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ABSTRACT
Based on the kinetic theory, a three-dimensional multiple-relaxation-time discrete Boltzmann model (DBM) is proposed for nonequilibrium
compressible reactive flows where both the Prandtl number and specific heat ratio are freely adjustable. There are 30 kinetic moments of the
discrete distribution functions, and an efficient three-dimensional thirty-velocity model is utilized. Through the Chapman–Enskog analysis,
the reactive Navier–Stokes equations can be recovered from the DBM. Unlike existing lattice Boltzmann models for reactive flows, the hydro-
dynamic and thermodynamic fields are fully coupled in the DBM to simulate combustion in subsonic, supersonic, and potentially hypersonic
flows. In addition, both hydrodynamic and thermodynamic nonequilibrium effects can be obtained and quantified handily in the evolution
of the discrete Boltzmann equation. Several well-known benchmarks are adopted to validate the model, including chemical reactions in the
free falling process, thermal Couette flow, one-dimensional steady or unsteady detonation, and a three-dimensional spherical explosion in an
enclosed cube. It is shown that the proposed DBM has the capability to simulate both subsonic and supersonic fluid flows with or without
chemical reactions.
© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0047480

I. INTRODUCTION

Reactive flows encompassing a wide variety of nonlinear,
unsteady, and nonequilibrium processes are common in nature and
industry.1 In fact, more than four-fifths of mankind’s utilized energy
is generated from the exothermic reactive flows.2 In the past few
decades, considerable research has been devoted to reactive flows,
including supersonic and hypersonic flows related to the super-
sonic aircraft, rocket engine, detonation engine, supersonic com-
bustion ramjet, etc. However, there are still many problems that
have not been solved due to the complex physical and chemical
processes involved, such as high compressibility, strong flow dis-
continuity, and combustion instability. In addition, these processes
are usually accompanied by the hydrodynamic and thermodynamic

nonequilibrium effects as well as the complex interplay between the
chemical reaction and fluid flow. Moreover, these processes cover a
wide range of spatial and temporal scales.3–6 In order to study the
reactive flow in detail, experimental techniques have been widely
used.7,8 However, experiments for supersonic and hypersonic reac-
tive flows are difficult and expensive to conduct; and the measure-
ments are usually global quantities only. On the other hand, numer-
ical simulations provide a convenient tool for relevant research and
become more and more reliable and cost-effective.

The supersonic reactive flow modeling approaches can gen-
erally be classified into three groups. The first group is the con-
ventional simulation methods based on the continuum assump-
tion, such as direct numerical simulation,9 large eddy simulation,10

and Reynolds-averaged Navier–Stokes (NS).11 These conventional
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methods are good at capturing the main hydrodynamic character-
istics. However, they lack the ability to describe thermodynamic
nonequilibrium effects under highly nonequilibrated conditions,
such as the shock or detonation front.12,13 The second group is
the microscopic methods, like molecular dynamics.14 The molecu-
lar dynamics gets rid of the local equilibrium assumption and thus
can be used to study the detailed hydrodynamic and thermody-
namic properties.15–17 On the other hand, the computational cost
of molecular dynamics is usually prohibitive and the computational
domain is always limited. The third group is the kinetic method14

based on the Boltzmann equation, which removes the limit of the
local equilibrium assumption. A kinetic method, the lattice Boltz-
mann method (LBM), simulates the evolution of probability distri-
bution functions in a discretized phase-space, which can be related
to macroscopic quantities by moment relationships. The LBM has
been successfully applied to simulate a variety of complex flows,18

including reactive flows.19–36 Merits of the LBM include the algo-
rithm simplicity and locality, which lead to excellent performance
on parallel clusters.

The key to dealing with reactive flows in the LBM is how
to describe the energy and species mass fractions by LB formula-
tion and couple them consistently. Current LBM formulations for
reactive flows can be divided into two categories. The first cate-
gory is the hybrid method, in which the flow simulation is accom-
plished through the weakly compressible LBM solver, while the
transport equations for energy and species are solved by a finite
difference scheme. In 2000, Filippova and Häenel proposed an
LBM for reacting flows at a low Mach number with variable den-
sity.20,21 Later, Hosseini et al. modified the LBM solver and success-
fully simulated premixed and non-premixed flames with a detailed
thermo-chemical model.22,23 In 2020, Shu et al. developed a sim-
plified sphere function-based gas-kinetic flux solver for compress-
ible viscous reacting flows.37 This model applies the finite volume
method to discretize the multi-component NS equations and com-
putes numerical flux at the cell interface by using local solution
of the Boltzmann equation. Although these models can handle the
variable density, they lose the simplicity and the parallel efficiency
of the pure LBM scheme.24 The other category is the pure LB
formulation. In 1997, with the assumption of irreversible infinite
fast chemistry reactions, Succi et al. adopted the conserved scalar
approach to describe the temperature and concentration fields.19

Similarly, in 2002, Yamamoto et al. assumed that the temperature
field does not affect the flow field and simulated diffusion flames
with a double-distribution-function LBM where the flow, temper-
ature, and species fields are represented by two sets of distribution
functions.25,26 Later, Lee et al.27 and Chen et al.28,29 also utilized the
double-distribution-function LBM to solve the low Mach number
flows. Instead of using two sets of distribution functions, in 2012,
Prasinari et al. extended a consistent LBM38 by introducing correc-
tion terms, recovering the third- and fourth-order moments, and
describing the temperature field.30 In conclusion, these pure models
are all limited to low Mach number flows. However, for supersonic
and hypersonic reactive flows, high compressibility is an important
factor.

Briefly, the aforementioned LBMs mainly focus on low Mach
number reactive flows, which cannot make the best of the kinetic
theory. To establish an LBM for reactive flows possessing more
kinetic information beyond the NS equations, the LBM should

be compressible, thermal, and, at the same time, coupling the
chemical reaction naturally. In addition, the model should take
hydrodynamic and thermodynamic nonequilibrium effects into
consideration.

In recent years, the discrete Boltzmann method (DBM) has
been constructed to model and simulate nonequilibrium systems,
with various velocity and time–space discretization schemes.31–35,39

The DBM and LBM can be viewed as two distinctive classes of dis-
crete numerical methods based on the Boltzmann equation. Despite
sharing the same origin and some similarities, the objectives, numer-
ical implementation, and capabilities of the LBM and DBM are dif-
ferent. Basically, the LBM aims to recover the macroscopic behav-
iors of the flow system and acts as an alternative method to the
continuum-based Navier–Stokes solver. On the other hand, the
DBM is a discrete Boltzmann equation solver that aims to keep
some kinetic features that go beyond the macroscopic behaviors.
Numerically, discretization in space, time, and particle velocities
is inter-dependent in the LBM algorithm. In the DBM, however,
discretization in space, time, and particle velocities is decoupled,
which allows a variety of numerical methods to be applied. As a
result, the LBM requires different models for different types of flows
(e.g., incompressible, compressible, thermal, or reactive), while a
uniformed DBM framework can simulate all types of flows. More-
over, the DBM can capture both hydrodynamic and thermodynamic
nonequilibrium effects explicitly.

To some extent, the mathematical framework of the DBM is
similar to the rational extended thermodynamics (RET), which is
also capable of explaining nonequilibrium phenomena. The RET
proposed by Ruggeri and Sugiyama40,41 is motivated by the Boltz-
mann equation. Different from the kinetic theory, the RET focuses
on the relations of the moments and forms a hierarchy of the bal-
ance laws. To achieve the closure of the moments, the RET truncates
the hierarchy by adding restrictions from the universal principle. In
this respect, the RET theory still belongs to the continuum approach
but is applicable to the nonequilibrium state. On the other hand, the
DBM is a kinetic approach and possesses kinetic features beyond the
macroscopic equations.

Since 2013, several DBMs for reactive flows have been pro-
posed.31–35,39 In 2013, Yan et al. proposed the first DBM for com-
bustion.31 Very recently, Lin et al. proposed a two-dimensional
model for detonations and investigated the main features of the
hydrodynamic and thermodynamic nonequilibrium effects.36 How-
ever, these formulations are two-dimensional but realistic reac-
tive flows are a three-dimensional (3D) phenomenon and some
important patterns and structures cannot be obtained from two-
dimensional models. In 2017, Gan et al. proposed a 3D DBM for
compressible flows without reaction based on the single-relaxation-
time Boltzmann equation, fixing the Prandtl number Pr = 1.42 In
this work, we extend the model to 3D reactive flows and present a
multiple-relaxation-time (MRT) method to make the Prandtl num-
ber adjustable. Moreover, the hydrodynamic and thermodynamic
nonequilibrium effects can be investigated to study the nonequilib-
rium behaviors.

The rest of this paper is organized as follows: In Sec. II,
we formulate a 3D MRT DBM for reactive flows based on a
three-dimensional thirty-velocity (D3V30) model. Through the
Chapman–Enskog multiscale analysis, the reactive NS equations are
recovered and the nonequilibrium effects are derived in Sec. III.
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Section IV presents numerical tests, and Sec. V provides a summary
and conclusions.

II. DISCRETE BOLTZMANN METHOD
In the Bhatnagar–Gross–Krook (BGK) model,43,44 a single

relaxation time τ determines all discrete distribution functions
approaching their equilibria at the same speed, and the Prandtl num-
ber is fixed at Pr = 1. To overcome this shortage, we construct an
MRT DBM to make the Prandtl number adjustable, which takes the
form

∂f
∂t
+V ⋅ ∇f = −S(f̂ − f̂ eq) + R + F +A, (1)

where f = ( f 1, f 2, . . . , f N)⊺ and feq = ( f eq
1 , f eq

2 , . . . , f eq
N )
⊺ stand for

discrete distribution functions and their equilibrium counter-
parts in velocity space, respectively. f̂ = (f̂ 1, f̂ 2, . . . , f̂ N)

⊺
and f̂ eq

= (f̂ eq
1 , f̂ eq

2 , . . . , f̂ eq
N )
⊺

denote kinetic moments of discrete distribution
function and their equilibrium counterparts, respectively. Here, the
subscript N = 30 is the total number of discrete velocities. In fact,
the terms in moment space are transformed from those in velocity
space by a transformation matrix M, which is a square matrix with
N ×N elements in terms of discrete velocities. The elements of the
transformation matrix are given in the Appendix. Specifically,

f̂ =Mf, (2)

f̂ eq =Mf eq. (3)

Similarly, R = (R1, R2, . . . , RN)⊺ and F = (F1, F2, . . . , FN)⊺ stand for
the reaction and force terms in velocity space, respectively. R̂ =MR
and F̂ =MF stand for discrete reaction and force terms in
moment space, respectively. S = diag (S1, S2, . . . , SN)⊺ is a diago-
nal matrix that consists of relaxation coefficients Si determining
the speed of f̂ i approaching f̂ eq

i . The additional term Â =MA
= (0, . . . , 0, Â12, Â13, Â14, 0, . . . , 0)⊺ is used to modify the collision
operator so that the discrete Boltzmann equations could recover the
correct reactive NS equations via the Chapman–Enskog analysis in
terms of

Â12 =
S12 − S6

S6
4ρTux[

1
D + I

(∂ux

∂x
+ ∂uy

∂y
+ ∂uz

∂z
) − ∂ux

∂x
]

+ S9 − S12

S9
2ρTuy(

∂uy

∂x
+ ∂ux

∂y
)

+ S10 − S12

S10
2ρTuz(

∂uz

∂x
+ ∂ux

∂z
), (4)

Â13 =
S13 − S7

S7
4ρTuy[

1
D + I

(∂ux

∂x
+ ∂uy

∂y
+ ∂uz

∂z
) − ∂uy

∂y
]

+ S9 − S13

S9
2ρTux(

∂uy

∂x
+ ∂ux

∂y
)

+ S11 − S13

S11
2ρTuz(

∂uz

∂y
+ ∂uy

∂z
), (5)

Â14 =
S14 − S8

S8
4ρTuz[

1
D + I

(∂ux

∂x
+ ∂uy

∂y
+ ∂uz

∂z
) − ∂uz

∂z
]

+ S10 − S14

S10
2ρTux(

∂uz

∂x
+ ∂ux

∂z
)

+ S11 − S14

S11
2ρTuy(

∂uz

∂y
+ ∂uy

∂z
), (6)

where ρ, T, p(= ρT), and uα are the density, temperature, pres-
sure, and velocity, respectively. Here, D = 3 stands for the number
of dimensions and I represents the extra degrees of freedom.

The discrete equilibrium distribution function satisfies the fol-
lowing moment relations:

ρ =∑i f eq
i =∑i f i, (7)

ρuα =∑i f eq
i viα =∑i f iviα, (8)

ρ[(D + I)T + u2] =∑i f eq
i (v

2
i + η2

i ) =∑i f i(v2
i + η2

i ), (9)

ρ(δαβT + uαuβ) =∑i f eq
i viαviβ, (10)

ρuα[(D + I + 2)T + u2] =∑i f eq
i (v

2
i + η2

i )viα, (11)

ρ(uαδβχ + uβδαχ + uχδαβ)T + ρuαuβuχ =∑i f eq
i viαviβviχ , (12)

ρδαβ[(D + I + 2)T + u2]T + ρuαuβ[(D + I + 4)T + u2]
=∑i f eq

i (v
2
i + η2

i )viαviβ. (13)

Here, α, β, and χ denote the direction that can be x, y, or z. Based on
physical considerations and following the model proposed by Bour-
gat et al.,45 we introduce a single additional variable I to represent
non-translational degrees of freedom and utilize a free parameter
ηi to describe molecular rotation and/or internal vibration energies.
The specific heat ratio is defined as γ = (D + I + 2)/(D + I).

According to Eqs. (3) and (7)–(13), the discrete equilibrium
distribution functions can be expressed as

f eq =M− 1 f̂ eq. (14)

To ensure the matrix M invertible and get better stability, we
improve the discrete velocity model D3V30 proposed by Gan et al.42

Instead of using one parameter, we adopt four parameters va, vb, vc,
and vd to determine the magnitude of four sets of discrete velocities,
respectively, in terms of

vi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

cyc : va(±1, 0, 0), 1 ≤ i ≤ 6

cyc : vb(±1,±1, 0), 7 ≤ i ≤ 18

cyc : vc(±1,±1,±1), 19 ≤ i ≤ 26

vd ⋅ vanti
i , 27 ≤ i ≤ 30,

(15)
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with ηi = η0 when i is an odd number; otherwise, ηi = 0. Here, cyc
denotes a fully symmetric set of points. The antisymmetric part vanti

i
(27 ≤ j ≤ 30) is proposed to guarantee the existence of M− 1 and, in
this paper, is chosen as

vanti
27 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1

1

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, vanti
28 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2

2

−2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, vanti
29 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

2

−1

−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, vanti
30 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

−2

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (16)

More forms of the antisymmetric part can be found in Ref. 42.
In Eqs. (7)–(9), we see f eq

i can be replaced by f i according to the
conservation laws. However, in Eqs. (10)–(13), replacing f eq

i with f i
may lead to the imbalance between left and right sides. The differ-
ences are actually departures of high order kinetic moments from
their equilibria and can be utilized to investigate the nonequilibrium
effects. We define the following nonequilibrium quantities:

Δi = f̂ i − f̂ eq
i =∑j( f j − f eq

j )Mij. (17)

Moreover, we introduce the symbols

Δvαvβ =∑i( f i − f eq
i )viαviβ, (18)

linked with the viscous stress tensor,

Δ(v2+η2)vα =∑i( f i − f eq
i )(v

2
i + η2

i )viα, (19)

Δvαvβvχ =∑i( f i − f eq
i )viαviβviχ , (20)

related to the nonorganized energy fluxes, and

Δ(v2+η2)vαvβ =∑i( f i − f eq
i )(v

2
i + η2

i )viαviβ, (21)

associated with the flux of nonorganized energy flux. Physically,
1
2∑i

f iv2
iα is defined as the translational energy in the α direction,

and 1
2∑i

f eq
i v2

iα is its equilibrium counterpart. The nonequilibrium

part 1
2 Δvαvα is the nonorganized energy in the α direction, which

corresponds to the molecular individualism on top of the collective
motion. Clearly, the DBM can provide the above nonequilibrium
information beyond traditional NS equations.

The force and reaction terms are the variation rates of the
distribution functions resulting from the external force and chem-
ical reaction, respectively. The two terms are derived based on the
following assumptions:

(1) Over a small time interval, the change of the distribution
function due to the external force and the chemical reaction
can be treated as the change of the equilibrium distribution
function, which is the leading part of the distribution func-
tion when the system is not too far from the equilibrium
state.46

(2) The effect of the external force is to change the hydrodynamic
velocity u with the acceleration a. In a small time interval, the
velocity becomes u† = u + aτ.

(3) The temporal scale of the chemical reaction is much smaller
than that of fluid flow, and the chemical reaction leads to the

change of energy with the varying rate,

E′ = ρQλ′, (22)

where Q indicates the chemical heat release per unit mass of
fuel and λ indicates the mass fraction of chemical product.
From Eq. (9), we obtain the temperature after the chemical
reaction T♢ = T + τT′ with the varying rate of temperature
T′ = 2Qλ′/(D + I).

Now, we can derive the force term,

Fi =
1
τ
[ f eq

i (ρ, u†, T) − f eq
i (ρ, u, T)], (23)

and the reaction term,

Ri =
1
τ
[ f eq

i (ρ, u, T♢) − f eq
i (ρ, u, T)]. (24)

The discrete forms Fi and Ri satisfy the relation

∬ FΨdvdη =∑
i

FiΨi, (25)

∬ RΨdvdη =∑
i

RiΨi, (26)

with Ψ = 1, vi, (vi ⋅ vi + ηi
2), vivi, (vi ⋅ vi + ηi

2)vi, vivivi and
(vi ⋅ vi + ηi

2)vivi, respectively. Substituting Eqs. (7)–(13) into
Eqs. (23) and (24) results in F̂ =MF and R̂ =MR, respectively,
and the elements of the force and reaction terms are given in the
Appendix.

To describe the dynamics of detonations and compare with the
previous study on the instability of detonations, we consider a simple
model of a chemical reaction between two perfect gases, assuming
irreversible, one-step Arrhenius kinetics,

λ′ = K(1 − λ) exp(−Ea

T
), (27)

where K is the rate constant and Ea is the activation energy.
The DBM employs larger velocity stencil and introduces

higher-order moments, by which the hydrodynamic and thermody-
namic fields are fully coupled. It is also worth mentioning that we
utilize the matrix inversion method here instead of the commonly
adopted polynomial approach where equilibrium distribution func-
tions are expanded upon the terms of the macroscopic quantities
due to the following merits. The number of discrete velocities of
the DBM equals exactly the number of required kinetic moments
of equilibrium discrete distribution functions, while the polynomial
method always requires more discrete velocities because the discrete
velocity sets of the latter should have enough isotropy to recover the
hydrodynamic equations correctly.47,48 Consequently, the presented
method is more efficient. Additionally, in the DBM, each kinetic
moment computed by summation of the discrete equilibrium dis-
tribution functions is exactly equal to the one calculated by integral
of the Maxwellian function. Furthermore, the discrete Boltzmann
equations are expressed in a uniform form, and thus, the DBM is
easier to code. The DBM code is parallelized on the UK National
Supercomputing Service ARCHER and runs efficiently.
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III. THE CHAPMAN–ENSKOG ANALYSIS
In this section, we show the main procedure of the

Chapman–Enskog analysis. With respect to an expansion parame-
ter ε, which is a quantity of the order of the Knudsen number,49 we
introduce the following expansions:

f i = f (0)i + f (1)i + f (2)i + ⋅ ⋅ ⋅ , (28)

∂

∂t
= ∂

∂t1
+ ∂

∂t2
+ ⋅ ⋅ ⋅ , (29)

∂

∂rα
= ∂

∂r1α
, (30)

Ai = A1i, (31)

Fi = F1i, (32)

Ri = R1i, (33)

where the part of distribution function f (k)i = O(εk), the tem-
poral derivative ∂

∂tk
= O(εk), the spatial derivative ∂

∂r1α
= O(ε),

A1i = O(ε), F1i = O(ε), and R1i = O(ε) (k = 1, 2, . . .). By substitut-
ing Eqs. (28)–(33) into Eq. (1), we can obtain the following equations
in consecutive order of the parameter ε:

O(ε0) : f̂(0) = f̂ eq, (34)

O(ε1) : ( ∂

∂t1
+ Ê ⋅ ∇1)f̂(0) = −Sf̂(1) + Â + F̂ + R̂, (35)

O(ε2) :
∂

∂t2
f̂(0) + ( ∂

∂t1
+ Ê ⋅ ∇1)f̂(1) = −Sf̂(2), (36)

with Ê =MVM−1. Equations (34)–(36) are expressed by the vector
equality and consist of N scalar relations. Substituting the moments
of Eqs. (7)–(11) into the first five relations of Eq. (35), we can obtain
the following macroscopic equations on the t1 = εt time scale and
r1 = εr space scale:

∂ρ
∂t1
+ ρ

∂uα

∂rα
+ uα

∂ρ
∂rα
= 0, (37)

∂jα

∂t1
+
∂ρ(δαβT + uαuβ)

∂rα
= ρaα, (38)

∂ξ
∂t1
+
∂ρuα[(D + I + 2)T + u2]

∂rα
= 2ρuαaα + 2ρλ′Q, (39)

where jα = ρuα is the momentum and ξ = (D + I)ρT
+ (j2

x + j2
y + j2

z)/ρ is twice the total energy. Combining Eqs. (37)–(39)

and the sixth to the fourteenth relations of Eq. (35), we can derive
the following quantities:

S6 f̂ (1)6 = −2ρT
∂ux

∂x
+ 2ρT

D + I
(∂ux

∂x
+ ∂uy

∂y
+ ∂uz

∂z
), (40)

S7 f̂ (1)7 = −2ρT
∂uy

∂y
+ 2ρT

D + I
(∂ux

∂x
+ ∂uy

∂y
+ ∂uz

∂z
), (41)

S8 f̂ (1)8 = −2ρT
∂uz

∂z
+ 2ρT

D + I
(∂ux

∂x
+ ∂uy

∂y
+ ∂uz

∂z
), (42)

S9 f̂ (1)9 = −ρT
∂ux

∂y
− ρT

∂uy

∂x
, (43)

S10 f̂ (1)10 = −ρT
∂ux

∂z
− ρT

∂uz

∂x
, (44)

S11 f̂ (1)11 = −ρT
∂uz

∂y
− ρT

∂uy

∂z
, (45)

S12 f̂ (1)12 = ρT[ 4ux

D + I
(∂ux

∂x
+ ∂uy

∂y
+ ∂uz

∂z
) − 4ux

∂ux

∂x

−2uy(
∂ux

∂y
+ ∂uy

∂x
) − 2uz(

∂ux

∂z
+ ∂uz

∂x
)

−(D + I + 2)∂T
∂x
] + Â12, (46)

S13 f̂ (1)13 = ρT[ 4uy

D + I
(∂ux

∂x
+ ∂uy

∂y
+ ∂uz

∂z
) − 4uy

∂uy

∂y

− 2ux(
∂ux

∂y
+ ∂uy

∂x
) − 2uz(

∂uy

∂z
+ ∂uz

∂y
)

− (D + I + 2)∂T
∂y
] + Â13, (47)

S14 f̂ (1)14 = ρT[ 4uz

D + I
(∂ux

∂x
+ ∂uy

∂y
+ ∂uz

∂z
) − 4uz

∂uz

∂z

− 2ux(
∂ux

∂z
+ ∂uz

∂x
) − 2uy(

∂uy

∂z
+ ∂uz

∂y
)

− (D + I + 2)∂T
∂z
] + Â14. (48)

The additional terms in Eqs. (46)–(48) are determined in
Eqs. (4)–(6), which are used to modify the collision terms so that the
NS equations can be correctly recovered. In the case that the system
is isothermal, the additional terms can be eliminated.

The above quantities f̂ i are the exact solutions of nonequilib-
rium quantities on the level of the first order accuracy. Similar to the
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above derivation of t1 = εt scale, the macroscopic equations on the
t2 = ε2t time scale are derived by the first five relations in Eq. (36),

∂ρ
∂t2
= 0, (49)

∂jx

∂t2
+ ∂ f̂ (1)6

∂x1
+ ∂ f̂ (1)9

∂y1
+ ∂ f̂ (1)10

∂z1
= 0, (50)

∂jy

∂t2
+ ∂ f̂ (1)9

∂x1
+ ∂ f̂ (1)7

∂y1
+ ∂ f̂ (1)11

∂z1
= 0, (51)

∂jz

∂t2
+ ∂ f̂ (1)10

∂x1
+ ∂ f̂ (1)11

∂y1
+ ∂ f̂ (1)8

∂z1
= 0, (52)

∂ξ
∂t2
+ ∂ f̂ (1)12

∂x1
+ ∂ f̂ (1)13

∂y1
+ ∂ f̂ (1)14

∂z1
= 0. (53)

With the aid of Eqs. (37)–(48), the final equations can be written as

∂ρ
∂t
+ ∂jα

∂rα
= 0, (54)

∂jα

∂t
+ ∂p
∂rα
+ ∂

∂rβ
(ρuαuβ + Pαβ) = ρaα, (55)

∂ξ
∂t
+ ∂(ξ + 2p)uα

∂rα
− 2

∂

∂rβ
(κβ

∂T
∂rβ
− Pαβuα)

= 2ρuαaα + 2ρλ′Q (56)

in terms of

Pαβ =
ρT
Sαβ
( 2δαβ

D + I
∂uχ

∂rχ
− ∂uα

∂rβ
− ∂uβ

∂rα
), (57)

where Sxx = S6, Syy = S7, Szz = S8, Sxy = S9, Sxz = S10, and Syz = S11.
Here, we explain the reason for the additional term. Mathemat-

ically, we can adjust the relaxation coefficients independently. From
the point view of physics, the coefficients are not completely inde-
pendent for the system with isotropy constraints.50 From the deriva-
tion, we can see that S1, S2, S3, S4, and S5 have no influence on the
equation due to the conservation laws. However, in order to recover
the NS equations in the continuity limit, the terms referring to the
stress tensor and the energy flux should be coupled, respectively,
which leads to

S6 = S7 = S8 = S9 = S10 = S11 = Sμ, (58)

related to viscosity, and

S12 = S13 = S14 = Ŝκ, (59)

related to heat conductivity, and then Eqs. (54)–(56) reduce to

∂ρ
∂t
+ ∂jα

∂rα
= 0, (60)

∂jα

∂t
+ ∂p
∂rα
+ ∂

∂rβ
(ρuαuβ + Pαβ) = ρaα, (61)

∂ξ
∂t
+ ∂(ξ + 2p)uα

∂rα
− 2

∂

∂rβ
(κ

∂T
∂rβ
− Pαβuα)

= 2ρuαaα + 2ρλ′Q, (62)

where

Pαβ = −μ(∂uα

∂rβ
+ ∂uβ

∂rα
− 2

D
∂uχ

∂rχ
δαβ) − μB

∂uχ

∂rχ
δαβ, (63)

and the dynamic viscosity μ, the bulk viscosity μB, and the thermal
conductivity κ are defined as

μ = ρT
Sμ

, (64)

μB = μ( 2
D
− 2

D + I
), (65)

and
κ = (D + I

2
+ 1)ρT

Sκ
, (66)

respectively. Furthermore, the Prandtl number,

Pr = cpμ
κ
= Sκ

Sμ
, (67)

is adjustable in the model. In conclusion, we modify the collision
operator by the additional term so that the NS equations can be
recovered correctly. Specifically, we can find that the nonequilibrium
quantity

Δvαvβ = Pαβ (68)

is just the viscous stress tensor, and

Δ(v2+η2)vα = −κ
∂T
∂rβ
+ Pαβuα (69)

is related to the thermal conductivity (see Ref. 51). As we can see, the
diagonal matrix S controls the speed of f̂ i approaching its equilib-
rium counterpart f̂ eq

i and the elements of the matrix Si are related to
the thermodynamic nonequilibrium manifestations. S1, S2–S4, and
S5 are related to mass, momentum, and energy conservation, respec-
tively. Actually, the values of the above coefficients have no effect on
the flow system due to the conservation laws. S6–S11 are related to
dynamic viscosity and S12–S14 are linked with heat conductivity in
the NS equations. Finally, S15–S24 are associated with nonorganized
energy fluxes and S25–S30 correspond to the flux of nonorganized
energy flux.

IV. NUMERICAL TESTS
To validate the proposed model and showcase its performance,

we show simulation results of some classical benchmarks. First,
we simulate the free falling process with a chemical reaction to
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FIG. 1. Free falling process in a box with chemical reaction and external force. (a) Velocity vs acceleration; and (b) temperature vs heat release. The symbols denote the
DBM results, and the lines represent the theoretical solutions.

investigate the model in the flow field coupled with a chemical reac-
tion and external force. Then, we simulate the thermal Couette flow
to verify that both the specific heat ratio and Prandtl number are
adjustable. Furthermore, we simulate a 1D detonation to show that
the model is capable of describing supersonic flows and measuring
the nonequilibrium effects. Finally, a spherical explosion is modeled
to demonstrate the ability of the proposed model to deal with a 3D
configuration. In this work, we utilize the third-order Runge–Kutta
scheme for the time derivative in Eq. (1) and the second-order
nonoscillatory and nonfree-parameter dissipation difference scheme
for the space derivative.52

A. Chemical reaction in the free falling process
The exothermic chemical reaction in a free falling box is simu-

lated as the first numerical test. At the beginning, the box is filled
with the chemical reactant and the initial physical quantities are
density ρ0 = 1, velocity u0 = 0, and temperature T0 = 1.0. Since the
field is uniform, we use only one mesh to simulate the process, and
thus, the computational domain is Nx ×Ny ×Nz = 1 × 1 × 1, where
the periodic boundary is used in each direction. We choose Δx

= Δy = Δz = 10−3 as the spatial step and Δt = 10−4 as the temporal
step. Reaction parameters are K = 5 × 102 and Ea = 8, and relaxation
coefficients are Si = 104.

Figure 1(a) plots the vertical velocity uz vs various accelera-
tion a = azez with fixed chemical reaction heat release Q = 10 at time
t = 0.5. The theoretical vertical velocity in the external force field
is uz = azt. Figure 1(b) illustrates the temperature T vs chemical
heat release with fixed acceleration az = 10. The theoretical solution
for temperature after the chemical reaction is T = T0 + (γ − 1)Q.
From the above pictures, we can find the simulation results match
well with the analytical ones, which shows good performance of
the model to describe the effects of the external force and chemical
reaction.

B. Thermal Couette flow
To validate that the model can be used with the adjustable

specific heat ratio and Prandtl number, the thermal Couette flow
is simulated here. The initial configuration is a viscous fluid flow
between two infinite parallel flat plates, and the physical quantity
of the flow is ρ0 = 1, u0 = 0, and T0 = 1. The plate below the flow is

FIG. 2. Temperature profiles of thermal Couette flow. (a) Temperature distribution for cases with various specific heat ratios. (b) Temperature distribution for cases with
various Prandtl numbers. Symbols denote the results of the DBM, and solid lines represent the exact solutions.
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stationary with temperature TL = 1, and the top plate moves along
the horizontal direction with a constant speed ux = 1 and tempera-
ture TU = 1.1. The distance between the plates is H = 0.1. We carry
out the simulation with Δx = Δy = Δz = 10−3, Δt = 10−4, va = vb = vc
= vd = 1.6, and η0 = 2.1, and the grid mesh is Nx = Ny = Nz = 1 × 1
× 100. Periodic boundary conditions are utilized in the x and y direc-
tions, and the nonequilibrium extrapolation method is applied in the
z direction. The analytical solution to the temperature profile along
the z direction is

T = TL + (TU − TL)
z
H
+ μ

2κ
u2

x
z
H
(1 − z

H
). (70)

Figure 2(a) shows the comparisons of the DBM simulation
results and exact solutions of the temperature along the z direction
with different specific heat ratios γ = 3/2, 7/5, and 4/3 and fixed
Prandtl number Pr = 1.0, where collision parameters Si = 2 × 103.
It is evident that the simulation results agree excellently well with
the analytical ones. Figure 2(b) plots the temperature distribution
with various Prandtl numbers Pr = 0.5, 1.0, and 2.0, where colli-
sion parameters Si = 2 × 103 and Sμ = 4 × 103, 2 × 103, and 1 × 103,
respectively. The specific heat ratio is 7/5 for the three cases. The
simulation results also match well with the exact solutions for
various Prandtl numbers.

C. One-dimensional detonation
In order to make the calculation simple and explicit, all

the quantities have been made dimensionless by reference to the
unburned state ahead of the detonation front. The reference length
scale xref is chosen such that the half of 1D Zel’dovich, von Neu-
mann, and Döring (ZND) induction length is unity,

ρ = ρ̃
ρ̃0

,

p = p̃
p̃0

,

T = T̃
T̃0
= T̃
√

ρ̃0

p̃0
,

u = ũ
c0
= ũ√

γT̃0

.

(71)

Adopting the notations in Ref. 53, the symbol ∼ stands for dimen-
sional quantities and subscript 0 denotes the unburnt state.

Previous research indicates that the overdrive factor f (the
square of the ratio of imposed detonation front velocity to the
Chapman–Jouguet velocity), the specific heat ratio γ, the heat release
Q, and the activation energy Ea are all related to the stability of the
detonations.54–57

In this part, we first simulate an unstable 1D detonation with
the following parameters to verify the effectiveness of the model:
f = 1.6, γ = 1.2, Q = 50, and Ea = 50. Given the above dimensionless
values, the pre-exponential parameter equals K = 230.75. The initial
condition is given by the theory developed independently by ZND.
The physical domain is set to be 0 ≤ x ≤ 800 with an inflow at the
left boundary and an outflow at the right boundary. The periodic
boundary condition is imposed on the upper and lower boundaries.
The initial location of the ZND detonation front is set at x = 8.

We carry out the simulation with va = 1.0, vb = vc = 4.5, vd = 0.1,
η0 = 2.7, and Si = 5 × 103. Different grid resolution δn (denotes the
number of grid points per half-reaction length) is employed to find
an appropriate resolution for computation effectiveness.

As common practice, we use the peak pressure, which is the
maximum pressure at the precursor explosion, to validate the per-
formance of the numerical schemes.54,56–58 Figure 3 shows temporal
histories of the peak pressure under different resolutions. As one
can see, all the results oscillate periodically for t > 20. The solu-
tion with the lower resolution δ50 yields a poor result. With the
increase in the resolution, the higher resolutions δ75 and δ100 behave
similarly. To further validate the accuracy of the DBM, we com-
pare the maximum, minimum, and the period of the oscillations
of the DBM (Pmax, Pmin, Tperiod) = (99.05, 57.5, 7.25) with the pre-
dicted peak pressure (Pmax = 98.6) in the literature54 and the results
(Pmin, Tperiod) = (57, 7.25) in Ref. 58. The data show that the DBM
captures the detonation phenomenon well and both the amplitude
and period agree well with the reference solutions in Refs. 54 and 58.
Figure 4 illustrates profiles of the detonation wave: (a) pressure and
(b) temperature at time t = 77 with resolutions δ75 and δ100. Obvi-
ously, the results are, in general, in good agreement with Fig. 4.4 in
Ref. 57.

In addition to the unstable detonation, we simulate a stable
detonation with the following parameters: f = 1.0, γ = 1.4, Q = 1.0,
and Ea = 8.0. The pre-exponential parameter equals K = 122.77. The
physical domain is set to be 0 ≤ x ≤ 500, and the initial location of
the ZND detonation front is set at x = 5. For stable detonations, δ100
is used. The parameters adopted are va = vb = vc = vd = 1.8, η0 = 2.0,
and Si = 2 × 102.

Figure 5 illustrates profiles of the detonation wave at time
t = 160. The symbols stand for the DBM results, and the solid lines
represent the ZND solutions. The numerical results behind the
detonation are (ρ, p, T, ux) = (1.3895, 2.1930, 1.5829, 0.5781). Com-
pared with the ZND solutions (ρ, p, T, ux) = (1.3884, 2.1966, 1.5786,
0.5774), the relative errors are (0.079%, 0.16%, 0.27%, 0.12%),

FIG. 3. Temporal histories of the peak pressure in the unstable detonation under
different resolutions. The dashed, dotted, and solid lines denote the resolution δ50,
δ75, and δ100, respectively. The dashed-dotted line stands for the predicted peak
pressure in Ref. 54.
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FIG. 4. Spatial profiles of (a) pressure and (b) temperature in the unstable detonation at time t = 77. Dashed lines denote the resolution δ75, and solid lines stand for δ100.

respectively. The results of the DBM have a satisfying coincidence
with the ZND theory.

Figure 6 displays the kinetic moments and nonequilibrium
quantity around the detonation wave at time t = 160 in order to
demonstrate the capability of the DBM of capturing the nonequi-
librium effects. Figures 6(a) and 6(b) illustrate the kinetic moment
f̂ 6 = ∑

i
f iv2

ix and the equilibrium counterpart f̂ eq
6 = ∑

i
f eq

i v2
ix within

412 ≤ x ≤ 428 and a more detailed domain where 424.4 ≤ x ≤ 424.7,

respectively. The kinetic moment is the nonorganized energy in the x
direction and the exact solution of the equilibrium kinetic moment
is f̂ eq

6 = ρ(T + u2
x) [see Eq. (10)]. The squares and triangles denote

f̂ 6 and f̂ eq
6 , respectively. The solid line represents the exact solution.

As we can see, the nonorganized energy reaches the maximum at
the front shock. The difference between the kinetic moment and the
equilibrium counterpart is just the nonequilibrium quantity Δxx =
f̂ 6 − f̂ eq

6 and is demonstrated in Figs. 6(c) and 6(d). In addition, the

FIG. 5. Physical quantities of the stable detonation: (a) pressure, (b) density, (c) temperature, and (d) horizontal velocity. The symbols represent the DBM results, and the
solid lines represent ZND solutions.
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FIG. 6. Kinetic moments and nonequilibrium quantity around the detonation wave. (a) Kinetic moments within 412 ≤ x ≤ 428, (b) kinetic moments around the front shock
within 424.4 ≤ x ≤ 424.7, (c) nonequilibrium quantity Δxx within 412 ≤ x ≤ 428, and (d) nonequilibrium quantity Δxx around the front shock within 424.4 ≤ x ≤ 424.7.

corresponding analytical solution by Eq. (40) is illustrated. The sym-
bols stand for the solutions of the DBM, and the solid line represents
the analytical solution. Obviously, the results of DBM are, in general,
in good agreement with the analytical solutions. It can be found that
there exist nonequilibrium effects in the reaction zone. In particu-
lar, around the front shock, the nonequilibrium effects are obvious.
This result is physically reasonable. At the front shock, the chem-
ical energy is continuously released and due to the rapid change
of physical quantities, the system departs from its thermodynamic
equilibrium state.

D. Three-dimensional explosion
In this part, we consider a 3D spherical explosion in a box with

parameters: γ = 1.2, Q = 2.0, and Ea = 1.0. At the initial time, the sys-
tem is at rest and the density and temperature are given as follows:
(ρ, T) = (2, 2) for

√
(ix − 0.5Nx)2 + (iy − 0.5Ny)2 + (iy − 0.5Nz)2

≤ 0.1Nx and others (ρ, T) = (1, 1) with periodic boundary condi-
tions at the surfaces. This configuration is symmetrical and can be
utilized to verify the model by checking whether the mass and energy
are conserved. We carry out the simulation with Δx = Δy = Δz
= 10−4, Δt = 10−6, va = vb = vc = vd = 1.6, η0 = 3.5, and Si = 105, and
the grid mesh is Nx ×Ny ×Nz = 200 × 200 × 200.

To demonstrate the evolution process of the spherical explo-
sion, we choose several typical snapshots of the pressure isosurfaces
at various times in Fig. 7. Since the computational system is sym-
metrical, only half of the system is depicted for clear illustration.
Figure 7(a) shows the initial configuration, and (b) and (c) display
the evolution process at time t = 0.0025 and 0.005, respectively. First,

the spherical shock wave expands in the enclosed box and contacts
with the wall when t = 0.005. Afterward, the shock wave is reflected
and propagates inwards with the increase in time. As we can see, the
shocks are well captured in the DBM.

Figure 8 illustrates the temporal histories of the mass and ener-
gies in the explosion process. The total reactant mass decreases and
the total product mass increases gradually due to the chemical reac-
tion in the initial stage (0 ≤ t ≤ 0.011 54). After the chemical reac-
tion ends (t > 0.011 54), the reactant density equals zero. The total
mass remains constant in the whole evolution. Figure 8(b) shows in
the evolution, the chemical energy decreases gradually and is trans-
formed into the internal and kinetic energies, while the sum of all

FIG. 7. Snapshots of the pressure isosurfaces in the spherical explosion process:
(a) t = 0, (b) t = 0.0025, and (c) t = 0.005.
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FIG. 8. The temporal histories of physical quantities. (a) Density; (b) internal, kinetic, chemical, and total energies.

energies remains unchanged. Figure 8 indicates that the mass and
energy of the system are conserved. It is shown that the proposed
DBM has a satisfying performance for simulations of 3D reacting
flows.

V. CONCLUSION
In this paper, a 3D MRT DBM is presented for reactive flows

where both the Prandtl number and specific heat ratio are freely
adjustable. There are 30 kinetic moments of discrete distribution
functions, and an efficient discrete velocity model, D3V30, is uti-
lized. The NS equations can be recovered at macroscales from the
DBM through the Chapman–Enskog analysis. Unlike existing LBMs
for reactive flows, the hydrodynamic and thermodynamic fields are
fully coupled in the DBM to simulate combustion in subsonic, super-
sonic, and potentially hypersonic flows. In addition, the nonequi-
librium effects of the system can be probed and quantified. In this
model, the reaction and force terms added into the discrete Boltz-
mann equation describe the change rates of discrete functions due
to the chemical heat release and external force, respectively.

The DBM has been validated for several typical applications.
The capability of the DBM to simulate the flow field fully cou-
pled with a chemical reaction and external force is verified using
the free falling reacting box. The case of the thermal Couette flow
demonstrates that both the specific heat ratio and Prandtl number
are adjustable. Furthermore, the DBM is shown to accurately sim-
ulate supersonic flows and quantify the nonequilibrium effects in
1D detonation. Finally, the main features of a spherical explosion
in an enclosed box are successfully captured to showcase the ability
of the DBM to deal with a 3D configuration. In conclusion, a new
3D DBM for reactive flows featuring full coupling of flow and com-
bustion fields has been developed and successfully validated. This
opens up possibilities for exploring a variety of reactive flows at sub-
sonic, supersonic, and hypersonic speeds with both hydrodynamic
and thermodynamic nonequilibria.
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APPENDIX: TRANSFORMATION MATRIX AND KINETIC
MOMENTS

The equilibrium distribution function is

f eq = ρ( m
2πT
)

D/2
( m

2πIT
)

1/2
exp[−m∣v − u∣2

2T
− mη2

2IT
]. (A1)

The transformation matrix reads

M = (M1i, M1i, . . . , M30i)⊺, (A2)

with elements M1i = 1, M2i = vix, M3i = viy, M4i = viz , M5i = v2
ix + v2

iy

+ v2
iz + η2

i , M6i = vixvix, M7i = viyviy, M8i = vizviz , M9i = vixviy, M10i

= vixviz , M11i = viyviz , M12i = (v2
ix + v2

iy + v2
iz + η2

i )vix, M13i = (v2
ix

+ v2
iy + v2

iz + η2
i )viy, M14i = (v2

ix + v2
iy + v2

iz + η2
i )viz , M15i = vixvixvix,

M16i = vixvixviy, M17i = vixvixviz , M18i = vixviyviy, M19i = vixviyviz ,
M20i = vixvizviz , M21i = viyviyviy, M22i = viyviyviz , M23i = viyvizviz ,
M24i = vizvizviz , M25i = (v2

ix + v2
iy + v2

iz + η2
i )vixvix, M26i = (v2

ix + v2
iy

+ v2
iz + η2

i )vixviy, M27i = (v2
ix + v2

iy + v2
iz + η2

i )vixviz , M28i = (v2
ix + v2

iy

+ v2
iz + η2

i )viyviy, M29i = (v2
ix + v2

iy + v2
iz + η2

i )viyviz , and M30i = (v2
ix

+ v2
iy + v2

iz + η2
i )vizviz .

According to Eq. (3), the kinetic moments of the discrete
equilibrium distribution function take the following forms:

f̂ eq = (f̂ eq
1 , f̂ eq

2 , . . . , f̂ eq
30)
⊺

, (A3)

with elements f̂ eq
1 = ρ, f̂ eq

2 = ρux, f̂ eq
3 = ρuy, f̂ eq

4 = ρuz , f̂ eq
5 = ρ[(D + I)

T + u2], f̂ eq
6 = ρ(T + u2

x), f̂ eq
7 = ρ(T + u2

y), f̂ eq
8 = ρ(T + u2

z), f̂ eq
9

= ρuxuy, f̂ eq
10 = ρuxuz , f̂ eq

11 = ρuyuz , f̂ eq
12 = ρux[(D + I + 2)T + u2], f̂ eq

13
= ρuy[(D + I + 2)T + u2], f̂ eq

14 = ρuz[(D + I + 2)T + u2], f̂ eq
15 = ρ(3ux

T + u3
x), f̂ eq

16 = ρ(uyT + u2
xuy), f̂ eq

17 = ρ(uzT + u2
xuz), f̂ eq

18 = ρ(uxT
+ uxu2

y), f̂ eq
19 = ρuxuyuz , f̂ eq

20 = ρ(uxT + uxu2
z), f̂ eq

21 = ρ(3uyT + u3
y),

f̂ eq
22 = ρ(uzT + uzu2

y), f̂ eq
23 = ρ(uyT + uyu2

z), f̂ eq
24 = ρ(3uzT + u3

z),
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f̂ eq
25 = ρT[(D + I + 2)T + u2] + ρu2

x[(D + I + 4)T + u2], f̂ eq
26 = ρuxuy

[(D + I + 4)T + u2], f̂ eq
27 = ρuxuz[(D + I + 4)T + u2], f̂ eq

28 = ρT[(D
+ I + 2)T + u2] + ρu2

y[(D + I + 4)T + u2], f̂ eq
29 = ρuyuz[(D + I + 4)T

+ u2], and f̂ eq
30 = ρT[(D + I + 2)T + u2] + ρu2

z[(D + I + 4)T + u2].
The force term reads

F̂ = (F̂1, F̂2, . . . , F̂30)
⊺, (A4)

with elements F̂1 = 0, F̂2 = ρax, F̂3 = ρay, F̂4 = ρaz , F̂5 = 2ρ(uxax
+ uyay + uzaz), F̂6 = 2ρuxax, F̂7 = 2ρuyay, F̂8 = 2ρuzaz , F̂9 = ρ(uxay
+ uyax), F̂10 = ρ(uxaz + uzax), F̂11 = ρ(uyaz + uzay), F̂12 = 2ρux

(uxax + uyay + uzaz) + ρax[(D + I + 2)T + u2], F̂13 = 2ρuy(uxax

+ uyay + uzaz) + ρay[(D + I + 2)T + u2], F̂14 = 2ρuz(uxax + uyay

+ uzaz) + ρaz[(D + I + 2)T + u2], F̂15 = 3ρax(T + u2
x), F̂16 = ρ[ay

(T + u2
x) + 2axuxuy], F̂17 = ρ[az(T + u2

x) + 2axuxuz], F̂18 = ρ[ax(T
+ u2

y) + 2ayuxuy], F̂19 = ρ[axuyuz + ayuxuz + azuyux], F̂20 = ρ[ax(T
+ u2

z) + 2azuxuz], F̂21 = 3ρay(T + u2
y), F̂22 = ρ[az(T + u2

y) + 2
ayuyuz], F̂23 = ρ[ay(T + u2

z) + 2azuyuz], F̂24 = 3ρaz(T + u2
z), F̂25

= 2ρ(uxax + uyay + uzaz)(T + u2
x) + 2ρuxax[(D + I + 4)T + u2], F̂26

= 2ρ(uxax + uyay + uzaz)uxuy + ρ(uxay + uyax)[(D + I + 4)T + u2],
F̂27 = 2ρ(uxax + uyay + uzaz)uxuz + ρ(uxaz + uzax)[(D + I + 4)T
+ u2], F̂28 = 2ρ(uxax + uyay + uzaz)(T + u2

y) + 2ρuyay[(D + I + 4)T
+ u2], F̂29 = 2ρ(uxax + uyay + uzaz)uyuz + ρ(uyaz + uzay)[(D + I
+ 4)T + u2], and F̂30 = 2ρ(uxax + uyay + uzaz)(T + u2

z) + 2ρuzaz

[(D + I + 4)T + u2].
The reaction term is

R̂ = (R̂1, R̂2, . . . , R̂30)
⊺, (A5)

with elements R̂1 = 0, R̂2 = 0, R̂3 = 0, R̂4 = 0, R̂5 = (D + I)ρT′,
R̂6 = ρT′, R̂7 = ρT′, R̂8 = ρT′, R̂9 = 0, R̂10 = 0, R̂11 = 0, R̂12 = (D
+ I + 2)ρuxT′, R̂13 = (D + I + 2)ρuyT′, R̂14 = (D + I + 2)ρuzT′, R̂15
= 3ρuxT′, R̂16 = ρuyT′, R̂17 = ρuzT′, R̂18 = ρuxT′, R̂19 = 0, R̂20
= ρuxT′, R̂21 = 3ρuyT′, R̂22 = ρuzT′, R̂23 = ρuyT′, R̂24 = 3ρuzT′, R̂25

= [2(D + I + 2)T + u2 + (D + I + 4)u2
x]ρT′, R̂26 = ρT′uxuy(D + I

+ 4), R̂27 = ρT′uxuz(D + I + 4), R̂28 = [2(D + I + 2)T + u2 + (D + I
+ 4)u2

y]ρT′, R̂29 = ρT′uyuz(D + I + 4), and R̂30 = [2(D + I + 2)T
+ u2 + (D + I + 4)u2

z]ρT′.

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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