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A B S T R A C T   

An increasing number of researchers and practitioners advocate for a systemic understanding of the Sustainable 
Development Goals (SDGs) through interdependency networks. Ironically, the burgeoning network-estimation 
literature seems neglected by this community. We provide an introduction to the most suitable estimation 
methods for SDG networks. Building a dataset with 87 development indicators in four countries over 20 years, we 
perform a comparative study of these methods. We find important differences in the estimated network struc-
tures as well as in synergies and trade-offs between SDGs. Finally, we provide some guidelines on the potentials 
and limitations of estimating SDG networks for policy advice.   

1. Introduction 

In recent years, the concepts of inclusion and sustainability have 
become central to socioeconomic development. Perhaps, the best 
example is the Sustainable Development Goals (SDGs), the leading in-
ternational agenda for national and regional development strategies. As 
the 2030 Agenda has progressed, it has been recognized that, to truly 
achieve sustainable development, it is necessary to understand how its 
multiple dimensions interact with each other [1]. In other words, a 
multidimensional view of development requires well-defined proced-
ures to quantify and operationalize networks of interdependencies be-
tween different goals (or their indicators). Following this idea, several 
studies have attempted to measure such networks through different 
methods, for example, subjective criteria from expert advice, text min-
ing applied to official documents and names of development indicators, 
and proximity measures between indicators that are relevant for a given 
country. 

Overall, these efforts are commendable as they shift the discussion 
on socioeconomic development from topical silos to a systemic view [2]. 
However, scholars from development studies have not provided a –much 
needed– thorough reflection and analysis on the virtues and shortcom-
ings of the different methods available for the empirical estimation of 
SDG networks. Furthermore, the number of alternatives considered in 
these studies has been rather small. This stands in stark contrast with the 

growing literature on network estimation and causal inference models 
produced by data and network scientists.1 

This paper analyses different network-estimation methods to identify 
the most suitable procedures to build networks of development in-
dicators. For this reason, we examine their underlying assumptions, 
strengths, and limitations. Broadly speaking, we classify the available 
methods into five families: correlation thresholding, Granger causality, 
chordal information filtering, statistical structure learning, and physics- 
inspired methods. Interestingly, only a handful of methods can be 
employed with currently available emperical development-indicator 
data. Thus, we perform a comparative study using the methods that 
show the potential to work with this kind of observational data. 

Before introducing the reader to network-estimation methods and 
developing the empirical analysis, we provide a critical account of the 
current attempts to estimate SDG networks, as well as a brief but 
necessary discussion on the differences between association, structural 
dependence, and causation. The paper is structured in the following 
way: Section 2 reviews the methods that have been used to estimate SDG 
networks and discusses their contributions and drawbacks. Section 3 
provides a general overview of five methodological families that are 
frequently employed by network and data scientists. Section 4 explains, 
in more detail, these four methods selected from these families that are 
best suited to construct SDG networks. Section 5 presents a comparative 
study applying these four selected methods on development-indicator 
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data. Finally, the paper closes with the conclusions in Section 6, where 
we synthesize empirical results, discuss some of the limitations of causal 
inference on SDG networks, and propose some guidelines. 

2. On networks of sustainable development goals 

As discussions on socioeconomic development have shifted toward a 
multidimensional view [3], international organizations and develop-
ment analysts have concluded that a network framework is indispens-
able. At the same time, it has become evident that complexity arises 
when trying to understand how these multiple dimensions interact with 
each other. For example, reductions in infant malnutrition may cause 
children to perform better at the Programme for International Student 
Assessment (PISA) tests. Therefore, a policy originally aimed at 
improving the dimension of public health may also have implications in 
the dimension of education. In this example, causality may need to be 
considered both ways, as improvements in education may also create 
consciousness about the risks of unhealthy diets. Either way, it is clear 
that development does not take place within isolated topics, but it is 
rather a coevolutionary process across different dimensions. 

Owing to the complexity arising from interdependencies between 
development indicators, it has been argued that policy interventions can 
only be properly designed when the synergies and trade-offs between 
different goals have been identified. This is especially important when 
social, economic, and sustainability indicators are jointly considered in a 
government’s development strategy. To frame development goals in a 
setting of complex networks, it is important to take into account the 
following issues: (1) the way of interpreting an interdependency 
network (does a link represent causation, structural-dependence or 
correlation?), and (2) the assumptions underlying the estimation 
methods (which methods are more suitable given the nature of the 
available data?). In this section, we discuss issue 1, while leaving 2 for 
the coming sections. Before entering into these discussions, however, it 
is important to provide a critical account of the studies that have pre-
viously attempted to estimate SDG networks. 

2.1. The first generation of SDG networks 

The first studies that tried to understand SDGs through the lens of 
networks appeared in the development literature a decade ago. Ac-
cording to their estimation procedures, we can classify them into two 
groups: (1) subjective studies that rely on qualitative information (e.g., 
the conceptual description of the variables), and (2) statistical ones that 
make use of panel data (countries through time). In group 1, subjectivity 
comes from determining links based on opinions. Thus, in this group, we 
can find studies that take either a brainstorming (e.g., expertise and 
stakeholder’s knowledge) or a heuristic approach (e.g., informal text 
mining). In contrast, group 2 applies quantitative techniques to 
development-indicator data. In the networks estimated in group 2, each 
node corresponds to a specific indicator, while a link or edge denotes the 
strength of a relationship between nodes. Usually, these graphs have 
weighted edges and, in fewer cases, these edges have directions. 

Among the subjective studies, we can find Pedercini and Barney [4]; 
Blanc [5]; Collste et al. [6]; Weitz et al. [7]; Allen et al. [8]. Examples of 
statistical studies are Czyzewska and Mroczek [9]; Ceriani and Gigliar-
ano [10]; Castañeda et al. [11]; Cinicioglu et al. [12]; Pradhan et al. 
[13]; El-Maghrabi et al. [14].2 Finally, the work of Zhou and Moinuddin 
[15] seems to be the only one standing in both camps. 

For clarity, and to align our exposition with the literature semantics, 
we use the terms policy issues, development indicators, and development 

goals (or just goals) interchangeably to refer to a specific topic where a 
policy can be directed (e.g., education, public health, poverty, etc.). 
Then, to refer to the development aspirations of a government or society, 
we use the term objectives. Likewise, an SDG is a development pillar that 
encompasses a set of policy issues that, ex-ante, are thought to be closely 
associated. Thus, we can think of policy issues as the topics of interest 
and of the objectives as the final states where the policymaker wants to 
arrive (i.e., specific values for a set of development indicators belonging 
to different SDGs). 

In most of the first-generation studies, the aim has been to identify 
policy issues with synergistic effects to other goals (positive spillovers) 
in order to promote them. Similarly, estimating goals that face trade-offs 
(negative spillovers) is also important to discourage policies that 
improve certain indicators but obstruct other objectives. This type of 
analysis prevails in subjective studies, in which first- and second-order 
spillovers are inferred (e.g., Blanc [5]; Pradhan et al. [13]; Weitz et al. 
[7]). In other studies, different centrality measures are calculated with 
the purpose of identifying influential policy issues (e.g. [8,15]). 

There are several ways in which subjective studies build SDG net-
works. First, edges can be constructed through information derived from 
previous studies. Second, knowledge from stakeholders and experts in 
specific fields can be leveraged to propose specific graphs. Third, the text 
of official documents (e.g., from the United Nations) can be mined to 
build networks of development goals connected by commonly 
mentioned policy issues. Regarding statistical studies, we identify three 
dominant approaches: inference through plain correlations [13,15,11], 
Bayesian techniques [9,10,12], and a co-occurrence methodology [14].3 

The co-occurrence methodology establishes, first, if the performance of 
a country in a particular indicator is above the average country from 
nations with similar per capita income. Then, the method infers the 
likely co-occurrence between two indicators (i.e., if they have proximate 
mechanisms for delivering an above-average performance). 

2.2. Shortcomings of the first generation 

In the context of SDGs, where the ultimate goal is to facilitate the 
prescription and evaluation of public policies (besides inferring the in-
terdependencies of the development process), it is important to specify 
broad desirable qualities of network-estimation methods. In our view, 
such attributes are scalability, replicability, specificity, directionality, 
and validity. Next, we elaborate on each of these concepts and suggest 
that these desirable properties are rarely fulfilled jointly in the first 
generation of SDG networks. 

2.2.1. Scalability 
A network-estimation procedure for SDGs should be easily scalable 

to incorporate as many socioeconomic indicators as possible (appealing 
to the multidimensional nature of development). This has become self- 
evident as we passed from the 48 indicators considered by the Millen-
nium Development Project to the 232 (and growing) of the SDGs. Such 
high dimensionality calls for representing the policy space as a complex 
network of goals. This, however, is not trivial when the number of ob-
servations for each indicator (usually less than 10) is lower than the 
number of dimensions typically observed in development-indicator 
data. Another aspect of scalability is the capacity to estimate the 
network with relative ease. This is hardly achieved by methods relying 
on expert advice. For instance, a government may be unable to gather 
enough experts in so many different issues due to budgetary and time 
constraints, or simply because such experts are unavailable (something 
common among poor countries and, at the subnational level, even in 

2 Czyzewska and Mroczek [9], Ceriani and Gigliarano [10], Castañeda et al. 
[11], and Cinicioglu et al. [12] do not make a direct reference to SDGs; 
nonetheless, we consider them relevant because they are early contributions 
that use development-indicator data. 

3 Note that, although Czyzewska and Mroczek [9] briefly discuss the chal-
lenge of inferring causality, none of these studies formally attempt to establish 
causal relationships, yet their results are usually interpreted as if this were the 
case. 
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middle and high-income nations). Furthermore, as the number of in-
dicators increases, the number of experts needed to understand all the 
possible direct and indirect relations becomes impossible to fulfill.4 

2.2.2. Replicability 
Methods that facilitate the replication of empirical studies are 

desirable in all scientific endeavors. Hence, the techniques through 
which information is obtained and processed should be accessible to 
third parties who wish to verify or refine an estimated network. In this 
view, studies based on expert advice are rarely replicable because 
human capital is highly scarce in numerous developing countries. 
Furthermore, even if such experts exist, it does not mean that they are 
accessible. Moreover, the process through which they arrived at their 
original estimations might have changed because it may not be sys-
tematic or transparent, but rather the result of their individual experi-
ences and perceptions. Finally, brainstorming methods are often biased 
through “echo chamber” effects, or the current conventional wisdom (e. 
g., the relationship between economic openness and job creation). 
Hence, dealing with such biases requires additional protocols on how to 
collect expert advice. 

2.2.3. Specificity 
Extensive evidence from real-world development policies has shown 

that context matters [16] and, hence, policies have to be adjusted to the 
social, economic, and political environment where they are supposed to 
be applied. For this reason, networks that are estimated by pooling data 
from different countries may fail to be specific to the country of interest 
(as it is done in Czyzewska and Mroczek [9]; Ceriani and Gigliarano [10]; 
Cinicioglu et al. [12]; El-Maghrabi et al. [14]). Similarly, tweaking a 
“master” network –previously built for analyzing other countries– also 
runs the risk of neglecting a country’s context (as in Pedercini and Barney 
[4]). When time series are too short, a second-best alternative consists of 
pooling data from a reduced group of countries with structural similarity 
(for example, demonstrated through statistical cluster analysis). 

2.2.4. Directionality 
As the purpose of building SDG networks is to conduct evidence- 

based policymaking, one should be cautious when interpreting the 
outcomes of these estimates. For instance, it is not enough to identify the 
high centrality of an indicator to argue that the associated policy issue 
should be prioritized (e.g., when recognizing that the country’s electri-
fication is critical for its development because it connects to many other 
topics). Among other things, it is crucial to identify the direction of the 
edges. Hence, estimations built on standard text mining, co-occurrence 
methods, or plain contemporary correlations fail to meet the property 
of directionality. 

In principle, “common sense” can be used to discern the potential 
direction of an edge, as there may be indicators that cannot precede 
others. However, as we move to larger datasets, more complex topol-
ogies, and higher topical specificity, establishing directions in this 
fashion takes us back to the scalability problems found when using 
expert advice. Therefore, detecting directionality in a data-driven way is 
desirable. 

2.2.5. Validity 
As with any estimation procedure, network inference requires some 

form of validation to be considered scientifically reliable. In the context of 
SDGs, external validation through out-of-sample prediction is unfeasible 
because of the short span of the SDG time series. A popular alternative 
among network scientists is to create data-generating models and test how 
well the estimation methods recover the networks specified in such models. 

This, however, is not possible with SDGs because there is no comprehensive 
understanding of how development indicators emerge from the in-
teractions of socioeconomic agents at a much more disaggregated level. 
Therefore, an admissible alternative is appealing to validated methods, 
which were developed in other disciplines, but which are designed for data 
with a similar structure.5 Accordingly, none of the methods used in the first 
generation have passed any formal validation test. 

It is important to note that we consider all the attributes indicated in 
Section 2.2 essential to network-estimation methods in the context of 
SDGs. However, their joint fulfillment represents a major challenge. 
Besides, it should be pointed out that all of the first-generation studies 
lack most of these requirements. Although, from our description, it is 
also clear that some of them have certain strengths when evaluating 
particular aspects. 

2.3. What can be inferred from first-generation networks? 

The first-generation of SDG networks has provided a first approxi-
mation of the policy space that is relevant to the 2030 Agenda. Among 
other useful estimates, we find associations between policy issues that 
share links, clusters of nodes obtained through community detection 
algorithms, signed edges indicating a positive or negative co-movement 
between pairs of variables, node centrality (e.g., degree, eigenvector, 
betweenness, or closeness) indicating influence on the network or ability 
to connect communities, and network sparsity showing if indicators tend 
to connect more with issues from their same SDG than with others. 
Besides these descriptive insights, one of the main virtues of the first- 
generation networks is that they have helped analysts and policy-
makers grasp the complex and systemic nature of development. 

First-generation networks might also be helpful to improve policy 
heuristics. For instance, in the co-occurrence approach [14], it is argued 
that policy priorities can be determined through two criteria: (1) the 
feasibility of improving an underperforming indicator (for similar 
countries) given its proximity to other nodes that perform relatively well 
(as indicated in density analyses), and (2) their potential for improving 
other indicators, measured through degree centrality of the intervened 
policy issue. Nevertheless, one should still be careful when interpreting 
these criteria. For example, a highly connected node might be the result 
of incoming links that are not observed when estimating undirected 
networks and, thus, its promotion could result in poor outcomes. 

Finally, an important way in which first-generation networks can be 
used is not for direct policy interpretation, but as structural information 
for more comprehensive models. For example, together with other 
structural information such as input-output matrices, the tradition of 
“system dynamics” incorporates these networks as model components. 
This approach highlights the fact that policy intervention analysis 
cannot be solely based on an exercise of synergies and trade-offs of 
development indicator data alone. It suggests that the causal chain from 
resource allocation to changes in indicators is complex, limiting our 
ability to provide policy prescriptions out of network estimates of a 
partially observed system (i.e., raw sustainable indicator data). 

2.4. On causality and policy prescriptions 

The recurrent “correlation does not imply causation” phrase should 
have already come into the reader’s mind. Thus, it is pertinent to draw 

4 This does not mean, however, that this kind of data is not useful to estimate 
SDGs. In fact, in section 5.2, we argue that expert advice and anecdotal expe-
rience can be used to construct complementary ex post validation tests. 

5 The methods reviewed in the latter sections of this paper fall under this 
category of methods, that is estimation methods validated for their respective 
disciplines by their corresponding authors. In other words, by employing these 
methods, we are assuming that development-indicator data come from the data- 
generating processes used in such validation. It is important to mention that, 
while this validation strategy may not be ideal in the context of SDGs, it is still 
an improvement over first-generation studies, where most of the methods have 
no validation at all. 
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distinctions between the different types of inferences that can be ach-
ieved through existing network-estimation methods, as well as their 
underlying assumptions and limitations. This is especially important in 
the context of SDGs, where much of the analysis tends to be used to 
inform policymakers (unavoidably implying some sort of causation). 

First, let us differentiate three types of inference relations: associa-
tion, structural-dependence, and causation. An association is a co- 
movement between two variables without distinguishing their origin 
or direction. That is, when X (Y) changes, Y (X) is observed to change 
too.6 Structural-dependencies between variables have explicit di-
rections; for example, when X varies, we can also observe changes in Y, 
but when the latter varies we do not need to observe changes in the 
former.7 Finally, causation indicates that there exists “cause and effect” 
relationships between variables. That is, X is a cause of another variable 
Y, when manipulations of the former systematically affect the outcomes 
of the latter, after controlling for a set of Z variables, possibly related to 
Y.8 From this explanation, it becomes evident that, for causal inference 
to be possible, a directional link between two variables is a necessary but 
not sufficient condition. 

All first-generation SDG networks measure either associations or 
structural-dependencies, but not causation. However, causality may be 
the most relevant relationship to be inferred from an SDG network 
because, ultimately, one would like to provide advice on which nodes to 
intervene through public policies. Consequently, any policy advice 
derived solely from association and structural-dependence networks 
should be taken with a pinch of salt. This makes evident that, besides the 
recurrent correlation ∕= causation argument, other important aspects are 
generally overlooked in the estimation of SDG networks, for example, 
how feasible is it to exercise a policy intervention in an indicator? do 
interventions take place at the same level of aggregation as the outcome 
variables? is it possible to identify all the confounding factors affecting 
causal relationships and/or the indicators? etc. While these questions 
are out of the scope of this paper, we offer some thoughts in Section 6. 

It must be noted that most of the definitions of causation used by the 
methods reviewed in this paper fall into a particular type: the “depen-
dence account” [17]. Here, causal factors are those whose presence 
makes possible the existence of one or several outcomes (effects).9 

Because development indicators are aggregate variables (see Section 
2.5), by estimating causal SDG networks under the dependence account 
and considering only indicator information, one implicitly assumes, 
among other things, that outcomes and interventions take place at the 
indicator level; something that may not hold in the context of SDGs. This 
is the case, for instance, when analyzing the impact of financial devel-
opment on economic growth. Here, both the “causal variable” and the 
outcome are measured at the country level, while policy interventions 

(e.g., rules of supervision and competition) are implemented at the 
microlevel (e.g., banks and other financial institutions). Hence, recom-
mendations derived from the dependence account need to be carefully 
considered. 

2.5. Challenges of SDG data 

Now that we established the desirable qualities for SDG-network 
estimations and differentiated the types of inferences, it is important 
to provide some clarifications on the nature of the data and on the 
challenges related to building an “ideal” method. First, it should be clear 
by now that estimating SDG networks through statistical methods 
require quantitative data. The relevant data available for this type of 
analysis consist of development indicators. Second, these indicators 
have a time-series structure (i.e., today’s values tend to depend on 
previous ones). Therefore, an ideal method should take temporal 
dependence into account. Third, these time series are short (e.g., usually 
less than 20 annual observations, depending on how many countries and 
indicators are collected for the study). Thus, the ideal method should be 
able to handle the statistical problems associated with small samples. 
Fourth, SDG data are high dimensional; hence an ideal method should 
also work in this setting. Fifth, development indicators are aggregated 
variables at the country (or sub-national) level, for example, the gross 
domestic product, yet some of them are the result of lower-level pro-
cesses or conformed by other unobserved variables.10 

The fact that development indicators have temporal dependencies 
does not imply that time is their only or main determinant. Likely, many 
of the associated policy issues are continuously influenced by policy 
interventions to the system. Because of this, a common concern in the 
time-series analysis is the presence of “structural breaks” within the time 
interval under study, especially if the sampling period involves different 
government administrations. Therefore, while time series based 
methods account for the time dependence; the fact that available data 
has few observations, mostly collected with low frequency (yearly), 
means that there may be something to be learned from simpler meth-
odologies that assume independence, but which still incorporate inter-
vention based causal learning. 

We should add that an “ideal” method for estimating SDG networks 
with development-indicator data should contain directed and weighted 
edges. Few of the first-generation studies present these two topological 
features jointly. However, their inclusion is critical in so far as arrows 
are indispensable to account for a correct dependence or causal structure 
(either of intervention impacts or flows between endogenous variables), 
and weights are essential to measuring the “strength” or influence of the 
relationship between goals. 

These challenges serve as guidelines to select the methods that are 
best suited to estimate SDG networks. Furthermore, in selecting esti-
mation procedures, we privilege those techniques that are transparent 6 An association can be described in different forms: co-occurrence (i.e., a pair 

of variables that tend to appear in tandem) and contemporaneous correlation (i. 
e., variables that tend to exhibit a monotonic relationship).  

7 In Bayesian networks, the link’s presence is given through a conditional 
probability Pr(Y | X), so that X is the “parent” node and Y is the direct “child” (X 
precedes Y). In networks of non-contemporaneous correlations, the direction 
indicates a time sequence. 

8 In mathematical terms, following the notation of Pearl [76], causation re-
lates to probabilities of the type Pr(Y | do(X0)), where do(X0) := do(X = X0) 
means that variable X has been intervened. Thus, classical statistical inference 
is not the same as causal statistical inference.  

9 According to Casini and Manzo [66], acyclic causal graphs make use of a 
dependence account of causation and a horizontal view of the causal mecha-
nisms. Such a view consists of a set of stable relationships in a network of 
variables. They can be represented as algebraic equations or as network to-
pologies, such as cascades (X → Y → Z) and branches (Y ⟵ X → Z). An 
alternative account is, for example, the “production” one, in which causal 
factors are those that help to generate or bring about specific outcomes. This 
account, however, requires a different set of techniques that lie beyond the 
statistical methods here covered. 

10 Another challenge that may be a concern to some readers is the imbalance 
in the number of indicators between SDGs. The relevance of this problem de-
pends on whether the inferences are made at such an aggregate level. Never-
theless, it is important to mention that this issue is endemic to all studies that 
try to cover the high-dimensional nature of development. In part, such imbal-
ance is a historical legacy of how different development agendas have evolved 
over the years, giving priority to the measurement of some policy issues before 
others. For example, it is not surprising to see more development indicators 
about poverty and economic growth than environmental ones. This is so 
because the Millennium Development Project prioritized the eradication of 
poverty, while environmental topics recently became important. 
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and replicable through the provision of publicly available code.11 

3. Broad families of network-estimation methods 

Network estimation methods are abundant in the literature of com-
plex systems, in statistics, and machine learning (e.g., Han and Zhu [18]; 
Smith et al. [19]; Linderman and Adams [20]; Aragam et al. [21]). In 
this paper, we focus on a subset of methodological families that have 
explicit underlying concepts of causation. Nevertheless, and as a 
comparative benchmark, we also present results from computing rank 
correlations (Spearman). In total, we classify the methods into five 
families (although we don’t consider our classification to be definite or 
exhaustive). 

Intending to make this paper accessible to a broad audience, we try 
to keep technicalities and jargon at a minimum. However, using some 
mathematical expressions might be unavoidable. Therefore, before 
explaining each family, it is useful to introduce some notation. Let us 
consider the development indicators as variables {X1, X2, …, Xp}, where 
p is the total number of indicators. Let G denote a network whose nodes 
represent individual development indicators. Each link or edge in G is 
informative about the presence, direction, and magnitude of an associ-
ation, structural-dependence, or causal strength between two nodes (i.e., 
policy issues or goals). Finally, we denote the weight of edge i → j as Gij. 

3.1. Correlation thresholding 

One of the most commonly used techniques to estimate networks is 
thresholding correlation matrices (e.g., [18,22–24]). Its popularity owes, 
to a considerable extent, to its simplicity, straightforward interpret-
ability, and lack of restrictive assumptions about the variables’ in-
terdependencies (i.e., a particular type of structure that the estimated 
network should have). Broadly speaking, the approach consists of, first, 
obtaining a complete correlation matrix. Secondly, given a minimum 
acceptable correlation magnitude –referred to as threshold– an initially 
empty network G is populated by edges between nodes i and j. An edge 
in G exists whenever the magnitude of the correlation between Xi and Xj 
is larger than the threshold. 

The existence of different correlation measures and the possibility of 
considering lagged values give place to numerous methodological var-
iations in this family. To mention a few, we can find the Pearson cor-
relation, Spearman, Kendall, partial correlation, etc. Besides, there are 
various ways in which one could select a threshold, for example, by 
arbitrarily defining it, by choosing a significance level for the p-value of 
each correlation, or by selecting a threshold under which the resulting 
network structure best fits the desired property (e.g., number of edges, 
the distribution of connections, clustering patterns, etc.). Finally, 
depending on the temporal nature of the correlation, one could generate 
directed (with lagged time series) or undirected networks (with 
contemporary correlations). 

3.2. Granger causality 

The most visible representative of time-series causal inference 
methods was proposed by Granger [25]. Granger causality (also known 
as G-causality) can be defined as follows: for a given time point t and 
time series X and Y, “We say that Xt is causing Yt if we are better able to 
predict Yt using all available information than if the information apart 

from Xt had been used” [25]. This view of causality has spawned diverse 
methods to estimate networks. 

Most methods in this family stem from time series analysis and, more 
specifically, from the vector autoregressive family of models (e.g., 
[26–28]). Nevertheless, we can also find G-causality in methodologies 
developed using concepts from physics, for example, mixtures of 
G-causality and transfer entropy [29]. A common characteristic among 
these approaches is the use of hypothesis testing to determine the exis-
tence of an edge between a pair of nodes (i → j), representing indicator 
variables Xi and Xj. Such tests evaluate whether the prediction of Xj at 
time t –when only using its previous history– improves by including Xi at 
time t, and other potential lags, in the set of predictors (e.g. [27]). 

Overall, Granger-causality network-estimation methods generate 
directed networks and weighted edges as well. However, they have two 
major drawbacks when it comes to the challenges enlisted in Section 2.5. 
First, evaluating the presence or absence of an edge is often tested 
without considering all the other variables in the system. Second and 
most importantly, given that these tests are built on autoregressive 
models, they perform poorly when applied to short time series. Strictly 
speaking, G-causality methods are more in line with structural- 
dependence than causal inference. This is so because structural- 
dependence is mainly concerned with discovering the links’ directions 
between two nodes (e.g., its co-movement in specific directions), and not 
in terms of the effect of exogenous interventions. 

One of the first studies to explicitly address causation in SDG net-
works was developed by Dörgo et al. [30], who took a Granger-causality 
approach. To overcome the limitations of G-causality, they pool 
cross-national data, which in their case, precluded obtaining 
country-specific networks. 

3.3. Chordal information filtering graphs 

Filtering graph methods were initially proposed as a mechanistic 
way to remove edges in highly dense and complex networks, for 
example, in full correlation matrices. The original purpose of this 
approach was to eliminate spurious links that are irrelevant in terms of 
weight and structural integrity of the network [31]. Building on these 
ideas, more recent developments provide network estimation proced-
ures that perform in a fast and scalable fashion (e.g. [32]). Among these 
proposals, LoGo [33] stands out as a suitable framework to estimate 
causation when the lengths of the time series are shorter than the 
number of variables. 

In broad terms, one of the main characteristics of the filtered graphs 
family is how they account for the network’s structural integrity. For 
example, methods such as Triangulated Maximally Filtered Graphs 
(TMFG) [32] and LoGo [33] propose to begin the estimation process 
with a network that satisfies a mathematical property called the 
“planarity constraint”. In simple terms, the planarity constraint is a 
problem in which, given a complex and dense network, one must redraw 
it on a surface (a plane) in such a way that as many edges as possible are 
preserved, but that none of them intersect each other. Although there is 
no clear intuition or a causality-driven motivation for using the planarity 
constraint, it has been shown that the resulting networks can be used in 
forecasting.12 

One of the main strengths of this family is its ability for inferring 
networks from data with more variables than observations. In particular, 
LoGo can be used to infer the links’ weights and to generate a potentially 
causal interpretation of their direction. Note, however, that chordal 
filtered networks might be biased toward substructures called triangles 
(3-cliques) and/or other k-cliques (k nodes, all connected to the other k 11 This means that more sophisticated methods that, potentially, could jointly 

tackle different challenges may not be applied in this study. However, we 
provide further details about some of these methodologies in the next sections. 
Finally, we should add that it is particularly important for development studies, 
a multi-disciplinary field where researchers and consultants are not experts in 
the science of networks, to have transparent access to novel methods through 
publicly available code. 

12 Another common characteristic is that the estimated graphs are “chordal”, a 
topological property for which there is no clear motivation or interpretation in 
terms of causality (“every cycle of length > 4 has a chord, an edge not 
belonging to the cycle that joins two non-adjacent vertices of the cycle” [32]). 
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− 1 nodes). An important drawback of LoGo is that, when a dataset has 
numerous indicators that are proportionally interrelated (often the case 
in SDG data), the estimation may result unfeasible. This is so because 
LoGo performs matrix inversions requiring specific properties (being 
nonsingular) that are unlikely to hold in high-dimensional and largely 
correlated datasets. Hence, one may need to resort to strategies to 
ameliorate such correlations, for example, discriminating indicators in 
somehow arbitrary ways, or introducing noise. 

3.4. Statistical structure learning 

The last three decades have seen numerous studies of the multivar-
iate causal structure of systems (e.g., [34–42, 77]). Currently, there ex-
ists a wide variety of statistical methods for this purpose. Many of these 
techniques were developed from different theoretical standpoints. 
Therefore, there is a considerable variation in terminology, often 
referring to similar or even the same ideas. In trying to overcome this 
lack of clarity, we classify the family of statistical learning methods into 
causal graphical models and structural causal models. Here, we provide 
a brief description for each one. 

3.4.1. Causal graphical models 
Graphical models are sometimes referred to as Bayesian networks. 

They consist of a network of conditional dependencies where the nodes 
represent the variables and the links their dependencies. Altogether, 
these networks are modeled as directed acyclic graphs (DAGs).13 In 
statistical terms, a DAG imposes a conditional-dependence structure that 
induces a probability distribution over a set of random variables [34, 
41]. Thus, causal graphical models are designed to estimate the DAG of 
conditional dependencies. 

A typical estimation procedure to construct G consists of performing 
conditional independence tests across all the observed variables, to 
discard edges from an initial G. This procedure is performed until all the 
topological properties of a DAG have been met.14 A problem with this 
approach, however, is that there may be multiple possible DAGs that 
can, for example, meet the results of the conditional independence 
checks, thus making them all candidate estimates of G.15 Thus, these 
methods usually generate multiple estimates of G, which can then be 
further discriminated by using auxiliary methods. Examples of this 
family are the PC algorithm (pcalg) [43] and the Intervention calculus 
when DAG is absent (IDA) framework [44]. 

3.4.2. Structural causal models 
Structural causal models are also referred to as structural equation 

models (and should not be confused with econometric structural models 
[45]). In their most general form [37,41], they can be characterized in 
terms of “parent-child” relations between variables and noise terms. 
More specifically, for a given variable of interest Xi (a development in-
dicator), we say that its parents PAi are a subset of other nodes in the 
system that are structural determinants of the value of Xi. Together, PAi 
and a noise component Ni determine Xi through a function fi, i.e., Xi :=
fi(PAi, Ni). Therefore, depending on the way that one chooses to model 
the parent-child relationship, it is possible to define a variety of struc-
tural equation models as shown in Table 1. 

This approach provides ample flexibility to model structural re-
lationships and noise terms. Aragam and Zhou [46], for example, pro-
pose a scalable network estimation method based on a linear Gaussian 
structural equation model. This approach can handle cases where the 
sample size is much smaller than the number of variables in the network. 
Peters et al. [47], in contrast, provide an alternative approach for 

multivariate time series (TiMINo) that does not require a linear Gaus-
sianity assumption. Sometimes, structural causal models are also 
referred to as Bayesian networks. This confusion in terminology arises 
because the set of structural equations implies a graphical representa-
tion of the dependence structure of the variables X1, …, Xp. For example, 
if the parents of X1 and X2 are PA1 = X5 and PA2 = X1 respectively, then, 
the functional assignments {X1 = f1(X5, N1), X2 = f2(X1, N2), X5 = f5(N5)} 
imply a network X5 → X1 → X2. Note that, in contrast to graphical 
models, structural equation models provide a data-generating mecha-
nism that can be easily implemented by following the structural as-
signments. More specifically, following the previous example, values of 
(X1, X2, X5) can be obtained by drawing a value n5 from the noise dis-
tribution of N5. Then, we can compute the value x5 = f5(n5), from which 
x1 = f1(x5, n1) and, subsequently x2 = f2(x1, n2) can be obtained as well 
(where n1 and n2 are noise values drawn from the distributions of N1 and 
N2, respectively). On the contrary, in the graphical models of the pre-
vious subsection, such a data-generating mechanism is not proposed. 

In general, both causal graphical models and structural equation 
models introduce some common assumptions that may be considered as 
important limitations. First, the estimated network G is often required to 
be acyclical. This implies that reinforcing cycles (virtuous and vicious) 
are not allowed, for example, as with the bidirectional effects between 
improvements in public health and education. A second important 
assumption is that the data points are assumed to be independent draws 
of the distribution that generates the development indicator. This means 
that the temporal dependence of the data needs to be added to the initial 
formulation of the models, as done, for example, by Peters et al. [47].16 

3.5. Physics-inspired approaches 

In addition to statistically inspired approaches, there are techniques 
with a fundamentally different basis; for example inspired on physical 
and biological phenomena. For instance, Hu et al. [29], and Servadio 
and Convertino [48] employ transfer entropy (i.e., the amount of 
directed information flowing from one variable to another) to infer the 
association network in multivariate time series. Furthermore, Hempel 
et al. [49] developed the inner composition alignment (iota) method to 
infer directed networks from short time series.17 

Among the methods inspired by the natural sciences, there is one 
class that has a strong mathematical backbone: state-space reconstruction 
methods. These techniques spawned from the literature on nonlinear 
dynamical systems and, in recent years, they have become relatively 
popular to estimate causal relationships in physical, biological, and 

Table 1 
Different specifications of structural causal models.  

Structural causal model Xi = fi(XPAi ,Ni)

Additive noise model Xi = fi(XPAi ) + Ni  

Causal additive model Xi =
∑

k∈PAi

fik(Xk)+ Ni  

Linear Gaussian model Xi =
∑

k∈PAi

βikXk + Ni and Ni ∼ N(0, σi)

Based on Table 7.1 from Peters et al. [41]. Other popular specifications are 
nonlinear Gaussian additive noise models and linear non-Gaussian acyclic 
models, among others. 

13 A DAG is a network in which no path can return to its starting node.  
14 In addition, likelihood-based approaches can also be employed to estimate 

G.  
15 This is known as the “identifiability problem”. 

16 In this family, there exist more sophisticated methods that can deal with the 
possibility of cycles (e.g., [39]), with nonlinearity (e.g., [39, 47]), with time 
dependence, and there are different theoretical results that tackle the presence 
of latent variables as well [41].  
17 It is important to note that, although some methods belong to a single- 

family, several others share characteristics with different families. For 
example, Servadio and Convertino [48] propose a transfer-entropy approach 
comparable to the one used in correlation thresholding. Similarly, the 
chordal-filtering- graphs approach of Aste and Di Matteo [33] also employs 
transfer entropy to quantify the edges that carry causal interpretations. 

L. Ospina-Forero et al.                                                                                                                                                                                                                         



Information & Management xxx (xxxx) xxx

7

ecological systems (e.g., [50–54]). The basic idea behind state space 
reconstruction is that any variable in the system can be used individu-
ally, through its time series, to recover the attractor to which the system 
tends to evolve (the so-called Takens’ theorem).18 

Inspired in this theory, Sugihara et al. [55] developed the method of 
cross convergent mapping (ccm). This technique allows estimating 
directed networks by testing causation between a pair of variables, even 
if they are weakly coupled (note that bidirectional causality is possible). 
The test is built around the idea that X causes Y when the dynamics of 
the former can be recovered (predicted) by the dynamics of the latter. In 
other words, the information concerning X is already reflected in the 
evolution of Y, and cannot be removed from the universe of all possible 
causative factors. Accordingly, through Y’s attractor manifold (a 
mathematical object that represents a geometric space in which the 
variable moves, usually denoted as My), it is possible to make 
local-neighborhood predictions on X’s manifold Mx. As 
local-neighborhood tests can be data demanding, several methods have 
been proposed to deal with short time series for noisy and 
high-dimensional systems (e.g., [56–58]). 

Overall, state-space reconstruction methods have an appealing 
theoretical basis and allow the estimation of directed networks without 
imposing topological constraints. Nevertheless, they also have draw-
backs that should be mentioned. On the theoretical side, these models 
assume that the system is in a “steady-state” fluctuating around the 
attractor. Thus, for a system that is transitioning to a different attractor, 
these methods would provide the wrong causal relations. Furthermore, 
the assumption of remaining near a specific attractor may conflict with 
the principles of socioeconomic development; a process with techno-
logical innovations, emerging social norms, and considerable political 
turbulence that may push nations toward different attractors. In addi-
tion, the weights of the inferred networks do not have a clear interpre-
tation other than a score about how well one variable predicts the 
other.19 

4. Eligible estimation methods for SDG networks 

As we have argued in Section 2.5, SDG data convey several chal-
lenges that turn most network-estimation methods ill-suited. For 
example, most methods in the classical Granger-causality family are 
inadequate because of the short length of development-indicators time 
series.20 Therefore, after a comprehensive review of numerous ap-
proaches, we have selected four methods to perform empirical estima-
tions given the data restrictions. These are intervention calculus when 
the DAG is absent through the PC algorithm (pcalg), concave penalized 
estimation through sparse Gaussian Bayesian networks (sparsebn), inner 
composition alignment (iota), and cross convergent mapping (ccm). That is, 
the first two belong to the family of statistical structure learning, while 
the last two correspond to the physics-inspired family.21 

Overall, no single method “ticks all boxes” when it comes to the 
challenges of SDG networks. However, the chosen ones, while assuming 
that all variables relevant to the causal system are being considered, 
have the common ability to cope with a small number of observations 
and a large number of variables. Therefore, while the eligible methods 
are not a definitive statement about the correct way to estimate SDG 

networks, they do provide an important guide on a variety of ways to 
exploit SDG data. Finally, and as mentioned above, all of the chosen 
methods have publicly available software. In this section, we explain 
further details on each of these four methods to perform the empirical 
analysis in Section 5. 

4.1. Intervention calculus through the PC algorithm 

The intervention calculus when DAG is absent (IDA), proposed by 
Maathuis et al. [44], is a causal graphical model designed to estimate 
causation directly from observational data. The method consists of three 
steps. First, the basic structure of the dependence network –called the 
skeleton– is inferred (i.e., a network displaying only undirected edges 
and no weights). The skeleton is particularly useful as it highlights all 
the possible causal relations between all variables in the network. In the 
second stage, edge directions are inferred, so the “completed partially 
directed acyclic graph” (CPDAG) is created (see Fig. 1.b). 

The CPDAG is called partial because the inference of some directions 
is theoretically infeasible, hence, CPDAG displays those edges as undi-
rected. The reason for this infeasibility lies in the fact that multiple DAGs 
can be obtained from the CPDAG. These multiple DAGs encode the same 
distributional and conditional dependence constraints inferred from the 
data, making them indistinguishable through purely observational in-
formation. Nevertheless, the CPDAG can be thought of as a summary 
network displaying all the possible directed dependence networks that 
fit the data constrains. Finally, the third stage estimates the size of the 
causal effects (edge’s weights) for each of the possible relations in the 
CPDAG, generating a weighted network. 

Following Maathuis et al. [44], the first two stages can be performed 
through a method called the PC algorithm [43]. The method starts with 
an undirected graph that includes all possible edges. Then, it iteratively 
deletes edges that pass (do not reject) a conditional independence test. 
In the first iteration, a simple independence test is performed between 
two connected nodes. If the nodes are found to be independent, that 
edge is deleted from the network. Next, once all pairwise tests are per-
formed, each remaining pair of connected nodes (i, j) is tested for con-
ditional independence given any single node connected to i, or any 
single node connected to j. Whenever a pair of nodes is found to be 
conditionally independent, its edge is removed. Then, in a new iteration 
of conditional independence tests, the size of the conditioning set is 
increased by one node. This edge deletion process leads to the skeleton 
of the inferred dependence network.22 

Once the network skeleton is obtained, edge directions, directions 
are inferred by considering each triplet of connected nodes (i − k − j). If 
in the first step node k was never part of a "passed" (not rejected) con-
ditional independence test between i and j, then the triplet takes the 
form i → k ⟵ j, (see Spirtes et al. [43] for full details on the PC algo-
rithm). Finally, IDA is used to estimate the upper and lower bounds of 
the weights (of the causal effects). The idea is to estimate the effect that 
interventions in variable Xi can have on variable Xj. This effect can be 
interpreted as the change in the mean of Xj, when Xi is forced to take a 
given value (see Maathuis et al. [44] and Lauritzen [34] for full details). 
In this paper, we use the minimum reported bound as the causal effect 
(Fig. 1.a).23 

18 For a review of this literature see Ma et al. [42].  
19 See Cobey and Baskerville [72] for more technical criticisms on ccm and the 

conceptual challenges of state space reconstruction.  
20 This may explain the limited results obtained by Dörgo et al. [30].  
21 Although chordal information filtering methods such as LoGo provide 

accessible code, the required matrix inversions are unfeasible because of the 
highly correlated nature of some development indicators (which could also be 
caused or heightened by the short length of the time series). Similarly, and 
despite its code availability, TiMINo was unable to provide estimates for our 
data. For this reason, we do not use them in our empirical application. 

22 An alternative method designed to deal with more variables than observa-
tions has been developed by Meinshausen et al. [75]. The authors also provide 
tools to compare network estimation methods of this family.  
23 The R package pcalg [79] provides all the required tools to estimate these 

networks on development-indicator data. In this paper, we use the code pro-
vided for Gaussian variables. 
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4.2. Concave penalized estimation through sparse Gaussian Bayesian 
networks 

Aragam and Zhou [46] propose a structural causal model for systems 
composed of a large number of variables that follow a multivariate 
Gaussian distribution. They estimate the coefficients of a linear Gaussian 
structural equation model (SEM) (see Table 1) by solving a convex 
optimization problem.24 With the estimated parameters in hand, it is 
possible to construct a directed weighted network through the system of 
equations defined in the SEM. There are two key innovations in this 
approach. The first is a parameter transformation that allows linking the 
optimization problem to the estimation of high-dimensional Gaussian 
distributions (i.e., allows estimating large networks). The second is a 
penalty term in the optimization procedure that allows the estimation of 
sparser networks (i.e., eliminates edges to address overfitting).25 Note, 
however, that the estimated coefficients (i.e., the weights) cannot be 
directly interpreted as causal relations without further analysis of 
interventional data. Instead, the method “focuses on finding the most 
parsimonious representation of the true distribution [of the variables] as 
a set of structural equations” [46].26 

4.3. Inner composition alignment 

Iota [49] is a method inspired in physical dynamics where a 
constantly changing system can be analyzed by describing its different 
states and possible ways to transition between them. For example, in a 
biological system such as gene regulatory networks, one way to infer 
when genes are coupled is through pairwise tests between time series. 
More specifically, iota identifies the coupling of two time-series when 
the ranking of the values of one of them is similar to the ranking of the 
other. In detail, it checks if a non-decreasing ordering applied to time 
series Xi can also be applied (approximately) to Xj, to achieve a 
non-decreasing ordering of Xj. 

Hempel et al. [49] build on these ideas to relate two time-series by 
how monotonic (increasing or decreasing) Xj is when it is sorted based on 
the ordering of the other time series (Xi). More precisely, they propose a 
statistic that captures the degree of monotonicity of the reordered 

variable Xj to test the presence and direction of the edge i → j. This statistic 
can be understood as an index that depends on the number of in-
tersections between the reordered time series Xj and the imaginary hor-
izontal lines fixed at the values of Xj, when the ordering is given by Xi (see 
Fig. 2). Through pairwise computations and a permutation test of the 
aforementioned statistic, iota aims at estimating a dependence network 
G. The method works for noticeably short time series and allows inferring 
the direction of associations between variables.27 Furthermore, given 
that it checks for monotonicity on reordered variables, this method can 
also detect nonlinear relations between the time series. 

Note that iota has been constructed for truly short time-series and 
does not impose assumptions about the structure of the dependence 
network. However, rather than being based on a generative theory of the 
data, it is based on an observed pattern. Therefore, it is not clear if it can 
infer causal or structural-dependence networks.28 

4.4. Cross convergence mapping 

The method known as ccm was proposed by Sugihara et al. [55], based 
on the idea that complex systems exhibit nonlinearities and, thus, they 
tend to evolve toward strange attractors. Therefore, when two variables 
(X, Y) are coupled, their corresponding manifolds (Mx, My) –obtained 
through the coordinates of their lagged values– should approximately 
describe the attractor. Hence, if the information embedded in My can 
predict the information embedded in Mx, it is argued that X causes Y. 
Reconstructing the state space, however, requires a large number of 
observations when a system is high-dimensional. 

In its supplemental material, [55] claim that ccm works well when 
studying data of fisheries with approximately 70 species and only 35–40 
observations. Moreover, recent extensions attempt to improve the res-
olution of the manifolds for small samples. This can be done, for 
instance, by increasing the number of observations through replications 
of the same unit of analysis but in a different physical space [57]. An 
alternative is to use a neural network to estimate the cross-map between 
the manifolds [56]. 

According to the ccm method, causation between two nodes exists 
when there is convergence in fitting; that is, when the correlation co-
efficient between the predictor and the observed variable increases 
rapidly with the series length. In the seminal paper of Sugihara and 
coauthors, a nearest-neighbor algorithm is used to establish the weights 
to be used when calculating the predicted values. 

Despite the time series of our data having less than 20 observations, 
we use the original ccm methodology. We do not apply the multispatial 
ccm [57] because we only have one observation per country/year. 

Fig. 1. Skeleton and CPDAG of the PC algorithm. (a) Example of the skeleton of 
a graphical model with 8 variables. The undirected edges represent the pres-
ence of a dependence relation between nodes. However, the directions are 
absent. (b) Example of a completed partially directed acyclic graph, providing 
directions for some of the edges in the skeleton. Some edges, however, remain 
undirected as the method cannot decide which is the correct direction. 

Fig. 2. Intuition behind the iota statistic. An illustration of the number of 
crossings (marked as red triangles) between the reordered time series Xj and the 
imaginary horizontal dashed lines fixed at the values of Xj, according to the 
ordering obtained from Xi. 

24 This is an approximation of the non-convex optimization problem that 
arises when directly considering the optimization of the log-likelihood of the 
data through the SEM [46]. 
25 Additionally, Aragam and Zhou [46] develop another parameter trans-

formation to convert the non-convex optimization problem into a convex one.  
26 The R package sparsebn [21] provides all the required tools to estimate these 

networks on development-indicator data. This tool assumes that the data are an 
independent and identically distributed (i.i.d.) sample from a multivariate 
Gaussian distribution. 

27 Note that, although iota is inspired in time series observations, it does not 
explicitly consider the temporal dependence of variables.  
28 The R package iota (tocsy.pik-potsdam.de/iota.php) provides all the 

required tools to estimate these networks on development indicator data. 
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However, as the software associated with this procedure is publicly 
available, we use it for our estimations (with only one replica).29 The ccm 
approach does not impose topological requirements on G. However, 
more nodes imply higher dimensionality of the underlying attractor. 
Finally, the method does consider the time-dependence structure of the 
indicators. 

5. Data and results 

5.1. Data 

Inspite of worldwide efforts to build comprehensive datasets tracking 
the 17 SDGs of the 2030 Agenda [3], it is still challenging to assemble 
information with a large coverage of countries, indicators, and obser-
vations at the same time. Because, in this paper, we perform a 
comparative analysis between methods, the estimation of SDG networks 
demands the following data requirements: (i) all countries should 
contain the same indicators, (ii) all observations must be contempora-
neous (they should cover the same sampling period), (iii) no indicator 
should be a linear renormalization of another (i.e., no two indicators 
should have a perfect linear correlation), and (iv) all indicators should 
exhibit temporal variation (we assume that a constant indicator is in-
dependent of all others).30 

Taking all previous considerations into account, we build a dataset 
where we reach a compromise between maximizing the length of the 
sampling period, the number of indicators, the SDGs covered, and the 
number of countries in the sample. In particular, we prioritize the number 
of indicators and years because our motivation for estimating SDGs is to 
map a complex web of structural-dependencies between numerous policy 
issues. Our sample for this study consists of four countries from different 
continents: Egypt (EGY), Indonesia (IDN), Mexico (MEX), and Turkey 
(TUR). We analyze the relationships between 87 development indicators 
(covering 16 of the 17 SDGs) during the 1995–2014 period for each 
country in an independent fashion. Each indicator has been normalized 
between 0 and 1.31 The indicators have been adjusted so that larger 
values denote better outcomes. The main source of the dataset is the 
United Nations Global SDG Database [59]. In addition, we complement it 
with the World Bank Sustainable Development Goals Database [60] and 
the poverty indices from the World Bank Poverty and Equity Data. [61]. 
Fig. 3 presents the summary statistics for the indicators aggregated in 
terms of the corresponding SDG and country.32 

Fig. 3 shows the differences between the four countries. For example, 
Egypt is substantially less developed in SDG 10 (reduced inequalities), 
while Indonesia is in SDG 1 (no poverty). It is also interesting to observe 
that all the four countries are poorly developed in SDG 6: clean water 
and sanitation and SDG 14: life below water (from the four indicators 
that were available for the four nations). 

With this general picture of the data, we proceed to present the 
estimated networks. We do this in a twofold fashion. First, we show 
aggregate results at the level of the SDGs. That is, we study the total 
number of incoming and outgoing edges (and their weights) in each 
SDG. This allows gaining insights into the structure of synergies and 

trade-offs between SDGs at the level of each country. Second, we 
introduce and compute formal metrics to compare the topologies of the 
estimated SDG networks, with a special emphasis on comparing the 
networks produced for the same country through different methods. 
This provides a more rigorous understanding of the implications of using 
different frameworks. 

5.2. SDG networks 

As discussed in Section 4, we present results for each country on four 
specific methods:33 iota, ccm, pcalg, and sparsebn. In addition we also 
provide calculations obtained from correlation networks (lcorr). The 
latter networks are built by computing pairwise Spearman correlations, 
where the explanatory variable is lagged by one period. In this way, the 
resulting networks are not necessarily symmetrical. We only keep those 
edges where the correlation has a p-value lower than 10%.34 

Table 2 shows the summary statistics about the connectivity in the 
estimated SDG networks. When talking about the number of links, 
connectivity is usually referred to as degree. When edges have weights, 
however, the correct term is strength (the sum of the weights connected 
to a node). We have split each network into edges with positive and 
negative weights. In other words, we analyze synergies and trade-offs 
separately. Notice that the topological structures of the estimated net-
works vary considerably, as reflected by their synergies and trade-offs 
across each country’s estimates. However, the estimated weights have 
slightly different interpretations because each method has a different 
underlying concept of causality (if any at all); hence, a comparison of the 
raw magnitudes of synergies/trade-offs between the different method-
ologies may not be relevant. In the light of these variations, one method 
can be preferred over another depending on the type of the analysis to be 
pursued, or, perhaps more importantly, on the consistency of the esti-
mates with prior information (see below). 

Notice that the five methods analyzed here do not identify the same 
country as the one with maximum synergistic strength. Indonesia is 
identified twice (lcorr, pcalg), Mexico twice (ccm, sparsebn), and Turkey 
once (iota). A similar assessment emerges when comparing the identity 
of the nodes with maximum strength for each country across estimation 
methods, except for Turkey, where lcorr and sparsebn present the same 
identifier for trade-offs [46]. While in the case of synergies, none of the 
methods identify the same node for a specific country. These results 
point out the method-dependent sensitivity of interpretations about the 
strength of complementary (or conflicting) links between policy issues. 
Next, we present additional analyses comparing the estimated network. 

As a substantial part of the discussions in the sustainable develop-
ment literature relates to encouraging complementary policies, let us 
take a closer look at synergistic networks. Fig. 4 shows the structure of 
synergies as the links that are directed from one indicator to a group of 
nodes (we provide a similar illustration for trade-offs in Fig. 6 of Ap-
pendix B). The first feature that stands out in Fig. 4 is the striking 

29 The R package multi-spatial CCM provides all the required tools to estimate 
these networks on development-indicator data.  
30 Hence, we focus on nonduplicated time-varying indicators.  
31 For indicator i of country c in period t, we normalize according to a standard 

procedure: [Ii,t,c − min(Ii,.,.)]/[max(Ii,.,.) − min(Ii,.,.)], where I is a matrix with 
development indicators of all countries, not only those in the sample. The 
reason for using all countries in the normalization is that cross-national data 
provide an adequate benchmark to normalize indicators (i.e., zero values should 
be assigned to those indicators that equal the lowest levels across all countries 
and years).  
32 See Table 5 in Appendix A for a complete list of the 87 indicators and their 

respective SDGs, and Table 6 for the numeric values of the summary statistics. 

33 The estimation method was applied independently for each country and 
considering its whole multivariate time-series.  
34 Network topology is a very important property in the analysis of complex 

systems, and because the focus of this paper is to highlight the multiple esti-
mation methodologies and some of their practical differences; we opt for using 
a p-value of 10%, instead of the more standard 5%, as this choice of p-value 
would better illustrate the global structural differences between the estimated 
networks from the different methodologies. This is the case as the 5% p-value 
for some methods leads to network estimations that are reduced to only a few 
edges, where no sense of global structure can be appreciated. However, it is 
important to note that the choice of larger p-values tends to increase the 
presence of falsely estimated interactions. Thus, when utilizing these network 
estimation methodologies in practice, a robust selection of the p-value should 
be considered (see Table 7 in Appendix B). 
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differences between physics-inspired methods (iota and ccm) and sta-
tistical structure learning methods (pcalg and sparsebn).35 

On the one hand, iota and ccm generate considerably denser SDG 
networks than pcalg and sparsebn. In addition, there are also important 
differences between pcalg and sparsebn, with the former estimating 
considerably fewer synergies than the latter. These differences vary from 
country to country, highlighting the importance of not pooling arbi-
trarily cross-national data to estimate SDG networks. On the other hand, 
when making within-country comparisons, it is also evident that, 
depending on the method of choice, the distribution of weights across 
SDGs is significantly different. For instance, in the case of Egypt, iota 
suggests the presence of many synergies coming in and out from SDG 1 
(no poverty). While synergies entering to this node are drastically 
reduced in ccm, they vanish in the other two methods. 

To provide more detail on how differently the inferences can be 
derived from these methods, let us rank each SDG in each country and 
method. We produce this ranking according to how synergistic an SDG is 
to the others. That is, for a given SDG in a specific network, we take its 
outgoing edges with destinations in different SDGs. By averaging their 
weights, we obtain an estimate of how synergistic that SDG is to other 

goals. Table 3 shows the top five SDGs in each ranking. No country 
presents the same list of indicators for all methods, and only Egypt and 
Indonesia exhibit the same list for two methods: lcorr and ccm (although 
in a different ordering). However, 5 indicators from Egypt are repeated 
in at least three lists of the top five, 4 indicators from Indonesia, 4 from 
Mexico, and 3 from Turkey. These results indicate that, given the 
sensitivity of the different methods, a potential approach could be 
finding a consensus among networks. Due to space limitations, this 
concept will be developed more formally in Appendix D. 

5.3. Prior-informed tests 

As we have explained in Section 2.2, a desirable quality in an SDG 
network estimation method should be external validity. However, this is 
hardly achievable in the context of SDGs because the data-generating 
process is rather complex and takes place at different aggregation 
levels and time scales. Therefore, one has to appeal to some form of 
internal validity, such as a qualitative judgment on the consistency be-
tween the properties of the data and the method requirements (e.g., no 
temporal dependence). Furthermore, there are ways in which prior in-
formation may be used to make a judgment on how valid an estimated 
SDG network can be. For instance, the subjective information employed 
in some of the first-generation methods can be exploited to –ex-post– 

Fig. 3. Summary statistics of development indicators by country and SDG. Each color corresponds to an SDG. All indicators in each SDG have been aggregated by 
averaging, first, their values through time and, then, through all the indicators in the SDG. Within each color, each bar corresponds to a country in the following 
order: EGY, IDN, MEX, and TUR. The vertical black lines denote the standard error. All indicators in SDG 6 have nearly zero values. Therefore, to better illustrate their 
comparison against all others, all indicators in this plot have been added an amount of 0.05. 

Table 2 
SDG-network strength statistics.  

Method 
EGY IDN MEX TUR 

Synergy Trade-off Synergy Trade-off Synergy Trade-off Synergy Trade-off  

30.99 25.1 43.06 24.48 37.82 29.86 41.43 30.62 
lcorr (12.11) (11.3) (19.21) (16.51) (15.83) (14.0) (18.66) (16.03)  

[31] [51] [40] [43] [5] [32] [45] [46]  
12.83 11.1 13.01 11.01 11.66 10.44 13.38 11.4 

iota (6.53) (4.79) (5.9) (5.0) (3.69) (4.78) (6.2) (5.71)  
[5] [43] [4] [7] [27] [13] [36] [81]  

21.1 14.48 22.23 11.17 27.24 19.06 26.25 13.36 
ccm (15.55) (10.9) (16.86) (10.45) (17.11) (11.62) (19.14) (11.94)  

[56] [68] [41] [36] [23] [36] [24] [36]  
1.29 0.64 1.33 0.53 1.26 0.44 1.15 0.55 

pcalg (0.82) (0.8) (0.97) (0.66) (0.79) (0.64) (0.86) (0.67)  
[74] [36] [16] [35] [3] [19] [11] [29]  
8.9 7.03 9.63 7.66 10.62 8.0 6.3 3.36 

sparsebn (4.89) (4.31) (5.02) (4.33) (5.81) (5.3) (3.8) (2.63)  
[85] [8] [15] [42] [1] [70] [3] [46] 

Reported connectivity is the average strength (the sum of the weights) of a node’s connections, separated into positive (synergies) and negative (trade-offs) links. 
Standard deviations are inside round brackets. Nodes with the maximum strength are inside squared brackets. 

35 Remember that pcalg and sparsebn assume no temporal dependence in the 
data. 
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partially validate an estimation. That is, rather than –ex-ante– relying on 
subjective data to estimate the network, this information can be lever-
aged to evaluate whether an estimated set of edges constitutes false 
positives (FP), or whether absent edges translate into false negatives 
(FN). Here, we show how this approach sheds light on the performance 
of the estimation methods. 

To evaluate FP, we identify 10 pairs of development indicators for 
which one would not expect any causal or structural-dependence rela-
tion in any direction and sign. Therefore, a false positive means that a 
method has estimated a synergy or a trade-off that, a priori, is known to 
have no logic in the context under study (goes against common sense). 
Thus, there can be up to 40 false positive links, by considering both 

Fig. 4. Estimated synergies between SDGs by country and method. Weights have been normalized so they are comparable in terms of proportion to all other weights 
in the network. Edge colors indicate the SDG from which they originate. The length of each colored segment of each circle should not be interpreted, as they are the 
result of a visualization algorithm. 

Table 3 
Top five SDGs by outgoing synergies.  

Country lcorr iota ccm pcalg sparsebn 

EGY 15, 14, 2, 
11, 3 

1, 2, 3, 5, 
10 

2, 3, 11, 
14, 15 

3, 7, 10, 
14, 15 

2, 8, 9, 11, 
14 

IDN 2, 14, 1, 3, 
11 

1, 6, 14, 
15, 17 

1, 2, 3, 11, 
14 

3, 4, 5, 7, 8 3, 8, 9, 12, 
13 

MEX 2, 1, 5, 11, 
14 

3, 4, 6, 11, 
15 

1, 2, 3, 4, 
11 

2, 3, 6, 9, 
14 

7, 8, 9, 12, 
14 

TUR 2, 3, 1, 5, 
17 

2, 3, 6, 11, 
17 

1, 2, 3, 4, 
11 

3, 7, 12, 
13, 14 

1, 2, 9, 12, 
14 

The outgoing synergy of an SDG is computed by averaging the weights of pos-
itive outgoing links with a destination in nodes (indicators) belonging to a 
different SDG. In other words, we do not count within-SDG synergies. Each set of 
five SDGs has been sorted from most to least synergistic (left to right). 
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directions and positive or negative weights.36 For the FN, we have 
identified 10 pairs of indicators that almost certainly have some type of 
relationship, whether this is causal, a structural-interdependency, syn-
ergistic, a trade-off, or it goes in any direction. A false negative is the 
complete absence of any type of edge between a pair of nodes in the 
estimated network when, in reality, that edge exists.37 Thus, there can 
be up to 10 FN at most. Appendix C provides the two lists of indicators 
that have been identified for this analysis. 

Table 4 presents the number of FP and FN for each estimated 
network. Concerning the FN, pcalg shows the best performance. How-
ever, the difference with the other methods is not significant. With 
respect to FP (i.e., links that should not be there), lcorr presents the 
highest number, and thus worst raw performance. However, the large 
number of links established (T) in this method increases the probability 
of false positives. Thus, if we normalize by T, lcorr and ccm present a 
relatively large number of FP (>0.002) for the four country cases, but 
this threshold is not crossed in two methods: iota (Egypt and Mexico) 
and sparsebn (Egypt and Turkey). Not surprisingly, the extremely sparse 
networks estimated with pcalg receive the best possible scores. Thus, in 
our judgment, iota, sparsebn, and pcalg are potential candidates, 
although a more extensive and rigorous test should be conducted. 

5.4. Comparing SDG networks 

Although the data allow comparisons between countries, we would 
not want our results to be interpreted as having potential policy impli-
cations because the aim of the paper is not to estimate the definite 
networks for our country examples. Instead, our purpose is to under-
stand how the five methodologies differ in their results. For this reason, 
we emphasize methodological comparisons rather than country ones. 

To provide a more rigorous analysis of the structural differences 
between alternative methods, it is necessary to briefly elaborate on some 
relevant metrics. A common practice in network science is to measure 
topological differences between networks by focusing on specific traits. 
For example, some studies try to quantify discrepancies on how network 
connectivity is distributed across nodes, while others concentrate on 
internal communities and clusters. Broadly speaking, we can charac-
terize these different emphases in a spectrum between connectivity and 
structure. Different metrics have been developed to compare networks in 
this spectrum. It should be noted that, as of today, there is no “gold 
standard” when it comes to these comparisons. Furthermore, because 
networks may be directed or undirected, weighted or unweighted, single 
or multilayered, etc., a metric that is popular for a certain type of 
network might not be well defined for others. For these reasons, we 
employ three metrics that are well suited for comparing SDG networks 
and try to cover the spectrum between connectivity and structure. In the 
three metrics, higher values imply larger dissimilarity between 
networks. 

5.4.1. ψ Distance 
Xu et al. [62] proposed a comparative measure for the connectivity 

of two networks called the ψ distance. This measure is general enough to 
consider weights and directions, besides, it can handle networks with 
different sets of nodes. In the context of this study, the ψ distance be-
comes quite simple because we compare networks with the same 
development indicators (the same sets of nodes). More specifically, this 
metric is the sum of the magnitudes of the differences between the 
weights of the same edge in the two different networks. Formally, for 

two networks G and Q, the ψ distance is defined as  

dψ = Σ
i,j∈VG,Q

⃒
⃒Gij − Qij

⃒
⃒,                                                                      (1) 

where VG,Q is the set of nodes in G and Q, and Gij denotes the weight of 
edge i → j in network G, Qij is defined equivalently. Note that for the raw 
weights of the methods considered, this distance will focus on relating 
methods with closer weight scales. 

5.4.2. Hamming distance 
Somewhere in the spectrum between connectivity-based and 

structure-based metrics we can find the popular Hamming distance [63]. 
Interestingly, Richard Hamming developed this metric to detect coding 
errors, but he had a general theory in mind for any object that could be 
studied through geometry. For instance, the metric has become 
extremely popular to study distances between words. In network sci-
ence, this metric is also known as the edit distance, and it is very intu-
itive. Given a network G, its Hamming distance from another network Q 
is the minimum number of edits required to transform it into Q. In our 
context, since G and Q have the same nodes, edits translate into edge 
removals and additions. Computing the Hamming distance is usually 
performed through an algorithm provided in most programming lan-
guages.38 It is important to clarify that this metric does not consider edge 
weights. 

5.4.3. NetEmd 
NetEmd [64],39 is a more recent network-comparison method 

initially developed to directly compare the structure of complex systems. 
Similar to previous structural metrics [65], NetEmd measures the fre-
quency of occurrence of different subgraphs. For example for nodes i, j, 
k, l, m, the occurrence of triangles is given by the presence of edges i − j, j 
− k, k − i; 4-stars exist if we observe edges j − i, j − k, j − l, j − m; square 
subgraphs are given by edges i − j, j − k, k − l, l − i and so forth. In total, 
NetEmd uses 30 types of subgraphs.40 

Given G, NetEmd builds the probability distribution of observing a 
node that is attached to x subgraphs of a particular configuration (i.e., to 
one of the 30 configurations).41 Then, it compares the shape of the 
distribution to the one obtained from another network Q. The compar-
ison involves some normalization techniques, after which, the final 
product is a score indicating the average distance between G and Q in 
terms of the similarity of the shape of their subgraph distributions.42 

5.4.4. Results 
Once the distance metrics have been defined, we can compute them 

for each estimated SDG network. Fig. 5 presents the different compari-
sons of the five networks per country and per metric. We can see that 
statistical structure learning methods (pcalg and sparsebn) are very 
similar in terms of the Hamming and ψ distances, but not under NetEmd. 
In contrast, the lcorr and iota methods are quite different under the three 
metrics, while pcalg and sparsebn are also very different in comparison to 
lcorr. We can also say that iota exhibits moderate levels of resemblance 
with respect to pcalg and sparsebn irrespective of the metric considered. 
Moreover, the topological discrepancies between ccm and the other 
methods are salient, yet they vary notoriously depending on the distance 

36 We can obtain up to 40 FP for 10 pairs of nodes because, for each pair, there 
can be 4 possible edges: one positive and another negative from X to Y, and one 
positive and another negative from Y to X.  
37 For the analysis of FN, we have identified indicators whose relationship 

could even be considered tautological. That is, the two indicators in a pair 
belong to the same SDG and are conceptually closely related. 

38 The R package pcalg provides the function shd to compute the Hamming 
distance between two networks.  
39 The R package for NetEmd can be downloaded from github.com/alan-turing 

-institute/network-comparison.  
40 These sub-networks can further be decomposed into 73 configurations when 

the node position is considered. By default, NeEmd uses these 73 
configurations.  
41 More precisely, to a specific location in one of the 30 sub-graphs.  
42 More specifically, NetEmd uses the minimum Wasserstein distance [78] – 

also known as the earth mover’s distance – and a few normalization procedures. 
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metric used. All in all, we conclude that, except for the pair (sparsebn and 
pclag), the methods here considered produce different topologies. Pre-
sumably, the reason for sparsebn and pclag to show closer results is that 
they belong to the same family and both tend to produce sparse 
networks.43 

6. Discussion and conclusions 

This paper provides an overview of the different network-estimation 
families that are better suited for inferring synergies and trade-offs be-
tween SDGs. However, it warns that policy recommendations directly 
obtained from these networks should be taken with a pinch of salt, even 
when using causal inference methods. This is so because network- 
estimation methods only consider the dependence account of causa-
tion, not the production one [17]. In the production account, causal 
factors are those that help to generate or bring about, specific outcomes. 

In other words, it calls for modeling the specification of vertical causa-
tion which, in the context of SDGs, allows the generation of data from 
mechanisms that are known to be part of the SDG system. Among these 
mechanisms, we would need to include the policy-making process, 
agent-level interactions, adaptation, among others, which are currently 
not part of the SDG indicator datasets. 

A production account of causation is better-suited for advising 
development policies because policy interventions take place at a much 
lower level of aggregation than the one provided by the currently 
available data for SDGs (i.e., the development indicators). Hence, the 
need for considering lower-level system dynamics of high resolution that 
account for vertical causal mechanisms seen at the global level. Sce-
narios of policy interventions, which take place at an agent level 
perspective (high resolution), and emergent properties at the macro 
level is the “bread and butter” of complex adaptive systems such as 
markets and ecosystems. Casini and Manzo [66] argue that agent-based 
models are a more adequate tool to establish vertical mechanisms and 
study the causal impact of policy interventions. These models are 
particularly useful in the absence of empirical information at multiple 

Table 4 
Prior-informed false positives and false negatives.  

Method 
EGY IDN MEX TUR 

FP FN T FP FN T FP FN T FP FN T 

lcorr 12 2 4288 11 2 5130 14 0 5406 18 0 5932 
iota 1 0 1195 3 2 1207 1 1 1112 5 2 1279 
ccm 8 2 2799 8 2 2825 11 3 3818 10 0 3357 
pcalg 0 0 84 0 0 81 0 0 74 0 0 74 
sparsebn 0 0 693 4 3 752 2 1 810 0 0 420 

FP: false positives. FN: false negatives. T: total number of directed edges estimated in the network. 

Fig. 5. Differences between estimated SDG networks by country and metric. Darker tones denote more difference between networks.  

43 Appendix D presents a consensus-network approach to compare topologies. 
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levels of aggregation. 
A way to conciliate a more policy-oriented account of causation in 

the context of the 2030 Agenda is by estimating SDG networks and then 
using them as inputs for an agent-based model of the policymaking 
process (with vertical causal mechanisms that stem from the policy- 
making process). Some progress has been made in this vein of 
research through policy priority inference [67,68]. Starting with a set of 
exogenous objectives, indicators’ initial values, and an estimated 
network of structural-dependencies, the model generates endogenous 
policy priorities that can be used to make causal inference in a variety of 
topics such as policy resilience [69], ex-ante policy evaluation [70], 
policy coherence [71], and corruption [74].44 In this framework, the 
purpose of the network is only to specify how the SDG indicators 
co-evolve once certain variations are induced by the adaptation of the 
budgetary allocations. 

6.1. Concluding remarks 

This paper contributes to the literature of the SDGs by reviewing 
first-generation network studies and by comparing networks estimated 
with state-of-the-art methodologies coming from statistics, complexity 
science, and machine learning. In contrast to the first-generation tools, 
estimations based on the newer methods have the potential of meeting 
more desirable properties for SDG networks (scalability, replicability, 
specificity, directionality, and validity). An endemic property of SDG 
indicators, however, is that they have a limited number of observations. 

By selecting five specific methods, we estimate networks using data 
from four countries (Egypt, Indonesia, Mexico, and Turkey), covering 20 
years and 16 out of the 17 SDGs. The chosen methods for these esti-
mations were: Spearman correlations (lcorr), intervention calculus 
through pclag, concave penalized estimation through sparsebn, ccm, and 
iota. The second and third belong to the statistical structure learning 
family, while the last two are physics-inspired methods. Although this 
list is not exhaustive, it offers important insights into the key problems of 
SGD network estimations. 

Our main conclusion is that applied methods –suitable for small 
sample sizes– produce topologically different networks. Even when 
these differences are not very sharp, they still produce differentiated 
implications (e.g., differences in the top-5 synergistic SDGs). Sensitivity 
to the method of choice and the impossibility of comprehensive vali-
dation tests (due to the opaqueness of the data-generating process of 
SDGs) demands filters for selecting a suitable method. We consider two 
criteria: discarding those methods whose theoretical assumptions are 
less consistent with the nature of SDG data and discarding those 
methods that produce relatively more false positives. 

According to our results, pcalg, iota, and sparsebn are the best 
methods when analyzing the number of false positives. However, in the 
first one, the number of estimated links is extremely low. Then, on the 
theoretical front, pcalg and sparsebn have shortcomings in terms of 
assuming temporal independence and acyclical graphs. Likewise, the 
edge weight estimation in iota is not theoretically very sound and, thus, 
it needs to be combined with other methods. Despite that these five 
procedures generate very different topologies, the performance of the 
networks at the country-level still requires a more nuanced evaluation in 
further studies. Besides, one could consider a consensus network built 
from a collection of graphs. Therefore, consensus methods are a topic 
that deserves to be explored in future research. 

This paper provides the first view into “second-generation” 

methodologies for the inference of synergies and trade-offs between 
SDGs. Naturally, new questions will arise as these methods are dissem-
inated in the sustainability community, so there should be a concerted 
effort to answer them. Some examples are: How accurate are the 
different network estimation methodologies? How robust are the 
methodologies for small samples or the presence of structural breaks? 
Are some methods better suited for different types of countries? Which 
of the methodologies is better able to capture true causal links (or 
structural-dependencies)? How robust are the methods to violations of 
their assumptions, e.g., temporal dependence, presence of cycles, line-
arity, and Gaussianity? 
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