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Abstract: We consider the ideal Fermi gas of indistinguishable particles without spin
but with electric charge, confined to a Euclidean plane R

2 perpendicular to an external
constant magnetic field of strength B > 0. We assume this (infinite) quantum gas to
be in thermal equilibrium at zero temperature, that is, in its ground state with chemical
potential μ ≥ B (in suitable physical units). For this (pure) state we define its local
entropy S(�) associated with a bounded (sub)region � ⊂ R

2 as the von Neumann
entropy of the (mixed) local substate obtained by reducing the infinite-area ground state
to this region � of finite area |�|. In this setting we prove that the leading asymptotic
growth of S(L�), as the dimensionless scaling parameter L > 0 tends to infinity, has
the form L

√
B|∂�| up to a precisely given (positive multiplicative) coefficient which is

independent of� and dependent on B andμ only through the integer part of (μ/B−1)/2.
Here we have assumed the boundary curve ∂� of � to be sufficiently smooth which,
in particular, ensures that its arc length |∂�| is well-defined. This result is in agreement
with a so-called area-law scaling (for two spatial dimensions). It contrasts the zero-field
case B = 0, where an additional logarithmic factor ln(L) is known to be present.We also
have a similar result, with a slightly more explicit coefficient, for the simpler situation
where the underlying single-particle Hamiltonian, known as the Landau Hamiltonian, is
restricted from its natural Hilbert space L2(R2) to the eigenspace of a single but arbitrary
Landau level. Both results extend to the whole one-parameter family of quantum Rényi
entropies. As opposed to the case B = 0, the corresponding asymptotic coefficients
depend on the Rényi index in a non-trivial way.
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1. Introduction

Quantum correlations in many-particle ground states occur in a genuine and simple
form for fermions without interactions between them. In this case all correlations are
exclusively due to the Pauli–Fermi–Dirac statistics and are not affected by classical cor-
relations. This certainly explains why the authors of many recent publications, devoted
to the “trendy topic” of entanglement entropy, have considered ground states of free
fermions in discrete or continuous position space. For these pure states its (bipartite
spatial) entanglement entropy boils down to its local entropy associated with a bounded
region � in the position space. An informal definition of the local entropy is given in
the above abstract. For a formal definition, in the present context, see (4.2) (with α = 1)
below. This local ground-state entropy may serve as a useful, but rough, single-number
quantification of the correlations of all the particles in the region�with all those outside.

The local ground-state entropy is a complicated function(al) of � and difficult to
study by analytic methods. Even without interactions, one can in general only hope for
estimates and/or asymptotic results when the volume of the bounded region becomes
large. As discovered by Gioev and Klich [8], one fascinating aspect of these type of
asymptotic results is the connection to the quasi-classical evaluation of traces of (trun-
cated) Wiener–Hopf operators (or Toeplitz matrices in the discrete, one-dimensional,
case), that is, to a conjecture of Harold Widom (respectively of Fisher and Hartwig).
The “Widom conjecture” was finally proved by one of us in [29] and opened the gate
to prove a conjecture by Gioev and Klich [8] about the precise asymptotic growth of
the local ground-state entropy of free fermions in multi-dimensional Euclidean space,
see [16].

Of course, it is physically relevant andmathematically interesting to determine such a
precise asymptotics also for ground states of fermions subject to an external field or even
with interactions between them. From a rigorous point of view, the latter seems currently
to be out of reach. Concerning external scalar fields there are publications devoted to free
fermions in a (random) potential [6,19–22] or in a one-dimensional periodic potential
[24]. As an aside, we mention that in the case of free fermions the large-scale behavior
of the local entropy is not only known for the ground state, but also for the thermal
equilibrium state at any temperature [15,17].

In the present paper, we (return to zero temperature and) consider the ground state of
non-relativistic, spinless, and electrically charged fermions in the Euclidean plane R

2

without interactions between them, but subject to an external magnetic field which is
perpendicular to the plane and of constant strength B > 0. This ground state became of
interest in condensed-matter physics at first in the early 1930s for simplified explanations
of the Landau diamagnetism and the De Haas–Van Alphen effect observed in metals,
see [10,23]. The interest got revived and enhanced after the discovery of the (integrally)
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quantizedHall effect in certain quasi-two-dimensional semiconductormaterials byKlaus
von Klitzing in the year 1980, see [10,30]. To our knowledge, analytical contributions to
the asymptotic growth of the local entropy of this ground state were made by Klich [13],
by Rodríguez and Sierra [26,27], and recently by Charles and Estienne [4]. All these
authors consider the case of the lowest Landau level only. In addition, [13,26,27] treat
regions of simple geometric shape only. The important work of Rodríguez and Sierra
[26] contains non-rigorous arguments, but their formula for the asymptotic coefficient
M0(h1) (see (4.1) and (4.4) for the definition), confirmed in [4], has been a guide for
us to arrive at the more general asymptotic coefficients presented here. After all, the
simplicity of the coefficient M�( f ) of the sub-leading boundary-curve term in (2.13),
see (2.9) and (2.10), is striking, given that it results from the 2m-fold integration in (3.20)
for arbitrary exponent m ≥ 1.

By adapting Roccaforte’s approach for translation invariant integral kernels [25] to
those of the Landau-projection operators we extend results in [4,26] to rather general
regions, to an arbitrary single Landau-level eigenspace, and even to the orthogonal sum
of the first n + 1 eigenspaces for arbitrary n ≥ 0. By the last extension we can allow
for an arbitrary value of the chemical potential μ ≥ B (in suitable physical units)
and, hence, for an arbitrary areal density of the particle number. Our proof consists
of two basic steps. In the first step, we present the precise asymptotics of the trace of
smooth functions of localized (or spatially truncated) Landau projections. By a suitable
application of the Stone–Weierstraß approximation theorem this asymptotics is shown
to follow from a corresponding one for polynomials, based on Lemma 5. Our proof of
Lemma 5 is elementary in the sense that it does not make use of the quasi-classical
functional calculus for pseudo-differential operators, not even of standard stationary-
phase evaluation techniques. However, it involves one change of variables which is
cumbersome to utilize, see (3.26). In the second step, we show how to get from smooth
functions to the Rényi entropy functions hα . This is not obvious, in particular for Rényi
index α ≤ 1, and does not follow from standard approximation schemes. Therefore we
prove and employ certain Schatten–von Neumann quasi-norm estimates, similarly to
what has been done in [16].

Our main result is Theorem 8. It turns out that all local Rényi ground-state entropies
grow to leading order proportional to L when the dimensionless parameter L > 0 of the
scaled region L� is sent to infinity (due to the off-diagonalGaussian decayof theLandau-
projection integral kernels). This is in agreement with the so-called area-law scaling [5].
Given that, the corresponding proportionality factor has the form

√
B|∂�|M≤ν(hα).

Here, the first two factors are expected from considering physical dimensions, because
|∂�| denotes the arc length of the (smooth) boundary curve ∂�. The third factorM≤ν(hα)

is a dimensionless asymptotic coefficient precisely given by (2.12) and (4.1). It depends
in a non-trivial way on the Rényi index α > 0, but on B and μ only through the integer
part ν of (μ/B − 1)/2. It is finite and positive, but in general a rather complicated
expression. However, if μ < 3B, then it simplifies considerably, because only the
lowest Landau-level eigenspace remains to be relevant. The result agrees (for α = 1)
with the one proved recently by Charles and Estienne [4].

2. Setting the Stage and Basic Asymptotic Results for Smooth Functions

We denote the scalar products in the Euclidean plane R
2 and in the Hilbert space L2(D)

of complex-valued, square-integrable functions on a Borel set D ⊆ R
2 by the same
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bracket 〈·|·〉 and use the same notation ‖ · ‖ for the induced norms. Our convention is
that the scalar product is anti-linear in the first and linear in the second argument.

Since in the ideal Fermi gas the indistinguishable (point) particles do not interact with
each other, it is sufficient to consider the common Schrödinger operator for the kinetic
energy of a single particle in the plane subject to a perpendicular constant magnetic
field of strength B > 0. This operator is known as the Landau Hamiltonian. It acts self-
adjointly on a dense domain of definition in the single-particle Hilbert space L2(R2) and
is given by

H := (−i∇ − a)2 . (2.1)

Here, we choose the symmetric gauge a(x) = (a1(x), a2(x)) := (x2,−x1)B/2 for
the vector potential a : R

2 → R
2 generating the constant magnetic field (vector)

perpendicular to the plane with Cartesian coordinates x = (x1, x2). Other gauges yield
operators being unitarily equivalent to H. Moreover, here and in the following we are
using physical units such that the particle mass and the particle charge equals 1/2 and
1, respectively. Similarly, we put the speed of light, Planck’s constant (divided by 2π ),
and Boltzmann’s constant all equal to 1.

Throughout the paper we use the symplectic 2 × 2 matrix J :=
[
0 1

−1 0

]
, the

generalized Laguerre polynomials

L(k)
� (t) :=

�∑
j=0

(−1) j

j !
(

� + k

� − j

)
t j , k ∈ {−�,−� + 1, . . . } , t ≥ 0

of degree � ∈ N0, and the abbreviation L� := L(0)
� . For each degree � we define

an infinite-dimensional projection (operator) P� on L2(R2) by the Hermitian integral
kernel

p�(x, y) := B

2π
exp(−B‖x − y‖2/4)L�(B‖x − y‖2/2) exp(i B2 〈x |Jy〉) , x, y ∈ R

2 .

(2.2)
It is obviouslyC∞-smooth and a Carleman kernel in the sense that it is square integrable
with respect to y ∈ R

2 for all x ∈ R
2, and vice versa. Now the spectral decomposition

of the Landau Hamiltonian H may be written as

H = B
∞∑

�=0

(2� + 1)P� . (2.3)

As usual, this formula is meant in the sense of strong operator convergence on L2(R2). It
goes back to Fock [7] and Landau [14]. The projections P�, now recognizable as spectral
projections, depend on the chosen gauge through the last (complex-valued phase) factor
in (2.2), but the set {B, 3B, 5B, . . .} of harmonic-oscillator like eigenvalues, in other
words Landau levels, does not. The degree � is now called Landau-level index. We
will also need the projection P≤n := ∑

0≤�≤n P� on the orthogonal sum of the first
n + 1 Landau-level eigenspaces P�L2(R2) and mention the functional relation L≤n :=∑

0≤�≤n L� = L(1)
n . For later purposes we single out the (translation invariant) Gaussian

part of the kernel by defining
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g(z) :=
(

B

2π

)1/2

exp

(
− Bz2

4

)
, z ∈ R ,

g2(x) := g(x ′)g(x ′′) , x = (x ′, x ′′) ∈ R
2 ,

so that

P�(x, y) ≡ p�(x, y) = L�(B‖x − y‖2/2)g2(x − y) exp(i B2 〈x |Jy〉) ,

P≤n(x, y) :=
n∑

�=0

p�(x, y) = L≤n(B‖x − y‖2/2)g2(x − y) exp(i B2 〈x |Jy〉) .

Now we are prepared to turn to the ground state of the ideal Fermi gas with the
Landau Hamiltonian, see (2.1) and (2.3), as its single-particle Hamiltonian and with
the chemical potential μ ≥ B as a real parameter. According to the grand-canonical
formalism of quantum statistical mechanics [3,10] this (infinite-area) ground state is
quasi-Gaussian (in other words, quasi-free) and, as such, characterized by its reduced
single-particle density operator on L2(R2) given by the Fermi projection

�(μ1 − H) =
∞∑

�=0

�
(
μ − (2� + 1)B

)
P� = P≤ν , μ ≥ B . (2.4)

Here, � is Heaviside’s unit-step function (defined by �(t) := 1 if t ≥ 0 and zero
otherwise), 1 denotes the identity operator on L2(R2), and ν := �(μ/B − 1)/2� is
the integer part of (μ/B − 1)/2 ≥ 0. Now we consider a Borel set � ⊆ R

2 and the
multiplication operator 1� on L2(R2) corresponding to its indicator function 1� on R

2.
Moreover, we introduce the local(ized) Landau projections

P�(�) := 1�P�1� , P≤n(�) := 1�P≤n1� .

The quasi-Gaussian substate associated with � ⊆ R
2 is now simply characterized

by the local(ized) Fermi projection

1��(μ1 − H)1� = P≤ν(�) , (2.5)

see [9].
We ignore the uninteresting case μ < B, because then the Fermi projection is the

zero operator corresponding to a vanishing number of particles. In contrast, as a function
of μ ≥ B the (mean) local areal density of the particle number, ρ(x), in the ground state
characterized by the density operator (2.5) is non-zero and equal to the diagonal of its
integral kernel, that is,

ρ(x) = P≤ν(�)(x, x) = (ν + 1)
B

2π
1�(x) , x ∈ R

2 . (2.6)

Integration over the planeR
2 gives the (mean) total number of particles, (ν+1)B|�|/2π ,

in its subset � with (Lebesgue) area |�|. So ν + 1 corresponds to an integer value of
the filling factor in the physics literature. In view of (2.5) it suffices in the following to
consider the projectionP≤n(�) for arbitraryn ∈ N0.Moreover, fromnowonwe typically
assume that � ⊂ R

2 is the union of finitely many bounded domains (open connected
sets), such that their closures are pairwise disjoint. We call such a � a bounded region.



678 H. Leschke, A. V. Sobolev, W. Spitzer

If the boundary curve ∂� of � is Cγ , γ ∈ N ∪ {∞}, then we say that � is a bounded
Cγ -region.

Before we state our basic asymptotic results we recall the definition of the Hermite
polynomials, H�, of degree � ∈ N0. They satisfy the orthogonality relation

∫
R

dt exp(−t2)H�(t)H�′(t) = √
π2��! δ�,�′ , �, �′ ∈ N0 . (2.7)

An explicit formula is

H�(t) = �!
��/2�∑
j=0

(−1) j

j !(� − 2 j)! (2t)
�−2 j , t ∈ R, � ∈ N0 . (2.8)

The Hermite functions ψ�, defined by

ψ�(t) := (
√

π2��!)−1/2H�(t) exp(−t2/2) , t ∈ R, � ∈ N0 , (2.9)

constitute an orthonormal basis of the Hilbert space L2(R) and are the (energy) eigen-
functions of the one-dimensional harmonic oscillator, that is,

−ψ ′′
� (t) + t2ψ�(t) = (2� + 1)ψ�(t) , t ∈ R .

For ξ ∈ R and a complex-valued function f on the closed unit interval [0, 1] as in
Lemma 3 below we define

λ�(ξ) :=
∫ ∞

ξ

dt ψ�(t)
2 , M�( f ) :=

∫
R

dξ

2π
[ f (λ�(ξ)) − f (1)λ�(ξ)] , � ∈ N0.

(2.10)

Obviously, each function λ� takes values in [0, 1] and is (strictly) decreasing. We also
need to introduce for each n ∈ N0 the one-parameter family of operators

Kn,ξ :=
n∑

�=0

|ψ�,ξ 〉〈ψ�,ξ | = 1[ξ,∞)

n∑
�=0

|ψ�〉〈ψ�|1[ξ,∞) , ξ ∈ R . (2.11)

The operatorKn,ξ mapsL2(R) self-adjointly on its (n+1)-dimensional subspace spanned
by the first (n + 1) truncated Hermite functions ψ�,ξ := ψ�1[ξ,∞). This operator is not
a projection, but it satisfies 0 ≤ Kn,ξ ≤ 1[ξ,∞) ≤ 1. Its integral kernel is given by the
sum

∑
0≤�≤n ψ�,ξ (t)ψ�,ξ (t ′), which can be evaluated explicitly, see (3.36) below.

Along with M�( f ) we also define for n ∈ N0

M≤n( f ) :=
∫
R

dξ

2π
[tr f (Kn,ξ ) − f (1) trKn,ξ ] , M≤0( f ) = M0( f ) . (2.12)

Here the trace refers to operators on L2(R). Now we are in a position to present our two
basic asymptotic results.
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Theorem 1 (For the �th Landau level, � ∈ N0). Let � ⊂ R
2 be a bounded C3-region

in the sense defined below (2.6). Moreover, let f : [0, 1] → C be a complex-valued
continuous function on the closed unit interval with f (0) = 0, differentiable from the
right at t = 0 and differentiable from the left at t = 1. Finally, let L > 0 be a
(dimensionless) scaling parameter. Then we have

tr f (P�(L�)) = L2B
|�|
2π

f (1) + L
√
B |∂�|M�( f ) + o(L) , (2.13)

as L → ∞. The asymptotic coefficient is finite, that is, |M�( f )| < ∞.

Here the trace refers to operators on L2(R2) and, as usual, o(L) stands for some
function of L with lim supL→∞ |o(L)|/L = 0.

Theorem 2 (For the first (n + 1) Landau levels, n ∈ N0). Under the same assumptions
as in Theorem 1 we have

tr f (P≤n(L�)) = L2B
|�|
2π

(n + 1) f (1) + L
√
B |∂�|M≤n( f ) + o(L) , (2.14)

as L → ∞. The asymptotic coefficient is finite, that is, |M≤n( f )| < ∞.

The finiteness of the coefficients M�( f ) and M≤n( f ) are consequences of the fol-
lowing Lemmas 3 and 4, because the smooth function f assumed in Theorems 1 and 2
satisfies the bound (2.15). The proofs of (2.13) and (2.14) are postponed until the proof
of Lemma 4. In the next lemma and in the following, byC, c with or without indices, we
denote various finite and positive constants, whose precise values are of no importance.

Lemma 3. Let f : [0, 1] → C be a measurable function satisfying the bound

| f (t) − f (1)t | ≤ Ctq(1 − t)q , t ∈ [0, 1] , (2.15)

with some q > 0. Then |M�( f )| < ∞ for all � ∈ N0.

Proof. Firstly, we observe that

|ψ�(t)| ≤ C(1 + |t |)� e− t2
2 , t ∈ R, � ∈ N0 ,

with a constant C depending on �. Therefore, for ξ ≥ 0 the function λ� satisfies the
bound

λ�(ξ) ≤ C
∫ ∞

ξ

dt (1 + t)2� e−t2 ≤ Cδ e
−δξ2 ,

with an arbitrary δ < 1. Similarly, for ξ < 0 we have

λ�(ξ) = 1 − λ�(−ξ) ≥ 1 − Cδ e
−δξ2 .

Combining this with (2.15) yields the claimed result. ��
Concerning the other coefficient M≤n( f ) we have the following

Lemma 4. Under the same assumption as in Lemma 3 we have

‖ f (Kn,ξ ) − f (1)Kn,ξ‖1 ≤ Cδ e
−δqξ2 ,

for every n ∈ N0 with an arbitrary 0 < δ < 1, and hence |M≤n( f )| < ∞.
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Before proving this lemma we compile, for the reader’s convenience, some basic
properties of the Schatten–von Neumann classes, Sp, 0 < p < ∞, of compact oper-
ators, see [2,28]. By sn(T) with n ∈ N, we denote the singular values of a compact
operator T on an abstract (separable) Hilbert space, enumerated in decreasing order.
Then, the operator T is said to belong to Sp if it has the finite Schatten–von Neumann
(quasi-)norm

‖T‖p :=
[ ∞∑
n=1

sn(T)p
] 1

p

< ∞ .

If p ≥ 1, then ‖ · ‖p is a norm. If 0 < p < 1, then it is a quasi-norm which satisfies the
p-triangle inequality

‖T1 + T2‖p
p ≤ ‖T1‖p

p + ‖T2‖p
p . (2.16)

The class S1 is the standard trace class. For T ∈ S1 its trace, tr T, is well-defined and
satisfies |tr T| ≤ ‖T‖1. If T ≥ 0, then tr T = ‖T‖1. We also note that the usual (uniform)
operator norm ‖ · ‖ may be viewed as ‖ · ‖p in the limit p → ∞. Finally, we mention
that ‖ · ‖p satisfies a Hölder-type inequality in the sense that

‖T1T2‖p ≤ ‖T1‖p1‖T2‖p2 (2.17)

for any p1, p2 ∈ (0,∞] with 1/p1 + 1/p2 = 1/p.

Proof. (Proof of Lemma 4) Let us now consider the operatorKn,ξ = ∑n
�=0 Q�,ξ defined

in (2.11), where we have put Q�,ξ := |ψ�,ξ 〉〈ψ�,ξ | With g̃(t) := t (1 − t) we then have

g̃
(
Kn,ξ

) =
n∑

�=0

(Q�,ξ − Q2
�,ξ ) −

n∑
�,�′=0,� �=�′

Q�,ξ Q�′,ξ .

Since each operator Q�,ξ is one-dimensional, we easily find that

‖Q�,ξ − Q2
�,ξ‖ = λ�(ξ)

(
1 − λ�(ξ)

) ≤ Cδ e
−δξ2 , ξ ∈ R ,

according to the proof of Lemma 3. Furthermore,

‖Q�,ξ Q�′,ξ‖ = |〈ψ�,ξ |ψ�′,ξ 〉| ‖ψ�,ξ‖ ‖ψ�′,ξ‖ ≤ |〈ψ�,ξ |ψ�′,ξ 〉| .
Consequently, for ξ ≥ 0, we have

‖Q�,ξ Q�′,ξ‖ ≤ ‖ψ�,ξ‖‖ψ�′,ξ‖ ≤ √
λ�(ξ)λ�′(ξ) ≤ Cδ e

−δξ2 .

For the case ξ < 0 we observe that 〈ψ�|ψ�′ 〉 = 0, � �= �′, so that 〈ψ�,ξ |ψ�′,ξ 〉 =
−〈ψ� − ψ�,ξ |ψ�′ − ψ�′,ξ 〉, and hence

‖Q�,ξ Q�′,ξ‖ ≤ √
λ�(−ξ)λ�′(−ξ) ≤ Cδ e

−δξ2 .

Collecting the above bounds we conclude that

‖g̃(Kn,ξ )‖ ≤ Cδ e
−δξ2 . (2.18)

Using now (2.15) we have

‖ f (Kn,ξ ) − f (1)Kn,ξ‖1 ≤ C‖g̃(Kn,ξ )‖qq .

Since the operator Kn,ξ has finite dimension n + 1, the right-hand side of the last
inequality is bounded from above byC‖g̃(Kn,ξ )‖q . Therefore (2.18) leads to the claimed
result. ��
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Proofs of Theorem 1 and Theorem 2. By linearity, Lemmas 5 and 6 in the next section
imply Theorems 1 and 2, respectively, for an arbitrary polynomial f (with f (0) = 0).
So here we only need to show how to extend the claimed results (2.13) and (2.14) from
polynomials to the smooth function f assumed in Theorems 1 and 2. This is by now
standard and several versions of this extension are available, e.g. [24,25,29,31]. Here
we follow the recent one in [24]. As a by-product we get the a-priori finiteness of the
left-hand side of (2.13), see (2.19) and (2.20). The a-priori finiteness of the left-hand
side of (2.14) follows similarly.

Without loss of generalitywemay assume that f is real-valued. Besides the necessary
condition f (0) = 0 we may assume that f (1) = 0. This can be achieved by replacing
f (t) with f (t) − f (1)t . The function f has the form f = bg̃ with g̃(t) = t (1 − t),
from above, and with some real-valued continuous function b on [0, 1]. According to the
Stone–Weierstraß approximation theorem, there exists for any given ε > 0 a real-valued
polynomial p on [0, 1] such that supt∈[0,1] |p(t) − b(t)| ≤ ε. Thus with p̃ := g̃ p we
have

p̃(t) − εg̃(t) ≤ f (t) ≤ p̃(t) + εg̃(t) , t ∈ [0, 1] ,

and hence

tr p̃(P�(L�)) − ε tr g̃(P�(L�)) ≤ tr f (P�(L�)) ≤ tr p̃(P�(L�)) + ε tr g̃(P�(L�)) .

Using (2.13) for p̃ and g̃, we arrive at the bound

lim sup
L→∞

tr f (P�(L�))

L
√
B|∂�| ≤ M�( p̃) + εM�(g̃) . (2.19)

Since M�( p̃) = M�( f ) +M�(g̃(p − b)) ≤ M�( f ) + εM�(g̃), the right-hand side of the
above inequality does not exceed M�( f ) + 2εM�(g̃). Similarly,

lim inf
L→∞

tr f (P�(L�))

L
√
B|∂�| ≥ M�( f ) − 2εM�(g̃) . (2.20)

Since ε is arbitrary, formula (2.13) follows.
In order to prove Theorem 2 we use the same argument as above for the operator

P≤n(L�) and the asymptotic coefficient M≤n( f ). ��

3. Underlying Asymptotic Results for Polynomials

We have seen that the asymptotic results of Theorems 1 and 2 rely on corresponding
results for polynomials f . By linearity, it suffices to consider natural powers of the
corresponding projections. We begin with

Lemma 5. Let � ⊂ R
2 be a bounded C3-region and m ∈ N. Then we have for any

� ∈ N0

tr P�(L�)m = L2B
|�|
2π

+ L
√
B|∂�|

∫
R

dξ

2π

[
λ�(ξ)m − λ�(ξ)

]
+O(1) , (3.1)

as L → ∞. Here, as usual, O(1) ≡ O(L0) stands for some function of L with lim
supL→∞|O(1)| < ∞.
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Proof. At first we note that 1�P� is a Hilbert–Schmidt operator on L2(R2), equivalently
‖1�P�‖2 < ∞, because its integral kernel 1�(x)p�(x, y) is square-integrable. Therefore
P�(�) = (1�P�)(P�1�) is a trace-class operator and so are its natural powers, due to
‖P�(�)‖ ≤ 1. The trace of the power P�(�)m can be calculated by integrating the
diagonal of its integral kernel, that is,

tr P�(�)m =
∫
R2

dx P�(�)m(x, x) . (3.2)

This follows from the continuity of P�(�)m(x, y) as a function of (x, y) ∈ �×�which,
in turn, follows from the m-fold iteration of P�(�)(x, y) = p�(x, y)1�(x)1�(y) and
the dominated-convergence theorem. If x �∈ � or y �∈ �, then P�(�)m(x, y) = 0. We
proceed with (3.2). Since (3.1) is now seen to be true for m = 1, we assume from now
on m ≥ 2. Then the diagonal P�(�)m(x, x) is given by

1�(x)
∫
R2(m−1)

dx1 · · · dxm−1 p�(x, x1)p�(x1, x2) · · · p�(xm−2,

xm−1)p�(xm−1, x) 1�(x1) · · · 1�(xm−1) . (3.3)

It is convenient to change to new integration variables y := (y1, . . . , ym−1) defined
by y1 := x − x1, y2 := x1 − x2, . . . , ym−1 := xm−2 − xm−1. Furthermore, we set
ym := y1 + · · · + ym−1. Then, x1 = x − y1, x2 = x − y1 − y2, . . . , xm−1 = x − ym and

〈x |Jx1〉 = − 〈x |Jy1〉
〈x1|Jx2〉 = − 〈x − y1|Jy2〉
〈x2|Jx3〉 = − 〈x − y1 − y2|Jy3〉

...
...

〈xm−2|Jxm−1〉 = − 〈x − y1 − · · · − ym−2|Jym−1〉
〈xm−1|Jx〉 = − 〈ym |Jx〉 .

With x0 := xm := x we therefore have

m−1∑
i=0

〈xi |Jxi+1〉 =
m−2∑
i=1

〈
i∑

j=1

y j |Jyi+1〉 . (3.4)

If m = 2 then the left-hand side of (3.4) is zero and its right-hand side is meant to be 0.
By combining (3.2), (3.3), (2.2), and (3.4) the trace of P�(�)m can now be written as

tr P�(�)m =
∫
R2(m−1)

dy fm(y)
∫
R2

dx 1�(x)1�(x − y1) · · · 1�(x − ym) , (3.5)

with the function fm defined by

fm(y) :=
[ m∏

j=1

L�(B‖y j‖2/2)g2(y j )
]
exp

[
i B2

m−2∑
i=1

〈
i∑

j=1

y j |Jyi+1〉
]
. (3.6)
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Nowwe insert the scaling parameter L > 0 and applyRoccaforte’s asymptotic expansion
of Appendix A up to the first order
∫
R2

dx 1L�(x)1L�(x − y1) · · · 1L�(x − ym)

= ∣∣L� ∩ (y1 + L�) ∩ (y1 + y2 + L�) ∩ · · · ∩ (ym + L�)
∣∣

= |L�| − ∣∣L� \ (L� ∩ (y1 + L�) ∩ (y1 + y2 + L�) ∩ · · · ∩ (ym + L�)
)∣∣

= L2|�| − L
∫

∂�

dA(x) max
{
0, 〈y1|nx 〉, 〈y1 + y2|nx 〉, . . . , 〈ym |nx 〉

}
+W

( m∑
j=1

‖y j‖2
)

,

(3.7)

as L → ∞. Here, A is the canonical arc-length measure on ∂� and nx is the inward unit
normal vector at the point x ∈ ∂� and W is a linearly bounded function on the positive
half-line. We scale y by B−1/2 and � by B1/2. Then we can set from now on B = 1 in
the function fm and replace L� by

√
L2B�. The parameter that tends to infinity in our

asymptotic analysis is thus effectively
√
L2B.

For a given point on the boundary curve, x ∈ ∂�, we decompose each vector yi ∈ R
2

into a component parallel and a component perpendicular to the tangent (line) Tx (∂�) ∼=
R at x ∈ ∂� according to

yi = −ziJnx + ti nx , i = 1, . . . ,m − 1 , (3.8)

with the real numbers ti := 〈yi |nx 〉 and zi := −〈yi |Jnx 〉 so that ‖yi‖2 = z2i + t2i . Then
we get

L�(‖yi‖2/2)g2(yi ) = L�((z
2
i + t2i )/2)g(zi )g(ti ) (3.9)

and
m−2∑
i=1

〈
i∑

j=1

y j |Jyi+1〉 =
m−1∑
i=1

zi

m−1∑
j=1

Si j t j = 〈z|St〉 , (3.10)

to be used on the right-hand side of (3.6). Here, z := (z1, . . . , zm−1) and t :=
(t1, . . . , tm−1). Moreover, S is the (m − 1) × (m − 1) matrix with entries

Si j :=
⎧⎨
⎩

−1 if i < j
0 if i = j
1 if i > j

. (3.11)

By setting t0 := 0 the maximum in (3.6) can now be written as follows

max
{
0, 〈y1|nx 〉, 〈y1 + y2|nx 〉, . . . , 〈y1 + · · · + ym−1|nx 〉

} = max
0≤q≤m−1

q∑
r=0

tr =: M(t) .

(3.12)
Let us now introduce new variables (T1, . . . , Tm−1) by the sums

Ti :=
m−1∑
j=1

Si j t j . (3.13)

We also define Tm := 0, tm := t1 + · · · + tm−1, and zm := z1 + · · · + zm−1.
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The change (3.8) from the (global) variables yi to the x-dependent (local) vari-
ables (zi , ti ) corresponds to a translation and a rotation of the coordinate system. This
implies that dyi = dtidzi which is shorthand for the underlying invariance of the multi-
dimensional Lebesgue measure. Once the integration with respect to all the variables
zi and ti is done, the result will turn out to be independent of x ∈ ∂� and the remain-
ing integration with respect to x along the boundary curve ∂� simply yields the factor
L
√
B|∂�|.
By combining (3.5), (3.6), (3.8), (3.9), (3.10), and (3.12), and by referring to the

Fubini–Tonelli theorem we get for the time being

tr P�(�)m =
∫
Rm−1

dt g(t1) · · · g(tm−1)g(tm)Im(t)

×
(
L2B|�| − L

√
B
∫

∂�

dA(x) M(t)
)
+O(1) , (3.14)

with

Im(t) :=
∫
Rm−1

dz
m∏
j=1

gTj ,t j (z j ) (3.15)

and

gT,t (z) := L�((z
2 + t2)/2) g(z) exp( i

2T z) , T, t, z ∈ R . (3.16)

[When it comes to integration we do not switch from the t-variables to the T -variables;
moreover, we note that detS = 0, resp. = 1 if m is even, resp. odd.] The integral Im(t)
can be viewed as them-fold convolution product gT1,t1 ∗ · · · ∗ gTm ,tm evaluated at 0. This
suggests to introduce the (inverse) Fourier transform

qgT,t (ξ) := 1√
2π

∫
R

dω gT,t (ω) exp(iωξ)

= 1

2π

∫
R

dωL�((ω
2 + t2)/2) exp

(− ω2/4 + iTω/2 + iωξ
)

(3.17)

= 1

2π
exp[−(ξ + T/2)2]

∫
R

dωL�

(
(ω + i(T + 2ξ))2 + t2)/2

)
exp(−ω2/4) . (3.18)

If � = 0, then this integral can be calculated explicitly. But even then it turns out to be
more convenient not to perform this integration at this point.

Therefore, the (m − 1)-fold integral (3.15) can be rewritten as an integral over the
real line according to

Im(t) = (2π)m/2
∫
R

dξ

2π

m∏
j=1

qgTj ,t j (ξ) , (3.19)
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and the term of the sub-leading order L in (3.14) becomes equal to (using the notation
ω := (ω1, . . . , ωm))

−L
√
B|∂�|

∫
Rm−1

dtM(t)g(t1) · · · g(tm−1)g(tm) Im(t)

= −L
√
B|∂�|(2π)−m/2

∫
Rm

dω
∫
R

dξ

2π

∫
Rm−1

dtM(t)

×
m∏
j=1

g(t j ) exp
(− (ξ + Tj/2)

2)L�

(
(ω j + i(Tj + 2ξ))2 + t2j )/2

)
exp(−ω2

j/4) .

(3.20)

Following Roccaforte [25] we now introduce m(≥ 2) subsets S,S1, . . . ,S(m−1) of
R
m−1 by

S := {
t ∈ R

m−1 : M(t) > 0
}

(3.21)

and

Sq :=
{
t ∈ R

m−1 :
q∑

r=s

tr > 0 for 1 ≤ s ≤ q and
q+p∑

r=q+1

tr < 0 for 1 ≤ p ≤ m−1−q
}

(3.22)
for 1 ≤ q ≤ m − 1. The sets Sq are pairwise disjoint and make up all of S in the
sense that S = ⋃m−1

q=1 Sq , up to (hyperplane) sets of (m − 1)-dimensional Lebesgue

measure zero. In fact, t ∈ Sq implies that M(t) = ∑q
r=1 tr > 0. And the conditions

for 2 ≤ s ≤ q and for 1 ≤ p ≤ m − 1 − q ensure that the sets Sq are indeed disjoint.
Following again Roccaforte [25] we introduce variables τ := (τ1, . . . , τm−1) adapted
to the just introduced sets. We define

τs :=
q∑

r=s

tr (3.23)

for 1 ≤ s ≤ q and

τq+p :=
q+p∑

r=q+1

tr (3.24)

for 1 ≤ p ≤ m − 1 − q.
On the set Sq we have τ ′ = A(q)t′. Here τ ′ denotes the column tuple as the transpose

of the (row) tuple τ and similarly for t′. And the (m−1)×(m−1)matrixA(q) is defined
in terms of its entries

A(q)(i, j) :=
⎧⎨
⎩
1 if 1 ≤ i ≤ j ≤ q
1 if q + 1 ≤ j ≤ i
0 otherwise

. (3.25)

Then we have detA(q) = 1 and on Sq the comforting identity

M(t) = τ11+(τ1) · · · 1+(τq)1−(τq+1) · · · 1−(τm−1) , t ∈ Sq ,

using the abbreviations 1± for the indicator functions on the real line R for its two
half-lines R±.
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Now we consider the joint integration with respect to the m variables ξ and τ
and apply the following changes of variables. Firstly, we change τq+1, . . . , τm−1 to
−τq+1, . . . ,−τm−1. Clearly, the τ integral is now over R

m−1
+ . Secondly, we replace ξ

by ξ − (τ1 + τm−1)/2, and thirdly we replace ξ by −ξ . The negative of the argument in
the product of exponentials in (3.20) then changes according to

mξ2 + ξ

m∑
i=1

Ti + 1
4

m∑
i=1

T 2
i + 1

4

m∑
i=1

t2i � ξ2 + (ξ + τ1)
2 + · · · + (ξ + τm−1)

2 . (3.26)

Here and in the following we are using the notation � to present the results of changes
of variables efficiently, without the explicit introduction of the underlying mappings.We
prove (3.26) in Appendix B.1. The main advantage of the quadratic form (3.26) over that
in the t-variables is that there are no mixed terms between the τ ’s and the exponential
can be factorized. The resulting term does not depend on q. This turns out to remain true
with the Laguerre polynomials included as we will see next.

We perform the same changes of variables in the arguments of the Laguerre polyno-
mials. For instance, if q = 1, then(

ω + i(2ξ + T1)
)2 + t21 = (

ω + i(2ξ − τm−1)
)2 + τ 21

�
(
ω − i(2ξ + τ1)

)2 + τ 21

= ω2 − 2iω(2ξ + τ1) − (2ξ)2 − 4ξτ1 .

Next we change τ1 to τ1 − ξ so that the last expression equals

ω2 − 2iω(ξ + τ1) − 4ξτ1 = (ω − 2iξ)(ω − 2iτ1) .

Similarly, (
ω + i(2ξ + T2)

)2 + t22 � (ω − 2iξ)(ω − 2iτ2) ,(
ω + i(2ξ + T3)

)2 + t23 � (ω − 2iτ2)(ω − 2iτ3) ,(
ω + i(2ξ + T4)

)2 + t24 � (ω − 2iτ3)(ω − 2iτ4) ,

...
...(

ω + i(2ξ + Tm−1)
)2 + t2m−1 � (ω − 2iτm−2)(ω − 2iτm−1) ,(

ω + i(2ξ + Tm)
)2 + t2m � (ω − 2iτm−1)(ω − 2iτ1) .

For general q ≥ 2, seeAppendixB.2. In the end, the product of the Laguerre polynomials
equals∏

1≤ j≤q−1

L�

(
(ω j − 2iτ j )(ω j − 2iτ j+1)/2

) ∏
q+2≤ j≤m

L�

(
(ω j − 2iτ j−1)(ω j − 2iτ j )/2

)

× L�

(
(ωq − 2iξ)(ωq − 2iτq )/2

)L�

(
(ωq+1 − 2iξ)(ωq+1 − 2iτq+1)/2

)
(3.27)

× L�

(
(ωq − 2iτ1)(ωq − 2iτm−1)/2

)
.

The following remarkable identity will be proved in Appendix B.3,

1√
2π

∫
R

dωL�

(
(ω − 2iξ)(ω − 2iτ)/2

)
exp(−ω2/4) = √

2(2��!)−1H�(ξ)H�(τ ) .

(3.28)
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After performing the m-fold integration with respect to ω we obtain

2m/2(2��!)−1H2
� (ξ)(2��!)−1H2

� (τ1) · · · (2��!)−1H2
� (τm−1) .

To summarize, the boundary-curve term of the order L equals −L
√
B|∂�|/(2π)

times

(m − 1)(
√

π2��!)−1
∫
R

dξ H2
� (ξ) exp(−ξ2)

∫ ∞

ξ

dτ1(τ1 − ξ)H2
� (τ1) exp(−τ 21 )λ�(ξ)m−2

= −
∫
R

dξ (m − 1)λ′
�(ξ)λ(ξ)m−2

∫ ∞

ξ

dτ(τ − ξ)H2
� (τ ) exp(−τ 2)

= −
∫
R

dξ
d

dξ
(λ�(ξ)m−1 − 1)

∫ ∞

ξ

dτ(τ − ξ)H2
� (τ ) exp(−τ 2)

= −
[
(λ�(ξ)m−1 − 1)

∫ ∞

ξ

dτ(τ − ξ)H2
� (τ ) exp(−τ 2)

]∞

−∞

+
∫
R

dξ (λ�(ξ)m−1 − 1)
d

dξ

∫ ∞

ξ

dτ(τ − ξ)H2
� (τ ) exp(−τ 2)

= −
∫
R

dξ (λ�(ξ)m−1 − 1)λ�(ξ) .

Finally, we turn to the leading area term of the order L2 in (3.14),

L2B|�|
∫
Rm−1

dt g(t1) · · · g(tm−1)g(tm) Im(t) .

Here, we use (3.19) for Im(t) and switch to the variables τ1, . . . , τm−1 from (3.23) and
(3.24) for q = 1, in all of R

m−1. We perform the same shifts in ξ and in the τ ’s. Then
the area term turns into

L2B
|�|
2π

(∫
R

dξ (
√

π2��!)−1H2
� (ξ) exp(−ξ2)

)m

= L2B
|�|
2π

by the normalization of the Hermite functions. Alternatively, the leading term can be
obtained by replacing the x-integral in (3.5) by |�|. The remaining y-integration yields
B/(2π). This finishes the proof of Lemma 5. ��

The next lemma provides the basis for the proof of Theorem 2.

Lemma 6. Under the same assumptions as in Lemma 5 we have for any n ∈ N0

tr P≤n(L�)m = L2B
|�|
2π

(n+1)+L
√
B|∂�|

∫
R

dξ

2π
[trKm

n,ξ − trKn,ξ ] +O(1) , (3.29)

as L → ∞.

Proof. By the samearguments as in the beginningof the proof ofLemma5, the projection
P≤n(�)m is a trace-class operator and its trace can be calculated by integrating the
diagonal of the m-fold iterated integral kernel of P≤n(�). Again, the case m = 1 is
then obvious and we only need to consider the case m ≥ 2. We recall that P≤n(x, y) =
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∑
0≤�≤n p�(x, y). So in the proof of Lemma 5we simply have to replaceL� withL≤n =∑
0≤�≤n L� = L(1)

n . For instance, expression (3.27) is replaced with the expression∏
1≤ j≤q−1

L≤n
(
(ω j − 2iτ j )(ω j − 2iτ j+1)/2

) ∏
q+2≤ j≤m

L≤n
(
(ω j − 2iτ j−1)(ω j − 2iτ j )/2

)

× L≤n
(
(ωq − 2iξ)(ωq − 2iτq )/2

)L≤n
(
(ωq+1 − 2iξ)(ωq+1 − 2iτq+1)/2

)
× L≤n

(
(ωq − 2iτ1)(ωq − 2iτm−1)/2

)
.

Wemultiply this expression by (2π)−m/2∏m
j=1 exp(−ω j

2/4) and integrate with respect
to ω over R

m by using (3.28). This yields

2m/2
∏

1≤ j≤q−1

n∑
� j=0

(
2� j � j !

)−1H� j (τ j )H� j (τ j+1)
∏

q+2≤ j≤m−1

n∑
� j=0

(
2� j � j !

)−1H� j (τ j−1)H� j (τ j )

×
n∑

�q=0

(
2�q �q !)−1H�q (ξ)H�q (τq )

n∑
�q+1=0

(
2�q+1�q+1!

)−1H�q+1 (ξ)H�q+1 (τq+1)

×
n∑

�m=0

(
2�m �m !)−1H�m (τ1)H�m (τm−1) .

To pause for a moment, the term of the order L equals −√
BL|∂�|/(2π) times

m−1∑
q=1

∫
R

dξ

2π
exp(−ξ2)

∫ ∞

ξ

dτ1 (τ1 − ξ) exp(−τ 21 )

∫ ∞

ξ

dτ2 exp(−τ 22 ) · · ·
∫ ∞

ξ

dτm−1 exp(−τ 2m−1)

× π−m/2
∏

1≤ j≤q−1

n∑
� j=0

(
2� j � j !

)−1
H� j (τ j )H� j (τ j+1)

∏
q+2≤ j≤m−1

n∑
� j=0

(
2� j � j !

)−1
H� j (τ j−1)H� j (τ j )

×
n∑

�q=0

(
2�q �q !

)−1
H�q (ξ)H�q (τq )

n∑
�q+1=0

(
2�q+1�q+1!

)−1
H�q+1 (ξ)H�q+1 (τq+1)

×
n∑

�m=0

(
2�m �m !)−1

H�m (τ1)H�m (τm−1) .

We include the factors of π into the terms (2��!)−1/2, split them in halves, and combine
them with each corresponding factor H�. In accordance with that we define

λ�i ,� j (ξ) :=
∫ ∞

ξ

dτ
(√

π2�i �i !
)−1/2

H�i (τ )
(√

π2� j � j !
)−1/2

H� j (τ ) exp(−τ 2) .

Then the summand for q = 1 can be written in the form

−
∑

0≤�1,...,�m≤n

∫
R

dξ

2π

[ d

dξ
λ�1,�2 (ξ)

]
λ�2,�3 (ξ) · · · λ�m−1,�m (ξ)

×
∫ ∞
ξ

dτ1 (τ1 − ξ)
(√

π2�1�1!
)−1/2H�1 (τ1)

(√
π2�m �m !)−1/2H�m (τ1) exp(−τ21 ) .

(3.30)

For q = 2 we get the term

−
∑

0≤�1,...,�m≤n

∫
R

dξ

2π
λ�1,�2 (ξ)

[ d

dξ
λ�2,�3 (ξ)

]
λ�3,�4 (ξ) · · · λ�m−1,�m (ξ)

×
∫ ∞

ξ

dτ1 (τ1 − ξ)
(√

π2�1�1!
)−1/2

H�1 (τ1)
(√

π2�m �m !)−1/2
H�m (τ1) exp(−τ 21 ) , (3.31)
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and similarly for q = 3, . . . ,m − 1. By summing over all q we obtain

−
∑

0≤�1,...,�m≤n

∫
R

dξ

2π

d

dξ

[
λ�1,�2 (ξ)λ�2,�3 (ξ) · · · λ�m−1,�m (ξ)

]

×
∫ ∞

ξ

dτ1 (τ1 − ξ)
(√

π2�1�1!
)−1/2

H�1 (τ1)
(√

π2�m �m !)−1/2
H�m (τ1) exp(−τ 21 ) .

(3.32)

Inside the derivative with respect to ξ we subtract the constant C�1,...,�m :=
λ�1,�2(−∞)λ�2,�3(−∞) · · · λ�m−1,�m (−∞) so that we can integrate by parts. Then we
get

−
∫
R

dξ

2π

d

dξ

[
λ�1,�2 (ξ)λ�2,�3 (ξ) · · · λ�m−1,�m (ξ) − C�1,...,�m

]

×
∫ ∞

ξ

dτ1 (τ1 − ξ)
(√

π2�1�1!
)−1/2

H�1 (τ1)
(√

π2�m �m !)−1/2
H�m (τ1) exp(−τ 21 )

= −
∫
R

dξ

2π

[
λ�1,�2 (ξ)λ�2,�3 (ξ) · · · λ�m−1,�m (ξ) − C�1,...,�m

]
λ�1,�m (ξ)

= −
∫
R

dξ

2π

[
λ�1,�2 (ξ)λ�2,�3 (ξ) · · · λ�m−1,�m (ξ)λ�m ,�1 (ξ) − C�1,...,�m λ�1,�m (ξ)

]
.

By (2.7) we know thatC�1,...,�m = δ�1,�2δ�2,�3 · · · δ�m−1,�m . Nowwe sum over �1, . . . , �m
and use the Christoffel–Darboux formula (of the years 1858 and 1878)

n∑
�=0

(2��!)−1H�(τ )H�(τ
′) = (2n+1n!)−1 Hn(τ

′)Hn+1(τ ) − Hn(τ )Hn+1(τ
′)

τ − τ ′ if τ �= τ ′

and
n∑

�=0

(2��!)−1H�(τ )2 = (2n+1n!)−1[H2
n+1(τ ) − Hn(τ )Hn+2(τ )

]
. (3.33)

Then, for instance,
∑

0≤�2≤n

λ�1,�2 (ξ)λ�2,�3 (ξ)

= (√
π2�1�1!

)−1/2(√
π2�3�3!

)−1/2
∫

[ξ,∞)2
dτ1dτ2 H�1 (τ1)H�3 (τ2)

×
∑

0≤�2≤n

(√
π2�2�2!

)−1
H�2 (τ1)H�2 (τ2) exp(−τ 21 − τ 22 )

= (√
π2�1�1!

)−1/2(√
π2�3�3!

)−1/2
(
√

π2n+1n!)−1

×
∫

[ξ,∞)2
dτ1dτ2 H�1 (τ1)H�3 (τ2)

Hn(τ2)Hn+1(τ1) − Hn(τ1)Hn+1(τ2)

τ1 − τ2
exp(−τ 21 − τ 22 ) .

Performing also the summations over �1, �3, . . . , �m yields

(√
π2n+1n!)−m

∫
[ξ,∞)m

dτ exp(−τ 2)
Hn(τ2)Hn+1(τ1) − Hn(τ1)Hn+1(τ2)

τ1 − τ2

× Hn(τ3)Hn+1(τ2) − Hn(τ2)Hn+1(τ3)

τ2 − τ3
· · · Hn(τ1)Hn+1(τm) − Hn(τm)Hn+1(τ1)

τm − τ1

=: λ≤n,m(ξ) . (3.34)
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By (3.33) we also find
∑

0≤�1,...,�m≤n

C�1,...,�m λ�1,�m (ξ) =
∑

0≤�≤n

(
√

π2��!)−1
∫ ∞

ξ

dτ H�(τ )2 exp(−τ 2)

= (√
π2n+1n!)−1

∫ ∞

ξ

dτ
[
H2
n+1(τ ) − Hn(τ )Hn+2(τ )

]
exp(−τ 2)

=: λ≤n,1(ξ) . (3.35)

Now we apply (3.33) directly to the integral kernel of the operator Kn,ξ as defined in
(2.11). Then we get

Kn,ξ (τ, τ
′) = exp(−(τ 2 + τ ′2)/2)√

π2n+1n!

⎧⎨
⎩
Hn(τ

′)Hn+1(τ ) − Hn(τ )Hn+1(τ
′)

τ − τ ′ if τ �= τ ′

H2
n+1(τ ) − Hn(τ )Hn+2(τ ) if τ = τ ′

(3.36)

whenever τ ≥ ξ and τ ′ ≥ ξ and zero otherwise. By comparing this with the just given
definitions (3.34) and (3.35) of λ≤n,m(ξ) we arrive at the relation λ≤n,m(ξ) = trKm

n,ξ

for all m ∈ N as claimed in Lemma 6 for the sub-leading term of the order L . Finally,
we turn to the leading term of the order L2. It equals

L2B|�|
∫
R

dξ

2π
exp(−ξ2)

∫
R

dτ1 exp(−τ 21 ) · · ·
∫
R

dτm−1 exp(−τ 2m−1)

×
n∑

�1=0

(
√

π2�1�1!)−1H�1(ξ)H�1(τ1)

n∑
�2=0

(
√

π2�2�2!)−1H�2(ξ)H�2(τ2) · · ·

×
n∑

�m=0

(
√

π2�m�m !)−1H�m (τ1)H�m (τm−1) .

By the orthogonality (2.7) this yields L2B(n + 1)|�|/(2π) as claimed. ��

4. From Smooth Functions to the Entropy Functions

In this section we build on Theorems 1 and 2 with a suitable function f to derive the
precise leading asymptotic growth of the local ground-state entropy with arbitrary Rényi
index α > 0.While the case α > 1 is rather straightforward, non-smoothness in the case
α ≤ 1 requires considerable attention. In the first subsection we define the local ground-
state entropies and present our main result and related results. The second subsection
prepares the ground for getting from smooth functions to the non-smooth functions
needed in the case α ≤ 1. Proofs of our results are then given in the third subsection.

4.1. Definitions and results. For a real parameter α > 0 we define the α-Rényi entropy
function hα : [0, 1] → [0, ln(2)] by

hα(t) := 1

1 − α
ln
(
tα + (1 − t)α

)
, α �= 1,

h1(0) := h1(1) := 0 , h1(t) := −t ln(t) − (1 − t) ln(1 − t) if t /∈ {0, 1} (4.1)
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and recall (2.1) as well as (2.3) for the Landau Hamiltonian H.
Then the positive number

Sα(�) := tr hα(1��(μ1 − H)1�) = tr hα(P≤ν(�)) = tr 1�hα(P≤ν(�))1� (4.2)

is the local α-Rényi ground-state entropy (with chemical potentialμ ≥ B), see (2.5) and
[9]. Here, the integer ν ∈ N0 is the integer part of (μ/B−1)/2 as defined already below
(2.4). In particular, S(�) := S1(�) is the local von Neumann ground-state entropy
mentioned in the abstract. The third equality in (4.2) is due to hα(0) = 0.

Finiteness of the local α-Rényi ground-state entropy is guaranteed by

Lemma 7. Let � ⊂ R
2 be a bounded Borel set and μ ≥ B. Then Sα(�) < ∞ for any

α > 0.

The proof is given in subsection 4.3 after certain preparations in subsection 4.2. The
next theorem gives the precise asymptotic growth. It is our main result.

Theorem 8 (Asymptotics of the local Rényi ground-state entropies). Let � ⊂ R
2 be a

boundedC3-region and let the chemical potential satisfyμ ≥ B. Then the local α-Rényi
ground-state entropy (4.2) obeys

Sα(L�) = L
√
B |∂�|M≤ν(hα) + o(L) , (4.3)

as L → ∞. The asymptotic coefficient M≤ν(hα) is given by (2.12) with n = ν. It is
finite and positive.

The proof is given in subsection 4.3. It builds on Lemma 7, Theorem 2, and Subsec-
tion 4.2.

Remarks 9. (i) The coefficientM≤ν(hα) in (4.3) is in general not easy to calculate. The
simplest case occurs when ν = 0. Then we have

M≤0(hα) = M0(hα) =
∫
R

dξ

2π
hα(λ0(ξ)) (4.4)

withλ0(ξ) = π−1/2
∫∞
ξ

dt exp(−t2) being 1/2 of the complementary error function.
The coefficient (4.4) was found in [26] for α = 1 and special regions �. The first
proof of (4.3) for α = 1, ν = 0 (equivalently, � = 0 in (4.7)), L2B ∈ N, and general
boundedC∞-regions is due to Charles and Estienne in [4]. A numerical computation
gives M0(h1) = 0.203 . . . , also in agreement with [26].

(ii) In the zero-field case B = 0, the leading term of the local Rényi ground-state entropy
depends on its index α simply through the pre-factor (1+α)/α, see [16]. A numerical
computation shows that in the case B �= 0 the dependence on α is not so simple.

We are going to define a local α-Rényi ground-state entropy also for the simpler
situationwhere theLandauHamiltonianH is restricted (or “projected”) from the outset to
a single Landau-level eigenspace P�L2(R2)with arbitrary index � ∈ N0. This restriction
means that H is replaced with P�HP� and similarly for related operators, confer, for
example, [11]. Then the corresponding local(alized) Fermi projection is in analogy to
(2.5) given by

1�P��(μP�1P�−P�HP�)P�1� = �(μ−(2�+1)B)P�(�) = P�(�) , μ ≥ (2�+1)B .

(4.5)
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We ignore the case μ < (2� + 1)B, because then the local Fermi projection (4.5) is the
zero operator. In analogy to (4.2) we now define for each � ∈ N0 the positive number

Sα,�(�) := tr hα(1�P��(μP� − P�HP�)P�1�) = tr hα(P�(�)) = tr 1�hα(P�(�))1�

(4.6)
and call it the local α-Rényi ground-state entropy of the �th Landau level (with chemical
potential μ ≥ (2� + 1)B). Obviously, we have Sα,0(�) = Sα(�) if 0 < B ≤ μ < 3B.
Along with Theorem 8 the following result holds

Theorem 10. (Asymptotics of the local Rényi ground-state entropies of the �th Landau
level) Let � ⊂ R

2 be a bounded C3-region, � ∈ N0, and μ ≥ (2� + 1)B. Then the local
α-Rényi ground-state entropy of the �th Landau level (4.6) obeys

Sα,�(L�) = L
√
B |∂�|M�(hα) + o(L) , (4.7)

as L → ∞. The asymptotic coefficientM�(hα) is given by (2.10). It is finite and positive.

The remark immediately below Theorem 8 applies analogously to this theorem when
(2.14) is replaced with (2.13). The proof of Theorem 10 builds on Theorem 1 and repeats
the proof of Theorem 8 in Subsection 4.3 with P≤ν replaced by P�.

The next subsection contains estimates being crucial for the proof of the above results.

4.2. Estimates for singular values. We begin by introducing certain operators Tr,R on
L2(R2). To this end, we denote byD(x, R) ⊂ R

2 the open disk of radius R > 0, centered
at the point x ∈ R

2 and abbreviate 1R := 1D(0,R) and similarly with R replaced by
r > 0. Then we define the operators

Tr,R := T(�)
r,R := 1rP�

(
1 − 1R

)
, Tr,0 := 1rP� , � ∈ N0 . (4.8)

Here we assume that the magnetic-field strength has been “scaled out”, so that B = 1
in formula (2.2). We interpret Tr,R as an operator from L2(R2) into L2(D(0, r)).

In order to estimate the singular values of Tr,R we recall the short compilation below
Lemma 4 and a classical result due to Birman and Solomyak, see [1, Theorem 4.7]. We
quote the required fact in a form adapted to our purposes.

Proposition 11. Let Z : L2(R2) → L2(D(0, r)) be an integral operator defined by a
complex-valued kernel Z(x, y) obeying

Nγ (Z) :=
[ ∑
0≤s,t≤γ

∫
R2

dy
∫
D(0,r)

dx

∣∣∣∣ ∂s

∂xs1

∂ t

∂xt2
Z(x, y)

∣∣∣∣
2] 1

2

< ∞ ,

for some γ ∈ N0. Then the singular values sn(Z) of Z satisfy the bound

sn(Z) ≤ Cn− 1+γ
2 Nγ (Z) , n ∈ N ,

with a positive constant C dependent on r but independent of the kernel Z .

Lemma 12. The operator Tr,0 belongs to the Schatten–von Neumann class Sp for all
p > 0. Moreover, if R > r , then

‖Tr,R‖p ≤ C exp
(− (R − r)2/8

)
, (4.9)

with some constant C dependent on r but independent of R.
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Proof. In order to apply Proposition 11, we estimate for ‖x‖ < r , and s, t ∈ N0,
0 ≤ s, t ≤ γ :

∣∣∣∣ ∂s

∂xs1

∂ t

∂xt2
p�(x, y)

∣∣∣∣ ≤ Cγ,�(1 + ‖y‖)γ (1 + ‖x − y‖2)� exp (− ‖x − y‖2/4) ,
with a constant Cγ,� depending on r . Here we have used the fact that L� is a polynomial
of degree �. For R > r and y /∈ D(0, R) we conclude that

∣∣∣∣ ∂s

∂xs1

∂ t

∂xt2
p�(x, y)

∣∣∣∣ ≤ Cγ,�(1 + ‖y‖)γ (1 + ‖x − y‖2)� exp
(− (R − r)2/8

)
exp

(− ‖x − y‖2/8) .

Thus the integral kernel Tr,R(x, y) := 1r (x)p�(x, y)(1 − 1R(y)) of Tr,R satisfies, for
any γ ∈ N, the bounds

Nγ (Tr,R) ≤ Cγ,� , for any R ≥ 0 ,

Nγ (Tr,R) ≤ Cγ,� exp
(− (R − r)2/8

)
, if R > r ,

where the constant Cγ,� is independent of R. For an arbitrary p > 0 we now take
γ > 2p−1 − 1. Then by Proposition 11, Tr,R ∈ Sp for all R ≥ 0 and the bound (4.9)
holds for R > r . ��

Lemma12 is an important ingredient to boundquasi-normsof theoperator1L�P�(1−
1L�). Although our main result Theorem 8 is proved for a bounded C3-region �, the
next theorem even holds for a bounded Lipschitz region. Here, the boundary curve ∂�

of � is Lipschitz continuous.

Theorem 13. Let � ⊂ R
2 be a bounded Lipschitz region and � ∈ N0. Moreover, let

p ∈ (0, 1] and L0 > 0 finite. Then there exists a constant C, depending only on � and
L0, such that for any L ≥ L0,

‖1L�P�(1 − 1L�)‖p
p ≤ CL . (4.10)

Proof. We begin with two useful observations. Firstly, we note that ‖1L�P�(1 −
1L�)‖p ≤ ‖TLr,0‖p by (2.17) with some r > 0, where the operator Tr,0 is defined
in (4.8). Thus, by Lemma 12, for every fixed L the left-hand side of the claim (4.10) is
finite. Consequently, it suffices to prove (4.10) for L ≥ L0 with an arbitrary choice of
the finite L0.

Secondly, denoting �′ := L0�, we can rewrite (4.10) as follows:

‖1L�′P�(1 − 1L�′)‖p
p ≤ CL , L ≥ 1 ,

where C depends on � and the arbitrary L0.
Now we can proceed with the proof. We cover � by finitely many disks D(xk, rk)

such that either

(1) xk ∈ ∂� and inside each diskD(xk, 8rk), with an appropriate choice of coordinates,
the domain � is given locally by the epigraph of a Lipschitz function (see below),
or

(2) D(xk, rk) ⊂ � and dist
(
D(xk, rk),��) > 0, where �� := R

2 \ � denotes the
complement of �.
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It is clear that we may assume that all radii rk are equal to each other. Moreover, by
replacing � with �′ = L0� with L0 = r−1

k , we may assume that rk = 1. This equality
holds throughout the proof.

Case (1): We fix one disk D := D(xk, 1) ⊂ R
2, xk ∈ ∂�, and denote D̃ := D(xk, 8).

Let � : R → R be a Lipschitz function such that

� ∩ D̃ = {x = (x ′, x ′′) ∈ R
2 : x ′′ > �(x ′)} ∩ D̃ .

By M ≥ 0 we denote the Lipschitz constant for �, i.e.

|�(t) − �(u)| ≤ M |t − u| , t, u ∈ R .

It is clear that

(L� ∩ LD) ⊂ (L� ∩ LD̃) = {x = (x ′, x ′′) : x ′′ > �L(x ′)} ∩ LD̃,

�L(t) := L�(t L−1) , t ∈ R ,

and that the Lipschitz constant for�L also equals M . Without loss of generality we may
assume that D = D(0, 1) and �(0) = 0.

Now we construct a covering of L�∩ LD by open disks. Let D jk be a disk of radius
1, centered at the point z j,k := ( j/2, k/2) ∈ LD, ( j, k) ∈ Z

2. Clearly, such disks form
an open covering for LD. To extract a convenient covering for L� ∩ LD, we define two
index sets:

I1 := {( j, k) ∈ Z
2 : k/2 ≥ �L( j/2) + 2〈M〉, z jk ∈ LD} , 〈M〉 :=

√
1 + M2 ,

I2 := {( j, k) ∈ Z
2 : |k/2 − �L( j/2)| < 2〈M〉, z jk ∈ LD} .

Since � is Lipschitz, the number of indices in I2 obeys |I2| ≤ CL with a constant
independent of L . The disks D jk , ( j, k) ∈ I1 ∪ I2 form a covering of the intersection
L� ∩ LD. Observe that for every point x = (x ′, x ′′) ∈ L� ∩ LD we have

dist(x, L��) ≤ min
{|�L(x ′) − x ′′|, dist(x, D̃�)

} = |�L(x ′) − x ′′| ,
and

dist(x, L��) ≥ min
{〈M〉−1|x ′′ − �L(x ′)|, dist(x, D̃�)

} = 〈M〉−1|x ′′ − �L(x ′)| ,
so that

R jk := dist(z jk, L��) ≥ 〈M〉−1(k/2 − �L( j/2)
) ≥ 2 , ( j, k) ∈ I1 . (4.11)

Let (ϕ jk) jk ⊂ C∞
0 (R2) be a partition of unity subordinate to the constructed covering.

In the following, we use a superposed hat for the (bounded) multiplication operator
ϕ̂ on L2(R2) uniquely corresponding to ϕ ∈ C∞

0 (R2). We estimate individually the
quasi-norms

‖ϕ̂ jk1L�P�(1 − 1L�)‖p ,

for p ∈ (0, 1]. Let us consider firstly the set I2. For all ( j, k) ∈ I2 we have

‖ϕ̂ jk1L�P�(1 − 1L�)‖p ≤ ‖ϕ̂ jk1L�P�‖p ≤ ‖1D jkP�‖p .
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The first inequality follows from (2.17). The second inequality holds since ϕ jk1L� ≤
1D jk and hence ϕ̂ jk1L�P�1L�ϕ̂ jk ≤ 1D jkP�1D jk . Using the standard unitary equiv-
alence of the Hamiltonian (2.1) under “magnetic” translations, we conclude that the
right-hand side coincides with ‖1DP�‖p, where D = D(0, 1), as before. By Lemma 12,
this norm is bounded for all p > 0, and hence

‖ϕ̂ jk1L�P�(1 − 1L�)‖p ≤ C

uniformly in j and k. Applying the p-triangle inequality (2.16) for quasi-norms, we get∑
( j,k)∈I2

‖ϕ̂ jk1L�P�(1 − 1L�)‖p
p ≤ C |I2| ≤ CL .

Suppose now that ( j, k) ∈ I1. Thus

‖ϕ̂ jkP�(1 − 1L�)‖p ≤ ‖1D jkP�(1 − 1D(z jk ,R jk ))‖p

with R jk = dist(z jk, L��) ≥ 2. By the translation argument, the right-hand side
coincides with ‖T1,R jk‖p, where the operator T1,R is defined in (4.8). Consequently, by
(4.9),

‖ϕ̂ jkP�(1 − 1L�)‖p ≤ C exp
(− (R jk − 1)2/8

)
.

Using the p-triangle inequality again, we obtain that∑
( j,k)∈I1

‖ϕ̂ jkP�(1 − 1L�)‖p
p ≤ C

∑
( j,k)∈I1

exp
(− p(R jk − 1)2/8

)
. (4.12)

Employing (4.11), for any fixed j , the summation over k yields the estimate∑
( j,k)∈I1, j fixed

exp
(− p(R jk − 1)2/8

) ≤
∑
k∈Z

e−ck2 = C .

Since | j | ≤ 2L , the right-hand side of (4.12) does not exceedCL . Putting these estimates
together we obtain

‖1LD1L�P�(1 − 1L�)‖p
p ≤

∑
( j,k)∈I1∪I2

‖ϕ̂ jkP�(1 − 1L�)‖p
p ≤ CL . (4.13)

Case (2): We fix one disk D = D(xk, rk) such that dist(D,��) ≥ c, so that

dist(LD, L��) ≥ cL . We cover LD by unit disks D j , j = 1, . . . , N with N ≤ CL2

and dist(D j , L��) ≥ cL . As in the proof of Case (1), we introduce a smooth partition
of unity (ϕ j ) j ⊂ C∞

0 (R2) subordinate to this covering, and estimate:

‖ϕ̂ jP�(1 − 1L�)‖p
p ≤ Ce−cL2

.

Consequently, by the p-triangle inequality (2.16)

‖1LDP�(1 − 1L�)‖p
p ≤

∑
j

‖ϕ̂ jP�(1 − 1L�)‖p
p

≤ C
∑
j

e−cL2 ≤ CL2e−cL2 ≤ Ce−c′L2
. (4.14)

To complete the proof we add the estimates of the form (4.13) and (4.14) for all disks
covering �, using the p-triangle inequality again. ��
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4.3. Proofs of Lemma 7 and Theorem 8. We use the bound

0 ≤ hα(t) ≤ Cαt
β(1 − t)β , t ∈ [0, 1] , (4.15)

with a positive constant Cα < ∞. Here we choose β = α if α < 1, any β ∈ (0, 1) if
α = 1, and β = 1 if α > 1. Since� is bounded, we have� ⊂ D(0, r)with some r > 0.
This leads to the estimate

Sα(�) ≤ Cαtr [P≤ν(�)β(1 − P≤ν(�))β ] ≤ Cα‖1�P≤ν(1 − 1�)‖β
β ≤ Cα‖1rP≤ν‖β

β .

Using the β-triangle inequality and Lemma 12, we obtain the estimate (see (4.8) for the
definition of T(�)

r,0)

Sα(�) ≤ Cα

ν∑
�=0

‖T(�)
r,0‖β

β < ∞ ,

as claimed. This proves Lemma 7. ��
Now we prove Theorem 8. Since hα satisfies the bound (4.15), it follows from

Lemma 4 that the coefficient M≤ν(hα) is finite. The positivity of M≤ν(hα) is obvi-
ous from hα ≥ 0,Kν,ξ ≥ 0, and hα(1) = 0. If α > 1, then the function hα isC1-smooth
on [0, 1], and hence the claim follows immediately from Theorem 2.

In order to prove (4.3) for α ≤ 1 we follow the method of [16]. For ε > 0 we choose
a smooth function ζε such that 0 ≤ ζε ≤ 1 and

ζε(t) =
{
1 if t ∈ [0, ε/2] ∪ [1 − ε/2, 1] ,

0 if t ∈ [ε, 1 − ε] .

In view of estimate (4.15), we have

|(ζεhα)(t)| ≤ Cεr [t (1 − t)]r , r := β

2
, (4.16)

and hence

‖(ζεhα)(P≤ν(L�))‖1 ≤ Cεr‖P≤ν(L�)
(
1 − P≤ν(L�)

)‖rr = Cεr‖1L�P≤ν

(
1 − 1L�

)‖2r2r . (4.17)

By Theorem 13, the quasi-norm on the right-hand side does not exceed CL . Conse-
quently, ∣∣tr [(ζεhα)(P≤ν(L�))

]∣∣ ≤ Cεr L . (4.18)

On the other hand, the function (1−ζε)hα vanishes in a vicinity of 0 and 1 and, therefore,
by Theorem 2, we have

tr
[
(1 − ζε)hα(P≤ν(L�))

] = L
√
B|∂�|M≤ν((1 − ζε)hα) + o(L) , L → ∞ . (4.19)

By (4.16),

M≤ν(hα) − M≤ν((1 − ζε)hα) = M≤ν(ζεhα) ≤ CεrM≤ν(g̃
r ) , g̃(t) = t (1 − t) .

(4.20)

Combining (4.18), (4.19), and (4.20) gives

lim sup
L→∞

∣∣∣ tr hα(P≤ν(L�))

L
− √

B|∂�|M≤ν(hα)

∣∣∣ ≤ Cεr .

Since ε > 0 is arbitrary, this yields the claim. ��
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5. On an Improvement to Sub-leading Terms

Without going into details,we showhere howone can improve the asymptotic expansions
in Lemmas 5 and 6 to

tr f (P�(L�)) = L2B
|�|
2π

f (1) + L
√
B |∂�|M�( f ) + o(1) , (5.1)

tr f (P≤n(L�)) = L2B
|�|
2π

(n + 1) f (1) + L
√
B |∂�|M≤n( f ) + o(1) , (5.2)

where f (t) = tn, n = 1, 2, . . .. This follows again by proving the corresponding state-
ments for all natural powers of P�(L�). Here, we use the expansion of Roccaforte in
Proposition 14 up to the second order ε2. For any vector y = −zJnx + tnx ∈ R

2, written
in the form (3.8), we have ‖y‖2 − 2 〈y|nx 〉2 = z2 − t2. Then the W -term in (3.7) takes
the form

m−1∑
q=1

∫
Sq

dA(x) κ(x)
∫
Rm−1

dz
∫
Rm−1

dt
[( q∑

j=1

z j
)2 − ( q∑

j=1

t j
)2] exp(i B2 〈z|St〉)

×
m∏
j=1

L�((z
2
j + t2j )/2)g(z j )g(t j ) + o(1) . (5.3)

If we exchange the z and t variables, the integrand is seen to be almost anti-symmetric
except for the sign in the exponent. This can be remedied by changing, for instance, t to
−t. Hence, the integral in (5.3) vanishes by symmetry.

At present we do not know how to extend the expansions (5.1) and (5.2) to the entropy
function f = hα , but believe that the corresponding term vanishes also in this case. In
other words, there is zero topological (entanglement) entropy, see [12,18].
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A. Roccaforte’s Formula for the Area of Intersections

We recall Roccaforte’s results in [25, Corollary 2.4, Lemma 2.5] for the special case of
the Euclidean plane. Since the boundary curve ∂� is a one-dimensional manifold, the
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second fundamental form of ∂� is just its curvature. Therefore, his formula takes the
simpler form given in Proposition 14 below.

In our application we scale out ε and identify L
√
B = 1/ε. For given points/vectors

v1, . . . , vr in R
2 we denote by �ε := � ∩ (� + εv1) ∩ · · · ∩ (� + εvr ) the intersection

of � with its r translates.

Proposition 14. Let� ⊂ R
2 be a boundedC3-region. Then for arbitrary (v1, . . . , vr ) ∈

R
2 × · · · × R

2, we have

∣∣∣∣|� \ �ε| − ε

∫
∂�

dA(x) max
{
0, 〈v1|nx 〉, . . . , 〈vr |nx 〉

}∣∣∣∣ ≤ Cε2
r∑
j=1

‖v j‖2 (A.1)

with some constant C independent of ε > 0 or v1, v2, . . . , vr , where nx is the inward
unit normal to the curve ∂�. Moreover, for all (v1, . . . , vr ) ∈ R

2 × · · · × R
2 except for

a set of 2r-dimensional Lebesgue measure zero we have

|� \ �ε| = ε

∫
∂�

dA(x) max
{
0, 〈v1|nx 〉, . . . , 〈vr |nx 〉

}

+1
2 ε2

r∑
q=1

∫
Cq

dA(x) κ(x)
[‖vq‖2 − 2 〈vq |nx 〉2

]
+ o(ε2), ε → 0 . (A.2)

Here, Cq := {
x ∈ ∂� : 〈vq |nx 〉 = max

{
0, 〈v1|nx 〉, . . . , 〈vr |nx 〉

}}
and κ(x) is the

curvature of ∂� at the point x ∈ ∂�.

B. Miscellaneous Identities

B.1. Proof of the result (3.26) of a change of variables. The term quadratic in ξ is
obviously correct and we start with the linear term in ξ . The inverse of the matrix
A := A(q) has the entries

A−1(i, j) =

⎧⎪⎨
⎪⎩

1 if i = j
−1 if 1 ≤ i = j − 1 ≤ q − 1
−1 if q + 1 ≤ j = i − 1 ≤ m − 2
0 otherwise

(B.1)
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and

m−1∑
i=1

Ti =
m−1∑
j=1

t j

m−1∑
i=1

Si j

=
m−1∑
j=1

(
A−1τ ) j (m − 2 j)

=
m−1∑
j=1

(m − 2 j)τ j −
q−1∑
j=1

(m − 2 j)τ j+1 −
m−1∑
j=q+2

(m − 2 j)τ j−1

= (m − 2)τ1 − 2
q∑
j=2

τ j + 2
m−2∑
j=q+1

τ j − (m − 2)τm−1

� (m − 2)τ1 − 2
q∑
j=2

τ j − 2
m−2∑
j=q+1

τ j + (m − 2)τm−1

= (m − 2)(τ1 + τm−1) − 2
m−2∑
j=2

τ j .

In the � line we have reversed the signs of τq+1, . . . , τm−1. Now we replace ξ on the
left-hand side of (3.26) by ξ − (τ1 + τm−1)/2, which finally yields the linear term

−mξ(τ1 + τm−1) + ξ
[
(m − 2)(τ1 + τm−1) − 2

m−2∑
j=2

τ j

]
= −2ξ

m−1∑
j=1

τ j .

Similarly, since

∑
1≤ j≤m−1

S jkS j� =
{
m − 2 if k = �

m − 1 − 2|k − �| if k �= �
,

we have (Tm = 0)

∑
1≤ j≤m−1

T 2
j +

∑
1≤ j≤m

t2j =
∑

1≤k,�≤m−1

tk t�
∑

1≤ j≤m−1

S jkS j� +
∑

1≤k≤m−1

t2k + t2m

= (m − 1)
∑

1≤k≤m−1

t2k +
( ∑
1≤k≤m−1

tk
)2

+ 2
∑

1≤k<�≤m−1

tk t�(m − 1 − 2(� − k))

= m
( ∑
1≤k≤m−1

tk
)2 − 4

∑
1≤k<�≤m−1

tk t�(� − k)

= m(τ1 + τm−1)
2 − 4

∑
1≤k<�≤m−1

(A−1τ )(k)(A−1τ )(�)(� − k) .
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Next, we write

∑
1≤k<�≤m−1

(A−1τ )(k)(A−1τ )(�)(� − k) =
∑

1≤k<�≤q−1

(τk − τk+1)(τ� − τ�+1)(� − k)

+
∑

1≤k≤q−1

(τk − τk+1)τq (q − k)

+
∑

1≤k≤q−1

(τk − τk+1)τq+1(q + 1 − k) + τqτq+1

+
∑

1≤k≤q−1,q+2≤�

(τk − τk+1)(τ� − τ�−1)(� − k)

+
∑

q+2≤k<�≤m−1

(τk − τk−1)(τ� − τ�−1)(� − k)

+ τqτq+1 + τq
∑

q+2≤�≤m−1

(τ� − τ�−1)(� − q)

+ τq+1
∑

q+2≤�≤m−1

(τ� − τ�−1)(� − q − 1) .

Now we reverse the signs of τq+1, . . . , τm−1. To this end, let I := I(q) = diag(1, . . . , 1︸ ︷︷ ︸
q

,

−1, . . . ,−1︸ ︷︷ ︸
m−1−q

) be the diagonal (m−1)× (m−1) matrix that provides this reversal. Then

we get

∑
1≤k<�≤m−1

(IA−1τ )(k)(IA−1τ )(�)(� − k) =
∑

1≤k<�≤q−1

(τk − τk+1)(τ� − τ�+1)(� − k) (B.2)

+ τq

(
τ1(q − 1) −

∑
2≤k≤q

τk

)
(B.3)

− τq+1

(
τ1q −

∑
2≤k≤q

τk

)
(B.4)

−
∑

1≤k≤q−1,q+2≤�

(τk − τk+1)(τ� − τ�−1)(� − k) (B.5)

+
∑

q+2≤k<�≤m−1

(τk − τk−1)(τ� − τ�−1)(� − k) (B.6)

− τqτq+1 − τq
∑

q+2≤�≤m−1

(τ� − τ�−1)(� − q) (B.7)

+ τq+1
∑

q+2≤�≤m−1

(τ� − τ�−1)(� − q − 1) . (B.8)

Recall that ξ in (3.26) is replaced by ξ − (τ1 + τm−1)/2. That is, on top of the term
1
4

∑
1≤ j≤m(T 2

j + t2j ) (after reversing signs of τq+1, . . . , τm−1) we also have the term

m( 12 (τ1 + τm−1))
2 − 1

2 (τ1 + τm−1)
[
(m − 2)(τ1 + τm−1) − 2

∑
2≤ j≤m−2

τ j

]

= (τ1 + τm−1)
2(1 − m

4 ) + (τ1 + τm−1)
∑

2≤ j≤m−2

τ j .
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Let B be the (m − 1) × (m − 1) matrix defined as

〈τ ,Bτ 〉 := m
4 (τ1 − τm−1)

2 −
∑

1≤k<�≤m−1

(IA−1τ )(k)(IA−1τ )(�)(� − k)

+ (τ1 + τm−1)
2(1 − m

4 ) + (τ1 + τm−1)
∑

2≤ j≤m−2

τ j .

Then we need to show that B = �. We distinguish between certain ranges of indices.

• i0 = j0 = 1: From the first and last term in the definition of B we get B1,1 =
m
4 + (1 − m

4 ) = 1 ✓
• 1 = i0 < j0 ≤ q − 1: choose in (B.2) k = 1, � = j0 or k = 1, � = j0 − 1. Then we
have B1, j0 = 1 − ( j0 − i0) + ( j0 − 1 − i0) = 0 ✓

• i0 = 1, j0 = q: choose in (B.2) k = 1, � = q − 1. Then, together with (B.3) and
the last term in the definition of B we get B1,q = q − 2 − (q − 1) + 1 = 0 ✓

• i0 = 1, j0 = q + 1: choose in (B.5) k = 1, � = q + 2. Then, together with (B.4) and
the last term in the definition of B we get B1,q+1 = q − (q + 1) − 1 = 0 ✓

• i0 = 1, q + 2 ≤ j0 ≤ m − 1: choose in (B.5) k = 1, � = j0 and k = 1, � = j0 + 1.
Then, together with the last term in the definition ofBwe getB1, j0 = j0−1− j0+1 =
0 ✓

• 2 ≤ i0 = j0 ≤ q − 1: choose in (B.2) k = i0 − 1, � = i0. Then Bi0,i0 = 1 ✓
• 2 ≤ i0 < j0 ≤ q − 1: choose in (B.2) k = i0, � = j0, k = i0 − 1, � = j0 − 1,
k = i0, � = j0 − 1, or k = i0 − 1, � = j0. Then Bi0, j0 = −( j0 − i0) − ( j0 − i0) +
( j0 − 1 − i0) + ( j0 − i0 + 1) = 0 ✓

• 2 ≤ i0 ≤ q − 1, j0 = q: choose in (B.2) � = q − 1 and k = i0 or k = i0 − 1 and in
(B.3) k = i0. Then Bi0,q = q − 1 − i0 − (q − 1 − i0 + 1) + 1 = 0 ✓

• 2 ≤ i0 ≤ q − 1, j0 = q + 1: choose in (B.4) k = i0 and in (B.5) � = q + 2 and
k = i0 or k = i0 − 1. Then Bi0,q+1 = −1 − (q + 2 − i0) + q + 2 − i0 + 1 = 0 ✓

• 2 ≤ i0 ≤ q − 1, q + 2 ≤ j0 ≤ m − 1: choose in (B.5) k = i0 and � = j0 or
� = j0 + 1, or k = i0 − 1 and � = j0 or � = j0 + 1. Then Bi0, j0 = ( j0 − i0) − ( j0 +
1 − i0) − ( j0 − i0 + 1) + ( j0 + 1 − i0 + 1) = 0 ✓

• i0 = q, j0 = q: this term appears in (B.3) if k = q. Then Bq,q = 1 ✓
• i0 = q, j0 = q + 1: choose in (B.4) k = q, in (B.5) k = q − 1 and � = q + 2, in
(B.7) � = q + 2. Then Bq,q+1 = −1 + (q + 2 − q + 1) + 1 − (q + 2 − q)0 ✓

• i0 = q, q + 2 ≤ j0 ≤ m − 1: choose in (B.5) k = q − 1 and � = j0 or � = j0 + 1
and in (B.7) � = j0 or � = j0 + 1. Then Bq, j0 = −( j0 − q + 1) + ( j0 + 1 − q + 1) +
( j0 − q) − ( j0 + 1 − q) = 0 ✓

• i0 = j0 = q + 1: choose in (B.8) � = q + 2. Then Bq+1,q+1 = 1 ✓
• i0 = q + 1, j0 = q + 2: choose in (B.6) k = q + 2, � = q + 3 and in (B.8) � = q + 2
or � = q + 3. Then Bq+1,q+2 = −1 − 1 + 2 = 0 ✓

• i0 = q +1, q +2 ≤ j0 ≤ m −1: choose in (B.6) k = q +1 and � = j0 or � = j0 + 1,
and in (B.8) � = j0 or � = j0 + 1. Then Bq+1, j0 = ( j0 − q − 1) − ( j0 + 1− q − 1) −
( j0 − q − 1) + ( j0 + 1 − q − 1) = 0 ✓

• q + 2 ≤ i0 = j0 ≤ m − 2: choose in (B.6) k = i0 and � = i0 + 1. Then Bi0,i0 = 1 ✓
• i0 = j0 = m − 1: Bm−1,m−1 comes from the first and third one in the definition of
B. That is, Bm−1,m−1 = m

4 + (1 − m
4 ) = 1 ✓

• q + 2 ≤ i0 < j0 ≤ m − 2: choose in (B.6) k = i0, � = j0, k = i0 + 1, � = j0,
k = i0, � = j0 + 1, k = i0 + 1, � = j0 + 1. Then Bi0, j0 = −( j0 − i0) + ( j0 − i0 −
1) + ( j0 + 1 − i0) − ( j0 − i0) = 0 ✓
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• q + 2 ≤ i0, j0 = m − 1: choose (B.6) � = m − 1 and k = i0 or k = i0 + 1. In
conjunction with the last term in the definition we obtain Bi0,m−1 = −(m−1− i0)+
(m − 1 − i0 − 1) + 1 = 0 ✓

Finally, switching ξ to −ξ proves (3.26).

B.2. Change of variables in Laguerre polynomials. With Tj from (3.13) and τ =
At,A = A(q) from (3.25), we claim that

Tj =

⎧⎪⎨
⎪⎩

τ1 − τ j − τ j+1 − τm−1 if 1 ≤ j ≤ q − 1
τ1 − τq − τm−1 if j = q
τ1 + τq+1 − τm−1 if j = q + 1
τ1 + τ j−1 + τ j − τm−1 if q + 2 ≤ j ≤ m − 1

. (B.9)

To this end, we write

Tj =
∑

1≤k≤ j−1

(A−1τ )(k) −
∑

j+1≤k≤m−1

(A−1τ )(k)

and assume for example that 1 ≤ j ≤ q − 1. Then, using (B.1)

Tj =
∑

1≤k≤ j−1

(τk − τk+1) −
∑

j+1≤k≤q+1

(A−1τ )(k) −
∑

j+1≤k≤q+1

(A−1τ )(k)

= τ1 − τ j −
∑

j+1≤k≤q−1

(τk − τk+1) − τq − τq+1 − (τm−1 − τq+1)

= τ1 − τ j − τ j+1 − τm−1 .

Also,

Tq =
∑

1≤k≤q−1

(τk − τk+1) − τq+1 −
∑

q+1≤k≤m−1

(τk − τk−1)

= τ1 − τq − τm−1 .

The other two cases follow in a similar vein. After reversing the signs of τq+1, . . . , τm−1,

Tj �

⎧⎪⎨
⎪⎩

τ1 − τ j − τ j+1 + τm−1 if 1 ≤ j ≤ q − 1
τ1 − τq + τm−1 if j = q
τ1 − τq+1 + τm−1 if j = q + 1
τ1 − τ j−1 − τ j + τm−1 if q + 2 ≤ j ≤ m − 1

. (B.10)

Next, we replace ξ by ξ − (τ1 +τm−1)/2. So we subtract from Tj the term (τ1 +τm−1)/2.
This leads to

Tj � T̃ j :=

⎧⎪⎨
⎪⎩

−τ j − τ j+1 if 1 ≤ j ≤ q − 1
−τq if j = q
−τq+1 if j = q + 1
−τ j−1 − τ j if q + 2 ≤ j ≤ m − 1

. (B.11)

Let

t j � t̃ j := (IA−1τ )( j) =

⎧⎪⎨
⎪⎩

τ j − τ j+1 if 1 ≤ j ≤ q − 1
τq if j = q
−τq+1 if j = q + 1
τ j−1 − τ j if q + 2 ≤ j ≤ m − 1

. (B.12)
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Now we replace ξ by −ξ so that

(ω + i(2ξ + Tj ))
2 + t2j � (ω − i(2ξ + T̃ j ))

2 + t̃2j . (B.13)

For j = q the last expression equals

(ω − i(2ξ + τq))
2 + τ 2q = ω2 − 2iω(2ξ + τq) − (2ξ)2 − 4ξτq .

Next, we shift the integration with respect to τq by ξ . That is, we replace τq by τq − ξ .
Then we have

ω2 − 2iω(2ξ + τq) − (2ξ)2 − 4ξτq � ω2 − 2iω(ξ + τq) − (2ξ)2 − 4ξ(τq − ξ)

= ω2 − 2iω(ξ + τq) − 4ξτq

= (ω − 2iξ)(ω − 2iτq) .

For j = q + 1 we get in the end the expression (ω − 2iξ)(ω − 2iτq+1).
For 1 ≤ j ≤ q − 1 we have

(ω + i(2ξ − τ j − τ j+1))
2 + (τ j − τ j+1)

2 � (ω − i(2ξ + τ j + τ j+1))
2 + (τ j − τ j+1)

2

� (ω − i(τ j + τ j+1))
2 + (τ j − τ j+1)

2

= (ω − 2iτ j )(ω − 2iτ j+1) .

Similarly, for q + 2 ≤ j ≤ m − 1,

(ω + i(2ξ − τ j−1 − τ j ))
2 + (τ j−1 − τ j )

2 � (ω − i(2ξ + τ j−1 + τ j ))
2 + (τ j−1 − τ j )

2

� (ω − 2iτ j−1)(ω − 2iτ j ) .

Finally, with Tm = 0 and tm = τ1 + τm−1,

(ω + i(2ξ + Tm))2 + (τ1 + τm−1)
2 � (ω − i(2ξ − τ1 − τm−1))

2 + (τ1 − τm−1)
2

� (ω − 2iτ1)(ω − 2iτm−1) .

B.3. Proof of the identity (3.28). We start out with the representation of the Laguerre
polynomial as a contour integral in the complex plane C, namely

L�(x) = 1

2π i

∮
�

dt

(1 − t)t�+1
exp[−xt/(1 − t)] .

Here, the contour � is, say, a circle of radius < 1, centered at the origin 0, and with
counter-clockwise orientation. Then, for any given pair ξ, τ ∈ R, we have

1√
2π

∫
R

dωL�

(
(ω − 2iξ)(ω − 2iτ)/2

)
exp(−ω2/4)

= 1

2π i

∮
�

dt

(1 − t)t�+1
1√
2π

∫
R

dω exp
[− ω2/4 − (ω − 2iξ)(ω − 2iτ)t/(2(1 − t))

]
.

Now we observe

− 1
4ω

2 − (ω − 2iξ)(ω − 2iτ)t

2(1 − t)
= − 1 + t

4(1 − t)

(
ω − 2i(ξ + τ)t

1 + t

)2
+
2ξτ t

1 − t
− t2(ξ + τ)2

1 − t2
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and perform the ω-integration. This yields

(4π(1 − t)

1 + t

)1/2
exp

[ 2ξτ t

1 − t
− t2(ξ + τ)2

1 − t2

]
.

By the Cauchy integral formula (of the year 1831) we therefore get

1√
2π

∫
R

dωL�

(
(ω − 2iξ)(ω − 2iτ)/2

)
exp(−ω2/4)

= √
2

1

2π i

∮
�

dt√
1 − t2 t�+1

exp
[ 2ξτ t

1 − t
− t2(ξ + τ)2

1 − t2

]

= √
2
1

�!
d�

dt�

∣∣∣
t=0

1√
1 − t2

exp
[ 2ξτ t

1 − t
− t2(ξ + τ)2

1 − t2

]
.

The Mehler formula (of the year 1866)

1√
1 − t2

exp
[ 2ξτ t

1 − t
− t2(ξ + τ)2

1 − t2

]
=

∞∑
�=0

H�(ξ)H�(τ )

�!
( t
2

)�

, |t | < 1 (B.14)

now completes the proof of (3.28).
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