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Nonlinear topological photonics, which explores topics common to the fields of topological phases and
nonlinear optics, is expected to open up a new paradigm in topological photonics. Here, we demonstrate
second-harmonic generation (SHG) via nonlinear interaction of double topological valley-Hall kink modes in
all-dielectric photonic crystals (PhCs). We first show that two topological frequency band gaps can be created
around a pair of frequencies, ω0 and 2ω0, by gapping out the corresponding Dirac points in two-dimensional
honeycomb PhCs. Valley-Hall kink modes along a kink-type domain wall interface between two PhCs placed
together in a mirror-symmetric manner are generated within the two frequency band gaps. Importantly, through
full-wave simulations and mode dispersion analysis, we demonstrate that tunable, bidirectional phase-matched
SHG via nonlinear interaction of the valley-Hall kink modes inside the two band gaps can be achieved. In
particular, by using Stokes parameters associated with the magnetic part of the valley-Hall kink modes, we
introduce the concept of SHG directional dichroism, which is employed to characterize optical probes for sensing
chiral molecules. Our work opens up avenues toward topologically protected nonlinear frequency mixing and
active photonic devices implemented in all-dielectric material platforms.
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Introduction. Recent advances in topological photonics
[1–7] have led to new ways to control light in a robust manner
using photonic states that are protected by the topological
properties of the systems. Earlier works [8–11] in this field
have focused on the realization of the photonic analog of
quantum Hall states in two-dimensional (2D) photonic crys-
tals (PhCs) containing magneto-optical materials, where the
time-reversal symmetry is broken by external magnetic fields.
As magneto-optical effects are generally weak at optical
frequencies, intense research efforts were devoted to topo-
logical photonic systems without magneto-optical materials,
and concepts such as Floquet topological phases and synthetic
magnetic fields have been demonstrated in helical waveguide
arrays [12] and coupled-ring resonators [13], respectively.
Furthermore, photonic systems emulating quantum spin Hall
[14–17] and quantum valley Hall [18–21] effects, which pre-
serve the time-reversal symmetry of the system, have also
been proposed. We note that for all systems discussed above,
the topological photonic properties can be understood within
the single-particle framework.

On the other hand, interacting topological phases provide
an exciting topic in condensed-matter physics [22], and in the
context of photonics, the existence of nonlinearity in many
optical materials [23] provides a unique platform to study
interaction effects in topological physics, which is expected
to greatly expand our understanding of topological photonic
systems [24]. Indeed, lattice edge solitons [25–27], nonlinear
control [28] and imaging [29] of photonic topological edge

states, traveling-wave amplifiers [30], topological insulator
lasers [31,32], topological sources of quantum light [33], and
the potential to enhance harmonic generation [34–36] have
been demonstrated. Despite these advances in understanding
the nonlinear effects in topological photonic systems, achiev-
ing nonlinear frequency mixing—one of the fundamental
nonlinear optical processes—via phase matching topological
edge states is still largely unexplored. Recently, we studied
four-wave mixing of topological edge plasmons in graphene
metasurfaces [37] and second- (SHG) and third-harmonic
generation in topological PhCs [38] using one-way edge
modes similar to quantum Hall states with external magnetic
field. Nevertheless, whether the above goal can be realized
in time-reversal symmetry-preserving topological photonic
systems without exploiting magneto-optical effects is still an
open question, which we address here.

In this Letter, we demonstrate SHG in all-dielectric PhCs,
through nonlinear interaction of topological edge modes
within two different frequency band gaps around ω0 and 2ω0.
Our implementation is based on the photonic quantum valley
Hall effect and its associated valley-Hall kink modes [18–21].
A key result of our work lies in the design of two topological
valley gaps hosting double valley-Hall kink modes that can
be phase matched to achieve SHG. Importantly, unlike the
case of one-way edge modes [37,38], in the current system
one could launch the fundamental wave along either direction
of the topological interface, thanks to the topology of the
valley-Hall kink modes, with second-harmonic waves being
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FIG. 1. Emergence of two valley gaps for SHG. (a) Schematic
of the system. (b) Unit cell of the PhC, containing two cylinders of
nonlinear material with radii r1 and r2, dielectric constant ε = 12,
and χ (2) = 10−21 CV−2. (c) First Brillouin zone of the PhC. (d) The
existence of double Dirac points (marked by red and blue dots) of the
PhC at r1 = r2 = 0.2a. (e) The same as in (d), but calculated for r1 =
0.18a and r2 = 0.22a. (f) The frequencies of the two Dirac points in
(d) vs r0 when r1 = r2 = r0. (g) The width of the two valley gaps in
(e) vs δ, defined as r1 = r0 − δ and r2 = r0 + δ with r0 = 0.2a.

generated both in the forward and backward directions due
to the time-reversal symmetry of the system. Moreover, a
unique feature of our system relevant to many applications
is that the amplitudes of these two wave components can be
readily tuned by varying the frequency or source location and
chirality, a functionality that nontopological nonlinear optics
cannot provide.

The system. To demonstrate the main ideas, we consider a
2D honeycomb PhC made of dielectric cylinders with radii r1

and r2 [see Fig. 1(a)], whose unit cell and first Brillouin zone
are shown in Figs. 1(b) and 1(c), respectively. The cylinders
are made of nonlinear material with dielectric constant ε and
second-order nonlinear susceptibility χ (2). In the following,
we use normalized frequency and momentum, ω = ωa/2πc
and k = ka/π , with c being the speed of light and a being
the lattice constant. The transverse-magnetic (TM) modes of
the honeycomb PhC possess Dirac points between the first
and second bands [39,40], a feature exploited for topological
valley transport. However, Dirac points at higher bands have
been less studied. We show in Fig. 1(d) the first six TM bands,
determined using BANDSOLVE [41], when r1 = r2 ≡ r0, from
which one can see the existence of double Dirac points, whose
frequencies as a function of r0 are shown in Fig. 1(f).

The Dirac points could be gapped out by using a unit cell
containing cylinders with different radii. We show in Fig. 1(e)
the band structure of the PhC with r1 = 0.18a and r2 = 0.22a,
from which one can see the gapping out of the Dirac points
by forming valley gaps. The effect of the inversion symmetry
breaking can be quantified by |r2 − r1|. We further show in
Fig. 1(g) the width of the two valley gaps when varying the
radius difference. As can be seen, the second-harmonic gap
[purple (medium gray)] with respect to the first valley gap [red
(light gray)] overlaps significantly with the second valley gap
[blue (dark gray)]; thus, the two valley gaps [red (light gray)
and blue (dark gray)] can be used for SHG.
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FIG. 2. Topological properties of the two valley gaps. (a) Phase
winding behaviors of Ez at K and K ′ for the four bands around the
Dirac points in Fig. 1(d). (b) Berry curvature distributions of bands
2 and 5 (Berry curvatures of bands 1 and 4 around K, K ′ show
behaviors opposite to bands 2 and 5 and thus are not shown). The
peak of Berry curvature at the � point of band 5 is due to the band
degeneracy between bands 5 and 6 at �. In the simulations, a small
cylinder difference is used to gap out the Dirac points, and we have
checked the integral of the Berry curvature around K and K ′ gives
±π .

Topological properties of the valley gaps. To demonstrate
the topological nature of the two valley gaps, we present in
Fig. 2 the phase-winding behavior of Ez and the Berry cur-
vature distribution around the two valleys, K and K ′ [42–44].
Figure 2(a) shows that the phase-winding behavior of Ez for
the first valley gap between bands 1 and 2 is opposite to that
of the second valley gap between bands 4 and 5. Moreover,
they are opposite to each other at the K and K ′ valleys for all
four bands.

The band topology is characterized by the Berry curva-
ture F (k) = ∇k × An(k), where An(k) = 〈unk| i∇k |unk〉 is
the Berry connection, with |unk〉 being the eigenmode of the
nth band. The integral of the Berry curvature over the first
Brillouin zone modulo 2π gives the Chern number, and this
integral is zero for systems with time-reversal symmetry [9].
However, the Berry curvature can have nontrivial local dis-
tributions around K and K ′, which can be used to define the
valley Chern number (±1/2). From Fig. 2(b), we can see
that the Berry curvature distributions have opposite signs at
K and K ′ and are opposite for the first and second valley gaps,
too. As we will show later on, these features have important
implications on the kink modes induced within the two gaps
around K and K ′.

Emergence of chiral valley-Hall kink modes within the
two valley gaps. According to the bulk-edge correspondence
principle, for an interface separating two bulk systems, if
the difference in the topological invariants of the bulk sys-
tems across the interface is nontrivial, interface states will
emerge inside the bulk band gap. For our case, if one PhC
(I) is inversion symmetric to the other (II), the two valleys
will be transformed into each other, i.e., KI/K ′

I = K ′
II/KII . As

the valley Chern number at K , K ′ is ±1/2 [see Fig. 2(b)],
CI

K/K ′ = −CII
K/K ′ = ±1/2, and consequently, CI

K/K ′ − CII
K/K ′ =

±1. This means that at one valley there exists an interface
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FIG. 3. Emergence of valley-Hall kink modes in the two valley
gaps for SHG. (a) Band structure of a kink-type domain-wall in-
terface separating two PhCs (with r1 = 0.2a, r2 = 0.23a) that are
mirror symmetric to each other (see the insets). Note the red (light
gray) and blue (dark gray) kink modes correspond to the interface
with bigger cylinders (red, left inset) and the interface with smaller
cylinders (blue, right inset), respectively. (b) Tuning the kink mode
dispersion to achieve phase matching for SHG, where the fundamen-
tal modes ω0 are shown in the second-harmonic gap by applying the
transformation (ω0, k f ) �→ (2ω0, 2k f ) and �2 refers to the second-
harmonic modes. Along the arrow direction, r1 varies from 0.23a to
0.18a with a step of 0.01a, whereas r2 = 0.24a.

mode with positive group velocity (GV), and another one with
negative GV exists at the other valley. Importantly, as the two
valley gaps have opposite topologies (see Fig. 2), the interface
modes within the two valley gaps at the same valley have
opposite GVs, a unique feature for achieving phase matching.
The band structure of a kink-type domain-wall interface is
calculated and presented in Fig. 3(a). One can see that the kink
modes within the two valley gaps indeed have opposite GVs
(slopes) at a specific valley (for further topological properties
of the valley modes, see [45]).

To tailor the kink modes for efficient SHG, we show in
Fig. 3(b) the evolution of the kink mode dispersion curves
when changing the radius difference of r1 and r2. When in-
creasing |r1 − r2|, as indicated by the arrow direction, the
widths of the two valley gaps increase, and the dispersion
curves move toward higher frequencies. As we require the
band gaps to be relatively large, one could expect to achieve
efficient SHG at a large radius difference. From Fig. 3(b),
we can see that when |r1 − r2| is large, the dispersion curves
of the fundamental and second-harmonic kink modes corre-
sponding to the smaller cylinder interface (top panel) move
away from each other; thus, phase matching cannot be realized
effectively in this case. Conversely, the dispersion curves cor-
responding to the larger cylinder interface (bottom panel) are
well overlapped for a large radius difference, which is ideal for
fulfilling phase-matching requirements. Importantly, Fig. 3(b)
suggests that near the �-point it is possible to achieve phase
matching when both the fundamental and second-harmonic
waves are in the slow-light regime (vg � c), which results in
greatly enhanced SHG.

SHG via double valley-Hall kink modes. For clear illus-
tration of the SHG, we present both the fundamental and
second-harmonic kink modes in the second valley gap [see
Fig. 4(a)]. Due to the time-reversal symmetry of our system,
at each frequency there are two kink modes, corresponding to
the two valleys at K and K ′, for both the fundamental and
the second-harmonic components. Although one can excite
the fundamental wave unidirectionally exploiting the inherent
chirality of the kink modes, e.g., by using sources of either
right- or left-circularly polarized light, generally, the gen-
erated second-harmonic waves will have both forward- and
backward-propagating components.

The intrinsic, local chirality of the kink modes can be
characterized by Stokes parameters defined for the magnetic
field H = (Hx, Hy) as D = S3/S0, with S0 = |Hx|2 + |Hy|2
and S3 = −2Im(HxH∗

y ) (for details, see [45]). The chirality
maps for both the fundamental and harmonic waves at the
marked points of k̄ f and k̄+

s in Fig. 4(a) are shown in the
right panels. Guided by this map, we can see that kink modes
can be excited unidirectionally, with an example being given
in Fig. 4(b), where the three kink modes participating in the
SHG process and the frequency are indicated in Fig. 4(a) by
dots and the blue (dark gray) line, respectively (see [45] for
further details). While the fundamental wave at k̄ f is launched
unidirectionally rightward (the source is marked by the arrow)
[46,47], from the field of |E2|, one can see that, indeed, both
forward- and backward-propagating waves are generated.

To analyze the SHG process quantitatively, we perform
the Fourier transform of fields E1 and E2 in Fig. 4(b) and
present the results in Figs. 4(c) and 4(d). In particular, the
peak of |Ẽ k

1 | corresponds to k̄ f as the fundamental wave is
excited unidirectionally. Interestingly, we can see three peaks
in the spectrum of |Ẽ k

2 |, two of which correspond to k̄−
s and

k̄+
s ; that is, the forward- and backward-propagating waves at

the second harmonic are generated due to their (nearly phase
matched) nonlinear interaction with the fundamental wave at
k̄ f . The peak at 2k̄ f − 2, on the other hand, corresponds to a
nonlinear umklapp process. It is due solely to the nonlinear
polarization P2 ∼ χ (2)E2

1 , and since it is not a phase-matched
process, the corresponding SHG does not grow exponentially.
From the amplitudes of the peaks located at k̄−

s and k̄+
s , we can

observe that the forward component with k̄−
s is much larger

due to a smaller wave-vector mismatch; the corresponding
forward-to-backward ratio, η� = η→/η←, of the generated
second-harmonic waves as a function of frequency is show in
Fig. 4(e). This analysis also reveals a key feature of the SHG
process, i.e., that η� can be varied simply by tuning the source
frequency, a functionality that nontopological nonlinear optics
does not provide. We have also verified that the period λp in
Fig. 4(b) does relate to k̄ f and k̄−

s via λp = 2π/|�k̄|, with
�k̄ = (2k̄ f − 2) − k̄−

s , meaning that the observed oscillations
are due to the beating between the two rightward-generated
waves.

To further confirm that the waves participating in the SHG
process corresponding to the full-wave simulations presented
in Fig. 4(b) are, indeed, those suggested by the eigenmode cal-
culations, we scan the excitation frequency [blue (dark gray)
line in Fig. 4(a)] from the bottom of the frequency-matching
window to its top and present in Fig. 4(f) the extracted kink
mode dispersions together with those shown in Fig. 4(a). The
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FIG. 4. SHG via double valley-Hall kink states. (a) Dispersion curves (left) used for the SHG [from the bottom panel of Fig. 3(b) at
r1 = 0.19a, r2 = 0.24a], where the shaded dark gray area is occupied by the bulk modes, whereas the light blue (light gray) indicates the
frequency-matching window and chirality maps (right) of the valley modes at k f and k+

s . (b) Simulated field intensities of the fundamental (E1)
and second-harmonic (E2) waves at the frequency marked by the blue (dark gray) line in (a). The fundamental wave is excited unidirectionally
via a chiral source located at the extremum of the k f chirality map, which is realized by six dipoles with phase winding in the simulations.
(c) and (d) Fourier transform of fields E1 and E2 in (b) (both are normalized by the maximum of |Ẽ k

1 |). (e) The forward-to-backward ratio η� of
the generated second-harmonic waves vs frequency determined from the amplitudes of the peaks at k̄−

s and k̄+
s in (d). (f) Extracted dispersion

curves from the peaks of |Ẽ k
1 | and |Ẽ k

2 | [green (medium gray) dots for the fundamental wave and blue (dark gray) dots for the harmonic wave)
in (c) and (d) compared to the dispersion curves of (a). (g) Extracted |�k̄| from the peaks of |Ẽ k

2 | in (d) compared to that obtained from the
dispersion curves of (a).

excellent agreement demonstrates that the SHG observed in
the full-wave simulations is, indeed, due to the nonlinear
coupling of the kink modes located in the two valley gaps.
Figure 4(g) further shows the extracted wave-vector mismatch
�k̄ from the peaks of |Ẽ k

2 | compared to that obtained from
the eigenmode dispersion curves in Fig. 4(a). One can again
see good agreement considering possible finite-size effects
and different algorithms used in the full-wave simulation and
the eigenmode calculation. Last, but not least, we would also
like to note that the valley-Hall kink modes are robust against
structural disorder [48].

Application to enhanced enantioselectivity in probing chiral
molecules. Our system exhibits several features that could
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FIG. 5. Direction-tunable SHG and nonlinear directional dichro-
ism. (a) The propagation direction of the SHG could be switched
from rightward to leftward by changing the source location from
A to C as labeled in the chirality map. (b) The SHG-DD, defined
as (η→ − η←)/(η→ + η←), determined for k f > 0 (k f < 0), corre-
sponding to case A (C) in (a).

lead to active devices with different functionalities. For ex-
ample, the chirality map suggests that one could tune the
direction of the SHG by simply changing the source location
of the fundamental wave (location of chiral molecules), as
demonstrated in Fig. 5(a). Importantly, the plots in Fig. 5(b)
show that using our proposed device, one can achieve remark-
ably large SHG directional dichroism (SHG-DD), defined as
(η→ − η←)/(η→ + η←). In particular, the maximum value
of the SHG-DD, achieved for ω̄ = 0.52, is as large as 0.97.
This is much larger than what can be achieved with optical
systems employing superchiral light [49–51] or comparatively
much bulkier nonlinear metasurfaces [52–54] (see [45] for a
detailed quantitative characterization of such optical probes
for sensing chiral molecules).

Conclusion and outlook. In conclusion, we have demon-
strated tunable bidirectional SHG via nonlinear interaction of
topological valley-Hall kink modes within two valley gaps
in all-dielectric PhC structures. The ideas presented here
could be extended to other nonlinear optical processes, e.g.,
third-harmonic generation or four-wave mixing. Implement-
ing nonlinear frequency mixing processes using quantum spin
Hall edge modes [17] could also lead to new physics. More-
over, one could explore other platforms, such as waveguide
arrays [55] and coupled resonators [13], to achieve nonlinear
topological physics similar to that observed in the current
setup.
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