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1 Introduction

To support people to learn a new language,
various types of technical aids have been ex-
amined [1, 2] and realized as commercial prod-
ucts or services [3, 4]. This paper presents re-
search results of a joint project between UTokyo
and UCL, where teachers asked engineers to
automatize their fluency scoring strategy. In
this study, prediction is conducted with Elastic
Net regression with speech features. Experi-
mental results demonstrate that posteriorgram
with multiple granularities is effective for pre-
diction and a high correlation of 0.925 is ob-
tained between machine scores and the scores
of perceived fluency averaged over 10 native
raters. This value is higher than the average
of inter-rater correlations of 0.873.

2 Related works

2.1 Picture description corpus with flu-
ency rating [5]

90 native Japanese studentsas well as 10 na-
tive speakers participated in data collection.
The task is picture description, where three
independent photos were presented with three
keywords per photo to the participants, as
shown in Figure 1. They were asked to describe
the pictures orally using the keywords. Their
utterances were recorded with 16 bits and 44.1
kHz as sampling frequency.
10 native raters, who did not participate in

data collection, were recruited for manual flu-
ency assessment of the 100 utterances. They are
native speakers, but not teachers or researchers
of language education. The score varied from
1 (=least fluent) to 9 (=extremely fluent). Be-
fore rating, the definition of fluency in [5] was
explained to the raters, who showed a high con-
sensus on that definition.
Each rater assigned 100 scores to the 100 ut-

terances. Correlations are calculated between
every pair of the raters. The minimum, aver-
age, and maximum of one-to-one correlations
are 0.677, 0.786, and 0.897. Correlations are
also calculated for each rater to the averaged
scores of the other nine raters. The minimum,
average, and maximum of one-to-others corre-
lations were 0.798, 0.873, and 0.910. These
are used as reference when assessing the per-
formance of automatic prediction of fluency.

2.2 Manual extraction of features re-
lated to fluency [5]

The following features were manually ex-
tracted with Praat [6], 1) the number of break-
downs, (un)filled pauses, per unit time, 2)
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Fig. 1 Three photos used for data collection

speaking rate, the number of syllables per unit
time, 3) the number of repairs per unit time.
The number of breakdowns were counted sepa-
rately for two cases, within and between clauses.
Repairs can also be divided into repetitions and
self-corrections. The five features were expected
to affect raters’ judgements through an exten-
sive review of the related literature.
We regard the above features as related to

quantity of phonation, per unit time and ap-
plied Elastic Net regression to predict the flu-
ency scores, averaged over the 10 raters. 5-
fold cross-validation showed that the predicted
scores had a correlation of 0.788 to the human
scores, which is comparable to the average of
one-to-one correlations. This value can be used
as reference when assessing the performance of
automatic prediction of fluency.

2.3 Clustering of phonemic classes using
posteriors [7]

Besides features related to quantity of phona-
tion, those related to quality of pronunciation
are also examined. For this end, all the ut-
terances are converted to posteriorgrams. Pos-
teriorgrams generally use a set of phoneme
classes, the number of which is several thou-
sands. They can be viewed as finely-defined
context-dependent phonemes, but they may be
too fine to be used for assessment. We reduce
the number of classes using bottom-up cluster-
ing with Ward’s method [8] , which requires the
distance matrix between any two classes. The
Bhattacharyya distance between two classes a
and b is re-written using class posterior through
Bayes’ theorem [7] as
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p(x) is a prior probability for x, which can
be calculated using the universal background
model. p(a|x) and p(b|x) are class posteriors,
which are outputs from DNN-based acoustic
models to input vector x. p(a) and p(b) are
prior probabilities for the two classes, which
can be obtained as normalized frequency from
the training corpus. Once DNN models are
trained, any speech sample can be converted to
its posteriorgram, which is a sequence of vectors
comprised of probabilities of phoneme classes.
With the above formulation, a given posterior-
gram can be reduced into a smaller dimension
of classes. In the current study, the baseline
number of classes is 2,000 and n-class posterior-
grams can be calculated for any n (2≤n≤2,000).

2.4 Phonotactic modeling of languages
[9]

A classical approach of language identifica-
tion is applied to quantify native-likeness. In
the classical approach, a continuous phoneme
recognizer of a specific language, e.g. English,
was applied to a given utterance of any lan-
guage. Then, the utterance was represented in
a forced way as a sequence of English phonemes.
Languages of interest were modeled separately
as phoneme N -gram using the forced English
phonemes. If we consider a special case of N=1,
the model becomes phoneme distribution. Af-
ter converting the 30-sec long utterance of each
participant into its posteriorgram, we can cal-
culate the averaged posterior probability of the
n classes (2≤n≤2,000), which directly corre-
sponds to distribution of the n classes.

2.5 Elastic Net regression [10]

In this study, for feature selection and for pre-
diction, Elastic Net regression is used for a spe-
cific purpose. Mathematically speaking, Elastic
Net regression is a combination of Ridge regres-
sion [11] and Lasso regression [12], i.e. a com-
bined use of L1 norm and L2 norm as regular-
ization terms for weights. Value normalization
is also done for each feature. Because of these,
weight coefficients attached to features of less
predictability become zero and this is why the
function of Elastic Net is said to be prediction
based on feature selection.

3 Speech features extracted for pre-
diction

We introduce three types of features for au-
tomatic prediction, 1) those derived only from
speech acoustics with signal processing tech-
niques, 2) those derived from posteriorgrams
of utterances, and 3) those derived from ASR
results of the utterances. They are related to
quantity of phonation and/or quality of pro-
nunciation. Since the utterances in the corpus
[5] are with unignorable noises, two versions of
WSJ-KALDI-based English speech recognizers
[13] were trained, one with the WSJ corpus only
and the other with WSJ and its noisy versions,
where three levels of noises (SNR=10, 30, 40

[dB]) were added and all the clean and noisy
utterances were used together to train a noise-
robust speech recognizer. Results will be shown
separately for the baseline recognizer and the
noise-robust recognizer.
Even with the noise-robust recognizer, the

recognition accuracy was very low and we de-
cided not to use recognized words as they were.
However, we extracted some statistics from the
recognized words, which were tested for predic-
tion.

3.1 Features derived with signal pro-
cessing

Following a previous study [14], envelope-
based syllable detection was used, which is pro-
vided as Praat script [6]. Then, speaking rate
was calculated as

speaking rate =
#syllables

total duration of phonation

The denominator is defined as the utterance
length minus its entire duration of pauses.
Speaking rate dose not tell anything on how
many silent frames are found in the utterance.
We introduced a similar but different feature of
phonation ratio [15] as

phonation ratio =
total duration of phonation

utterance length

3.2 Features derived from posterior-
grams

From the posteriorgram of each utterance, af-
ter pause removal, the following three types of
features are calculated automatically.

3.2.1 Average of maximum posterior
probabilities [15]

Here, from a given posteriorgram, we de-
tect the maximum posterior probability for each
time and it is averaged over time. The higher
the average is, the more distinct pronunciation
the utterance is made with. The number of
phoneme classes n can vary from 2 to 2,000.

3.2.2 Averaged posterior distribution as
fine phoneme distribution

As discussed in Section 2.4, the averaged pos-
terior vector can be viewed as the distribution of
phonemes. Since the utterance from each par-
ticipant is so long as 30 sec, a variety enough of
phonemes are supposed to exist and the aver-
aged posterior vector can characterize native-
likeness of each participant. The number of
phoneme classes n can vary from 2 to 2,000, and
the average posterior vector is directly used for
prediction.

3.2.3 Posterior gap between a partici-
pant and native speakers

For each participant, we calculate the aver-
aged posterior vector. Since we have 10 native
speakers in the participants, we calculate dis-
tance from a participant to each native speaker,
10 gaps in total. The Bhattacharyya distance
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Fig. 2 Averaged posterior and posterior gap

Table 1 Prediction with quantity features

ASR DNN 1) 2) 3) 4) corr.
w/o — 0.768 1.333 — — 0.819
with clean 0.744 1.245 0.000 0.182 0.821
with noise 0.765 1.281 0.000 0.097 0.817

is used again as metric with variable dimension
n. These gaps quantify native-likeness of each
participant more directly and the averaged gap
is used for prediction of fluency. Figure 2 visu-
alizes the averaged posterior and the posterior
gap. The former characterizes quality of pro-
nunciation, location in the feature space, and
the latter characterizes relative distances to the
10 native speakers.

3.3 Features derived from ASR results
We tested two versions of WSJ-KALDI-based

speech recognizers, i.e. clean model and noise-
robust model on all the 100 utterances. The re-
sults showed that 29.5 % and 32.1 % as correct
recognition rates, respectively for the two mod-
els. Since these rates are very low, we did not
use any features that characterize lexical iden-
tity of the recognized results. However, some
statistics are supposed to be calculated rather
adequately and they are used as feature for flu-
ency prediction.

3.3.1 Correct recognition rate

For this study, the fifth author provided cor-
rect transcripts of all the 100 utterances, and
with them, we can calculate the correct recog-
nition rate for each participant. Although tran-
scripts of spontaneous utterances are gener-
ally unavailable, we tentatively use the correct
recognition rate as feature for prediction. The
prediction performance with transcripts is just
for reference, which may be used as upper limit
of prediction.

3.3.2 Total number of words in ASR re-
sults

Phonation ratio characterizes how continu-
ously a participant speaks, and that acousti-
cally. It is possible to derive a similar but dif-
ferent feature lexically from recognition results.
The recognition performance is surely low, but
the total number of words in the recognition
results may be effective for prediction.

3.3.3 Size of vocabulary in ASR results

It is easily expected that poor participants
may utter the same words repeatedly. This ex-

Fig. 3 Correlation as function of posterior dim

Table 2 Prediction with quality features

ASR DNN a) b) c) d) corr.
w/o clean 0.124 0.365 -0.624 — 0.903
w/o noise 0.233 0.272 -0.753 — 0.917
with clean 0.000 0.254 -0.491 0.628 0.922
with noise 0.045 0.214 -0.549 0.537 0.921

pectation led us to use the number of different
words, size of vocabulary, for prediction [16].

4 Automatic prediction of fluency

4.1 Prediction with quantity features

In [5], features related to smoothness or
quantity of phonation were manually extracted.
Among the automatically extracted features,
we regard 1) speaking rate, 2) phonation ra-
tio, 3) total number of words, and 4) size of
vocabulary as features related to quantity of
phonation. Table 1 describes results of Elastic
Net regression with these features for fluency
prediction, where correlations between the av-
eraged fluency scores over the 10 native raters
and the machine scores are calculated based
on 5-fold cross-validation. In the table, clean
and noise mean the two types of ASR models,
and the three values assigned to each kind of
feature is the weight coefficients calculated for
that feature. Clearly shown, phonation ratio
and speaking rate are very effective for predic-
tion. The performance is higher than the av-
erage of one-to-one inter-rater correlations but
much lower than the average of one-to-others
correlations.

4.2 Prediction with quality features

The other features, a) average of maximum
posteriors, b) averaged distribution of posteri-
ors, and c) posterior gap to natives, are tested
with Elastic Net regression. d) correct recog-
nition rate is also tentatively considered. Fig-
ure 3 shows correlations as a function of the di-
mension n of posterior probabilities calculated
with noisy DNN model. For a) and c), fea-
ture correlations are plotted while, for b), model
correlations (prediction correlations) are shown
with Elastic Net regression. Correlations with
b) and c) are maximized around n=50, while
those with a) seem to be higher with larger n,
but still lower than those with b) and c). From
these results, we select 50 as n and use it for
testing all the quality features.



Table 3 Prediction with all the features

ASR DNN c) 1) a) 2) d) corr.
w/o clean -0.589 0.224 0.112 0.364 — 0.906
w/o noise -0.748 0.264 0.255 0.231 — 0.925
with clean -0.580 0.194 0.131 0.334 — 0.906
with noise -0.715 0.242 0.233 0.200 — 0.923
with clean -0.476 0.192 0.000 0.311 0.602 0.923
with noise -0.543 0.276 0.033 0.239 0.561 0.928

Table 2 describes results of Elastic Net re-
gression with the quality features for fluency
prediction. As b) is a multivariate feature, its
weight means the largest weight among the n
dimensions. Clearly shown, c) and b) are very
effective for prediction. It is very surprising
to us that the correlation with the quality fea-
tures only even without ASR overcomes the av-
erage of one-to-others correlations (0.873), and
is comparable to the maximum (0.910). This
claims that the trained model is comparable to
the most stable and reliable human rater.

4.3 Prediction with all the features
Table 3 describes results of Elastic Net regres-

sion with all the features. Only the top four fea-
tures in the case of noisy DNN but without ASR
are shown, also in other cases with or without
d) correct recognition rates. In the table, the
top four features are c) averaged posterior gap
to natives, 1) speaking rate, a) average of max-
imum posteriors, and 2) phonation ratio. i.e.
two quality features and two quantity features.
In the table, very high usability of the quality
features is shown again and, even without ASR,
the trained model gives a higher correlation of
0.925 than the maximum of one-to-others cor-
relations (0.910).

4.4 Discussion and future directions
In this paper, we tried to predict subjective

scores of fluency. What we found is that the
fluency scores can be much more highly pre-
dicted with quality features than with quantity
features. This result implies that 1) judgments
of the 10 native raters were rather biased to the
quality of pronunciation, which is logically in-
dependent of smoothness and fluidity in utter-
ances, or 2) quantity features and quality fea-
tures are highly correlated and the latter were
extracted with higher accuracy. We’re inter-
ested in another kind of fluency scores, given
by expert raters. With expert rating, we may
obtain some different results.

5 Conclusions

This paper presented research results of a
joint project between UTokyo and UCL, where
automated scoring of fluency was investigated.
Since the L2 corpus prepared for develop-
ment was not large, we tested classical ma-
chine learning techniques with recently pro-
posed speech representations such as posteri-
orgram with variable granularity. Experiments
showed a correlation of 0.925 to the perceived
fluency, which was higher than the maximum

inter-rater (one-to-others) correlation (0.910).
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