBF and amyloid PET

R1. When applied to the available clinical data across all regions and subjects,

multi-linear regression provided a model which was better able to describe the

relationship between the two parameters than a single linear regression.

However, when the relationship was scrutinised on a regional basis arte-

facts, noise, and partial volume effects lead to errors in CBF estimation in

some regions. This could potentially lead to errors in R1 estimation, and con-

sequently errors in the fitted BPND when used in the RT-SRTM. However,

the model was considered to be suitable for deriving PET-R1 from ASL-CBF

since the regions affected had low gradients, and as such R1 values derived from

these regions would tend towards the population average. The benefit of being

able to describe most of the variation in the data (R2=0.650) was considered

to outweigh the drawbacks of including low correlation regions. The influence

of derived R1 errors on the estimate of binding potential are investigated in

chapter 7.

There is not sufficient evidence that the data used here could support

a more complex non-linear model between PET-R1 and ASL-CBF, as the

residual errors of all the linear models follow an approximately normal distri-

bution. Since multi-linear regression using region as a covariate was best able

to describe the relationship between PET-R1 and ASL-CBF, this model was

selected for use when applying the RT-SRTM in the following chapter.



Chapter 7

Optimisation of Reduced

Acquisition Time PET

implementation

In this chapter the reduced time SRTM (RT-SRTM) framework outlined in

chapter 5 is optimised; two techniques for extrapolating the reference region

curve, CR, are compared (scaled mean CR method and PCA CR method),

and the optimal timing window (ts:te) for the acquisition of the PET data

is assessed. Finally the optimised RT-SRTM is applied, using multi-linear

regression evaluated in chapter 6 to estimate R1 from ASL.

7.1 Introduction
Chapter 5 described the three stages required for the RT-SRTM; 1) estimating

relative tracer delivery (R1) from ASL-CBF, 2) extrapolating reference region

curve (CR), and 3) fitting the SRTM with CBF-derived R1 and extrapolated

CR(t). Chapter 6 looked at the first step in detail, where it was determined that

multi-linear regression using brain region as a covariate was the most accurate

method for estimating PET-R1 from ASL-CBF. However the propagation of

errors in R1 estimation to BPND has not been explored, nor have the other two

steps have been optimised. In this chapter I perform sensitivity analysis by

simulating data to see how accurate the estimate of R1 needs to be to ensure
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a reliable BPND estimate.

In chapter 5, step 2 was carried out by scaling a population mean reference

region curve to the available subject data to extrapolate the missing time

points. This approach assumes that the subject’s reference region curve, CR(t)

can be described using a population based arterial input function with a subject

specific scaling factor, and a population based washout rate, k′2. However,

this may not be the case, particularly in diseased populations who may have

pathological chages in blood flow which will affect the arterial input function

and the tracer washout. Consequently, a more flexible method which can

represent a wider range of reference region curve shapes would be required to

apply the technique to a heterogeneous patient population.

For step 3, where the RT-SRTM is fitted to the measured PET data, t=

30,60 was selected as the later part of the signal contains information about the

binding and washout of the tracer, which are the parameters which need to be

estimated. However, the choice of acquisition timing window also determines

which part of the reference region curve is measured and will consequently

affect its extrapolation in step 2). Therefore in this chapter I also look at

which part of the PET data to acquire.

7.2 Methods

7.2.1 Data
The imaging dataset is described in section 6.2.1, and the split between optimi-

sation and testing of the technique is shown in figure 7.1. The optimisation of

the relationship between ASL-CBF and PET-R1 was derived in chapter 6 and

the results of this optimisation, using the multi-linear regression method, is

used here. Analysis was performed on a regional basis using the tissue regions

defined in section 5.2.

7.2.2 Extrapolation of PET reference region, CR
As described in section 5.2.2, CR must be known from injection, at t = 0, to

the end of the scan, t = te, where ts, te = 0,60 minutes for the gold standard.
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Whole dataset
64 subjects (11 aβ+ [17%])

PET & ASL
45 subjects

PET only
19 subjects

Optimisation set
39 subjects (6 aβ+ [15%])

CBF and R1 relationship
20 subjects (4 aβ+ [20%])

PET & ASL
20 subjects

PET only
19 subjects

CR extrapolation
39 subjects (6 aβ+ [15%])

PET & ASL 
20 subjects

PET & ASL
20 subjects

PET only
19 subjects

Testing set
25 subjects (5 aβ+ [20%])

PET & ASL
25 subjects

PET only
0 subjects

PET only
0 subjects

Figure 7.1: Division of data between testing and optimisation

However, when reducing the acquisition time, CR is only measured between ts
and te where ts 6= 0, therefore a strategy is required to extrapolate the missing

data. Here we define CR(t) as a vector containing the reference region tracer

concentration over time, CpopR (t) as a matrix containing the reference region

concentration for a population of subjects, and C
pop
R (t) as a vector containing

the mean population tracer concentration. For clarity, the acquisition time, t,

is expressed as a discrete variable, as the dynamic data are binned into frames.

In this work two different approaches are evaluated to estimate the whole

reference input vector CR[t=0,te] for an unseen subject’s CR[t=ts,te] . Both tech-

niques make use of a population of subjects for which the full CR[t=0,te] was

measured.

The first method, referred to as the scaled mean CR method and intro-

duced in chapter 5 (Scott et al., 2016), scales the population average reference

region curve, CpopR[t=0,te]
, as:

CR[t=0,te] ≈ α C
pop
R[t=0,te]

, (7.1)

where α is a subject specific scaling factor determined through a least squares

fit of CpopR[t=ts,te]
to CR[t=ts,te] . This results in an individual estimate of CR[t=0,te]

to be used in the RT-SRTM.



7.2. Methods 125

The second method employs statistical shape modelling to build a model of

the variation in CR within the population of subjects (Cootes et al., 1995). This

requires principal component analysis (PCA) of a set of subjects to determine

theM components, U = [~u1, ...,~uM ]′ where ~ui = [u1, ..,uframes], and is therefore

referred to as the PCA CR method.

The CR[t=0,te] of each subject in the set can be expressed as the mean

population reference curve, CpopR[t=0,te]
, plus a linear combination of the weighted

principal components, where the weight of the ith mode, ~ui, is wi. A subset of

the components L, where L<M , which describe the majority of the variation

are selected. An unseen reference region curve CR[t=ts,te] can then be fitted by

adjusting the weights, as per equation (7.2). The same weights and modes can

then be used with CpopR[t=0,te]
to generate CR[t=0,te] .

CR[t=ts,te] ≈ C
pop
R[t=ts,te]

+
L∑
i=1

wi~ui (7.2)

7.2.3 Optimisation of CR extrapolation and PET acqui-

sition window

The scaled mean CR and PCA CR methods were tested using a leave-one-out

strategy, whereby CpopR contained all subjects except the one being fitted.

For the scaled mean CR method, CpopR was calculated by scaling each

reference curve to match the peak value, then calculating the mean for each

frame. C
pop
R was then scaled using a least squares fit to the subject data

between t= ts, te.

For the PCA CR method the weight for each mode of variation, wi, must

be optimised. Equation 7.2 can be solved through linear optimisation of the

weights; however, preliminary work showed that when this is applied to an

incomplete dataset, i.e. when only the datapoints between ts and te are avail-

able, the problem is insufficiently constrained and the fit is poor. Consequently,

non-linear optimisation of the weights was employed.

Following PCA of CpopR (t= 0, te), each mode of variation has a weight for
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each subject in the population set. The standard deviation for each mode is the

square root of the variance given by the eigenvalues of the covariance matrix,

which is computed within PCA. The standard deviation of the weights for each

mode can be used to define upper and lower bounds for the weight when fitting

an unseen CR(t = ts, te). Assuming that CpopR is representative of the general

population, it is unlikely that an unseen CR would deviate by more than ± 3

times the standard deviation of the population, suggesting that this could be

used to define reasonable limits (Cootes et al., 1995). However when fitting

reduced time data a smaller range may help to constrain the optimisation.

To find the optimal values for the upper and lower bounds of the weights,

30 minutes of data were fitted multiple times with different bounds which

ranged between ±0.5 and 3 times the standard deviation for each mode of

variation. This was estimated for a single time window (t = 30,60 minutes),

and the three best performing parameters were then compared across timing

windows.

The number of components, L, was calculated by performing PCA on

the reference region curves, CpopR (t), and calculating the percentage of the

covariance explained using different numbers of components. The maximum

value of L, Lmax, was selected based on the smallest number that could explain

≥99.9% of the variation. Optimisation was performed using L= 1, ...,Lmax.

To determine the optimal PET acquisition window (t= ts, te), four differ-

ent 30 minute windows were tested, covering the full 60 minutes of available

data. No ASL data were used in this section to ensure that errors introduced

by the estimation of R1 using CBF do not confound the results. To evaluate

the influence of the timing window on estimated BPND, a fit was performed

using the true subject CR, and the gold standard R∗1 values. This was then

compared to the fits using the derived reference region curves and gold stan-

dard R∗1 values.

SUVR−1 was calculated at five 10 minute acquisition windows, starting 30

minutes post injection, to cover the recommended time range. The SUVR−1
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values estimated were then compared to the gold standard BPND, and the

average mean square error (MSE) and bias (mean error) was calculated across

the 25 testing set subjects.

7.2.4 Sensitivity analysis of RT-SRTM

Sensitivity analysis was performed with simulated dynamic PET data to assess

the influence of errors in R1 estimation from ASL-CBF. Regional parameters

from 1 positive subject (from the young onset Alzheimer’s disease study) were

used to generate time activity curves for t=0,60 mins using the SRTM and a

mean reference region curve. The testing set subjects were used to determine

the range of noise and the error in R1 estimation used in the simulation.

SD(ti) = SF

√√√√eλtiCT (ti)

∆ti
(7.3)

A range of noise levels were added to the simulated curves using equa-

tion 7.3(Ichise et al., 2003), based on Gaussian noise, to represent different

region sizes and statistics. To determine the noise range to add to the simu-

lated data, the standard deviation of the residual error in the gold standard

fit for t =40,60 mins for all testing set subjects was calculated. 200 noise re-

alisations were generated for each noise percentage, and 15 noise levels were

used.

The percentage error in R1 estimation using multi-linear regression on

the ASL data was found for all testing set subjects. 15 error percentages were

selected to cover the range of those found.

Finally, the simulated curves were fitted over the optimised 30 minute

timing window using the RT-SRTM, where R1 was fixed by the simulation.

Estimates of BPND were compared to the ground truth simulated values and

BPND+1 was used to calculate percentage errors for consistency with existing

literature using SUVR.
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7.3 Results

7.3.1 Extrapolation of PET reference region, CR

7.3.1.1 Optimisation of PCA CR method
Table 7.1 shows the percentage of the variation described as the number of

components are increased for the population of 39 subjects, CpopR (0,60). This

demonstrates that six principal components are required to describe 99.9% of

the variation within the data, therefore a maximum of six components are used

in the optimisation (L≤ 6).

Number of Variation
components (L) described (%)

1 76.4
2 95.0
3 97.8
4 99.1
5 99.6
6 99.9

Table 7.1: The percentage of the variation explained using increasing number of
principal components following PCA on the CR(t = 0,60) of 39 optimisation set
subjects

In addition to the number of principal components, the upper and lower

bounds of the weights must be defined for the optimisation.Figure 7.2 shows

the MSE in the fit of CR(t = 30,60) using leave-one-out cross validation and

averaged across subjects. This demonstrates that constraining the upper and

lower bounds of the weights reduces the error when fitting to data with missing

timepoints. Figure 7.2 shows that the error in the estimate of CR is largest

when both the number of components and the size of the weight bound limits

are large (top right), showing that when the model is minimally constrained

then it cannot accurately estimate the missing data. Figure 7.3 (created using

the same data as figure 7.2) shows how the error varies by subject for a given

number of principle components. This shows that using just one principal

component the results are more stable across the range of weight bounds,

although a lower error can be achieved using more principal components.
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Figure 7.2: MSE in the fit of CR(t = 30,60) using the PCA CR method when
optimising the number of components used and the upper and lower bounds for the
weights using leave-one-out analysis on 39 optimisation set subjects

Overall the combinations of components and weight bounds with the low-

est error are L= 6 with either ± 0.5 or 1 times the standard deviation for the

bounds, or L= 3 with ± 1 times the standard deviation for the bounds. These

three combinations give a similar MSE for t= 30,60, however figure 7.4 shows

that L = 6 with 1 times the standard deviation for the bounds performs con-

sistently better across different timing windows, and therefore this was used

for comparison with the scaled mean CR method in the following sections. It

is worth noting, however, that using three principal components with a weight

bound of ± 1 standard deviation also performs well. This could be useful if

fitting fewer PET frames as the number of frames determines the maximum

number of principal components to avoid an underdetermined problem.

For the PCA CR method, 6 modes of variation were required to explain

99.9% of the variation between subjects. For these 6 modes of variation, the

upper and lower bounds of the weights must be defined. Figure 7.3 shows

how the mean square error in the fit of CR(t= 30 : 60) changes as the weights

can vary between ± 0.5 and 3 times the standard deviation for each mode of

variation. As the range increases the model is better able to model variation,
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(c) 1 principal component

Figure 7.3: Plot of mean square error in the fit of CR using the PCA CR method
and different ranges of weighting factors for 24 subjects (30:60 mins PET data).
Upper and lower bound of the weighting factor are ± weighting range times standard
deviation. Coloured lines represent individual subjects and the black line is the
average across all subjects.

however due to the limited acquisition window, the fit is not sufficiently con-

strained leading to implausible estimates of CR. From this experiment, the

optimal range was taken to be ±1 standard deviation for each mode, as this

produced the lowest mean square error.

7.3.1.2 Comparison of PCA CR and scaled mean CR methods:

The boxplot in figure 7.5, which summarises the ME across all subjects, shows

that the PCA CR appears to perform better than the scaled mean CR method

for all time windows except t=10,40 with a small range of errors and a generally

lower bias. However, neither the difference in MSE nor ME reached statistical

significance (MSE: p≥ 0.3218, ME:p≥ 0.2015). The influence of this error on



7.3. Results 131

 0,30  10,40  20,50  30,60  
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
107

Figure 7.4: Mean error for in the fit of CR(t= 30,60) using the PCA CR method
across timing windows with difference constrains on a leave-one-out analysis on 39
optimisation set subjects
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Figure 7.5: ME in estimated CR using PCA CR method and scaled mean CR

method compared to measured CR calculated using leave-one-out cross validation
in 39 optimisation set subjects.

the estimation of BPND at different acquisition windows is assessed in the next

section.
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7.3.2 Optimisation of acquisition time window
The MSE and ME in the estimation of BPND using different data acquisition

windows are shown in table 7.2. Extrapolation of CR is not strictly neces-

sary for t = te,60 as the basis functions can be generated provided that the

information starts from injection at t = 0. However, estimating the t = te,60

timepoints reduces the error in the estimate of BPND as it is closer to the gold

standard. For example, for t= 0,30 using only the measured data for CR yields

an MSE = 0.1960 and ME =-0.3704 which is much higher than that from ei-

ther extrapolation method shown in table 7.2. Consequently, in all cases CR
was extrapolate to cover t= 0,60.

In table 7.2 the true CR column uses the full measured CR (t = 0,60),

therefore errors are introduced purely due to the limited number of datapoints

available. When the later frames are omitted and only t= 0,30 minutes of data

are acquired, large errors are introduced as there is little information about

the late phase which contains the signal relating to target binding. As the

time window is shifted later, the MSE and ME are reduced.

However, the results in table 7.2 also show that there is little to be gained

by including data acquired more than 50 minutes post injection as the error

increases. This is because the signal has plateaued by this point so, for a fixed

30-minute window, a better fit can be obtained by including some of the earlier

data where the tracer concentration changes more rapidly over time. This is

further illustrated in figure 7.6, which shows the smallest distribution of errors

Time window True CR PCA CR Mean CR
(t= ts,te) MSE ME MSE ME MSE ME

0,30 0.0089 0.0303 0.0085 0.0299 0.0085 0.0299
10,40 0.0035 0.0202 0.0036 0.0202 0.0035 0.0211
20,50 0.0008 0.0050 0.0010 0.0041 0.0012 0.0088
30,60 0.0030 -0.0084 0.0032 -0.0090 0.0034 -0.0050

Table 7.2: MSE and ME between gold standard BP ∗
ND and BPND at different

30-minute acquisition windows averaged across 16 regions and 39 optimisation set
subjects. True CR uses the true reference region curve, PCA CR and mean CR ex-
trapolate the reference region curve using the PCA CR and scaled mean CR methods,
respectively. All methods used the gold standard R∗

1.
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Figure 7.6: Error inBPND estimates across different timing windows using different
estimates of CR calculated using leave-one-out cross validation in 39 optimisation
set subjects..

in BPND at t= 20,50.

For the two techniques which extrapolate CR from the available time

window, additional variability is introduced into the BPND estimates due to

errors in the extrapolation, which is reflected by the higher MSE in table 7.2.

For both the PCA CR and the scaled mean CR method, the early phase of

the data becomes more important, as much of the variation between the CR
of subjects is contained in these frames. This can be seen in figure 7.5, as

for t =0,30 the error in CR estimation is at a minimum, and increases as the

acquisition window shifts later. When the early frames are included, the error

in BPND is very similar to using the true CR, whereas when only the late

frames are used, the error in BPND for the extrapolation methods increases

relative to the true CR, figure 7.6. However, this is balanced out by the fact

that later data is required to get the best fit to CT and hence BPND. Table 7.2

shows that the optimal timing window for this technique is t= 20,50 minutes

post injection as it yields the lowest MSE and ME.

The PCA CR method produces a consistently lower MSE which was statis-

tically significantly lower than that obtained using the scaled mean CR method
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Time window (ts:te) SUVR−1
30:35 35:40 40:45 45:50 50:55 55:60 MSE Bias
  # # # # 0.0269 0.1143
#   # # # 0.0301 0.1288
# #   # # 0.0312 0.1318
# # #   # 0.0301 0.1275
# # # #   0.0253 0.1108

Table 7.3: Mean square error (MSE) and bias (mean error) between the gold
standard BP ∗

ND and SUVR−1 at different acquisition windows across 25 testing set
subjects.

for t= 20,50 (p= 0.002). This is due to the increased flexibility in this method

as the model is built from the many population subjects, rather than using a

population mean with the assumption of a population washout rate, k2. This

allows the PCA CR method to better describe the variation in unseen CR

shapes. The PCA CR method also produces BPND estimates with lower bias

at t= 20,50, as demonstrated by the median lines in figure 7.6 and the ME in

table 7.2 (p < 0.001).

Due to the lower MSE and ME the PCA CR method with the t = 20,50

minute timing window was selected for the full implementation of the RT-

SRTM in subsequent sections.

7.3.3 Optimisation of SUVR acquisition window

Table 7.3 shows the MSE and ME between the gold standard BP ∗ND and

SUVR−1 at different acquisition windows across 25 testing set subjects. As

anticipated, the optimal available timing window with the lowest bias and error

was found to be t= 50,60 minutes post injection, in concordance with Cselényi

and Farde (2015). This is verified by figure 7.7, which demonstrates that SUVR

reaches a plateau at this timepoint. This indicates that steady state has been

reached, which is the condition under which SUVR can be used to approximate

BPND. Therefore SUVR−1 was calculated at t = 50,60 for comparison with

the proposed method.
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Figure 7.7: Plot of average SUVR against time post injection for a representative
subset of 10 testing set subjects showing that a plateau is reached at approximately
50 minutes post injection, using cerebellar grey matter as a reference region.

7.3.4 Comparison of proposed RT-SRTM with gold

standard
Figure 7.8a shows BPND, estimated using the RT-SRTM with t = 20,50 min-

utes of data plotted against the gold standard BP ∗ND. Linear regression of the

data shows that the RT-SRTM method offers a good approximation of the gold

standard as it closely follows the line of identity (dashed), which is within the

95% confidence interval (CI) of the regression (shaded). The linear correlation

between the two estimates was tested using the Pearson correlation coefficient

which demonstrated a high, statistically significant result (r= 0.896, p< 0.001,

95% CI [0.875, 0.914]).

7.3.5 Comparison of proposed RT-SRTM with SUVR−1
Figure 7.8b shows the amyloid burden estimates generated for SUVR−1

(t = 50,60 minutes). Whilst the correlation between SUVR−1 and BP ∗ND

is evident, a positive bias is shown as SUVR−1 overestimates the binding

potential at higher values. This is due to the fact that the target and ref-

erence tissue concentrations reach equilibrium with blood plasma at different

points depending on tracer binding, as has been explored in detail in the liter-
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(a) RT-SRTM where t = 20,50 minutes
(ASL derived R1)
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(b) SUVR−1 where t = 50,60 minutes
(static scan)
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(c) SRTM where t= 0,30 minutes (PET
data only, no CR extrapolation)
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(d) RT-SRTM where t= 20,50 minutes
(PET data only, extrapolated CR)

Figure 7.8: Estimated amyloid burden against the gold standard value calculated
using full PET time series for 25 testing set subjects. The grey shaded region covers
the 95% confidence interval in the regression.

ature (Slifstein, 2008). The ME quantifies the bias between the estimates and

the gold standard which is 0.1038 for SUVR−1, indicative of the systematic

overestimation, compared to 0.0079 for the RT-SRTM method (p < 0.001).

The RT-SRTM method also has a lower MSE (0.0066 compared to 0.0235 for

SUVR−1, p < 0.001), showing that overall this technique estimates BP ∗ND
more accurately than the simplified technique.
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This overestimation in SUVR−1 is likely to be a combination of a linear

systematic error in the estimation, as well as the influence of blood flow. Sys-

tematic error could result from estimating SUVR−1 when not at steady-state,

and could potentially be accounted for using a population correction factor.

To determine the influence of blood flow on the estimation of target den-

sity, the correlation between estimated target density and tracer delivery was

calculated, as in Cselényi and Farde (2015). Spearman’s correlation (ρ) be-

tween R∗1 and the estimates was calculated, as the relationship is in theory

non-linear. For the gold standard BP ∗ND and BPND using RT-SRTM, there

was no significant correlation with R∗1 (p= 0.336 and 0.106 respectively). How-

ever, for SUVR−1 there was a significant negative correlation (ρ = −0.226,

p < 0.001), which suggests that the proposed RT-SRTM method may be more

robust to changes in blood flow than SUVR−1.

7.3.6 Comparison of proposed RT-SRTM with short ac-

quisition time PET
Pharmacokinetic modelling can be applied to reduced acquisition time PET

data without incorporating ASL data in several ways, e.g.: i) fitting the first

30 minutes of PET data only using the standard SRTM in equation 3.20, ii)

extrapolating CR as in RT-SRTM, but R1 is estimated from the PET data,

iii) the ‘coffee break’ or ‘dual time-point’ protocol where early (from injection)

and late PET data are acquired with a break in-between and the missing data

is interpolated (Bullich et al., 2018; Heeman et al., 2019). In addition to the

errors introduced by the interpolation, the ‘coffee break’ protocol requires the

registration of the pre- and post-break data for pharmacokinetic modelling,

scatter and attenuation correction, which is non-trivial. This approach is also

generally applied to tracers which require scans of ≥ 90 minutes to justify the

inconvenience of scanning the patient twice. As a result at the time of writing

there are no published papers using this method with Florbetapir data, and

since the result cannot be fully simulated from the data acquired here, it is

not included in this comparison.
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For the first method, i), figure 7.8c compares the estimation of BPND
using PET data for t = 0,30 minutes to the gold standard. It is evident that

the absence of late-phase data leads to a high error in the estimate, which is

significantly higher than using the RT-SRTM (MSE= 0.0813, p < 0.001; ME

= 0.0569, p < 0.001).

For the second method, ii), where BPND is estimated using 30 minutes

of PET data and PCA CR extrapolation, the timing window t = 20,50 was

selected by calculating the MSE for all the timing windows used in table 7.2

and t= 20,50 yielded the lowest value. Figure 7.8d shows a significantly lower

MSE for this method compared to using the first 30 minutes (MSE = 0.0121,

p < 0.001). This method also outperforms SUVR−1 with a lower MSE (p <

0.001) and ME (p < 0.001), however it is significantly correlated with the gold

standard R∗1 (p= 0.004).

Comparison of this PET only method in figure 7.8d with the proposed

RT-SRTM including ASL derived R1 estimates (figure 7.8a) shows that the

additional CBF information improves the estimate of BPND, yielding a signif-

icantly lower MSE (p= 0.028), ME (p < 0.001) and variance (two-tailed F-test

p < 0.001). This can be seen in figure 7.8a where the points are more tightly

clustered around the line of identity when using the proposed RT-SRTM com-

pared to figure 7.8d using PET data only.

7.3.7 Sensitivity analysis of RT-SRTM

Table 7.4 shows the percentage error in the estimated BPND+1 for a given

data noise level and R1 error. This shows that, as expected, the error in

the estimate of BPND+1 increases as the error in R1 increases. However, it

also demonstrates that the noise in the time activity curve has a significant

influence on the estimate.

When evaluating all regions across all testing set subjects, the mean R1

error was found to be 6.0%, with 85% of the estimates below 10% R1 error.

The maximum noise in the regional time activity curves was found to be 3.4%,

with an average of 1.7%. This shows that, for a typical region, the error
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in BPND+1 is less than 1.4%. For a noisy region with a 10% error in R1

estimate this increases to around 2.5%. However, if the current methodology

was extended to voxel-wise analysis where the noise may be up to 10%, and the

error in R1 could be higher, the error in BPND+1 would increase dramatically,

up to 10% or more.

In Cselényi and Farde (2015) the blood flow dependent component in

SUVR for the Alzheimer’s disease subjects was found to be 0.03. Table 7.5

shows that the mean absolute error for the RT-SRTM method is generally far

below this value for regional analysis (noise<3.4%, R1 error<10%), and would

be much lower for a mean cortical grey matter region as used by Cselényi and

Farde (2015). This supports the conclusion that, on a regional level, the RT-

SRTM could potentially be more robust for longitudinal analysis than SUVR.

However, if the methodology were to be extended to voxel-wise analysis, a

lower R1 error would be required due to the increased noise in the PET data

which increases the uncertainty in the model fit.
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% R1 % noise in time activity curve
error 0.5 0.6 0.8 1.0 1.2 1.5 1.8 2.2 2.8 3.4 4.2 5.3 6.5 8.1 10.0
0.0 0.174 0.208 0.278 0.360 0.463 0.617 0.855 1.108 1.357 1.665 1.936 2.511 3.166 3.876 4.715
0.2 0.177 0.211 0.279 0.361 0.461 0.615 0.854 1.108 1.356 1.668 1.936 2.512 3.170 3.877 4.715
0.3 0.180 0.213 0.280 0.363 0.465 0.616 0.855 1.107 1.353 1.668 1.936 2.514 3.171 3.876 4.716
0.4 0.183 0.216 0.282 0.365 0.466 0.617 0.856 1.105 1.352 1.669 1.937 2.515 3.172 3.877 4.719
0.6 0.192 0.224 0.289 0.370 0.471 0.620 0.859 1.108 1.354 1.673 1.937 2.516 3.174 3.877 4.718
1.0 0.221 0.251 0.310 0.390 0.484 0.633 0.867 1.118 1.362 1.677 1.944 2.514 3.170 3.883 4.721
1.6 0.286 0.309 0.362 0.432 0.521 0.662 0.889 1.141 1.377 1.687 1.952 2.525 3.178 3.901 4.729
2.6 0.425 0.442 0.479 0.537 0.611 0.748 0.946 1.193 1.419 1.724 1.977 2.544 3.195 3.908 4.744
4.1 0.660 0.671 0.702 0.739 0.799 0.919 1.085 1.309 1.519 1.801 2.047 2.603 3.235 3.945 4.772
6.5 1.054 1.055 1.079 1.109 1.142 1.248 1.389 1.565 1.746 1.992 2.220 2.736 3.346 4.042 4.859
10.3 1.679 1.678 1.684 1.714 1.753 1.837 1.940 2.089 2.225 2.419 2.589 3.051 3.617 4.271 5.063
16.4 2.657 2.651 2.657 2.688 2.723 2.801 2.891 2.991 3.110 3.261 3.385 3.743 4.231 4.865 5.594
26.1 4.187 4.188 4.209 4.238 4.274 4.350 4.421 4.509 4.615 4.733 4.833 5.160 5.566 6.153 6.756
41.5 6.732 6.727 6.735 6.771 6.812 6.871 6.951 7.038 7.117 7.307 7.438 7.810 8.167 8.653 9.091
66.0 11.40 11.40 11.41 11.47 11.48 11.56 11.61 11.59 11.61 11.63 11.71 11.72 11.87 11.99 12.12

SRTM 0.088 0.107 0.149 0.204 0.270 0.335 0.410 0.505 0.619 0.756 0.944 1.171 1.445 1.769 2.299

Table 7.4: Percentage absolute error in BPND+1 using the RT-SRTM on simulated curves compared to gold standard BP ∗
ND+1. Each

value was averaged across the 200 noise realisations for simulated data. The dashed lines indicate the upper limits of R1 % error and noise
found for regional analysis.
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% R1 % noise in time activity curve
error 0.5 0.6 0.8 1.0 1.2 1.5 1.8 2.2 2.8 3.4 4.2 5.3 6.5 8.1 10.0
0.0 0.002 0.003 0.004 0.005 0.006 0.008 0.011 0.015 0.018 0.022 0.025 0.033 0.041 0.050 0.061
0.2 0.002 0.003 0.004 0.005 0.006 0.008 0.011 0.015 0.018 0.022 0.025 0.033 0.041 0.050 0.061
0.3 0.002 0.003 0.004 0.005 0.006 0.008 0.011 0.015 0.018 0.022 0.025 0.033 0.041 0.050 0.061
0.4 0.002 0.003 0.004 0.005 0.006 0.008 0.011 0.015 0.018 0.022 0.025 0.033 0.041 0.050 0.061
0.6 0.003 0.003 0.004 0.005 0.006 0.008 0.011 0.015 0.018 0.022 0.025 0.033 0.041 0.050 0.061
1.0 0.003 0.003 0.004 0.005 0.006 0.008 0.011 0.015 0.018 0.022 0.026 0.033 0.041 0.050 0.061
1.6 0.004 0.004 0.005 0.006 0.007 0.009 0.012 0.015 0.018 0.022 0.026 0.033 0.041 0.051 0.061
2.6 0.006 0.006 0.006 0.007 0.008 0.010 0.012 0.016 0.019 0.023 0.026 0.033 0.042 0.051 0.061
4.1 0.009 0.009 0.009 0.010 0.010 0.012 0.014 0.017 0.020 0.024 0.027 0.034 0.042 0.051 0.062
6.5 0.014 0.014 0.014 0.014 0.015 0.016 0.018 0.021 0.023 0.026 0.029 0.036 0.044 0.052 0.063
10.3 0.022 0.022 0.022 0.022 0.023 0.024 0.025 0.027 0.029 0.032 0.034 0.040 0.047 0.055 0.066
16.4 0.034 0.034 0.034 0.035 0.035 0.036 0.038 0.039 0.041 0.043 0.044 0.049 0.055 0.063 0.072
26.1 0.054 0.054 0.055 0.055 0.056 0.057 0.058 0.059 0.060 0.062 0.063 0.067 0.072 0.080 0.088
41.5 0.088 0.088 0.088 0.088 0.089 0.090 0.091 0.092 0.093 0.095 0.097 0.102 0.106 0.113 0.118
66.0 0.149 0.149 0.149 0.149 0.149 0.150 0.151 0.151 0.151 0.151 0.152 0.152 0.154 0.155 0.157

SRTM 0.001 0.001 0.002 0.003 0.003 0.004 0.005 0.007 0.008 0.010 0.012 0.015 0.019 0.023 0.030

Table 7.5: Mean absolute error in BPND+1 using the RT-SRTM on simulated curves compared to gold standard BP ∗
ND+1. SRTM is the

gold standard fit using the full SRTM for comparison. Each value was averaged across the 200 noise realisations for simulated data. The
dashed lines indicate the upper limits of R1 % error and noise found for regional analysis.
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7.4 Discussion
In this chapter I have optimised the RT-SRTM framework for quantitative

PET analysis with significantly reduced acquisition time, exploiting blood flow

information from simultaneously acquired ASL MRI data.

I have evaluated a new technique for extrapolating the reference region

time activity curve, CR, using PCA which introduces a lower error than the

method used in Scott et al. (2016) where the mean population is scaled. The

timing of the PET acquisition was then optimised, and found to be t= 20,50

minutes post injection.

When the RT-SRTM estimates of BPND using t= 20,50 minutes of PET

data and ASL derived R1 were compared to the gold standard using the full 60

minutes of PET data a strong linear correlation was found. This demonstrates

that the RT-SRTM with a 30-minute acquisition could potentially be used as

a proxy for the full 60-minute acquisition for this tracer and subject group.

By comparison, the simplified measure, SUVR−1, using 10 minutes of

data showed a strong positive bias in the target density estimation, and the

results were correlated with the delivery of the tracer as determined by the

gold standard R1 estimates. This implies that, in addition to systematic error

within the SUVR−1 estimates, there is also a bias introduced due to local

differences in blood flow. This may confound longitudinal studies, as blood

flow may change over time, over the progression of disease, or due to disease

modifying interventions. Conversely, the RT-SRTM estimates of target density

were not correlated with R1, suggesting that this technique may be robust

to changes in blood flow and could be a suitable alternative for longitudinal

studies. However this needs to be validated in a longitudinal dataset.

SUVR−1 estimation at different timing windows showed that t = 50,60

minutes gave the best estimation of BPND. Since SUVR−1 appears to have

plateaued by this point, it is unlikely that the estimation can be improved by

acquiring data at a later timepoint.

It has also been demonstrated that, in the absence of ASL data to inform



7.4. Discussion 143

R1, BPND can be estimated from PET data acquired at t = 20,50 combined

with PCA CR extrapolation. This method was shown to be significantly more

accurate than SUVR−1. This suggests that a 30 minute PET acquisition could

be used to estimate BPND, however it was found that when the RT-SRTM

was applied with ASL-derived R1, the estimation of BPND was significantly

improved. Consequently, ASL data should be used where available.

This chapter focused on the optimisation of a simultaneous 30-minute

PET/MR acquisition. Concurrent acquisition ensures that the CBF measured

by ASL represents the flow at tracer injection, avoiding errors introduced by

physiological flow changes throughout the day (Parkes et al., 2004). This as-

sumes negligible change in blood flow between tracer injection and the end of

the scan. This can be controlled through measures used for routine clinical

PET scans, such as keeping the patient lying down in an uptake room from

injection to scan start. The influence of auditory stimulation, which would be

present during the ASL scan but not during tracer injection, on CBF should

also be considered, and if necessary the conditions in the scanner should be

emulated in the uptake bay. If conditions could be adequately controlled the

technique could be extended to separate PET and MRI acquisitions. How-

ever this would be heavily dependent on the scheduling of the scans and the

acquisition time saved is reduced compared to the simultaneous PET/MRI

method.

A 30-minute acquisition was selected to accommodate a typical MRI neu-

roimaging session, whilst still greatly increasing patient throughput and com-

fort. This could be further reduced depending on the MRI data acquired, where

the minimum time is determined by the acquisition of the ASL data and the

images required for attenuation correction of the PET data. In this case, using

the PCA CR method with fewer principal components should be considered

to avoid an under-determined problem where there are more parameters to fit

than datapoints available.

The ASL data used in this study was acquired for just 5.5 minutes over 50
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minutes into the scan with no motion correction and no patient restraint. For

this reason approximately 30% of the ASL-CBF maps failed quality control

checks, largely due to motion induced artefacts. This represents a challenging

dataset which could be significantly improved by increasing the number of

acquisitions and motion correction. However, the fact that the RT-SRTM

worked so well on this dataset indicates that it could be a clinically useful

tool. It is worth noting that the data acquired from the 4 clinically diagnosed

YOAD subjects all passed the quality control checks.

The limited time available within the protocol for the ASL acquisition also

meant that a single delay time between blood tagging and image acquisition

was used. This yields errors in CBF estimation due to different bolus transit

times for different brain regions, either due to normal physiology or pathologi-

cal changes. A multi-delay time ASL acquisition would make the methodology

more robust as the transit time is parameterised within the model.

The RT-SRTM was here applied to an amyloid-β tracer, however the

methodology could potentially be used for any tracer which can be described

by the SRTM, and which has a sufficiently high extraction fraction, such as

[18F]-florbetaben, another amyloid-β tracer, or tau (τ) tracers (Baker et al.,

2016). The kinetics of these tracers are slower than those of [18F]-florbetapir,

and as such require longer dynamic acquisitions. Here, the RT-SRTM could

potentially offer a greater reduction in acquisition time, and could be com-

pared with the dual time-window protocol, another acquisition time reduction

method used on such tracers where early and late PET data are acquired with

a break in-between (Bullich et al., 2018). Furthermore, this approach could be

broadened to other kinetic models which have a tracer delivery parameter that

can be approximated using CBF from ASL. Reference region curve extrapola-

tion could also be used in reference Logan analysis Logan et al. (1996), as an

alternative to a previously proposed reduced acquisition time method which

cannot account for blood flow changes Tantawy et al. (2009).

The main limitation of this study is that the optimisation of the RT-SRTM
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has been performed on cross-sectional dynamic scans of mostly healthy volun-

teers. The introduction of subjects with disease may increase the variability in

CR between subjects. However, some variability already exists in the dataset

used as the healthy subjects undergo normal ageing and we include 4 clinically

diagnosed subjects, which the PCA CR method can handle. Provided that the

dataset used to build the model for the PCA CR method includes diseased

subjects, this variability can also be accounted for.

Another limitation within the proposed technique is that tracer delivery is

estimated directly from ASL-CBF using a region dependent linear relationship.

This works well for regional data as artefacts can be averaged out, however

this is not possible for voxel-wise analysis where errors will propagate through

to the R1 estimate. A more robust methodology which propagates database

R1 values into the subject space based on local image similarity has been

proposed (Scott et al., 2017) and will be investigated in the following chapter.

Such approaches may also be better able to handle low quality ASL data

which would have failed the QC performed here. This would facilitate voxel-

wise analysis for quantitative parametric imaging within a clinically feasible

time frame.

7.5 Conclusions

In this chapter I have demonstrated that the three stages of the RT-SRTM

should be carried out as follows: 1) R1 estimation from ASL-CBF should be

carried out using regional multi-linear regression which sensitivity analysis in-

dicates is sufficiently accurate for regional analysis, 2) the PCA CR method

should be used to extrapolate the subject’s reference region and 3) PET data

acquired over t = 20,50 minutes should be used to fit the model. Using this

methodology provides reasonable estimates of BPND for regional analysis of

[18F]-florbetapir data using ASL data which has passed QC. However, if vox-

elwise analysis is required or if subjects with poor quality ASL scans are to be

included then more robust approaches may be required, as investigated in the
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following chapters.



Chapter 8

Comparison of R1 estimation

methods: towards voxelwise

analysis

The aim of this chapter is to test whether advanced image synthesis techniques

can be used to improve PET-R1 estimation from ASL-CBF such that the RT-

SRTM framework could be extended to voxelwise analysis. Here, different

image synthesis methods using both multi-atlas propagation with image fusion

and deep learning based regression are proposed and compared, and both the

accuracy of the PET-R1 estimation and its influence on the resulting BPND are

assessed. This is also compared to the linear regression methods introduced

in chapters 5 and 7. Initial work on the voxelwise analysis was presented at

MICCAI 2017 (Scott et al., 2017) and PSMR 2018 (Scott et al., 2018b) and is

extended to a larger subject cohort here.

8.1 Introduction
The RT-SRTM, proposed and evaluated in the preceding chapters, requires the

conversion of ASL-CBF into the PET tracer delivery parameter, R1, which is

then fixed for pharmacokinetic modelling of the 30 minutes of dynamic PET

data. This approach is based on a physiological model which assumes that

the relationship between ASL-CBF and PET-R1 can be approximated using
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a linear regression (LR) derived from regional average values. However, image

artefacts, noise inherent in the image acquisition and assumptions in the ASL

model used to calculate CBF corrupt the ASL-CBF map. Applying linear

regression to this corrupted data means that the errors are propagated to the

estimate of R1 and consequently to BPND.

In the previous chapters errors in the ASL-CBF maps were minimised as

quantification was performed on a regional basis. Since only regional R1 esti-

mates were required, this allowed unrealistic values of CBF, such as negative

values, to be discarded and the noise was reduced by averaging across the valid

voxels. However, regional averaging can also combine pathological and healthy

areas, as the borders of pathology may not coincide with tissue boundaries de-

rived from a T1 parcellation which are used to define the regions. This means

that pathology could be underestimated or missed completely.

In this chapter, existing image synthesis frameworks are applied to the

generation of R1 from ASL-CBF, to determine whether they are better suited

to the task than the physiologically based linear regression model used pre-

viously. Multi-atlas propagation with image fusion (IF) and deep learning

based regression (DL) using deep convolutional neural networks (CNNs) are

data driven techniques which have been widely used for medical image synthe-

sis and make less strict assumptions about the relationship between ASL-CBF

and PET-R1 than linear regression. Consequently they should be better able to

generate reasonable estimates of R1, even for imperfect ASL-CBF maps. They

are compared with the linear regression (LR) methods developed in chapters 5

and 7.

All three approaches (LR, image fusion (IF) and deep learning (DL))

are ‘supervised’ in that they use a database of ‘training’ subjects which have

both the input ASL-CBF data and corresponding output PET-R1, however

the assumptions made are different. For LR, a direct linear relationship is

enforced between the input ASL-CBF maps and the output R1 estimate. This

is a strong assumption which means that errors in the input will be propagated
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to the output. It also does not allow for inter-subject differences in the mapping

as a single LR is applied to the whole dataset.

The IF method assumes that if the input ASL-CBF map for the test

subject has a high local similarity to that of a subject within the training

database, then their output R1 map must also be similar in that region. This

is a weaker assumption than that of the LR method, as it only relies on the

relationship between input and output being consistent between subjects if

their inputs are similar. It also means that the input data is not used directly

so ASL-CBF artefacts do not propagate into the R1 estimation. However,

it does rely on the database containing subjects which are similar to the test

subject, and that areas of ASL-CBF artefact which have a high local similarity

also have similar R1 values.

For DL based methods the relationship between the input and output is

learnt from the data. Consequently, the only assumption is that there is some

complex set of functions relating the input ASL-CBF to the output PET-R1

which can be learnt from the training data.

This chapter compares the performance of several implementations of

these three of image synthesis approaches for the generation of PET-R1 maps,

where multiple implementations are achieved by changing the number of

modalities included in the input data. Both the accuracy in R1 and BPND

estimation are used to determine whether the evaluated methods are suffi-

ciently accurate to allow the RT-SRTM method to be applied on a voxelwise

basis.

8.2 R1 estimation approaches
Three different types of image synthesis approach were applied to the genera-

tion of PET-R1 maps; LR, IF and DL. From these three approaches a total of

five methods were used to derive R1 from ASL-CBF, where the extra methods

are achieved by adding input modalities to the training set. For each method

a database of subjects with 60 minutes of simultaneously acquired PET data,
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ASL and (optionally) T1-w MRI and dynamic PET frames are used. The

methods are implemented as described in the following sections.

8.2.1 Linear regression
Linear regression (LR) (Scott et al., 2016) As described in chapter 7,

briefly, a single linear regression was performed on all voxels within the brain

mask between PET-R1 and ASL-CBF on the database of training subjects to

derive the relationship between the two parameters. This relationship derived

from all voxels combined was then applied to an unseen ASL-CBF map from

the test set, see figure 8.1.

Regional linear regression (rLR) (Scott et al., 2018c) As described in

chapter 7, briefly, regions were defined using T1 based tissue parcellations gen-

erated using GIF (Cardoso et al., 2015) which were combined into 16 regions

(excluding the reference region cerebellar grey matter), see section 5.2.3. Lin-

ear regression was then performed between PET-R1 and ASL-CBF for each

voxel for each of the 16 regions on the database of training subjects to derive

the relationship between the two parameters. This results in region specific

linear regression coefficients, as apposed to LR which produces a single lin-

ear regression. The regional regression coefficients are then applied to the

ASL-CBF map of the test subjects.
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Figure 8.1: Generation of R1 maps from ASL-CBF maps using linear regression
(LR). Result image is for illustration only.
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8.2.2 Multi-atlas propagation with image fusion (IF) (Scott

et al., 2017)

Multi-atlas propagation with image fusion has been used for a range of image

synthesis tasks, including the generation of pseudo CT data, which is required

for attenuation correction in PET-MR imaging (Burgos et al., 2015). The

framework developed by Burgos et al. (2015), which is available as part of

NiftyPipe1, was applied to this R1 synthesis task by changing the training

database. The adaptation of this framework to R1 synthesis was initially

described in Scott et al. (2017), and is explored in more detail here.

Let A= {A1, ...,AN} be the training database which comprisesN subjects.

Here Ai consists of Mi input image modalities and an output image Oi as

Ai = {I1i , ..., IMi
;Oi}. Given a test subject ST = {ST1 , ...,STM}, the aim is

to estimate OT . Based on the terminology used in Burgos et al. (2015), if

N=1 then this is a single atlas method, if M=1 then this is a single contrast

method. In this case M = 2 where I1i is the structural T1-w image, I2i is the

ASL-CBF map, and Oi is the corresponding R1 map. The T1-w image data

was included to improve image registration and to allow the image similarity

to be calculated even in regions where the ASL-CBF map contains no valid

data.

The basic steps involved in multi-atlas multi-contrast image synthesis are

outlined in the following sections, and are summarised in figure 8.2.

8.2.2.1 Database construction

For each of the N subjects, all modalities within Ai are spatially aligned with

one another and with Oi via rigid registration to ensure spatial correspondence,

see data pre-processing section 8.3.4 for details. This data now constitutes the

training database.

1http://cmictig.cs.ucl.ac.uk/wiki/index.php/NiftyPipe
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8.2.2.2 Registration to test subject
For i= (1, ...,N), each training T1-w image (I1i) is non-rigidly registered to the

test T1-w image ST1 to get the deformation Di, where an affine registration is

used to initialise the non-rigid registration (Modat et al., 2010). Only the T1-w

images were used for registration, and not the ASL-CBF maps, as the ASL-

CBF maps are difficult to register due to noise and artefacts, see section 8.3.4.

Di is then applied to the ASL-CBF map (I2i) and R1 image (Oi).

8.2.2.3 Similarity calculation
The local similarity between each of the registered input training database im-

ages and the candidate subject is then calculated. For each training subject i

and voxel v the convolutional ROI- locally normalised cross correlation (LNCC)

between the training T1-w image (I1i) to the test T1-w image (ST1) is calcu-

lated as:

ROI-LNCCi,v(ST1 , I1i) = 〈ST1 ,DiI1i〉v
σ(ST1)vσ(DiIT1)v

where 〈S,DI〉v = S ·DIv−Sv ·DIv, σ(Sv) =
√
S2
v −S

2
v (8.1)

and the convolution is calculated using a Gaussian kernel GσG with a standard

deviation σG= 5mm and a density normalisation term Ω to ensure that valid

estimates are only produced where the image field of views (FOVs) overlap:

Sv = [GσG⊗S]v
[GσG⊗Ω]v

, Ω = 1 where FOV’s overlap, =0 otherwise (8.2)

The ROI-LNCC between the training ASL-CBF maps (I2i) and the test

ASL-CBF map (ST2) are also calculated and the similarity metrics from the

two modalities are combined into a single value for each voxel called the mul-

tivariate (MV) ROI-LNCC as:

MV-ROI-LNCCi,v = ROI-LNCCi,v(ST1 , I1i) + ROI-LNCCi,v(ST2 , I2i) (8.3)
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Calculating the similarity between each of the database images and the

candidate images using an ROI size which is smaller than the image volume

increases the accuracy and flexibility of the technique, as two subjects may

resemble one another in one area, but not in another. It also means that the

technique is less reliant on the accuracy of the registration.

8.2.2.4 Image fusion
For each voxel v, the N training datasets are ranked based on the MV-ROI-

LNCC similarity, and the rank (R) is converted to a weight using an exponen-

tial decay function as:

Wi,v = e−βRi,v , where β=0.5 by default (8.4)

For each voxel, the synthesised output value (OTv) is generated through a

weighted sum of the registered output database image intensities using:

OTv =
∑N
i=1Wi,vDi(Oi)∑N

i=1Wi,v
(8.5)
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Figure 8.2: Registration transforms input database images into the candidate
subject space. The local similarity between the images is calculated and is used to
weight the propagation of R1 information from the output database into candidate
space. Images are for illustration only and don’t represent actual results.
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8.2.3 Deep learning based regression

Deep learning is a branch of machine learning methods which has exploded in

popularity in medical imaging over recent years due to its successful application

to a wide range of image processing tasks. According to the comprehensive re-

view by Litjens et al. (2017) deep convolutional neural network (CNN)s trained

end-to-end using supervised learning are the most popular choice in medical

imaging. As a result, an open source implementation called ‘highres3Dnet’ (Li

et al., 2017) available in NiftyNet (Gibson et al., 2018) was selected as a suit-

able deep learning based approach for R1 synthesis. A brief overview of deep

neural networks (largely adapted from Goodfellow et al. (2016)) and details of

the implementation used are given below.

8.2.3.1 Neural network organisation

Network layers. Multi-layer neural networks consist of individual neurons,

or units, which are organised into layers. Information is passed from one layer

to the next starting from the input layer which reads in the data, through

the hidden layers, to the output layer which produces the result, as shown

in figure 8.3a. The units in the hidden layers can perform simple non-linear

operations, and by combining them in parallel as a layer they are able to

learn complex functions. By increasing the number of hidden layers, known as

the depth, increasingly abstract features can be learnt from the training data.

The width of a network is the number of units per layer, and the depth is the

number of hidden layers.

Pre-activation. Each unit takes a set of d inputs ~x= [x1, ...,xd] and produces

an output h(~x) as shown in figure 8.3b. The units perform this calculation in

two stages: firstly the pre-activation, a, is calculated based on a weighted sum

of the inputs x and a bias b, as in equation (8.6). The weights, ~w= [w1, ...,wd],

determine the strength of the connection of the neuron to its inputs. Both the

weights and the bias (a scalar value for a single neuron) are parameters of the

model which are tuned during training.
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a(~x) = b+
d∑
i=1

wixi = b+ ~wT~x (8.6)

Alternatively, for a convolutional layer in a CNN, the pre-activation is cal-

culated by convolving the input with a kernel to produce the output (fea-

ture map), as opposed to matrix multiplication. The kernel itself is a multi-

dimensional array of parameters which are adapted by the learning algorithm,

which are analogous to the weights and bias for conventional neural network

layers.

Post-activation. The neuron output (or post-activation) h(~x) is equal to the

activation function g(a(~x)) which operates on the pre-activation, a(~x). The

activation function introduces non-linearity into the network. The default

function used in NiftyNet is the rectified linear unit (ReLu) where h(~x) =

max(0,a(~x)).

...x1 xd
bi[1]

xj ...

b[2]h(xi)[1]

wij

input

hidden

output

(a) single layer neural network

. . .x1 xd

w1 wd

h(𝑥)
b

input

hidden

output

(b) Single neuron

Figure 8.3: schematics to show the building blocks of feed-forward neural networks
where each circle represents a unit or neuron

CNN properties. CNNs are specifically designed for inputs with a grid-like

structure such as medical images and have several desirable properties. The

use of single convolution kernel per layer, rather than a multiplication by a

different weight for each layer input, means that each element of the kernel

is used at every position across the inputs, and is therefore shared. This

reduces the computational cost of the network and also makes it equivariant

to translations such that if the input is translated, then the output will be

translated by the same amount. This is useful for images in which there is a
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feature which occurs in multiple locations across the image.

Translational equivariance can be extended to invariance using pooling.

The pooling operation, which is applied after the post-activation, is a function

which combines a group of outputs from a spatial neighbourhood into a single

value. One example is max pooling, where the maximum output is used, but

there are many different options. If pooling is applied across layers with differ-

ent kernels, then the network can learn which transformations to be invariant

to.

Sparsity can also be introduced by using a kernel which is smaller than

the input to the layer. This reduces the number of connections compared to a

fully connected network which increases training efficiency while reducing the

memory requirements.

8.2.3.2 Training a Convolutional Neural Network
For end-to-end supervised learning, the parameters are learnt during iterative

training as follows:

Initialisation. The parameters of the convolution kernels must be initialised

to begin training. Random initialisation is commonly used to ensure that units

learn as independently as possible.

Forward propagation. The input training data is fed through the network to

generate an output for each instance of the input training data at the current

iteration (i). To speed up the training process, instead of passing each training

example through the network, a random subset, or mini-batch, of the data can

be propagated through.

Loss calculation and backpropagation. The output from the network can

then be compared to the true output by evaluating the cost function to give

the loss at the current iteration. The direction in which the model parameters

should change is found using backpropagation. In backpropagation the gra-

dient of the cost function is calculated with respect to the model parameters

using the chain rule. If the gradient is calculated over a mini-batch of the

training data then this is called mini-batch gradient descent.
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Parameter optimisation. The parameters (wi) are updated by an amount

proportional to the gradient (G) as in equation (8.7). The size of the step (η)

taken when updating the parameters is determined by the learning rate and is

a hyperparameter which can be set at the beginning by the user. Several meth-

ods, such as adaptive moment estimation (Adam), have been proposed where

the learning rate is adapted for each weight based on how well it is learning

(as determined by the gradient). Adam is the default option in NiftyNet and

was used here to minimise the loss quickly while avoiding overshooting.

wi+1 = wi+ηG (8.7)

Figure 8.4: Plot generated by Tensorboard showing the training set (orange) and
validation set (blue) loss as a function of training iterations. The arrow indicates the
point at which the model starts to overfit to the training data and training should
be stopped.

Stopping criteria. The network parameters can be updated at each iteration

until a stopping criterion is satisfied. To avoid under or overfitting to the

training data a technique called early stopping can be used. Here, the data is

divided into validation, training and testing sets. The network is trained on

the training data and after a fixed number of iterations, inference is performed

on the validation set and the loss is calculated. By comparing the training loss

and the validation loss as a function of the number of iterations, as shown in

figure 8.4, the point at which the network begins to overfit to the training data

can be determined. This point is where the validation loss (blue) flattens out

or begins increasing as the model can no longer generalise to the unseen data,

this occurs at around 70,000 iterations in figure 8.4. By contrast, the training
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set loss (orange) will continue to decrease. This method provides a stopping

criteria which aims to maximise the generalisability of the network, although

it does reduce the number of available training examples due to the use of a

validation set.

Inference. Once the model has been trained the model parameters are fixed

and the test data can be passed through to generate an estimate of the output.

8.2.3.3 Regularisation.

Figure 8.5: Overview of ‘Highres3Dnet’
architecture showing the 20 convolutional
layers of the network and the paired resid-
ual connections, adapted from Li et al.
(2017).

Deep neural networks typically con-

tain a very large number of parame-

ters, and consequently can be prone

to overfitting, as the network can sim-

ply learn the training data exactly.

Ideally the training dataset would

be sufficiently large to mitigate this

problem, however this is not practi-

cal as datasets of that magnitude are

not available, particularly in medi-

cal imaging. There are a variety of

regularisation methods which can be

used, which include:

Data augmentation. This can be

used to artificially increase the size

of an existing training dataset. New

data is generated by applying a trans-

formation to the existing training

data; such as a small translation, or

adding noise to the images. The aug-

mented data is then included in the

training dataset.
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Dropout. Dropout works on the principle that the generalisation error can

be reduced by training several different models separately then combining the

results, since different models are unlikely to make the same mistakes. For

dropout, this is implemented by randomly excluding a fraction of the non

output layer units each time a batch is processed. This essentially means

that a different model is trained each time, and is implemented by setting a

probability of each unit being included. Dropout can also be performed at

inference to give a probabilistic output (Nair et al., 2018).

8.2.3.4 ‘Highres3Dnet’ architecture and training

For both of the deep learning based methods in this chapter, ‘Highres3Dnet’ (Li

et al., 2017) is used to perform image regression for R1 synthesis. ‘High-

res3Dnet’ is a convolutional neural network with 20 convolutional layers, which

uses a stack of residual dilated convolutions with increasingly large dilation

factors as illustrated in figure 8.5. Dilated convolutions are an alternative to

pooling which allow the receptive field to be increased without downsampling

the input, and without increasing the number of parameters. For dilated con-

volutions the kernel parameters are spaced out by a dilation factor with zeros

in the gaps (Yu and Koltun, 2015). This leads to an exponential increase in the

receptive field through the layers, while only linearly increasing the number

of parameters. The residual connections shown in grey in figure 8.5 allow the

deep network to be trained more efficiently by mimicking a series of shallow

networks, as proposed by He et al. (2016).

To train the networks, adaptive moment estimation (Adam) with an ini-

tial learning rate of 10−3 was used with a root mean square error loss function

and a mini-batch size of 2. The network parameters were initialised randomly

(a different network was trained for each fold of the cross-validation, see sec-

tion 8.3.5) and trained for a maximum of 250,000 iterations. The training

patch size was 56x56x56 voxels and a smoothed brain mask was used to mask

the loss calculation. Random rotation and scaling transformations of ±10%

were used for training data augmentation. All inputs were 3D image volumes.
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Deep learning (DL) method (Scott et al., 2018b). For this method ‘High-

res3Dnet’ was trained using the T1-w MRI data and the ASL-CBF maps as

inputs, as shown in figure 8.6.
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Figure 8.6: The workflow for the DL method, where the model is trained using
ASL-CBF and T1-w MRI as the input with PET-R1 as the output. Inference can
then be applied to the test set using the trained model. Images are for illustration
only and don’t represent actual results.

Deep learning plus (DL+) method. This network was trained in the same

way as the DL method, however there was an additional input which was a

static PET frame acquired at t = 20,25 minutes. This was included to give

some additional information about the tracer delivery in addition to the ASL-

CBF data.

8.3 Experimental set-up

8.3.1 RT-SRTM implementation
The RT-SRTM framework, described in detail in section 5.2.2, requires three

steps to estimate BPND which were implemented as follows:

Step 1) Estimation of R1 from ASL-CBF. This is performed using one of

the methods described in section 8.2.

Step 2) Extrapolation of PET reference region, CR(t). To compute the

convolution term in equation 3.20, CR must be known from injection, at t= 0,
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so CR must be extrapolated from the incomplete measured PET data. The

PCA CR method (Scott et al., 2018c) was used, where PCA is applied to the

CR of the training subjects and the model is then fitted to the available data

for the test subject, see chapter 7.2.2 for more details.

Step 3) PK modelling on reduced PET data. As shown in section 5.2.2

equation (5.5), basis functions are generated using the extrapolated CR from

step 2), and CT is fitted by fixing R1 from step 1) to give BPND and K2.

Dynamic data from t=20,50 mins was used as optimised in chapter 7.

8.3.2 Comparison methods

Two types of comparative analysis are performed in this chapter. Firstly, a

comparison is performed between the 5 different R1 estimation approaches,

described in section 8.2, with respect to the gold standard, R∗1. The second

part of the comparative analysis is between the BPND estimated using the RT-

SRTM, using the 5 different R1 estimation methods, with the gold standard

BP ∗ND and the clinical standard SUVR−1.

Gold standard R∗1 and BP ∗ND estimation. As described in section 5.2.1 the

linearised simplified reference tissue model (SRTM) is used for gold standard

PET quantification (Gunn et al., 1997), using dynamic PET data acquired

from t=0,60 minutes.

SUVR−1 calculation. SUVR was calculated by summing dynamic frames to

create a 10 minute static image, then dividing through by the mean cerebellar

grey matter value. SUVR−1 was used for comparison with BPND by sub-

tracting 1 from the SUVR. As in chapter 7 the timing of the PET data used to

calculated SUVR was optimised by comparing estimates to the gold standard

to ensure that it was a fair comparison. Here, this was performed on a voxel-

wise basis across the whole brain, then grey matter and white matter voxels

only. Regional analysis using the same 16 regions as in the previous chapters

was also optimised in this chapter to allow for comparison.
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8.3.3 Data

Data were acquired from 75 subjects participating in three separate studies:

57 were cognitively normal subjects participating in Insight 46, a neuroimag-

ing sub-study of the MRC National Survey of Health and Development (Lane

et al., 2017) (1946), 4 were clinically diagnosed with probable Young Onset

Alzheimer’s disease (YOAD) and 14 were participating in the biomarkers and

outcomes in cerebral amyloid angiopathy (BOCAA) study where 5 were con-

trols. All subjects underwent simultaneous amyloid PET and multi-modal

MRI on a Siemens Biograph mMR 3T PET-MRI scanner. List mode PET

data were acquired for 60 minutes following intravenous injection of [18F]-

florbetapir. More details on each study can be found in appendix A.1.

8.3.4 Data pre-processing

PET and MRI data acquisition, reconstruction and processing was performed

as described in 6.2, however some adjustments were made to facilitate voxelwise

analysis.

Firstly, the PET frames were smoothed using a using a 3mm FWHM

Gaussian filter to reduce noise in the time activity curves. The FWHM was

determined empirically to give optimal results for kinetic modelling on the gold

standard data through visual assessment of a subset of the parameter maps.

The filter was then applied to all PET data used.

Voxelwise analysis requires the ASL-CBF maps to be spatially aligned

with the PET-R1 maps. This was performed by first affinely registering the T1-

w MRI image to the non-attenuation corrected PET reconstruction (t =0,60

minutes). The registered T1-w image in PET space was then used as the

target for the ASL registration. Since the ASL-CBF is noisy and contains

artefacts, the saturation recovery image (TR=1s) was used as the floating

image, in the place of the ASL-CBF map, as it contains anatomical information

which is similar to the T1-w image and is in the same space as the CBF map

and acquired at a similar time. The transformation found is then applied

to the CBF map to propagate it into PET space. Rigid registration was
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used throughout as all registrations are intra-subject and was performed using

NiftyReg (Modat et al., 2014b).

Finally, the registered ASL-CBF maps were smoothed to match the res-

olution of the PET data. The smoothing kernel was determined by assessing

the voxelwise correlation between the PET-R1 and ASL-CBF using Gaussian

filters with FWHM values ranging between 0 and 3mm. The kernel which

resulted in the highest correlation was selected.

8.3.5 Validation and Analysis

Cross-validation. Each R1 estimation method, described in section 8.2, was

implemented using five-fold cross-validation. In each fold, 15 unseen subjects

are tested (test set) with 60 subjects in the database (training set). For the

DL based methods a validation set of 7 subjects, drawn from the training set,

was also used to determine when to stop training the model. Consequently, for

DL and DL+, each fold contained 53 training subjects, 7 validation subjects,

and 15 subjects for testing.

The folds were determined using stratified sampling to ensure that the dis-

tribution of subject groups in each fold represented the overall subject popula-

tion used. The data were nominally classed as negative-subject (1946 subjects

and BOCAA controls who were aβ negative), positive-subject (1946 subjects

who were aβ positive), positive-patient (YOAD subjects who were aβ posi-

tive) and BOCAA-patient. The BOCAA patients were stratified separately as

it was not trivial to classify them as globally aβ-positive or negative due to

other pathologies. See appendix A.1 for more details of the studies used.

The training set was used both for the generation of R1, and for the

extrapolation of the reference region, CR.

Statistical Analysis. Calculation of the MSE and ME, to quantify accuracy

and bias respectively, was performed as described in section 5.2.5. Individ-

ual comparisons between methods were performed using the paired, 2-tailed

Wilcoxon signed-rank test for MSE (as the data are not normally distributed),

and paired 2-tailed t-tests for ME. To account for multiple comparisons Fried-



8.4. Results and discussion 164

man’s test with Bonferroni post-hoc corrections was performed for MSE, and

one way ANOVA with Tukey’s Honest Significant Difference was applied to

ME. For each statistic quoted it is implicit that the accompanying p-value is

derived by controlling for multiple comparisons, unless it is explicitly stated

that ‘individual comparison’ was applied. In all cases the threshold for signif-

icance was set at p ≤ 0.05. It should be noted that the Bonferroni correction

results in a loss of power and is used as a strict measure of statistical signifi-

cance to highlight methods which give strongly different results as apposed to

incremental methodological improvements.

Voxelwise analysis. For voxelwise analysis the errors between estimated and

the true parameter values have been calculated in two ways; for all voxels across

the whole brain (WB), and for grey matter (GM) voxels only. This is because

voxelwise analysis of the whole brain is dominated by white matter voxels

which are not of principal importance for amyloid-β imaging. However, the

WB errors are still useful for seeing how the methods perform across different

tissues and are useful to assess the generalisability to other PET tracers. It

is worth noting that in the deep learning based regression methods, equal

weighting was given to all brain voxels during training, whereas the SUVR−1

method was optimised separately for the whole brain and for grey matter only.

The long computation time required to train separate networks using grey

matter voxels only was not performed, since reasonable results were gained

using the whole brain.

8.4 Results and discussion

8.4.1 Pre-processing and SUVR optimisation

8.4.1.1 ASL-CBF map smoothing
Figure 8.7 shows both the Spearman (non-parametric) and Pearson (linear)

correlations between the true PET-R1 and the relative ASL-CBF maps using

a range of Gaussian smoothing kernels between 0 and 3mm. The correlation

was calculated on a voxelwise basis for all brain voxels and for grey matter
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Figure 8.7: The voxelwise correlation coefficient between relative ASL-CBF and
PET-R1 as a function of the Gaussian smoothing kernel applied to the ASL-CBF
map. This was used to determine the kernel used to smooth the ASL-CBF maps in
the database.

voxels only. The plot in figure 8.7 shows that the optimal FWHM for the

Gaussian smoothing kernel is 2.5mm in most cases, although the Spearman

correlation in grey matter appears to continue to increase up to 3mm. This

suggests that the underlying resolution of both the PET and the ASL data

is similar, as the PET data was smoothed with a 3mm Gaussian kernel. It

is important to note that the ASL acquisition was not isotropic and that the

data was reconstructed into 2x2x4mm voxels. This suggests that an anisotropic

smoothing kernel could be useful here, however this was considered to be too

complex to optimise for a small gain in the correlation between the datasets.

Consequently an isotropic 2.5mm Gaussian kernel was applied to all of the

ASL data used in subsequent sections.

8.4.1.2 SUVR−1 timing optimisation

The optimal timing window for SUVR−1 calculation was estimated by cal-

culating SUVR−1 at different timing windows and comparing them to the

gold standard BP ∗ND. Table 8.1 shows the mean squared error (MSE) be-

tween SUVR−1 and BPND for each timing window, which demonstrates that
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the optimal timing for SUVR−1 calculation depends on which brain tissues

are of interest. For whole brain voxelwise analysis, where there are a large

proportion of white matter voxels, the MSE is lowest for 25:35 minutes post

injection. This is also true if only white matter voxels are included, however

if only grey matter voxels are used then the optimal timing window is much

later, at t=50,60 minutes post injection.

The t=50,60 minute timing window was also found to be optimal for

regional analysis (denoted 16 regions in table 8.1). This is because only 2 out

of 16 regions consist of white matter. This supports what was found in the

previous chapter and the recommendations in the literature, as it is generally

grey matter quantification which is important for amyloid PET imaging.

It should be noted that calculating SUVR−1 at timepoints earlier than 50

minutes post-injection means that the tracer has not reached a steady-state,

see chapter 3.3. This is not only a violation of the model assumptions, but it

also means that the value of SUVR−1 is changing rapidly, and is therefore

strongly time dependent, see figure 7.7. This is not ideal in general practice, as

it leads to a high likelihood of errors, but this was performed here to represent

the best performance of SUVR−1 to give the fairest comparison between

methods.

Window Whole brain Cortical GM White matter 16 regions
20:30 mins 0.0323 0.0303 0.0363 0.0121
25:35 mins 0.0281 0.0251 0.0299 0.0129
30:40 mins 0.0314 0.0234 0.0394 0.0140
35:45 mins 0.0365 0.0234 0.0526 0.0143
40:50 mins 0.0403 0.0236 0.0629 0.0137
45:55 mins 0.0413 0.0233 0.0670 0.0123
50:60 mins 0.0403 0.0228 0.0664 0.0110

Table 8.1: Mean squared error between SUVR−1 and BPND averaged over 75
subjects and estimated at different timing windows.

8.4.2 Regional R1 estimation comparison
Table 8.2 shows the average regional errors in the estimation of R1 for the

five different methods tested: LR, rLR, IF, DL and DL+, compared to the
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gold standard R∗1. The LR method produced R1 estimates with a statistically

significantly higher MSE (p < 0.001) and ME (p < 0.001) than the other four

methods when corrected for multiple comparisons, except for the ME in the

DL method which was only significant for individual comparisons (p = 0.151

when corrected for multiple comparisons). The poor performance of the LR

method is due to the strong assumption that there is a single linear relationship

between ASL-CBF and PET-R1 which has previously been shown to be an

oversimplification (see chapter 6) as the relationship is regionally dependent.

Furthermore, the relationship may not be linear, particularly in the presence

of artefacts.

When comparing the four best performing methods, DL+ had the lowest

MSE, however they were all found to be statistically equivalent for individual

and multiple comparisons. The DL and DL+ methods are implemented in

using the same approach except that the DL+ method includes an additional

input, consisting of a single PET frame, both for training and inference. This

does not result in a significant reduction in the MSE of the R1 estimates

from DL+ compared to DL, however it does greatly reduce the bias (ME).

Table 8.2 shows that the rLR method produces R1 estimates with the lowest

ME, followed by IF. However, the ME of the rLR, IF and DL+ methods

are statistically equivalent for both single comparisons (p ≥ 0.709) and with

corections for multiple comparisons.

Overall, the DL+ method produced R1 estimates with the lowest MSE

and a low ME which suggests that the DL+ is the best performing method for

regional R1 estimation. This is likely to be due to the fact that the DL based

methods impose the weakest assumption about the relationship between the

input data with R1. Furthermore, the addition of the single PET frame gives

the network information relating to the extraction of the tracer as well as the

blood flow from ASL-CBF. This is explored in more detail in the voxelwise

analysis in section 8.4.3.

The fact that the DL+ method does not produce an MSE that is sta-
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Method Mean Square Error Mean Error
LR 0.0193 -0.0484
rLR 0.0084 -0.0017
IF 0.0080 -0.0034
DL 0.0079 -0.0217

DL+ 0.0059 -0.0036

Table 8.2: Regional mean squared error (MSE) and mean error (ME) in R1 esti-
mates averaged over 75 subjects.

tistically significantly lower than the rLR, IF and DL methods demonstrates

that all of these methods are sufficiently accurate for regional analysis. This

suggests that there is limited benefit in increasing the complexity of the R1

synthesis method for regional R1 estimation.

Whilst table 8.2 shows that these R1 estimation methods can be used

on a regional basis, the R1 parameter maps in figure 8.8 demonstrate why

regional analysis may not be appropriate for all patients. Figure 8.8b shows

local R1 reductions in the anterior portion of the brain, thought to be due to

previous stroke in this patient, who was participating in the BOCAA study.

This reduction is not visualised in the regional R1 map shown in figure 8.8a,

as the regional boundaries defined by the T1 parcellation do not match with

the diseased area. Consequently the drop in R1 is averaged out over several

regions. This effect is noticeable in many of the diseased subjects used in this

study. This highlights the necessity of voxelwise kinetic modelling for such

patients, which is assessed in the following sections.

Figure 8.8c also shows that this particular subject (BOCAA-17) may not

be suitable for quantification using the gold standard SRTM, since the reference

tissue, cerebellar grey matter, shows a reduction in R1 in the inferior portion.

This leads to R1 values which are much higher than those seen in other subjects

(see figure 8.14a) and was not seen on any of the other subjects. Despite the

violations of the SRTM model assumptions this subject was not excluded from

analysis as such atypical subjects are useful for showing the strengths and

weaknesses of the different techniques. The invalidity of the model should,

however, be considered when assessing the results for this subject.
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Figure 8.8: Parameter maps for subject BOCAA-017, fitted from t=0:60 mins of
PET data showing that regional analysis (a) does not adequately describe the tracer
delivery for this patient due to stroke induced R1 reductions which is not confined
to a single region, shown by the voxelwise R1 map in b). c) shows reduced tracer
delivery in the inferior portion of the cerebellum (outlined in white) affecting much
of the grey matter. This demonstrates that grey matter cerebellum may not be a
suitable reference region for this subject.

WB voxels GM voxels
Method MSE ME MSE ME

LR 0.0524 -0.0002 0.0519 -0.0482
rLR 0.0455 -0.0011 0.0463 -0.0011
IF 0.0232 -0.0005 0.0306 -0.0112
DL 0.0181 -0.0134 0.0230 -0.0355

DL+ 0.0160 -0.0063 0.0199 -0.0028

Table 8.3: Voxel mean squared error (MSE) in R1 estimates averaged over 75
subjects using all brain voxels (WB) and grey matter (GM) voxels only.

8.4.3 Voxelwise R1 estimation comparison

Table 8.3 shows the errors in voxelwise R1 estimation for the five different

methods tested compared to the gold standard R∗1 value. Both for the whole

brain and for grey matter voxels only the DL and DL+ methods have a signif-

icantly lower MSE than the other methods, even when correcting for multiple

comparisons (p < 0.001). When directly comparing the DL and DL+ methods

they were found to have a statistically equivalent MSE (individual and mul-

tiple comparisons p > 0.05), however, as for the regional case, the inclusion

of the PET data into the model leads to a reduction in the ME. For individ-

ual comparison between the methods, the reduction in ME reaches statistical

significance for the grey matter voxels (p= 0.006) and approaches significance

across the whole brain (p= 0.065), but the significance does not survive mul-

tiple comparison correction (p ≥ 0.0891). Overall, when performing multiple
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(a) All voxels across the whole brain (WB)
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(b) Cortical grey matter (GM) voxels only

Figure 8.9: MSE in estimated voxelwise R1 (lines) plotted by subject along the
x-axis. Shapes above the lines indicate the subject classification and curved brackets
show the study the subject came from.

comparisons all methods had a statistically equivalent ME for the whole brain

(p= 0.5442), and in grey matter only LR had significantly higher ME than the

other methods (p ≤ 0.037). As a result, the DL+ appears to be the optimal

method to derive R1 when averaging across all subjects in the dataset used.

The plots in figure 8.9 show the error in R1 estimation for each method

across the 75 subjects included in this analysis. These plots demonstrate how

the techniques perform across the different cohorts and the disease status of the

subjects. Figure 8.9 clearly demonstrates that the novel three image synthesis

approaches (IF, DL and DL+), which don’t use the ASL-CBF maps directly,
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perform much better than the LR and rLR methods, due to a combination

of factors. Firstly, these image synthesis approaches benefit from the fact

that they do not use the ASL-CBF values themselves, hence artefacts are not

propagated directly into the estimated R1 image. Moreover, these approaches

also relax the assumptions made about the relationship between the ASL-

CBF maps and the PET-R1; instead of assuming a direct, linear relationship

between the two parameters the IF method assumes that if a patch within

the candidate ASL-CBF maps and T1-w images looks similar to a patch in

the database, then the corresponding R1 values for that patch must also be

similar. Furthermore, the deep learning based methods make no assumptions

about the data other than that the input images (ASL-CBF maps and T1-

w images for DL, and the ASL-CBF maps, T1-w images and a single PET

frame for DL+) contain the information required to estimate the output R1,

and hence that the relationship between input and output can be learnt. This

makes the deep learning methods particularly suitable for this task, as here

the exact relationship between the ASL-CBF and the PET-R1 is unknown

and complex due to imperfect quantification in both modalities. Finally, the

novel image synthesis methods (IF, DL and DL+) take the spatial context of

a voxel into account, rather than considering the voxel in isolation as in the

linear regression based techniques. Whilst the rLR method does use the brain

region within the regression to improve the R1 estimate, it doesn’t consider

where in the region the voxel is located, nor does it use any information from

neighbouring voxels.

The superior performance of the image synthesis methods are evident in

two example subjects from the 1946 study shown in figures 8.10a (amyloid-

β negative) and 8.11a (amyloid-β positive) where the novel image synthesis

methods (IF, DL, DL+) are much closer to the true R∗1 map, as they are

better able to capture variation across the image. Introducing the regional

information into the rLR method does improve the R1 estimation and increase

the contrast between regions, but without knowing the context of each voxel
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(a) R1 parameter maps

(b) BPND parameter maps

Figure 8.10: Parameter maps for subject 1946-156 who is a healthy amyloid-β
negative (Aβ−) subject.
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and simply applying the regional linear regression to a single value, the lo-

cal variation can not be adequately described and the resulting image closely

resembles a regional average.

The IF, DL and DL+ methods are also able to reproduce the PVEs which

occur in the PET data largely as a result of the low spatial resolution of the

PET acquisition, see section 2.2.2. Ideally the PET images would contain

minimal PVEs following post-reconstruction or within-reconstruction partial

volume correction (PVC), however the optimal implementation of PVC tech-

niques is still a matter of debate within the literature and as such was consid-

ered beyond the scope of this work (Thomas et al., 2011; Schwarz et al., 2017).

The PVEs here manifest as a reduction in R1 in the posterior edges of the

brain due to spill out effects, as demonstrated in figure 8.10a. The ASL-CBF

maps were smoothed during the pre-processing stage in an attempt to match

the spatial resolution of the PET data, however the Gaussian smoothing ker-

nel was selected based on the value which gave the best correlation between

ASL-CBF and PET-R1, rather than through visual inspection. Consequently

the LR and rLR methods do not reproduce the partial volume effects seen in

the PET data.

For the subjects from the 1946 study, who are age matched, healthy older

controls, figure 8.9 shows that the three novel image fusion methods (IF, DL

and DL+) perform similarly well for both whole brain and grey matter voxels.

However, it also shows that when applied to more heterogeneous subjects, as

found in the YOAD and BOCAA cohorts, the IF method does not perform

as well as the two deep learning based methods. This is particularly evident

in figure 8.9b which shows the MSE by subject within cortical grey matter

voxels. Figure 8.9b shows a marked increase in the MSE for the YOAD subjects

using the IF method, as demonstrated by the parameter maps for an example

subject in figure 8.12a. Here, the reduced R1 in the posterior of the brain

is not reproduced in the R1 map generated by the IF method. It is likely

that this reduction in R1 is not present in the synthesised image as there were
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(a) R1 parameter maps

(b) BPND parameter maps

Figure 8.11: Parameter maps for subject 1946-221 who is a healthy amyloid-β
positive (Aβ+) subject.
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no images in the training database which showed the same effect, so the R1

information which was propagated through from subjects which did not match

the candidate image. This could be improved by using a database with more

YOAD subjects, however collating databases of a sufficient size and range of

diseases is always challenging due to limited data availability. Conversely, since

the deep learning based methods do not assume that the images look similar,

but instead learn the relationship between the input and output data they

are better able to cope with test images which differ from the training data,

although they require large training sets to avoid overfitting.

The deep learning methods, however, do rely on the fact that the input

data contains all the information required to estimate the output. Figure 8.13a

shows that the ASL-CBF maps and the structural T1-w images alone are

not enough to describe the reduced tracer delivery, highlighted by the dotted

box, as the DL method overestimates R1 in this region. However, when some

PET data is included in the model, as in the DL+ method, then the extra

information improves the model and so it produces a more accurate estimate

of the R1 map.

The example subjects shown in figures 8.12a and 8.13a demonstrate that

deep learning based methods are better able to produce accurate R1 estimates

for test subjects that are not similar to the subjects in the training database

compared to the IF method. However, there is a limit to how different the

test image can be to the training database, beyond which the R1 estimation

becomes unreliable. This is demonstrated for the BOCAA subject shown in

figure 8.14a. Here the true R∗1 image shows that the R1 values across much

of the brain are significantly higher than any of the other subjects due to

reduced tracer delivery in the inferior portion of the cerebellum as discussed

in section 8.4.2. Furthermore, this subject shows two areas of greatly reduced

R1 in the frontal regions of the brain which are likely to have been induced

by a previous stroke. The ASL-CBF map did not show a noticeable difference

in blood flow between these very high and low R1 areas, therefore the linear
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(a) R1 parameter maps

(b) BPND parameter maps

Figure 8.12: Parameter maps for subject YOAD-057 who is a amyloid-β positive
(Aβ+) patient with clinically diagnosed AD.
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(a) R1 parameter maps

(b) BPND parameter maps

Figure 8.13: Parameter maps for subject BOCAA-05 who has cerebral amyloid
angiopathy.
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regression methods were not able to accurately estimate R1 in these areas.

The T1-w image also didn’t show any structural changes in these regions so

neither the IF nor the DL method were able to capture this effect. Only the

introduction of the PET data in the DL+ method creates R1 maps which

appear to reproduce the pattern seen. However this did still result in a general

overestimation of the R1 map which may be related to the violation of the

SRTM for this subject, as previously discussed. This subject represents the

limit of the techniques tested as it contains patterns which don’t exist in the

rest of the dataset.

8.4.4 Voxelwise BPND estimation comparison

Once the estimated R1 maps have been generated they can be used within

the RT-SRTM to produce BPND maps. In addition to using the synthesised

R1 maps with the RT-SRTM to estimate BPND, the BPND is also calculated

using the RT-SRTM with the gold standard R∗1 (denoted ‘true’ in some figures

for clarity) to demonstrate the upper limit of BPND estimation performance

using this model. The outputs from the RT-SRTM methods are compared to

the optimised SUVR−1 as well as the gold standard BP ∗ND.

All brain voxels GM voxels
Method MSE ME MSE ME

SUVR−1 (opt) 0.0217 0.0250 0.0228 0.0129
LR RT-SRTM 0.0334 0.0370 0.0227 -0.0519
rLR RT-SRTM 0.0262 0.0244 0.0229 -0.0358
IF RT-SRTM 0.0129 0.0106 0.0197 -0.0387
DL RT-SRTM 0.0120 0.0090 0.0183 -0.0446

DL+ RT-SRTM 0.0109 0.0154 0.0176 -0.0312
R∗1 RT-SRTM 0.0054 0.0084 0.0133 -0.0312

Table 8.4: Voxel mean squared error (MSE) in BPND estimates averaged over 75
subjects.

Table 8.4 shows the error in BPND against the gold standard BP ∗ND for

all seven methods implemented. This shows that, for voxelwise analysis, the

LR and rLR methods no longer out-perform SUVR−1. Here, the LR method

performs significantly worse than SUVR−1 (p= 0.002), and the rLR method
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(a) R1 parameter maps

(b) BPND parameter maps

Figure 8.14: Parameter maps for subject BOCAA-17 who has cerebral amyloid
angiopathy.
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is statistically equivalent. The simulations performed in section 7.3.7 showed

that voxelwise analysis requires higher accuracy in R1 estimation compared to

regional analysis to achieve the same BPND accuracy. This is due to the higher

noise in the voxelwise dynamic PET data compared to the regional averages,

which makes it more difficult to fit the model. The results in table 8.4 suggest

that the R1 estimates using LR and rLR are not sufficiently accurate for the

voxelwise RT-SRTM.

The IF, DL and DL+ methods all produce a significantly lower mean MSE

than SUVR−1 (p ≤ 0.001) across the whole brain, although for grey matter

only the IF method has a statistically equivalent MSE to SUVR−1. The lower

MSE for the IF, DL and DL+ demonstrates that the improved R1 estimation

achieved with these methods translates into better BPND estimates. As for

the errors in R1 estimation, see section 8.4.3, the DL and DL+ methods both

have a lower MSE than the IF approach when performing individual compar-

ison (p ≤ 0.001), but the significance did not survive correction for multiple

comparisons. Again, the DL and DL+ methods were found to be statistically

equivalent to one another (p≥ 0.086), despite the DL+ method showing a lower

mean MSE. Similarly to the bias observed in R1 estimation, individual com-

parisons of the two deep learning methods showed that they have statistically

equivalent bias’ across the whole brain (p = 0.469) and the DL+ method had

a significantly lower bias when only GM voxels were considered (p = 0.003),

although this did not survive correction for multiple comparisons.

The plot of the MSE in the BPND estimate by subject, shown in fig-

ure 8.15, shows how the methods perform across the different patient groups.

When all the brain voxels are included in the analysis, figure 8.15a shows

that the LR and rLR methods introduce large errors in the majority of the

subjects. This again demonstrates that these methods can not be used on a

voxelwise basis. Figure 8.15b, which includes cortical GM voxels only, shows

that SUVR−1 yields a particularly poor estimate of BPND in the amyloid-β

positive subjects, most notably in the YOAD cohort. This is illustrated by
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the BPND maps in figure 8.12b, where the SUVR−1 method overestimated

the level of tracer binding. This confirms what was seen on a regional basis in

section 7.3.5, which showed that the bias in SUVR−1 increases with BPND;

since the YOAD subjects show the highest BPND, they also show the highest

SUVR−1 bias.

Whilst the difference in MSE between the DL and DL+ methods did not

reach statistical significance, figure 8.13b shows that the addition of the PET

data is useful in regions of low tracer extraction. The R1 maps in figure 8.13a

showed that only the DL+ method was able to reproduce the reduction in R1

highlighted within the dotted box. This improved R1 estimation accuracy in

turn improves the BPND map in figure 8.13b where the same area is highlighted

by the dotted box. This shows that the DL+ method performs very similarly

to the RT-SRTM using the gold standard ‘true’ R∗1 maps, which represents the

upper limit of the performance of this technique.

However, as was the case when analysing the R1 maps, the BPND esti-

mates for the BOCAA patient shown in figure 8.14b are poor for all methods.

Whilst the DL+ method appears to give a reasonable estimate of the BPND
distribution, the error map shows that the overestimation of the R1 leads to

large errors in the BPND map. For this subject (BOCAA-17), figure 8.15 shows

that SUVR−1 generally produced BPND estimates with a lower MSE than the

RT-SRTM methods. Only by improving the R1 estimate for this subject, and

getting a result close to the gold standard R∗1 can the RT-SRTM achieve a low

MSE across all subjects used, as shown in figure 8.15. However, it is important

to note that the SRTM is not an appropriate model for this patient, as the im-

ages show abnormal tracer uptake in the cerebellar grey matter, which means

that this is not a valid reference region. If this subject were excluded then

figure 8.15 shows that the DL and DL+ methods provide robust estimates of

BPND across all the subject groups.

Table 8.5 shows the error in BPND estimation when the data from subject

BOCAA-17 are excluded. Compared to table 8.4 it is clear that for all methods
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(a) All brain (WB) voxels
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(b) Grey matter (GM) voxels

Figure 8.15: MSE in estimated voxelwise BPND (lines) plotted by subject along
the x-axis. Shapes above the lines indicate the subject classification and curved
brackets show the study the subject came from.

the errors have reduced, although the change for the R∗1 method is minimal, but

the overall trends remain the same. The IF, DL and DL+ methods all perform

significantly better than SUVR−1 (p≤ 0.001) across the whole brain, and the

DL and DL+ methods have a significantly lower average MSE in grey matter

(p ≤ 0.002). Individual comparison suggests that the deep learning methods

both perform significantly better than IF (p < 0.001), but the significance is

lost when accounting to multiple comparisons. Despite this, the deep learning

methods are not able to approach the BP ∗ND accuracy achieved when using

R∗1.
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All brain voxels GM voxels
Method MSE ME MSE ME

SUVR−1 (opt) 0.0211 0.0273 0.0225 0.0125
LR RT-SRTM 0.0320 0.0400 0.0213 -0.0493
rLR RT-SRTM 0.0248 0.0274 0.0216 -0.0329
IF RT-SRTM 0.0114 0.0141 0.0182 -0.0356
DL RT-SRTM 0.0105 0.0123 0.0169 -0.0417

DL+ RT-SRTM 0.0098 0.0145 0.0170 -0.0315
R∗1 RT-SRTM 0.0054 0.0087 0.0132 -0.0312

Table 8.5: Voxel mean squared error (MSE) in BPND estimates averaged over 74
subjects (excluding BOCAA17).

8.5 Conclusions

In this chapter five different methods (LR, rLR, IF, DL and DL+) for generat-

ing R1 maps from ASL-CBF maps are compared on a varied cohort of subjects.

Both the quality of the derived R1 maps and the corresponding BPND result-

ing from the RT-SRTM method were used to evaluate the methods. Regional

analysis of the derived R1 maps showed that the simplest method, LR, had a

significantly higher MSE than the other methods as the rigid assumption that

there is a single linear relationship between ASL-CBF and PET-R1 is not valid

for this data. The most complex DL+ method was found to have the lowest

MSE, however the MSE was not significantly lower than the other novel im-

age synthesis methods (IF and DL). This is because regional averaging allows

local variation and high error voxels to be averaged out, and all methods can

perform reasonably well. Regional averaging was also shown to mask patho-

logical areas which do not necessarily follow the boundaries of a structural

brain segmentation used to define regions. Consequently further analysis was

performed on a voxelwise basis.

Comparison of the voxelwise R1 maps form the different methods shows

that, without regional averaging, the deep learning methods (DL and DL+)

perform significantly better than the other methods. This is because these

methods fully exploit all of the information in the data given by learning the

relationship between the input and the output images with no assumptions
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imposed on the data. This means that the deep learning based methods gen-

eralise better than IF across subjects which appear different from the majority

of the training set, as represented by the YOAD and BOCAA cohorts. Fur-

thermore, the addition of a single PET frame into the DL+ method reduces the

bias in this method for the GM voxels, although the MSE is not significantly

lower than the DL method.

It important to note that the areas of reduced tracer delivery seen in the

BOCAA-17 subject was not visible on the ASL-CBF maps. From the available

data it is not clear whether this is because these areas have normal blood flow

but reduced tracer extraction, or whether the ASL data is not of sufficient

quality, either due to the acquisition itself or subject motion, to capture the

reduced blood flow. This should be explored in the future.

When the R1 estimates were used with the RT-SRTM to generate BPND
and compared to SUVR−1 it became clear that the LR and rLR methods

perform poorly for voxelwise analysis. These methods result in higher errors

compared to BP ∗ND than a 10 minute SUVR−1 estimation. This may be

due to the increased difficulty in fitting noisy voxelwise data which requires a

more accurate R1 estimation to constrain the fit and give a reasonable BPND
estimate. However it is important to note that a fixed 20:50 minute timing

window was used based on optimisation of the R∗1 RT-SRTM, see chapter 7.

The optimisation was performed in this way to make it generalisable, rather

than specific to the R1 estimation method used, however it means that it may

not be directly applicable to the other RT-SRTM methods, particularly as

table 8.3 shows a negative bias in R1 estimation for all methods used.

The IF, DL and DL+ methods performed significantly better than both

LR, rLR, and SUVR−1, with the deep learning based methods performing

best. However, whilst the deep learning methods perform well, and are a

definite improvement over the currently used SUVR−1, using the true R∗1

still produces a better estimate of BPND, indicating that there is room for

improvement.
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The addition of the PET frame in the DL+ method did improve the BPND
estimation visually, however the result did not reach statistical significance.

One of the drawbacks of the DL and DL+ methods is that they use the ‘high-

res3Dnet’ architecture which combines the input volumes in the first layer, so

the low level features are combined. Architectures such as ‘scalenet‘ (Fidon

et al., 2017) have been proposed where the volumes are processed separately

for a set number of layers, before the feature maps are combined. This allows

the model to learn more from the individual images before combining them,

and could potentially lead to an improved R1 estimation in this context.

All of the proposed methods struggled with the subjects which were not

represented by the training data. From a machine learning perspective the

dataset used was challenging as it was relatively small, and the groups were

unbalanced. Ideally more data from the YOAD and BOCAA studies would

be included, however as this data is currently unavailable data augmentation

techniques could potentially be employed to re-balance the training dataset by

preferentially augmenting the under-represented groups.

Despite the limitations of the techniques discussed here, this work shows

that advanced image synthesis techniques such as multi-atlas propagation with

image fusion and deep learning based regression can be used out of the box to

extend the application of the RT-SRTM to voxelwise analysis. This is essential

for accurately assessing the disease status of a patient and means that the

method could directly replace SUVR−1 estimation. However, it is important

to note that while SUVR−1 was optimised for timing, a 10 minute acquisition

window was used. This is reasonable for the GM or 16 region approach, where

the later the acquisition the lower the error, but for whole brain analysis a

longer acquisition window could potentially improve performance.

By further optimising and tailoring the deep learning approach to this

specific problem there is the potential for the resulting BPND estimates to

approach those achieved using R∗1 in the RT-SRTM, leading to BPND estimates

which are almost indistinguishable from BP ∗ND, but with half the acquisition
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time.



Chapter 9

Direct PET-MR binding

potential map synthesis using

CNNs

In this chapter a novel method to generate BPND from the dynamic PET

frames and ASL data in a single step using deep learning (SS-DL) is tested.

Since this approach does not require explicit R1 estimation, nor does it need

curve fitting or CR extrapolation which means that fewer PET frames are

required. For this reason the SS-DL method is evaluated on acquisitions as

short as 10 minutes. The work in this chapter is an extension of the preliminary

study published in Scott et al. (2018a).

9.1 Introduction
In the previous chapters the RT-SRTM has been shown to be an effective

method of reducing the acquisition time required for PET quantification. How-

ever, the minimum length of the acquisition is determined by the number of

datapoints required to accurately extrapolate the reference region (CR) and

to fit the PK model to the data. Theoretically, the number of datapoints

could be increased for the same acquisition time by reducing the frame length,

but this would result in an increase in noise. As shown in the simulations in

chapter 7, increased noise makes the model more difficult to fit so there is no
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advantage to increasing the number of datapoints. Direct parametric recon-

struction could be used to reduce noise, though the effect is limited and comes

at a high computational cost (Jiao et al., 2017). Consequently, the RT-SRTM

has been constrained to a 30 minute minimum acquisition time, which is still

intolerable for many patients.

A further limitation of the RT-SRTM is that it estimates R1 from ASL-

CBF independently from dynamic PET fitting for target density (BPND) and

washout rate (k2). This implementation cannot explicitly model the known

influence of CBF on washout, due to high uncertainty in washout estimation,

and the complex relationship which is dependent on the local tissue tracer

kinetics (Wu and Carson, 2002). Thus the information from the ASL-CBF

maps is being underutilised.

In this chapter a deep learning approach which achieves PET quantifica-

tion for a short acquisition time in a single step (SS-DL) is evaluated. The

noise sensitive voxelwise PK curve fitting step of the RT-SRTM is avoided

through the use of deep convolutional neural networks which enforce spatial

regularisation across the receptive field. The SS-DL approach also negates the

need for explicit modelling between CBF, tracer delivery and tracer washout,

as these relationships are learnt from the data and modelled in conjunction

with the dynamic PET data. Furthermore it avoids CR extrapolation, further

facilitating acquisition time reduction.

The SS-DL framework for direct BPND synthesis, initially presented

in Scott et al. (2018a), was the first time in which deep learning has been suc-

cessfully applied to replace PET pharmacokinetic modelling. This is largely

due to the availability of robust models, such as the SRTM, which can ade-

quately describe standard dynamic PET data such that deep learning offers

no advantage over the well understood models. Furthermore, deep learning is

not typically an attractive approach to this type of analysis as there is a lack

of one-to-one mapping between model parameters and dynamic PET data,

so a single time-activity curve could be described by various combinations of
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parameter estimates.

However, standard PK models are designed to describe PET data acquired

continuously from injection to washout and are thus not ideal for adaptation to

PET data acquired after injection with ASL-CBF maps to compensate. Fur-

thermore, the incorporation of ASL-CBF constrains the parameter estimation,

simplifying the mapping between the time activity curve and the parameter

estimates.

In this work deep learning was chosen for its versatility; it is able to model

the underlying relationship between ASL-CBF and the delivery, binding and

washout of the PET tracer without explicit feature extraction. By exploit-

ing all of the PET and MRI information, and avoiding voxelwise fitting, this

framework could potentially provide more robust estimates of target density

with a shorter acquisition time.

9.2 Methods

9.2.1 Deep Learning Framework for BPND Estimation

(SS-DL)

The SS-DL performs regression of BPND from dynamic PET and MRI data

directly. The network was implemented in NiftyNet (Gibson et al., 2018) using

the ‘highresnet’ convolutional neural network described in 8.2.3.4. All inputs

were 3D image volumes: the ASL-CBF maps, the structural T1 weighted MRI,

and the each frame of the dynamic PET data, as shown in figure 9.1. The SS-

DL was tested on various different acquisition window lengths and timings

which determine the number of PET frames used, such that a different model

was trained for each acquisition window. The model hyperparameters were

set as in section 8.2.3.4 and all the models were trained for 250,000 iterations

using early stopping to select the optimal model for testing.
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9.2.2 Comparative BPND Estimation Methods

Short Acquisition Methods. The SS-DL method was compared to the RT-

SRTM using the R1 synthesis methods evaluated in chapter 8, namely linear

regression (LR), regional linear regression(rLR), image fusion (IF), deep learn-

ing (DL) and true R1 (R∗1). The DL+ method used in the previous chapter,

which included a PET frame as an input, was excluded here as this would re-

quire a new R1 estimation to be generated for each timing window evaluated.

Since the upper limit of RT-SRTM accuracy is demonstrated using the true

R1 (T), inclusion of the DL+ method was deemed unnecessary. The clinical

standard, SUVR−1, was also included for comparison and was calculated as

described in section 8.3.2.
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Figure 9.1: Overview of methods tested where true R1 is R∗
1. Blue boxes indicate

input data from the test subject and green boxes show population data from the
training database.

Gold Standard BPND estimation. As described in section 5.2.1 the lin-

earised simplified reference tissue model (SRTM) is used for gold standard

R1 (R∗1) and BPND (BP ∗ND) quantification Gunn et al. (1997), using dynamic

PET data acquired from t=0,60 minutes. Statistical analysis was performed



9.3. Results and discussion 191

between SS-DL, RT-SRTM and SUVR−1 and the gold standard BP ∗ND was

performed as described in section 8.3.5.

9.2.3 Acquisition window definition

For gold standard PK modelling the scan starts at tracer injection, ts=0, with

a duration of td=60 minutes. However, for the short acquisition methods ts>0,

and td is chosen to fit clinical requirements. The timing window, t= ts:ts+td,

was optimised separately for each RT-SRTM method, SS-DL and SUVR−1

at different td’s. This was performed from ts >20 minutes, as this period is

recommended for routine clinical scans using [18F]-florbetapir.

9.2.4 Data

The same datasets analysed in the previous chapter (chapter 8) was also used

here, where a full description of the data used can be found in 8.3.3. In this

chapter, one BOCAA subject was excluded from testing as it was suspected

that their pathology was affecting the reference region, see section 8.4.2, and

the impact of this on the quantification has already been assessed. Briefly,

data from 74 subjects participating in three separate studies were included: 57

were cognitively normal subjects participating in Insight 46 (Lane et al., 2017)

(1946), 4 were clinically diagnosed with probable Young Onset Alzheimer’s

disease (YOAD) and 13 were participating in the biomarkers and outcomes

in cerebral amyloid angiopathy study (BOCAA) where 5 were controls and 8

were patients. Details of database construction and data pre-processing can

also be found in chapter 8 along with the division of subjects into 5 folds for

cross-validation.

9.3 Results and discussion

9.3.1 Method Comparison Over Different Timing Win-

dows

To assess the performance of the different methods (SS-DL, RT-SRTM and

SUVR−1) as a function of scan start time (ts) and duration (td), the average
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MSE in BPND estimation was calculated using one of the 5 folds (n = 15).

The errors for each combination of ts and td were calculated across all brain

voxels, as shown in figure 9.2, and for grey matter voxels only in figure 9.3.

For both the whole brain and grey matter only analysis, the RT-SRTM

methods (LR, rLR, IF, DL, R∗1) show a strong dependence on td as the length

of the scan determines the number of data points available for both refer-

ence region extrapolation and for fitting the pharmacokinetic model. Even

in the best case, where R1 has been estimated perfectly (R∗1 RT-SRTM, see

figures 9.2e and 9.3e) the method requires 25-30 minutes of PET data to esti-

mate BPND with reasonable accuracy. This demonstrates that the RT-SRTM

is only suitable for patients who can tolerate a scan of approximately half an

hour. The results also show that shifting ts to a later time improves the BPND
estimate as the later data contains more information about the binding and

washout of the tracer, and as R1 is set prior to model fitting the early PET

data does not provide new information.

For the SS-DL method, the results in figures 9.2f and 9.3f show that the

method produces BPND estimates with a low MSE across all permutations of

ts and td. The method demonstrates a minimal dependence on the length and

timing of the scan which allows flexibility in the scheduling of the scan, and

could mean that the patient can be scanned and discharged more quickly. For

instance, if a 10 minute scan were performed 20 minutes after injection then

the patient could potentially leave 30 minutes after the injection. This would

be advantageous both for the patient and for the department where the patient

is scanned.

The fact that increasing the number of PET frames available does not

greatly reduce the MSE in the BPND estimate makes the SS-DL more versatile,

but it also indicates that the model is not taking full advantage of the available

data. This is because the PET frames are input as independent images and

the model has no information about their ordering and the fact that they are a

consecutive temporal series. Consequently the PET frames appear similar to
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one another and the model does not use extra frames to improve the estimate

of BPND. The frame independent behaviour shown here would be desirable

for correcting a static PET image (or SUVR−1) for blood flow induced bias,

however it does not exploit all of the information available in this dynamic

dataset.

For the SUVR−1 method, the results for all brain voxels in figure 9.2g

shows the trade off between the white matter voxels, in which an earlier ac-

quisition is preferable as the binding is overestimated when the tracer is in

a steady-state, and grey matter voxels, where a later acquisition when the

tracer is in a steady-state is preferable (see figure 9.3g). This highlights that

whole brain quantification using SUVR−1 requires either a compromise on

acquisition timing between the tissue types, or separate acquisitions for grey

or white matter. Whilst in general it is the grey matter that is of interest for

this tracer, this may not be the case for other tracers with similar properties,

and also have implications for regions at the boundary between grey and white

matter, and regions in which the tissues are mixed due to PVE.
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Figure 9.2: MSE for whole brain at different timing windows.
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Figure 9.3: MSE for GM voxels at different timing windows.

9.3.2 Optimised Timing Window Method Comparison

To quantitatively compare the different methods, two different scan durations

were selected, prior to data processing, for in-depth analysis. A td of 30 minutes

was used for comparison with previous chapters and to represent a typical

MRI scan protocol length for dementia. A shorter td of 15 minutes was also

included to represent a scan length which would be tolerable for most patients

whilst allowing enough time to acquire essential MRI data. Essential MRI data

includes a high resolution 3D T1-w image (5 minutes), data for attenuation

correction (either 3D T2-w for pCT (Burgos et al., 2013) 5 minutes, or UTE

2 minutes), and ASL (5 minutes), see appendix A.2.

Table 9.1 shows the optimal start times (ts) for each method for a scan

duration td of either 15 or 30 minutes. The ts values were selected as the

times which gave the lowest average MSE across the single fold of data used

to generate figures 9.2 and 9.3 and was defined both for all brain voxels and

for GM voxels alone. Table 9.1 shows the importance of optimising the timing

window by method, as the 20:50 minute window selected in chapter 7 only

applies to the R∗1 RT-SRTM.

For most methods the start times for all brain voxels and for GM alone
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td=30 mins td=15 mins
Method WB GM WB GM

LR RT-SRTM 30 30 45 45
rLR RT-SRTM 30 30 45 45
IF RT-SRTM 25 30 45 45
DL RT-SRTM 25 25 45 45
R∗1 RT-SRTM 20 20 45 45

SS-DL 25 25 40 40
SUVR−1 20 30 25 35

Table 9.1: Start time (ts) in minutes since injection which gives the lowest MSE
for a given scan duration (td) for each method.

are the same or similar. However, as noted in the previous section, the optimal

timing for SUVR−1 is strongly tissue dependent such that the optimal ts for

grey matter is different from that for the whole brain.

Conversely, when comparing the optimal ts between the acquisition

lengths, the start time does not vary greatly for SUVR−1, whereas the other

methods (SS-DL and RT-SRTM) all shift much later. This is likely to be due

to the fact that these methods all incorporate the blood flow information from

the ASL data and as such are minimally reliant on the early part of the data,

and the washout information later on is more important.

The optimised timings for a 30 minute and 15 minute scan shown in

table 9.1 were used to generate the results for the following sections.

9.3.2.1 30 minute optimised acquisition.

Table 9.2 shows the MSE across subjects for the 30 minute acquisition win-

dow. Comparison with table 8.5 shows that extending the acquisition time for

SUVR−1, and optimising the timing window for each RT-SRTM technique

reduces the MSE of these methods, although the bias in SUVR−1 is increased.

This was considered to be reasonable since the primary metric used to compare

performance against other methods here is MSE, and the optimal timing of all

methods was selected using MSE.

Table 9.2 shows that the SUVR−1 method has a higher mean MSE and

bias compared to the other techniques, both across the whole brain and grey
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Figure 9.4: Boxplots of voxelwise error using 30 minutes PET data.

matter only. When performing individual comparison between the techniques

then this difference is statistically significant in all cases (p < 0.001), however

for the whole brain the difference between LR and SUVR−1 does not persist

when corrected for multiple comparisons and the methods are statistically

equivalent. The rLR method is no longer out performed by SUVR−1, due

to the timing window optimisation which was not performed in chapter 8,

suggesting that voxelwise analysis using this approach is feasible. The SS-DL

method performs equivalently to the rLR RT-SRTM method in terms of MSE,

but statistically worse than the IF and DL approaches (p < 0.017).

When the SS-DL was initially implemented using only ‘healthy’ subjects

in Scott et al. (2018c), it performed equivalently to the best RT-SRTM method.

The reduction in performance seen in this chapter is likely to be due to the

increased variability in the dataset and the fact that the training set is now

unbalanced, with far more healthy subjects than diseased. Furthermore, the
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WB voxels GM voxels
Method MSE ME MSE ME

LR RT-SRTM 0.0131 0.0130 0.0087 -0.0083
rLR RT-SRTM 0.0118 0.0079 0.0080 0.0007
IF RT-SRTM 0.0087 0.0061 0.0072 0.0000
DL RT-SRTM 0.0082 0.0045 0.0069 -0.0038
R∗1 RT-SRTM 0.0054 0.0087 0.0046 0.0072

SS-DL 0.0129 0.0007 0.0116 0.0112
SUVR−1 0.0182 0.0372 0.0123 0.0389

Table 9.2: Voxel mean squared error (MSE) in BPND estimates averaged over 74
subjects using all brain voxels (WB) and grey matter (GM) voxels only using 30
minutes of PET data.

BOCAA subjects contribute less than 15% of the subjects and are very differ-

ent from the other datasets due to the additional pathologies, such as strokes,

which affect this cohort. This makes it difficult for the network to learn an

accurate model which can be applied to all the data included as the loss is

calculated over all the training data which is dominated by healthy subjects.

Training set data augmentation could be used to rebalance the dataset prior

training to address this issue. The only data augmentation currently avail-

able in NiftyNet (the platform on which the deep learning architectures are

implemented) is performed ‘on-the-fly’ and has no capabilities to rebalance

the dataset as all images have an equal probability of being augmented. The

database imbalance has less of an influence on the RT-SRTM methods as they

utilise a physiological model which can accurately be applied to all subjects.

The bias for the SS-DL method appears to be lower than the RT-SRTM

methods, but this does not reach statistical significance (p ≥ 0.905). Fig-

ure 9.4a shows that the SS-DL method does, however, produce a lower variance

in the error. It should be noted that figure 9.4a shows the error for each voxel

used in the analysis (approximately 17 million points for whole brain analysis),

therefore the variation in the RT-SRTM methods appears much worse, due to

a small proportion of outliers.
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9.3.2.2 15 minute optimised acquisition.

When the scan time is reduced to 15 minutes, where just 3 PET frames are

available, the MSE for the RT-SRTM methods increases, as shown by compar-

ison of table 9.2 with table 9.3. The increase in BPND estimation error, which

occurs even when using the true R1 parameter (R∗1), is due to the reduction

in the number of frames available for the extrapolation of the reference region

(CR) and for kinetic modelling. By contrast, the SS-DL and SUVR−1 meth-

ods maintain their performance levels as these methods are less dependent on

the number of PET frames available, as demonstrated in section 9.3.2.

For a 15 minute acquisition the SS-DL method has a significantly lower

MSE and ME than all other methods (p < 0.005) across all brain voxels. This

shows that this methodology is effective at combining the PET and MRI data

to improve the estimate of BPND. This is demonstrated in figure 9.6a where

the voxelwise error in BPND is shown to be reduced for the SS-DL method

(yellow) with minimal bias.

When including just grey matter voxels within the analysis, the SS-DL

method has a significantly lower bias than all other techniques (p ≤ 0.020)

except LR (p= 0.053), with the most marked difference compared to SUVR−1

(p < 0.001). Whilst the SS-DL method has a lower mean MSE than all other

methods, this difference is only significant when comparing individually to the

RT-SRTM methods (p ≤ 0.015), and not for SUVR−1 (p = 0.292) or when

accounting for multiple comparisons.

The results in table 9.3 demonstrate that the SS-DL method is a effective

method for estimating BPND and at short acquisition times can be considered

to be a way of correcting SUVR−1 data. Whilst it still reduces bias, the SS-

DL method does not bring such large improvements in accuracy when analysed

for GM voxels alone compared to the whole brain. This is due to the fact that

when the model is trained, an equal weight is given to all voxels within the

brain, and table 9.1 shows that the same model is used for WB and GM. Since

the brain contains predominantly white matter voxels (approximately twice as
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many WM voxels as GM voxels in the data used here), the errors in this region

contributes the most to the cost function. Consequently, if only grey matter

voxels are of interest, the BPND estimation can be improved by adjusting the

voxel weighting, such that the model training is mostly influenced by errors in

grey matter regions.
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Figure 9.5: Voxelwise estimates of BPND for a 15 minute acquisition.

Figure 9.5 shows the estimated BPND for two example subjects, who were

also analysed in chapter 8. Figure 9.5a shows a patient from the YOAD study

and demonstrates that the RT-SRTM method, even when using the true R∗1,

is corrupted by noise, due to the limited data available. By contrast, the SS-

DL method is of a similar noise level to the true BPND image and is able to

reproduce the increased binding in the anterior portion of the brain. As seen
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WB voxels GM voxels
Method MSE ME MSE ME

LR RT-SRTM 0.0309 0.0652 0.0161 0.0285
rLR RT-SRTM 0.0297 0.0621 0.0155 0.0325
IF RT-SRTM 0.0274 0.0603 0.0152 0.0322
DL RT-SRTM 0.0274 0.0602 0.0150 0.0308
R∗1 RT-SRTM 0.0266 0.0589 0.0145 0.0323

SS-DL 0.0137 -0.0027 0.0121 0.0075
SUVR−1 0.0217 0.0455 0.0139 0.0442

Table 9.3: Voxel mean squared error (MSE) in BPND estimates averaged over
74 subjects using all brain voxels (WB) and grey matter (GM) voxels only, for 15
minutes of PET data

previously, the SUVR−1 method leads to an overestimation of the tracer bind-

ing across the brain. Similarly, figure 9.5b shows a patient from the BOCAA

study, which again demonstrates that the RT-SRTM method is dominated by

noise, SUVR−1 leaves to an overestimation, and SS-DL produces a reasonable

estimate of the BPND.

9.4 Conclusions
This chapter evaluates the SS-DL; a deep learning approach to PET BPND es-

timation, which combines dynamic PET data with MRI blood flow and struc-

tural images in a single step. The SS-DL method performed consistently better

than the clinical standard SUVR−1, showing that deep convolutional neural

networks have the potential to be useful for PK modelling for the first time.

For a 30 minute PET-MR acquisition there is minimal benefit in using

the SS-DL method over the RT-SRTM as the RT-SRTM generally performs

better, although the RT-SRTM has less flexibility in the acquisition start time

which could affect clinical implementation.

However, when the acquisition time is reduced to 15 minutes, there is

not sufficient data to fit the RT-SRTM and the performance is worse than

that of the SUVR−1 method. By contrast the SS-DL method maintains

similar performance to a 30 minute acquisition, producing significantly more

accurate results than SUVR−1 across the whole brain, and has a significantly
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Figure 9.6: Voxelwise error using 15 minutes PET data.

lower bias in grey matter voxels. These results show that the SS-DL approach

has the potential to be an improved alternative to SUVR−1 which can be

acquired within a comparable time frame. However, the work performed here

was preliminary proof-of-concept work and there are several changes which

could be made to significantly improve performance.

The simplest way to improve SS-DL performance could be to optimise

grey matter voxels separately when applying grey matter only analysis, such

that parameter optimisation during training is not dominated by white mat-

ter voxels. Furthermore, rebalancing of the training data, either through data

augmentation or through patient selection, could greatly improve the general-

isation of the model.

Finally, the network architecture of the SS-DL was not adapted for input

PET frames as a time series, and the fact that the PET frames are sequential

is ignored. recurrent neural networks (RNN)s are designed for sequential data,
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and deep RNNs have been shown to be useful in speech recognition (Graves

et al., 2013) with promising results in medical imaging (Litjens et al., 2017).

As such deep RNNs could potentially be adapted and applied to this task to

account for the temporal ordering of the PET data and consequently improve

the BPND estimation.



Chapter 10

General Conclusions

10.1 Summary

PET can provide quantitative measurements of amyloid-β in vivo, however this

requires dynamic data to be acquired from tracer injection for 60 minutes or

more to allow accurate fitting of standard PK models. The simplified estimate

of amyloid-β estimation, SUVR, only requires a 10 minute static scan, but it

is biased by changes in blood flow and the violation of the tracer equilibrium

assumption. Consequently, there is no methodology which can produce suffi-

ciently robust and accurate estimates of amyloid-β burden within a clinically

feasible time frame for longitudinal studies.

The aim of this work was to exploit the availability of simultaneously

acquired MRI data from a PET-MR scanner to reduce the acquisition time

required for accurate quantification. To do this new models were required

to incorporate blood flow information measured using ASL-MRI with the dy-

namic PET data. The main approach developed in this thesis adapted the

established SRTM such that the early phase of the dynamic PET data was no

longer needed, resulting in the reduced acquisition time SRTM (RT-SRTM).

The RT-SRTM is applied in three stages 1) PET-R1 is estimated from ASL-

CBF, 2) the reference region TAC (CR) is extrapolated back to t= 0 at tracer

injection to estimate the missing early phase of the data, then 3) the RT-SRTM

is fitted to the measured dynamic PET data using fixed R1 and extrapolated
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CR.

The RT-SRTM was initially implemented on a regional basis where av-

erage parameter values are estimated across a region defined by the tissue

parcellation. Here, linear regression on a population of PET-R1 ASL-CBF

pairs was used to estimate the subject R1, and the mean population CR was

scaled to the patient’s CR to extrapolate the reference region before fitting

the RT-SRTM (see chapter 5 for details). This demonstrated that reasonable

BPND estimates could be derived using a 30 minute PET-MR acquisition with

the RT-SRTM with a significantly lower bias and error than using SUVR. Each

step of the RT-SRTM was then optimised in chapters 6 and 7. For step 1)

linear regression using region as a co-variate was found to be more suitable

for R1 extrapolation as the relationship between PET-R1 and ASL-CBF is

region dependant. For step 2) Principal component analysis (PCA) was found

to be better for extrapolating CR than scaling the population mean value.

Finally, for step 3) it was found that fitting data acquired at t = 20,50 min-

utes post injection gave the lowest MSE, assuming a perfect estimation of R1.

The t = 20,50 minute time frame provided enough early data to get a good

estimate of CR, whilst leaving enough late data to estimate BPND. The opti-

mised RT-SRTM using a 30 minute PET-MR acquisition was able to produce

BPND estimates with excellent correlation to the gold standard (r = 0.896),

with significantly lower MSE and mean error (ME) (p < 0.001) which were not

correlated with blood flow (R∗1).

The RT-SRTM was then extended to voxelwise analysis in chapter 8.

Here two other methods were introduced and evaluated for the estimation

of R1, which were selected to avoid artefacts from the ASL-CBF estimates

propagating into the R1 estimate. Here it was demonstrated that multi-atlas

propagation with image fusion and deep learning based regression can be used

to generate more accurate voxelwise estimates of R1 than linear regression,

which led to significantly improved estimates of BPND.

Whilst chapter 8 demonstrated that the RT-SRTM can provide excellent
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BPND estimates for a 30 minute acquisition, the need for CR extrapolation and

voxelwise curve fitting makes it difficult to further reduce the acquisition time

without increasing the error in BPND. In chapter 9 the SS-DL method was

proposed, where a deep CNN was used to learn the relationship between the

input PET-MR data and the output BPND parameter map. For a 30 minute

acquisition the SS-DL method was statistically equivalent to the RT-SRTM, as

there was adequate data for CR extrapolation and curve fitting. However, when

the acquisition time was reduced to 15 minutes, the RT-SRTM method broke

down, as there was insufficient data to fit the model. By contrast, the SS-DL

method maintained its performance, generating significantly better estimates

of BPND than SUVR. The SS-DL method has the potential to provide a direct

alternative approach to current clinical practice with improved accuracy and

reduced bias.

10.2 Future Research Directions

The work contained in this thesis produced two potential approaches to exploit-

ing simultaneous PET-MR acquisition to reduce the acquisition time required

for accurate quantification. It represents a proof of concept which demon-

strates that both novel methods developed, the RT-SRTM for a 30 minute

acquisition and the SS-DL for a 15 minute acquisition, could be used for lon-

gitudinal studies. However, longitudinal data wasn’t available at the time to

validate this claim and consequently cross-sectional validation was performed

instead. The 1946 study, used extensively in this work, is currently acquiring

a second time-point approximately 2 years after the first which provides an

excellent resource for longitudinal validation in the future.

Furthermore, there were several factors which limited the assessment of

the generalisability of the techniques. Firstly, there was a paucity of high

quality data from a diseased population and the data from only 4 clinically di-

agnosed subjects participating in the YOAD study were included. The YOAD

study has now concluded and many more datasets will be made available,
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which will better balance the databases used in both the RT-SRTM and SS-

DL methods and allow a more detailed assessment of the performance on the

techniques on these subjects.

Finally, an assessment of generalisability is limited by the fact that the

work was all carried out on a single PET-MR scanner (Siemens mMR at

UCLH) with one tracer ([18F]-florbetapir) and one imaging protocol (60 minute

dynamic PET with pCASL ASL 3D GRASE readout). Thanks to the com-

missioning of various new PET-MR systems during the course of this work,

there is the potential for multi-centre studies such as the dementias platform

UK for validation, and harmonisation between systems is already underway1.

In theory both the RT-SRTM and SS-DL method could be applied to

other tracers, such as those that target tau or other amyloid tracers. For such

tracers the acquisition time required for quantification is often much longer

than that for [18F]-florbetapir, which provides an extra incentive to applying

reduced acquisition techniques. However this does also make it more difficult

to find full dynamic data for gold standard comparisons and for generating a

database, so this is suggested as future work.

For both the RT-SRTM and SS-DL methods, using deep CNNs to learn the

model instead of imposing a model based on flawed assumptions was found to

be advantageous. However, the CNN architecture used for these tasks was not

tailored towards the problem being tackled. The use of an existing architecture

was ideal for quickly demonstrating that the approach had potential, however

better results could be achieved using architectures better designed for the

task. A possible improvement for the SS-DL methods could be to take into

account the temporal ordering of the PET frames, as is done explicitly in

standard PK modelling. Further work developing a recurrent neural network

suitable for the task could lead to a robust and generalisable method which

can directly substitute for SUVR whilst maintaining quantitative accuracy.

1https://www.dementiasplatform.uk/news-and-blogs/news/
dpuk-brain-imaging-harmonisation-study-launch

https://www.dementiasplatform.uk/news-and-blogs/news/dpuk-brain-imaging-harmonisation-study-launch
https://www.dementiasplatform.uk/news-and-blogs/news/dpuk-brain-imaging-harmonisation-study-launch


Appendix A

Additional data information

A.1 Data sets used
The candidate took no part in recruiting or scanning the subjects enrolled in

the studies used, however performed extensive data processing, see section B.

A.1.1 Insight46 (1946)
Imaging data were collected from 462 healthy volunteers participating in In-

sight 46, a neuroimaging sub-study of the Medical Research Council National

Survey of Health and Development (Lane et al., 2017). This study was con-

ducted in line with the principles of the Declaration of Helsinki and eth-

ical approval was obtained from the National Research Ethics Service (ref

14/LO/1173). Written informed consent was obtained from all participants.

Across the whole cohort the mean age at scan was 70.7 years (range 69.3-71.9).

All subjects underwent 60 minutes of simultaneous amyloid PET and

multi-modal MR imaging on a Siemens Biograph mMR PET/MR scanner.

Of the 60 subjects used in this work, mean age 69.8 years (range 69.3-70.4

years), 56 had both PET and ASL data, and for 4 the ASL data were missing

due to repetition of other scans. All subjects had an MMSE≥27 (mean =

29.3).

A.1.2 Young Onset Alzheimer’s Disease (YOAD)
10 subjects from a study of young onset Alzheimer’s Disease (YOAD) with an

intermediate or high certainty diagnosis(McKhann et al., 2011) were scanned, 4
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of which had both list mode PET and ASL data available and were used in this

work. For these subjects the mean age at scan was 67.4 years (range 61.7-70.5),

one of which was diagnosed with posterior cortical atrophy. This study was

conducted in line with the principles of the Declaration of Helsinki and ethical

approval was obtained from the London Queen Square Ethics Committee (ref

15/LO/1412). Written informed consent was obtained from all participants.

A.1.3 Biomarkers and Outcomes in Cerebral Amyloid

Angiopathy (BOCAA)

15 subjects were scanned for the biomarkers and outcomes in cerebral amyloid

angiopathy (BOCAA) pilot study, where cerebral amyloid angiopathy (CAA)

is a small vessel disease associated spontaneous intracerebral haemorrhage.

This study included 10 CAA patients (mean age 68.6 years, SD 3.0 years),

who all had lobar microbleeds, and 5 age matched healthy controls (mean

age 64.4 years, SD 6.5 years). However, list mode PET data were incomplete

for one CAA patient consequently 14 subjects were available for use. Ethical

approval for this study was granted by the NHS Health Research Authority

London- Dulwich Research Ethics Committee (REC reference 15/LO/1443).

Written informed consent was obtained from all participants.

A.2 Data protocols
For all three data-sets described in section A.1, all subjects underwent 60

minutes of simultaneous amyloid PET and multi-modal MR imaging on a

Siemens Biograph mMR PET-MR scanner. List mode PET data were acquired

for 60 minutes following intravenous injection of [18F]-florbetapir, which targets

amyloid-β. Figure A.1 shows the order in which the simultaneous PET/MR

data were acquired and the duration of each acquisition. The ASL acquisition

is performed last, approximately 55 minutes into the scan, and as such if any

previous scans need to be repeated then the ASL is not acquired. This ensures

that the subject does not exceed 60 minutes on the scanner. More details can

be found in Lane et al. (2017).
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The only dataset which differs from this protocol is the BOCAA study,

which replaces the T2-w MRI with task based fMRI. This means that the pCT

is derived using the T1-w MRI only, and it is assumed that the task itself does

not alter the blood flow in the brain significantly enough to cause a measurable

difference to the PET and ASL data.

List mode dynamic PET acquisition (60 mins)
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Figure A.1: Imaging protocol showing simultaneous PET and multi-parametric
imaging.

A.3 Subject amyloid status
The analysis in this section was performed by Cash et al. (2017). To determine

whether subjects were globally amyloid positive, mean cortical grey matter

SUVR values were calculated with both whole cerebellum and eroded white

matter reference regions. To determine the cut point, which defines whether

a subject is positive or negative, a Gaussian mixture model was fitted to the

SUVR of 462 subjects from the Insight 46 study for each reference region. The

cut-points along with the SUVR information for the subjects used in the study

can be found in table A.1. In this work, SUVR using the whole cerebellum as

the reference region was used to define whether a subject was amyloid positive

or negative. The cut-points defined using the Insight46 data were also applied

to the YOAD and BOCAA data.
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Whole cerebellum Eroded white matter
Cut-point 1.077 0.610

Mean 1.016 0.576
Min 0.791 0.469
Max 1.740 0.892
aβ+ 11 (17%) 12 (19%)

Table A.1: Summary of mean cortical grey matter SUVR values in the dataset used
for two different reference regions with the number of subjects defined as amyloid
positive (aβ+).



Appendix B

Data processing

B.1 PET reconstruction

Excluding the data used in chapter 5 (where vendor software was used an

some datasets were reconstructed by Jieqing Jiao) all PET reconstruction was

carried out by the candidate as follows; the data were reconstructed using

NiftyPET (Markiewicz et al., 2017) which is an open source reconstruction

platform. The software was developed by Pawel Markiewicz over the time

course of this PhD to support dynamic data reconstruction, where the candi-

date was a test user. Whilst many software versions were developed during

this time, the parameters used were kept the same to maintain consistency

between reconstructed datasets.

The PET data were reconstructed as follows: the pseudo CT (pCT) µ-

map, generated as in section B.3, was propagated into PET space by rigidly

registering the T1-weighted images to a full 60-minute non-attenuation cor-

rected reconstructed PET image and applying the transformation to the

pCT.Dynamic PET data were binned into 31 time frames (15s× 4, 30s× 8,

60s× 9, 180s× 2, 300s× 8), and reconstructed into 2× 2× 2mm voxels. An

ordered subset expectation maximisation (OSEM) algorithm was used with

4 iterations, 14 subsets, with corrections for dead-time, attenuation, scatter,

randoms and normalisation. These reconstruction parameters were selected

for quantitative accuracy as validated in Markiewicz et al. (2017).
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B.2 ASL quantification
All ASL quantification was carried out by the candidate using the open source

software using NiftyFit (Melbourne et al., 2016) as follows; S0 maps were esti-

mated by fitting saturation recovery images acquired with the same sequence

at three different saturation times (1,2,4s). CBF maps were computed with

equation (B.1) (Buxton et al., 1998)

CBF = 6000λ
2α

∆S
S0

ePLD/T1blood

T1blood(1− e−τ/T1blood)
[ml/100g/min] (B.1)

with 0.9 ml/g for the plasma/tissue partition coefficient (λ), a blood T1 of

1650 ms (T1blood), and a labelling efficiency of 0.85 (α) as recommended in

the ASL consensus paper (Alsop et al., 2015).

Quality control on each subject was performed by the candidate, where

motion and artefacts were identified. In this work no motion correction or

registration between images was performed.

B.3 pCT generation
In this thesis most pCT based µ-maps were generated using an automated

pipeline set up by Ninon Burgos, however the pCTs for all BOCAA and YOAD

subjects were generated by the candidate. pCT based µ-maps were generated

as described in Burgos et al. (2015) using multi-atlas propagation with image

fusion followed by bilinear mapping to convert CT images from Houndsfield

units to attenuation coefficients.

B.4 Pharmacokinetic modelling
All kinetic modelling software used in this thesis was developed by the candi-

date based on an in-house MATLAB implementation of the SRTM with basis

functions following the description in Gunn et al. (1997). For all implemen-

tations of SRTM used in this work, 100 basis functions were generated with

15e−5 ≤ θ ≤ 0.1s−1.
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Francesca B. Pizzini, Marion Smits, Marjan Acou, Jorge Jovicich, Ritva

Vanninen, Mervi Kononen, Roland Wiest, Egill Rostrup, António J. Bastos-

Leite, Elna Marie Larsson, and Eric Achten. Variability of physiological

brain perfusion in healthy subjects âĂŞ A systematic review of modifiers.

http://jnm.snmjournals.org/cgi/doi/10.2967/jnumed.114.152405
http://jnm.snmjournals.org/cgi/doi/10.2967/jnumed.114.152405


BIBLIOGRAPHY 218

Considerations for multi-center ASL studies. Journal of Cerebral Blood Flow

and Metabolism, 2017. ISSN 15597016. doi: 10.1177/0271678X17702156.

T F Cootes, C J Taylor, D H Cooper, and J Graham. Active shape models:

their training and application. Comp. Vis. and Image Understanding, 61(1):

38–59, 1995.

Christian Crone. The Permeability of Capillaries in Various Organs as Deter-

mined by Use of the Indicator Diffusion Method. Acta Physiologica Scan-

dinavica, 58(4):292–305, 1963. ISSN 1365201X. doi: 10.1111/j.1748-1716.

1963.tb02652.x.
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