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Abstract

The aim of this thesis is to study both holomorphic and algebraic flows on

Shimura varieties. The first part of the thesis studies holomorphic flows, the

main result is a hyperbolic analogue of the Bloch-Ochiai Theorem in the con-

text of mixed Shimura varieties. This extends previous results of Ullmo and

Yafaev for co-compact pure Shimura varieties. The proof follows the template

set by the hyperbolic Ax-Linedmann-Weierstrass theorem of using the Pila-

Wilkie counting theorem together with some volume inequalities to prove our

result. The heart of the proof consists of two volume inequalities, first one for

the intersection of a definable set with hyperbolic balls in Hermitian symmetric

domains of non-compact type. The second for the intersection of a definable

portion of a holomorphic curve with a fundamental domain for the action of a

congruence group on a Hermitian symmetric domain of non-compact type.

In the second part we study totally geodesic subvarieties of mixed Shimura

varieties and algebraic flows. We show that contrary to the case of pure

Shimura varieties, there is in general no inclusion either way between the

concept of weakly special and totally geodesic subvariety in the mixed set-

ting. Then we report an argument communicated by N. Mok which shows

that unlike in the pure case there are totally geodesic submanifolds of a mixed

Shimura variety that are not homogeneous. Finally we use these results on

totally geodesic subvarieties to state and prove a generalisation of results of

Ullmo and Yafaev on algebraic flows on pure Shimura varieties to the mixed

case. The proof follows the pure case and uses a theorem of Ratner in arith-

metic dynamics.



Impact Statement

In 2008 Pila and Zannier presented a new proof of the Manin-Mumford Con-

jecture concerning torsion points in subvarieties of abelian varieties. This new

proof utilised tools from the theory of o-minimal structures and paved the

way for a new approach to the André-Oort conjecture and related conjec-

tures. The main geometric input in this strategy is a functional transcendence

result proved by Ax in the ’70s, this is a functional analogue of the classi-

cal Lindemann-Weierstrass theorem in transcendence theory. This application

sparked a new interest in transcendence results of Ax-Lindemann-Weierstrass

type; it was noted that these can also be studied using o-minimal techniques.

The first part of this thesis pushes forward the use of these o-minimal tech-

niques in the study of the uniformisation map of mixed Shimura varieties,

generalising and extending previous results on the topic. We also believe that

one of the fundamental steps in the proof of the main result of this first part,

a volume bound for the intersection of definable sets with a hyperbolic ball

in Hermitian symmetric spaces of non-compact type, to be of independent

interest.

The second part of the thesis studies totally geodesic subvarieties of mixed

Shimura varieties with a view towards the analysis of algebraic flows. Here we

show that most of the useful properties of totally geodesic subvarieties that

are true in the case of pure Shimura varieties do not generalise to the mixed

context. We then prove an analogue in the mixed case of previous results on

algebraic flows in pure Shimura varieties. We believe the results on totally

geodesic subvarieties may facilitate a better understanding the geometry of
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mixed Shimura varieties and their uniformising space and advance our knowl-

edge of flows on these spaces.

Part of the research presented in this thesis has been published in peer

reviewed journals, we plan on publishing and making available on the ArXiv

the part on totally geodesic subvarieties of mixed Shimura varieties as well.
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Introduction

The aim of this thesis is to study holomorphic and algebraic flows on mixed

Shimura varieties. The thesis is divided into three separate parts using different

methods, in the first we study holomorphic flows, in the second we analyse

totally geodesic subvarieties of mixed Shimura varieties, and the last contains

results on algebraic flows.

Universal family of abelian varieties
Let g > 0 and J =

( 0 − Idg
Idg 0

)
be the standard symplectic form on R2g. Consider

the pair (GSp2g,Hg), where GSp2g is the algebraic Q-group

{
h ∈GL2g |htJh= λhJ for some λh ∈Gm

}

and Hg is the Siegel upper half-space of complex symmetric g× g matrices

of positive definite imaginary part. The group GSp2g(R)+, the connected

component in the archimedean topology of GSp2g(R) containing the identity

element, acts transitively on Hg by

A B

C D

 .Z = (AZ+B)(CZ+D)−1.

This pair corresponds to the moduli space of principally polarized abelian va-

rieties in the sense that quotients of Hg by arithmetic subgroups of GSp2g(R)+

are moduli spaces for principally polarized abelian varieties, possibly with some

additional structure. When this moduli space is fine one can attach to it a
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universal family of abelian varieties.

It turns out it is possible to describe the universal family in a similar way.

To achieve this we need to enlarge the pair (GSp2g,Hg) and define a new pair

(P2g,Xg) as follows:

• P2g is the semi-direct product of GSp2gnG2g
a via the standard action of

GSp2g on G2g
a .

• The space Xg is the product Hg×R2g with the natural transitive action

of P2g(R)+ defined by

(h,v).(z,w) = (h.z,v+h.w)

for (h,v) ∈ P2g(R)+ and (z,w) ∈ Xg.

It is possible to define a natural complex structure on Xg by remembering how

Hg is connected to the moduli space of principally polarized abelian varieties.

A point Z ∈Hg corresponds to an abelian variety isogenous to R2g/Z2g, where

the complex structure is given by the identification

R2g→ Cg

(a,b) 7→ Za+ b

we can use this to get an identification

Hg×R2g→Hg×Cg

(Z,(a,b)) 7→ (Z,Za+ b)

and get a complex structure on Xg. We are now in a similar situation as above,

that is, we have a pair (P,X ) of a complex analytic space with a transitive

action of the real points of an algebraic Q-group. At this point, similarly to

the case of (GSp2g,Hg) we may take the quotient of Xg by a sufficiently small

arithmetic subgroup of P (R)+, this turns out to be the total space of the

universal family of abelian varieties over the corresponding fine moduli space.
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General mixed Shimura data
A general connected mixed Shimura datum is a pair (P,X ) that behaves sim-

ilarly to (P2g,Xg), see Section 1.2 for precise definitions. For instance P is a

Q-group with a uniquely determined subgroup U such that P (R)+U(C) acts

transitively on X . In the case of (P2g,Xg) the subgroup U is trivial. One

further example of mixed Shimura variety for which the subgroup U is non-

trivial is the canonical ample line bundle over the universal family of abelian

varieities.

One other feature of mixed Shimura data we will need in this introduction

is the ability of identifying X with a period domain for mixed Hodge structures,

this allows us to embed X into a projective algebraic variety as an open semi-

algebraic set1.

Given a connected mixed Shimura datum (P,X ) an associated mixed

Shimura variety M is the quotient Γ\X , where Γ is a congruence subgroup

of P . The quotient map X →M is called the uniformisation map and will be

denoted by unif.

A morphism of mixed Shimura data (P,X )→ (Q,Y) is map X →Y that

comes from a homomorphism of the Q-groups P and Q.

By a theorem of Pink, mixed Shimura varieties have a canonical structure

of algebraic varieties such that all Shimura morphisms are algebraic.

One last definition we will need is the concept of weakly special subvariety

of a mixed Shimura variety, here we will define the concept only for (P2g,Xg).

Definition. A subset Y of X is called weakly special if there exists a connected

mixed Shimura sub-datum (Q,Y) of (P2g,Xg), a normal subgroup N of Q and

a point y ∈ Y such that

Y =N(R)+y.

LetM be a mixed Shimura variety associated with the datum (P,X ), a subva-

riety of M is called weakly special if it is the image of a weakly special subset

of X under the uniformisation map.
1Se p. 15
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The original motivation for this definition comes from the fact that in

the pure case weakly special subvarieties correspond to non-rigid families of

abelian varieties.

Holomorphic flows
The main inspiration, as well as the techniques used in the analysis of holo-

morphic flows comes form the study of results of Ax-Lindemann-Weierstrass

type for mixed Shimura varieties, together with the Bloch-Ochiai theorem for

abelian varieties. Below we recall the statements and history of these two

results before stating the main results obtained in this part.

Hyperbolic Ax-Lindemann-Weierstrass theorem
We are interested in functional analogues of the classical Lindemann-

Weierstrass theorem on the transcendence of values of the exponential function.

Theorem (Lindemann-Weierstrass Theorem cf. [Lan66]). Let α1, . . . ,αn be

algebraic numbers linearly independent over Q then exp(α1), . . . ,exp(αn) are

algebraically independent.

A functional analogue of this result is due to Ax.

Theorem (Ax-Linedmann-Weierstrass cf. [Ax71; Ax72]). Let Z be an irre-

ducible affine algebraic variety over C and f1, . . . ,fn ∈ C[Z] be regular func-

tions on Z. Assume that f1, . . . ,fn are linearly independent over Q modulo

constants, that is, no Q-linear combination of the fi is constant. Then the

functions exp(f1) . . .exp(fn) are algebraically independent over C.

Remark. This is only a special case of Ax’s result. The general theo-

rem is the functional analogue of Schanuel’s conjecture that states that

given α1, . . . ,αn ∈ C, Q-linearly independent the transcendence degree of

C[α1, . . . ,αn,exp(α1), . . . ,exp(αn)] is at least n.

It is possible to restate the Ax-Lindemann-Weierstrass theorem in more

geometric terms, this makes it easier to generalise it to different settings. This

geometric restatement is originally due to Pila and Zannier (cf. [PZ08]).
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Theorem (Geometric Ax-Lindemann-Weierstrass). Let Z be an irreducible

algebraic subvariety of Cn and denote

unif = (exp, . . . ,exp) : Cn→ C∗n.

Then the Zariski closure of unif(Z) is a translate of an algebraic sub-torus of

C∗n.

We can extract the main features of this result as follows. We have two

algebraic varieties S and S together with a transcendental map unif :S→S. As

the map unif is transcendental, a priori, there is no clear relationship between

the algebraic structures on S and S via the map unif. In the above case

however the Ax-Lindemann-Weierstrass theorem implies that the class of bi-

algebraic subvarieties is non empty. In this context an irreducible subvariety of

S is called bi-algebraic if its image under unif is also irreducible algebraic in S.

Similarly bi-algebraic subvarieties in S are images of bi-algebraic subvarieties

of S.

In this form the statement can be easily generalised to abelian varieties.

This has been proven by Ax.

Theorem (Ax-Lindemann-Weierstrass for abelian varieties cf. [Ax72]). Let A

be a complex abelian variety and unif : Cn→A be the universal covering map.

Let V be an irreducible algebraic subvariety of Cn, then the Zariski closure of

the image unif(V ) is a translate of an algebraic subgroup of A.

Given a mixed Shimura datum (P,X ) and an associated mixed Shimura

variety, we are interested in a generalisation of this result to the map unif :

X → S. This is not as straightforward as in the case of abelian varieties, as

X in general has only the structure of a complex analytic set and not of an

algebraic variety. It is possible to overcome this difficulty by embedding X in

an algebraic variety. As mentioned above, using the interpretation of mixed

Shimura varieties as period domains for certain variations of mixed Hodge

structures it is possible to embed X as a semi-algebraic subet of a flag variety.
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This allows us to define irreducible algebraic subvarieties of X as components

of intersections of irreducible subvarieties of the ambient algebraic variety with

X . It turns out that this definition of algebraic subvariety of X allows us to

generalise the statement of the Ax-Lindemann-Weierstrass theorem. The other

ingredient we are missing in this case is the analogue of translates of algebraic

subgroups, in the case of mixed Shimura varieties this role is filled in by weakly

special subvarieties.

Theorem (mixed Ax-Lindemann-Weierstrass cf. [Gao17]). Let (P,X ) be a

connected mixed Shimura datum and S be an associated mixed Shimura variety.

Let unif : X → S be the complex uniformisation map. Let Y be an irreducible

algebraic subset of X . Then the Zariski closure of unif(Y ) is a weakly special

subvariety.

The general form and setting of this result are due [PT13; PT14] for the

cases of the moduli space of principally polarized abelian varieties, [UY14b;

KUY16] for the case of a general pure Shimura variety and finally to [Gao17]

for the general case of a mixed Shimura variety.

Statements of Ax-Lindemann-Weierstrass type have been widely studied

in recent years for their connection to the Zilber-Pink conjecture and related

results. The first example of this use was given by Pila and Zannier in [PZ08]

where the authors present a new strategy of proof for the Manin-Mumford

conjecture. Recall that the Manin-Mumford conjecture states that given an

abelian variety A and an algebraic subvariety Y , the Zariski closure of the set of

torsion points of A contained in Y is a finite union of translates of abelian sub-

varieties of A by torsion points. The Pila-Zannier strategy is roughly divided

into two parts: a geometric part consisting of the Ax-Lindemann-Weierstrass

theorem, and a number theoretic part counting Galois conjugates of torsion

points of A. These two ingredients are used together with the Pila-Wilkie

theorem on counting rational points in definable sets to get the result. This

procedure has been generalised to give a strategy of proof for the analogous

statement in the case of Shimura varieties, the André-Oort conjecture. See the
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[Gao17] for further information and references on this topic.

o-minimal structures and hyperbolic Ax-Lindemann-

Weierstrass
In this section we aim to give a general intuition for the concept of an o-minimal

structure and briefly explain their role in the proof of the hyperbolic Ax-

Lindemann-Theorem. For more precise statements and definitions see Section

1.3

An o-minimal structure over the field of real numbers is, roughly speaking,

a collection of tame subsets of Rn for each n, for a precise definition see Defini-

tion 1.37. The tameness of the sets contained in an o-minimal structure, which

are called definable, has many important implications; for instance we will use

the fact that every definable set has a finite number of connected components.

The smallest possible example of o-minimal structure is the collection of

semi-algebraic sets. A semi-algebraic set is a finite union of subsets of Rn that

can be defined by a finite number of polynomial equations and inequalities.

On the other hand, the finiteness of connected components implies that there

is no o-minimal structure where the sine function is definable.

The application of o-minimal structures to the study of mixed Shimura

varieties is made possible by the fact that there is an o-minimal structure where

a suitable restriction of the uniformisation map of a mixed Shimura variety is

definable.

The main result about o-minimal structures that we will use is the Pila-

Wilkie theorem. This states,roughly, that most rational points in a definable

set are contained in its positive dimensional semi-algebraic subsets.

We now briefly recall the main steps in the proof of the Ax-Lindemann-

Weierstrass theorem for Gm; these steps are similar in the hyperbolic case,

although the individual proofs are harder. We start by observing that proving

the Ax-Lindemann-Weierstrass theorem is equivalent to proving that given an

algebraic subvariety Y of Gn
m, maximal algebraic subvarieties Z of unif−1(Y )

are weakly special. Then we fix a definable fundamental domain F for the
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action of Zn on Cn and proving that Z intersects many translates of F by

small elements in Zn. The second step is to define a subset Σ of Cn, such that

translates of F that intersect Z give raise to rationa points in Σ, and prove

that this is definable is a suitable o-minimal structure. The definability of Σ

depends on the definability of the uniformisation map restricted to F and the

definability of Y and Z. The next step is to prove that the counting result in

the first step implies that Σ contains many integer points. Now we can apply

the Pila-Wilkie theorem to Σ to obtain a positive dimensional semi-algebraic

set contained in Σ. The existence of this semi-algebraic set and the definition

of Σ imply that the stabiliser of Z in Cn is positive dimensional, which can be

used to prove that Z is weakly special. A complete account of this proof can

be found in Appendix A.

Bloch-Ochiai theorem

The Bloch-Ochiai theorem [Kob98, Chapter 9, 3.9.19] is a classical theorem in

Nevanlinna theory.

Theorem (Bloch-Ochiai). Let A be an abelian variety and f : C→ A a non-

constant holomorphic map. Then the Zariski closure of f(C) is a translate of

an abelian subvariety.

Observing that C is simply connected, we can lift the map f to f̃ :C→Cn

and use this to reformulate the theorem as follows: given an abelian variety A

with its uniformisation map unif : Cn→ A and a holomorphic curve f̃(C) in

Cn, the Zariski closure of unif(f̃(C)) is a translate of an abelian subvariety of

A. This reformulation resembles closely the statement of the Ax-Lindemann-

Weiertrass theorem, so one might expect that similar techniques to the ones

presented in the previous section may also be applied in this case. This how-

ever is not the case, the main issue in this context is that the image of a

general holomorphic function may not contain any unbounded definable sets,

this effectively prevents one to prove the definability of the set Σ mentioned in

the previous section. Similar questions were analysed by Ullmo and Yafaev in
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[UY17], where the authors are able to get only partial results for this precise

reason.

Holomorphic flows on mixed Shimura varieties

The main issue in the application of o-minimal techniques to the study of the

Bloch-Ochiai theorem is the need for an unbounded definable set. Ullmo and

Yafaev noted that this difficulty can be overcome when considering analogous

statements in the case of pure Shimura varieties. This is due to the fact that

the space uniformising a pure Shimura variety can be realised as a bounded

symmetric domain, which allows one to consider only definable sets also in the

more general context of holomorphic flows. In [UY18b], the authors prove the

following theorem.

Theorem. Let (G,X ) be a connected pure Shimura datum. Embed X as a

bounded symmetric domain in Cn. Let Γ be an arithmetic subgroup of G such

that the associated pure Shimura variety Γ\X is compact. Let f : C→Cn be a

holomorphic map such that f(C)∩X 6= ∅. Then the components of the Zariski

closure of unif(f(C)∩X ) are weakly special.

The aim of the first part of this thesis is to generalise this result to the case

of mixed Shimura varieties. To do this we first introduce some notation. Let

(P,X ) be a connected mixed Shimura datum and Γ an arithmetic subgroup

of P . Let M be the mixed Shimura variety associated to the above data and

unif : X → M be the complex uniformisation map. Let π : P → G be the

projection modulo the unipotent radical and let (G,XG) be the corresponding

pure Shimura datum. We identify X with XG×Cm. Using the Harish-Chandra

embedding of XG we identify X as a subset of CN ×Cm. Our main result is.

Theorem. Let f : C → CN ×Cm be a holomorphic function such that the

composition of f with the projection to CN is non constant and the image

of f intersects X . Then the Zariski closure of unif(f(C)) is a weakly special

subvariety of M .
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Remark. We restrict to holomorphic functions that are transverse to the fibres

of the projection to the pure part, otherwise we would need to reprove the

Bloch-Ochiai theorem that, as we mentioned above, cannot be proven using

the present methods.

To prove this result we first use the same strategy of proof of the

Ax-Lindemann-Weierstrass theorem to deduce that the Zariski closure of

unif(f(C)∩X ) contains a Zariski dense set of weakly special subvarieties, then

use a consequence of the Ax-Lindemann-Weierstrass theorem to deduce that

it must be weakly special itself.

To be able to apply o-minimal techniques to the problem, we need to

start by replacing the set f(C) with a smaller definable subset Z such that the

Zariski closure of unif(f(C)) and unif(Z) are the same. Another requirement

for the set Z is that π(Z) must hit the boundary of XG, this is the equivalent

of the unboundedness condition in the abelian case. This can be achieved

using the fact that the symmetric space XG has a realisation as a bounded

symmetric domain in CN using the Harish-Chandra embedding theorem.

As in the case of the hyperbolic Ax-Lindemann-Weierstrass theorem, we

continue by proving a counting result showing that the number of translates

of a fixed fundamental domain F by elements γ ∈ Γ intersecting f(C) grows

polynomially with the height of γ. This is done in two steps, first we give an

upper bound on the volume of the intersection between f(C) and a translate

of F , then we compare this upper bound with a lower bound on the volume

of the intersection between f(C) and an open ball in X of fixed centre and

varying radius. This is the same strategy used in the proof of the hyperbolic

Ax-Lindemann-Weierstrass theorem (cf. [KUY16]), however in the present

situation we will need to reprove both volume bounds as the results used in

the pure case cannot be used in our setting.

With the counting result in place we can use a refinement of the Pila-

Wilkie theorem to prove that for for any point in Z there is a positive di-

mensional connected semi-algebraic set that is contained in unif−1(unifZ)Zar).
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This then implies the statement on Zariski density of weakly special subvari-

eties in unif(Z)Zar.

Totally geodesic subvarieties of mixed Shimura

varieties
Given a Riemannian manifold M , a submanifold N ⊂ M is called totally

geodesic at a point p∈N if all geodesic curves inM through p that are tangent

to N are contained in N . N is called totally geodesic if it is totally geodesic at

every point. For example in Euclidean space totally geodesic submanifolds are

linear spaces. Given a general manifold, one expects to find very few totally

geodesic submanifolds; however, in the case of Shimura varieties, and more

generally locally symmetric spaces, there are many totally geodesic submani-

folds, which can be found by looking at the group action on the corresponding

symmetric space.

The aim of this part is to show that some of the properties of totally

geodesic submanifolds that are true in the pure case do not transfer to the

mixed setting. Our original interest in etudying totally geodesic subvarieties

of mixed Shimura varieties comes from an attempt at generalising a result of

Ullmo and Yafaev on algebraic flows on pure Shimura varieties to the mixed

case. This result will be the topic of the next part.

Moonen in [Moo98] proved that a subvariety of a pure Shimura variety is

weakly special if and only if it is totally geodesic; more generally it is possible

to prove that given a pure Shimura datum (G,XG), all totally geodesic sub-

varieties of XG are orbits under real algebraic subgroups of G(R). We aim to

show that both of these properties are not true in the mixed case.

Let (P,X ) be a mixed Shimura datum of Kuga type. We will start by

showing that there are weakly special subvarieties of X that are not orbits

under subgroups. One first example of this are fibres of the projection map

to the pure part π : X → XG. This was already observed by Mok in [Mok91]

and follows from the computation of some terms in the curvature tensor of X
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and the fact that the fibres of π are flat. We will generalise this to prove the

following.

Theorem. Let Y be a weakly special subvariety of X with non trivial constant

part, then Y is not totally geodesic.

And in another direction.

Theorem. Let x∈XG, the only totally geodesic submanifold of X that contains

the fibre π−1(x) is X itself.

Regarding the second point we report an argument of N. Mok showing

that there are geodesic curves in X that are not orbits under 1-parameter

subgroups of P (R). The idea is to consider geodesic curves that are tangent

to the fibres π at some point and use the fact that these fibres are not totally

geodesic.

These results are dependent on the explicit computations of the curvature

terms carried out in Appendix B.

Algebraic flows
This section is dedicated to a result of Ullmo and Yafaev and its extension

to Mixed Shimura varieties. This result is somewhat similar to the Ax-

Lindemann-Weierstrass theorem but with the Zariski topology replaced by the

analytic topology. The switch to the analytic topology presents new difficulties

and the result only considers totally geodesic subvarieties of the uniformising

space.

In what follows we will always use (P,X ) to denote a connected mixed

Shimura datum of Kuga type, that is the subgroup U of P is trivial as in

the case of (P2g,Xg) and (G,XG) the corresponding connected pure Shimura

datum given by taking the quotient of (P,X ) by the unipotent radical of P ,

π : (P,X )→ (G,XG) will denote the projection map. Moreover M will denote

a connected mixed Shimura variety associated with (P,X ) and an arithmetic

subgroup Γ of P and S will be the corresponding connected pure Shimura

variety.
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The result proven by Ullmo and Yafaev is as follows.

Theorem. Let (G,XG) be a pure Shimura datum and let Z ⊂XG be a complex

totally geodesic subvariety. Then the closure of unif(Z) in the analytic topology

is a real weakly special subvariety.

Real weakly special subvarieties are, as the name suggests, real algebraic

subsets of a Shimura variety that come from particular rational algebraic sub-

groups of G. The precise definition is as follows.

Definition. Let (G,XG) be a connected Shimura datum. An algebraic sub-

group H of G defined over Q is said to be of type H if H/Ru(H) is a non

trivial semisimple group with no compact simple factor.

Let Γ ⊂ G(R) be an arithmetic subgroup and S = ShΓ(G,XG). A real

weakly special subvariety of S is a real analytic subset of S of the form

Γ∩H(R)+\H(R)+.x

for a subgroup H of type H of G and some point x ∈ X .

Remark. The set H(R)+.x⊂X is a real symmetric space when the intersection

of the stabilizer Kx of the point x in G(R) with a Levi subgroup of H is a

maximal compact subgroup (cf. [UY18a, p.7]).

The main ingredient in the proof of the above theorem is a result of Ratner

about the closure of orbits under subgroups generated by 1-parameter unipo-

tent subgroups together with the description of totally geodesic subvarieties of

X as orbits under suitable subgroups of G(R).

A similar strategy can be adopted in the case of mixed Shimura varieties.

As remarked in the previous section, however, there is no description of totally

geodesic subvarieties as orbits under real subgroups of P in the mixed case, so

we have to start with a suitable orbit under a suitable real subgroup of P .

Theorem. Let Z be a subvariety of X such that π(Z)⊂XG is complex totally

geodesic and Z is a vector bundle over π(Z) that is homogeneous under the
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action of a Lie subgroup F of P (R)+. Then the closure with respect to the

analytic topology of unif(Z) is a real weakly special subvariety.

In the setting of mixed Shimura varieties we define real weakly special

subvarieties as follows.

Definition. A subvariety Y of a mixed Shimura variety M is a real weakly

special subvariety if there exists an algebraic subgroup H ⊂ P defined over Q

such that π(H) is of type H and Y = unif(H(R)+.x) for some x ∈ X .

Structure of the thesis
In Chapter 1 we recall some preliminaries used throughout the thesis. Sec-

tion 1.1 recalls basic notions concerning families of mixed Hodge structures.

Section 1.2 contains basic definitions about mixed Shimura varieties, their

weakly special subvarieties and some examples. Section 1.3 recalls the defini-

tion of o-minimal structure, along with the main properties we will need.

Chapter 2 contains the main results concerning holomorphic curves in

mixed Shimura varieties.

In Chapter 3 we study totally geodesic subvarieties of mixed Shimura va-

rieties and algebraic flows. Sections 3.1 and 3.2 contain the main differential

geometric tools we use. In Section 3.3 we study the relationship between to-

tally geodesic, weakly special and homogeneous subvarieties of mixed Shimura

varieties.

In Chapter 4 we study algebraic flows on mixed Shimura varieties.

Appendix A reports the o-minimal proof of the Ax-Lindemann-

Weierstrass theorem and Appendix B contains some explicit computations

of curvature terms for Kuga varieties.



Chapter 1

Preliminaries

In this Chapter we recall some prerequisites. The material is organized as

follows. In the first section we start by recalling the definition of mixed Hodge

structures and their relationship to linear algebraic groups, we then recall some

results about equivariant families of mixed Hodge structures. This first section

serves as a motivation for the definition of mixed Shimura varieties, as these

can be defined as the classifying spaces for mixed Hodge structures that admit

a canonical variation of mixed Hodge structures on them. In the second section

we recall some definitions and properties related to mixed Shimura varieties. In

the third section we recall the definition of o-minimal structure along with some

basic properties we will need and the statement of the Pila-Wilkie counting

theorem.

None of the material in this chapter is original, precise pointer to the

literature will be given in each section.

1.1 Families of mixed Hodge structures

1.1.1 Definitions
We start by recalling the definition of a mixed Hodge structure, after this we

will explain how these are connected to the representations of a particular

algebraic torus.

Definition 1.1. Let R be either Z,Q or R. A pure R-Hodge structure of

weight n is a pair (V,F), where
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• V is a finite dimensional R-module,

• F is a decreasing filtration of VC = V ⊗RC called the Hodge filtration.

Subject to the condition

• fro all p F p∩Fn−p+1 = {0}.

The Hodge filtration determines a decomposition of VC of the form VC =⊕V p,q

where V p,q = Fp∩Fq. By definition V p,q = V q,p. The set of pairs (p,q) ∈ Z2

such that V p,q 6= 0 is called the type of the Hodge structure.

An R-mixed Hodge structure is a triple (V,W,F) where:

• V is a finite dimensional R-vector space,

• W is an increasing filtration of V by R-subspaces called the weight fil-

tration,

• F is a decreasing filtration of VC by complex subspaces called the Hodge

filtration.

Such that F induces pure Hodge structures on the graded quotients griW =

W i/W i−1.

The type of a mixed Hodge structure is the union of the types of its graded

quotients.

Example 1.2. We recall some examples that explain the importance of (mixed)

Hodge structures.

• The Tate Hodge structure Z(n) is the only Hodge structure on (2πi)nZ

of weight −2n and type (−n,−n).

• Let V be a Q vector space of dimension 2d, giving a complex structure

on V is the same as giving a Hodge structure of weight −1 and type

(−1,0),(0,−1) on V .

• In general the n-th cohomology group of a Kähler manifold carries a pure

Hodge structure of weight n (see [Voi02]).
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• Deligne introduced mixed Hodge structures to study the cohomology

groups of general algebraic varieties; he proved that the n-th cohomology

group of a general (possibly singular and not complete) complex algebraic

variety carries a mixed Hodge structure of weight ≤ n (cf. [Del71]).

Definition 1.3. The Deligne torus is the algebraic group S = ResC/RGm
1, in

particular S(R) = C× and S(C) = C××C×.

The weight homomoprhism w : Gm→ S is the homomorphism of algebraic

groups that on real points corresponds to the inclusion of R× into C×.

Notice that the choice of a representation CC → GL(VC), for some Q-

vector space V , induces a decomposition VC = ⊕p,qV p,q where Vp,q is the

eigenspace for the character (p,q), that is the subspace on which an element

(z1, z2) ∈ C××C× = S(C) acts as multiplication by z−p1 z−q2 . We can then de-

fine two filtrations of V as W i(V ) = ⊕p+q≤iV p,q and FiVC = ⊕p≥iV p,q. The

following proposition explains when these filtrations induce a mixed Hodge

structure and how linear algebraic groups enter the picture.

Proposition 1.4 ( [Proposition 1.4 and 1.5, Pin90] ). Let P be a linear alge-

braic group defined over Q, W its unipotent radical, G = P/W the reductive

quotient and π : P → G the quotient map. Let h : SC→ PC be an homomor-

phism. Assume the following conditions are satisfied:

(a) π ◦h : SC→GC is already defined over R.

(b) π ◦h◦w : Gm,R→GR is already defined over Q.

(c) Under the weight filtration on Lie(P ) defined by Ad◦h we the pice of

weight at most −1 is exactly Lie(W ).

Then:

1. For every representation ρ : P → GL(V ) defined over Q the homomor-

phism ρ◦h defines a rational mixed Hodge structure on V .
1ResC/R indicates the Weil restriction from C to R see [Secion 2.i, Mil17]
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2. The weight filtration on V induced by ρ◦h is invariant under P .

3. For any p∈ P (R)W (C) the assertion in the previous two points are valid

also for int(p) ◦ h in place of h. The weight filtration and the Hodge

numbers are independent of p.

Conversely a homomorphism k : SC→GL(VC) induces a rational mixed Hodge

structure on V if and only if there exists a factorisation k = ρ◦h into a rep-

resentation ρ : P → GL(V ) and a morphism h : SC → PC, for some linear

algebraic Q-group P , such that h and ρ satisfy the above conditions.

Now that we have an interpretation of Hodge structures in terms of the

Deligne torus it is easier to define the notion of morphism of Hodge structures.

Definition 1.5. A morphism of mixed Hodge sturctures is a morphism of

representations of S. Similarly, the tensor product of mixed Hodges structures

is the tensor product of representations of S.

With the definition of morphisms and tensors we are now able to define

polarizations.

Definition 1.6. Let (V,h) be a pure R-Hodge structure, a polarisation

on V is a morphism ψ : V ⊗ V → R(1) = R⊗ Z(1) such that ψh(x,y) =

(2πi)nψ(x,h(i).y) is symmetric and positive definite. A polarized Hodge struc-

ture is a pair of a Hodge structure together with a polarisation. A graded

polarization of a mixed Hodge structure is a collection of a polarisation for

each pure graded quotient.

Example 1.7. A complex torus A of dimension 2d is defined as the complex

manifold quotient of Cd by a lattice Λ. The quotient map induces an iden-

tification Λ ∼= H1(A,Z) and Cd ∼= H1(A,R). This endows H1(A,R) with a

complex structure and so H1(A,Z) with a pure Hodge structure of weight −1

and type (−1,0),(0,−1). A classic result in the theory of abelian varieties

[Section I.3, Theorem of Lefschetz, Mum70] states that this Hodge structure

admits a polarisation precisely when A is an algebraic variety.
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1.1.2 Families of Hodge structures
We now introduce families of mixed Hodge structures and present some results

which will explain the axioms in the definition of a mixed Shimura variety.

From here on we only concentrate on Q-mixed Hodge structures.

Proposition 1.8 ( [Proposition 1.7, Pin90] ). Let P be a linear algebraic group

over Q and HW a P (R)W (C)-conjugacy class in Hom(SC,PC). Assume that

for some h ∈ HW the conditions in proposition 1.4 are satisfied. Let V be a

faithful representation of P and consider the induced map

φ :HW →{rational mixed Hodge structures on V } (1.1)

(a) There exists a unique structure on φ(HW ) of complex manifold such that

the Hodge filtration on VC depends analytically on φ(h) for h ∈ HW .

This structure is P (R)W (C) invariant, and W (C) acts analytically on

φ(HW ).

(b) For any other representation V ′ of P the analogous map φ′ factors

through φ and the Hodge filtration on V ′ varies analytically with φ(h).

(c) If in addition V ′ is faithful, then φ(HW ) and φ′(HW ) are canonically

isomorphic and the isomorphism is compatible with the complex struc-

ture.

Definition 1.9. Let X be a complex manifold. A rational variation of mixed

Hodge structure on X consists of a local system V of finite dimensional Q

vector spaces on X together with a rational mixed Hodge structure on every

fibre such that

(a) The weight filtration is locally constant and the Hodge filtration varies

holomorphically.

(b) Let V be the locally free sheaf associated with the local system V and

let FpV be the sub-sheaves that induce the Hodge filtration on each
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fibre. For every p ∈ Z the canonical connection ∇ : V → V ⊗Ω1
X maps

the sub-sheaf F pV to F p−1V⊗Ω1
X . This property is called transversality.

Example 1.10. Consider a family of smooth algebraic varieties Y → X. It is

a result of Griffiths that the cohomology of the fibres of the family forms a

variation of Hodges structures over the base X (cf. [Secion 1.c, Gri68]).

The next proposition explains when the canonical family of Hodge struc-

tures on HW is in fact a variation.

Proposition 1.11 ([Proposition 1.10, Pin90]). Let P , HW , V and φ be as

in Proposition 1.8. Then we have a variation of mixed Hodge structure on V

over φ(HW ) if and only if for some h ∈HW the Hodge structure on Lie(P ) is

of type

{(−1,1), (0,0), (1,−1), (−1,0), (0,−1), (−1,−1)} . (1.2)

Now we see that it is actually possible to restrict to a smaller conjugacy

class of homomorphisms.

Proposition 1.12 ([Proposition 1.16, Pin90]). Assume the condition of the

previous proposition is satisfied. Let U ⊂W ⊂ P be the subgroup such that

Lie(U) = W−1(Lie(P )). Consider the following stronger version of condition

(a) in Proposition 1.4

(a) π′ ◦h : SC→ (P/U)C is already defined over R.

Let H be the subset of HW which satisfies the stricter condition above. Then

we have

• H is a non empty P (R)U(C) orbit in Hom(SC,PC).

• given a faithful representation V of P and the associated map φ, we have

φ(HW ) = φ(H).
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1.2 Mixed Shimura varieties
In this section we introduce mixed Shimura varieties and some related concepts.

In the first section we will introduce the definition of mixed Shimura datum and

variety and explain the relationship with variations of mixed Hodge structures.

In the second we revisit the examples given in the introduction and explain

how they fit into the definitions. In the third we introduce special and weakly

special subvarieties. In the fourth we recall some definitions and properties of

boundary components of pure Shimura varieties.

1.2.1 Mixed Shimura varieties

In this section we introduce Pink’s definition of a mixed Shimura variety with

particular emphasis on the Hodge theoretic interpretation of the definition in

connection to the previous section.

Definition 1.13 ([Definition 2.1, Pin90]). A mixed Shimura datum is a triple

(P,X ,h) where P is an algebraic group defined over Q, X is an homogeneous

space under P (R)U(C), where U is a Q-subgroup of the unipotent radical of

P and h : X → Hom(SC,PC) such that, denoting by π : P → G = P/W and

π′ : P → P/U the canonical projections, for one (equivalently any) point x∈X

the following are satisfied

(a) The fibres of h consist of finitely many points.

(b) π′ ◦hx : SC→ PC is already defined over R.

(c) π ◦hx ◦w : Gm,R→ (P/W )R =GR is a cocharacter of the centre of G.

(d) AdP ◦hx induces a mixed Hodge structure on the Lie algebra of P of type

{(−1,−1),(−1,0),(0,−1),(−1,1),(0,0),(1,−1)} . (1.3)
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(e) The weight filtration on LieP is given by

Wn =



{0} if n <−2

LieU if n=−1

LieW if n=−1

LieP if n≥ 0.

(1.4)

(f) π ◦hx(
√
−1) induces a Cartan involution of Gad

R .

(g) Gad possesses no Q-factor of compact type.

(h) P/P der = Z(Gad) is an almost direct product of a Q-split torus with a

torus of compact type defined over Q.

Remark 1.14. We will often drop the equivariant map h from the notation of

a mixed Shimura datum, unless necessary.

Remark 1.15. As anticipated above, the conditions in the definition of mixed

Shimura datum are linked to the previous section. In particular, fixed a ratio-

nal representation V of P

• Conditions (b) (c) and (e) imply that any point h ∈ X induces a mixed

Hodge structure on V .

• Condition (h) implies that the weight morphism is defined already over

Q ( cf. [1.19, Pin90] ).

• Condition (h) implies also that any sufficiently small congruence sub-

group of P is contained in P der (cf. [proof of 3.3(a), Pin90]).

• Condition (g) implies that any congruence subgroup of P that is con-

tained in P der is Zariski dense in it (cf. [theorem 4.10, PR94])

• Condition (a) implies that X has a canonical complex structure invariant

under the action of P (R)U(C) and there is an equivariant family of mixed

Hodge structures on the constant local system V with fibre V .
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• Condition (d) implies that the equivariant family of mixed Hodge struc-

tures on V obtained in the previous point is indeed a variation.

• The remaining condition (f) implies that the variation is graded polaris-

able.

Remark 1.16. Condition (h) in the definition is more stringent than the one

used in [Pin90], this however does not pose any problems in the current setting

as we will be only interested in a single connected component of X .

The connected components of the space X can be described as follows.

Proposition 1.17 ([2.19, Pin90]). Let (P,X ) be a mixed Shimura datum. If

P is reductive, every connected component of X is a Hermitian symmetric

domain. In the general case the connected components of X are holomorphic

vector bundles over a Hermitian symmetric domain. The projection map to the

Hermitian symmetric domain is induced by the projection π : P → P/Ru(P )

of P modulo its unipotent radical.

There are two interesting special cases of the definition of mixed Shimura

datum.

Definition 1.18 ([Definition 2.1, Gao20]). Let (P,X ) be a mixed Shimura

datum. If P is reductive it is called a pure Shimura datum. More generally, if

the subgroup U is trivial it is called a mixed Shimura datum of Kuga type.

We now recall the definition of mixed Shimura variety.

Definition 1.19 ([Definition 3.1, Pin90]). Let (P,X ) be a mixed Shimura

datum and K ⊂ P (Af ) a compact open subgroup. The mixed Shimura variety

associated to the datum (P,X ) and the subgroup K is

MK(P,X ) = P (Q)\X ×P (Af )/K. (1.5)

Where P (Q) acts on both factors by multiplication on the left and K acts only

on the second factor by multiplication on the right.
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As defined mixed Shimura varieties are not connected. The following

definition introduces connected mixed Shimura data and varieties, which will

be the main point of interest in the following sections.

Definition 1.20 ([Definitions 2.1, 2.4, Pin05]). A connected mixed Shimura

datum is a pair (P,X+) where P is an algebraic group over Q and X+ is an

orbit under the group P (R)+U(C) which satisfy the conditions in Definition

1.13. A connected mixed Shimura variety relative to the datum (P,X+) and

the congruence subgroup Γ⊂ P (Q)∩P (R)+ is the quotient Γ\X+.

As one might expect, connected mixed Shimura varieties are connected

components of mixed Shimura varieties (cf. [3.2, Pin90]).

We now introduce morphism of mixed Shimura data and mixed Shimura

varieties. These make Shimura varieties in a category.

Definition 1.21. A Shimura morphism of mixed Shimura data φ : (P,X )→

(Q,Y) is a homomorphism φ : P →Q of algebraic groups over Q together with

the induced map X →Y .

A Shimura morphism of mixed Shimura varieties is a morphism between

mixed Shimura varieties that is induced by a Shimura morphism of the asso-

ciated mixed Shimura data. Given a morphism φ : (P,X )→ (Q,Y) of mixed

Shimura data, any morphism between associated mixed Shimura varieties in-

duced by φ will be denoted by [φ]

The result below implies that mixed Shimura varieties with their mor-

phisms form a subcategory of the category of complex algebraic varieties.

Proposition 1.22 ([3.3, 9.24, Pin90]). Let S be a connected mixed Shimura

variety associated to the datum (P,X ) and the subgroup Γ. Then S has a

canonical structure of normal complex quasi-projective variety. If moreover Γ

is neat S is smooth. Finally, any Shimura morphism between mixed Shimura

varieties is algebraic.
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1.2.2 Examples

1.2.2.1 Moduli space of abelian varieties Ag

Here we explain how the pure Shimura datum corresponding to the moduli

space of principally polarised abelian varieties is constructed.

The Shimura datum. Let V be a Q vector space of dimension 2d equipped

with a symplectic form ψ. Define the group GSp(V,ψ) to be the subgroup

of GL(V ) that preserves ψ up to a scalar. Consider the set X of complex

structures J on V with the following properties

• J ∈GSp(V,ψ)

• The bilinear form on V defined by ψJ(x,y) = ψ(x,Jy) is symmetric and

positive or negative definite.

Define X+, respectively X−, to be the subsets of X containing the complex

structures J such that ψJ is positive, respectively negative, definite. There is

a bijective and equivariant map between X+ and the set of symplectic bases

{e±i}i=1,...,d for the form ψ defined by taking the complex structure J that

exchanges e+i and e−i. This correspondence proves that the group Sp(V,ψ)

of elements in GSp(V,ψ) preserving ψ acts transitively on X+, which implies

that GSp(V,ψ) acts transitively on X .

There is a bijective equivariant map

h : X → Hom(SR,GSp(V,ψ)R)

J 7→ hJ

(1.6)

where hJ(a+ ib) = a Id+bJ . It is now possible to easily verify the axioms of

mixed Shimura datum in this case. Consider the triple (GSp(V,ψ),X ). Then

axioms (a), (b) and (c) follow directly from the definition of h. Axiom (d) can

be proven by decomposing VC = V +⊕V − into a direct sum of the subspaces

where ψ is, respectively positive and negative definite, then looking at the

action of hJ(S) on this decomposition. Axiom (e) is trivial as the weight
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filtration of Lie(P ) consists of only one term in this case. Axiom (f) follows

from the second point in the definition of X . The fact that Sp(V,ψ) is simple

implies (g). Finally axiom (h) is true because the centre of GSp(V,ψ) is itself

a Q-split torus.

Cf. [Chapter 6, Mil04] for more details regarding this Shimura datum and

its interpretation as moduli space of principally polarised abelian varieties.

Siegel upper half-space.We now restrict to the connected Shimura datum

(Sp(V,ψ),X+). The definition of the Shimura datum (Sp(V,ψ),X+) can be

made more explicit by fixing a basis for V . In particular we fix a basis so

that V ∼= Q2d and ψ has matrix
(

0 Id
− Id 0

)
. Rephrasing the construction in

terms of Hodge structures, we consider the subspace F0VC of VC associated

to a complex structure J , that is the eigenspace with eigenvalue −i for J .

The requirement that ψJ be positive definite is equivalent to ψ(x,y) being a

complex inner product on F0VC. This, in particular, implies that F0VC has

intersection zero with the subspaces generated by e1, . . . , ed and ed+1, . . . , e2d,

so there is a matrix τ ∈GLd(C) such that F0VC =
{

( τvv ) for v ∈ Cd
}
. The two

conditions imposed on ψ in the definition imply that (2πi)ψ is a polarisation

for V . In particular ψ : V ⊗ V → Q(1) is a morphism of Hodge structures.

This implies that ψ(F0VC,F0VC) = {0}, which gives τ symmetric. Finally the

positivity condition on ψJ implies that Im(τ) is positive definite.

This discussion identifies X with the Siegel upper half-spaceHd of complex

symmetric d×d with positive definite imaginary part.

By following through the calculations it can easily be seen that the action

induced on Hg by this identification is the standard linear fractional action of

Sp2g on the Siegel upper half-space.

Proposition 1.17 states thatHd is a Hermitian symmetric space this struc-

ture can be realized by equipping the Siegel upper half-space with the metric

ω = i∂∂(logdetIm(Z)).

Using a complex basis for V such that ψ has matrix
(

Id 0
0 Id

)
and carrying

out a similar analysis we can get the Harish-Chandra realisation of X as the
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bounded symmetric domain DIII
n , cf. [Chapter 4, Section 2.3, Mok89] and

[Chapter 2, Section 7, Sat80].

1.2.2.2 The universal family of abelian varieties.
As we alluded to in the introduction, the universal family over the fine moduli

space of principally polarised abelian varieties can be seen as a mixed Shimura

variety. We briefly recall the definition of the associated connected mixed

Shimura datum.

Consider the unipotent group G2g
a with the natural action of Sp2g and

construct the semi-direct product P = G2g
a × Sp2g. Then, extend Hg to the

vector bundle X = R2g ×Hg. Given (v,h) ∈ P (R) and (w,x) ∈ X we can

define an action of P (R) on X as

(v,h).(w,x) = (v+h.w,h.x) (1.7)

that is, R2g is acting on X as translation in the vertical direction and Sp2g(R)

is acting via the standard representation on the fibre and the linear fractional

action on Hg. At this point we only need to define a complex structure on

X , then the axioms in the definition of mixed Shimura datum are satisfied

by [Proposition 2.17, Pin90]. The complex structure on X+ is defined by the

following identification

X+ = Rg×Rg×Hg→ Cg×Hg

(a,b,Z) 7→ (a−Zb,Z)
(1.8)

and accordingly on X−.

1.2.3 Special and weakly special subvarieties
In this section we will introduce definitions for special and weakly special

subvarieties of mixed Shimura varieties.

Definition 1.23 ([Pin05]). Let M be a connected mixed Shimura variety. A

subvariety Z of M is called special if it is the image of a Shimura morphism
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M ′→M .

Remark 1.24. Let (G,X+
G ) be a connected pure Shimura datum and S a pure

Shimura variety relative to (G,X+
G ) and some lattice Γ. In this case special

subvariety are usually defined as components of Hecke translates of Shimura

subvarieties. Note that in this case the above definition reduces to the usual

one (cf. [Lemma 2.1, UY14a]). Indeed if (H,X+
H ) is a Shimura datum and

i :H→G is a closed immersion, inducing a closed immersion of the data and

a closed immersion of SH =MΓ∩H(Q)(H,X+
H ) into S, considering a component

of the Hecke translate Tg(SH) of SH by g ∈ G(Q) amounts to the same as

considering the conjugate immersion gig−1.

Definition 1.25 (cf. [Pin05, p. 266]). Let S be a mixed Shimura variety. A

point P ∈ S is special if it is a special subvariety of dimension 0.

Remark 1.26 (cf. [Definition 4.10, Pin05]). The definition of special point can

be restated as follows. Let (P,X ) be a mixed Shimura datum. A point x ∈ X

and its image in any mixed Shimura variety relative to the datum (P,X ) is

special if and only if there exists a torus T ⊂ P defined over Q such that the

homomorphism hx : SC→ P (C) factors through TC.

Proposition 1.27 ([11.7, Pin90]). Let S be a mixed Shimura variety and Z a

special subvariety. The set of special points of S contained in Z is dense in Z

both for the Zariski and the analytic topology.

Definition 1.28 ([Definition 4.1, Pin05]). Let S = MΓ(P,X ) be a mixed

Shimura variety. A subvariety Z of S is called weakly special if there exists a

diagram of Shimura morphisms as follows.

Q

Q′ S

f g

Such that Z is a component of g(f−1(P )) for some point P ∈Q′.



1.2. Mixed Shimura varieties 37

Proposition 1.29 ([Proposition 4.15, Pin05]). Let M be a mixed Shimura

variety. A subvariety of M is special if and only if it is weakly special and

contains a special point.

The following is a classification of the weakly special subvarieties in the

Kuga case due to Gao.

Proposition 1.30 (cf. [Corollary 1.2.15, Gao14]). Let M be a mixed Shimura

variety of Kuga type, S the associated pure Shimura variety and let π :M → S

be the projection morphism. A subvariety Z of M is weakly special if π(Z) is

weakly special and Z is a translate of an abelian subscheme of A= π−1(π(Z))

by a torsion section of A plus a section of the constant part of A.

1.2.4 Boundary components of pure Shimura varieties
In this section we recall some results about the boundary components of pure

Shimura varieties. these will be useful later when analysing the volumes of

holomorphic curves near the boundary of the symmetric space associated to a

pure Shimura datum.

Let (G,X ) be a pure Shimura datum. Recall that in this case X is a

Hermitian symmetric space of non-compact type. Below we recall the Harish-

Chandra embedding theorem that allows us to see X as an analytic open subset

in a complex vector space.

Theorem 1.31 (Borel embedding[Theorem 1, Section 3.3, Mok89]). Let X

be a Hermitian symmetric manifold of non-compact type, there is a Hermitian

symmetric manifold of compact type X∨ called its compact dual and an open

embedding X →X∨.

Remark 1.32. This Theorem can be seen as a purely group theoretical result

on the Lie group of biholomorphisms of X . However in the case of Shimura

varieties it can also be interpreted in Hodge theoretical terms. Indeed, X

can be seen as a period domain for certain pure Hodge structures. These

are constructed in two stages by first fixing a flag variety then imposing the
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two Riemann bilinear relations. The first relation identifies a closed algebraic

subvariety of the flag variety. This is exactly the compact dual of the space

X . Then the second relation identifies X as a semi-algebraic open subset of

its compact dual. See [Pea00] for more details.

Theorem 1.33 (Harish-Chandra embedding [Theorem 2, Section 5.2,

Mok89]). Let X a Hermitian symmetric space of non-compact type, x0 ∈ X

and m the holomorphic tangent space to X at x0. There exists a map

η : m→X∨ (1.9)

that is a biholomorphism onto a dense open subset containing X and such that

η−1(X ) is an open bounded symmetric domain in m.

From now on we assume X embedded in CN = m through the Harish-

Chandra embedding.

Definition 1.34. Let X be a Hermitian symmetric space of non-compact type.

A boundary component is a maximal analytic sub-manifold of ∂X .

We now recall two results we will need in the following chapters. These

were first proven in connection with the study of smooth compactifications

of arithmetic varieties, that is quotients of X by the action of an arithmetic

group. Our interest is due to the fact that these results allow us to analyse

closely what happens near a fixed boundary component of X by embedding

it as an analytic subset of a Siegel domain of the third kind. Siegel domains

of the third kind have a natural Poincaré metric on them that bounds the

metric on X and will allow us to carry out some volume computations, cf.

Lemma 2.11 and [Theorem 3.1, Mum77].

Proposition 1.35 ([Chapter III.4, AMRT10]). Given a boundary component

F ⊂ X , its normaliser N(F ) in G is a parabolic subgroup and can be decom-

posed as follows

N(F ) =
(
Gh(F )Gl(F )M(F )

)(
V (F )U(F )

)
,
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where

• R(F ) = (Gh(F )Gl(F )M(F )) is a Levi factor of N(F ) and the product is

direct modulo a finite central group

• W (F ) = (V (F )U(F )) is the unipotent radical of N(F )

• U(F ) is the centre of W (F ) and is a real vector space

• V (F ) =W (F )/U(F ) is also a real vector space of even dimension 2l

• Gh(F ) modulo a finite centre is Aut0(F ), all other factor act trivially

• Gl(F ) modulo a finite centre acts on U(F ) by inner automorphisms, the

other factors commute with U(F )

• M(F ) is compact

Proposition 1.36 ([Proposition 3.2 and Lemma 4.2, KUY16]). Fix a boundary

component F ⊂X . Define

XF =
⋃

g∈U(F )C
g.X ⊂ X c.

There is a holomorphic semi-algebraic isomorphism j :XF → U(F )C×Cl×F .

This isomorphism realises X as a Siegel domain of the third kind

X
j
'
{

(x,y, t) ∈ U(F )C×Cl×F | Im(x) + lt(y,y) ∈ C(F )
}

where C(F ) is a self-adjoint convex cone in U(F ) homogeneous under Gl(F )

and lt : Cl×Cl→ U(F ) is a symmetric bilinear form varying real-analytically

with t ∈ F .

Let Σ⊂X be a Siegel set for the action of Γ, as above. Then Σ is covered

by a finite number of open subsets Θ having the following properties. For each

Θ there is a cone σ with σ⊂C(F ), a point a∈C(F ), relatively compact subsets
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U ′, Y ′ and F ′ of U(F ), Cl and F respectively such that the set Θ is of the

form

Θ j
'
{

(x,y, t) ∈ U(F )C×Cl×F | Re(x) ∈ U ′, y ∈ Y ′, t ∈ F ′ and

Im(x) + lt(y,y) ∈ σ+a} .

1.3 o-minimal structures and definability
In this section we recall the definition of o-minimal structure and some prop-

erties, we then go on to recall Pila-Wilkie’s theorem on rational points in

definable sets. We finish the section by describing the definable structure of

mixed Shimura data and recalling the Ax-Lindemann-Weierstrass theorem.

For more details on the material presented in this section see [Wil15] and ref-

erences therein for an overview of o-minimal structures and the Pila-Wilkie

theorem and [Gao17] for the part on mixed Shimura varieties.

1.3.1 Definitions
Definition 1.37. An o-minimal structure over the field of real numbers2 is a

sequence (Sn)n∈N where Sn is collection of subsets of Rn such that for every

m,n ∈ N the following are satisfied

(a) Each Sn is closed under finite unions, finite intersections and comple-

ments;

(b) The product of sets in Sm and Sn belongs to Sm+n;

(c) The projection of Sn+1 onto the first n coordinates belongs to Sn;

(d) The set {(x1, . . . ,xn) : x1 = xn} belongs to Sn;

(e) The set {(x1,x2) : x1 < x2} and the graph of the addition and multipli-

cation functions belong to S2;

(f) The sets in S1 are finite unions of intervals and points.
2It is possible to define o-minimal structures on any dense linear order without end points,

see [Dri98] for a more general definition in this context. Here we insist on the field operations
being definable for the nature of the results we are interested in.
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A set belonging to one of the Sn is called definable (in the structure (Sn)n∈N).

A function or a relation is called definable is its graph is a definable set.

From now on we will use definable to mean definable in some o-minimal

structure, if we need definability in some particular o-minimal structure this

will always be specified.

Example 1.38. The smallest example of an o-minimal structure is the collection

Ralg of semi-algebraic sets. These are finite unions of sets defined by a finite

number of polynomial equations and inequalities. They form an o-minimal

structure by a fundamental result of Tarski [Tar48].

There are two larger o-minimal structures we will be interested in: Ran and

Ran,exp. The first is the smallest o-minimal structure such that all functions

f : [0,1]n→R analytic in a neighbourhood of [0,1]n are definable. The second

is the smallest o-minimal structure containing the first and the real exponential

function. These structures are o-minimal by results of van den Dries, Denef

and van den Dries, Wilkie, van den Dries and Miller, cf. [Dri86; DD88; Wil96;

DM94].

1.3.2 Cell decomposition

In this section we will introduce one of the most important properties of o-

minimal structure: cell decomposition.

We start by defining cells and decompositions.

Definition 1.39 ( [(2.3) Chapter 3 Dri98] ). Let i0, . . . , in ∈ {0,1}. A

(i1, . . . , in)-cell is a subset of Rn defined inductively as follows

• A (0)-cell is a point,

• A (1)-cell is an open interval, possibly unbounded at either or both ends,

• A (i1, . . . , in−1,0)-cell is the graph of a definable function on an

(i1, . . . , in−1)-cell,
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• A (i1, . . . , in−1,1)-cell is defined as the set

{(x1, . . . ,xn) ∈ Rn | f(x1, . . . ,xn−1)< xn < g(x0, . . . ,xn−1)

and (x1, . . . ,xn−1) ∈ C}
(1.10)

where C is an (i1, . . . , in−1)-cell and f and g are definable functions on

C such that f < g on C.

Definition 1.40 ( [(2.10) Chapter 3 Dri98] ). A decomposition of Rn is a

partition of Rn defined inductively as follows

• A decomposition of R is a partition of the type

{(−∞,a1),(a1,a2), . . . ,(ak,∞),{a1}, . . .{ak}} , (1.11)

• A decomposition of Rn is a partition of Rn into finitely many cells {Ai}i∈I
such that the set of projections {π(Ai)}i∈I is a decomposition of Rn−1;

here π is the projection onto the first n−1-coordinates.

We can now state the cell decomposition theorem.

Theorem 1.41 (Cell decomposition [(2.11) Chapter 3 Dri98] ). Given defin-

able sets A1, . . . ,Al in Rm, there is a decomposition of Rn which partitions each

of the Ai.

One of the consequences of the cell decomposition theorem is the finiteness

of connected components of definable sets. In the following chapters we will

also need a stronger property: the uniform finiteness of connected components

in definable families. To state this we start by recalling the definition of a

definable family.

Definition 1.42 ( [(3.1) Chapter 3 Dri98] ). Let S ⊂ Rm×Rn be a definable

set, the collection Sa ⊂ Rm for a ∈ Rn given by the fibres of S under the

projection Rm×Rn→ Rn is called a definable famlily.
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Proposition 1.43 ( [(3.6) Chapter 3 Dri98] ). Let Sa ⊂ Rm be a definable

family. The number of connected components of Sa is bounded independently

of a.

We close this section with a refinement of the cell decomposition theorem,

which states that in certain o-minimal structures it is possible to choose cells

defined by real analytic functions.

Definition 1.44. A cell is said to be (real) analytic if the definable functions

used in its inductive definition can be chosen analytic.

Definition 1.45. The o-minimal structure R̃ is said to admit analytic cell

decomposition if it satisfies the cell decomposition theorem with the additional

requirement that the cells can all be chosen analytic.

A result of van den Dries and Miller cf. [DM94, Section 8] implies.

Theorem 1.46 (Analytic cell decomposition). The o-minimal structures Ran

and Ran,exp admit analytic cell decomposition.

1.3.3 The Pila-Wilkie theorem
Fix an o-minimal structure R̃ of the field of real numbers. In this section

definable will mean definable in the o-minimal structure R̃. We will now recall

a few definitions before stating the Pila-Wilkie Theorem.

Definition 1.47. Let p/q ∈ Q such that (p,q) = 1. We define the height

H(p/q) = max{p,q}. We extend this definition to Qn by taking the maximum

of the heights of each component.

Definition 1.48. Let X ⊂Rn be any subset. The algebraic part of X, denoted

Xalg is the union of all connected positive dimensional semi-algebraic subsets

of X.

Definition 1.49. Let X ⊂Rn, the density function associated to X is defined

as

N(X,T ) = #{x ∈X ∩Qn : H(x)< T} . (1.12)
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We are now ready to state the first version of the Pila-Wilkie theorem.

Theorem 1.50 ([PW06, Theorem 1.8]). Let X ⊂ Rn be a definable set and

ε > 0. There exists a number c(X,ε)> 0 such that for all T > 1

N(X \Xalg,T )< c(X,ε)T ε. (1.13)

Remark 1.51. The first observations that led to the proof of the Pila-Wilkie

theorem were made by Bombieri and Pila in [BP89] where they studied the

set of integer points on the dilation of the graph of a fixed transcendental

analytic function. Later Pila proved in [Pil04] and [Pil05] similar results for

sub-analytic surfaces.

In the following chapters we will need a strengthening of this result due

to Pila.

Definition 1.52. A definable block of dimension w and degree d in Rn is a

connected definable set W ⊂ Rn of dimension w, regular at every point, such

that there is a semi-algebraic subset A ⊂ Rn of dimension w and degree ≤ d

regular at every point, with W ⊂ A.

A definable block family of dimension w and degree d is a definable family

W such that every non-empty fibre is a definable block of dimension w and

degree d.

Theorem 1.53 ([Theorem 3.6 Pil11]). Let Z ⊂ Rn be a definable set and fix

ε > 0. There is a finite number J = J(Z,ε) of definable block families W (j) ⊂

Rn×Rm and a positive real number c(Z,ε) such that Z(T ) is contained in

at most c(Z,ε)T ε definable blocks of the form W
(j)
η for some j = 1, . . . ,J and

η ∈ Rm.

Remark 1.54. The above formulation is a consequence of the full theorem

proven by Pila which allows the points in Z to be considered algebraic and the

Z to vary in a definable family. The main point of this statement is that it

allows to find semi-algebraic sets that contain a large number of rational (or
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in our case integer) points of Z provided we can prove that N(Z,T ) grows at

least polynomially in T .

1.3.4 Definable structure of mixed Shimura data
In this section we introduce the definable structure of mixed Shimura data.

This will allow us to apply o-minimal techniques to study mixed Shimura data

in the following chapters.

Let (P,X ) be a connected mixed Shimura datum. We start by describing

the semi-algebraic structure on X . We accomplish this by realising X as an

open semi-algebraic subset of an algebraic variety X∨ called its dual . This

is similar to the Borel embedding theorem recalled above in the case of pure

Shimura varieties. To define X∨ we start by embedding X in a flag variety

as follows. Fix a faithful finite dimensional rational representation V of P .

By the definition of mixed Shimura datum, a point x ∈ X induces a rational

mixed Hodge structure on V , varying x the weight filtration remains constant

and the Hodge filtration induces a variation of mixed Hodge structure over X .

Fix a point x0 ∈ X and denote by Fx0(V ) the Hodge filtration on V induced

by it. The Hodge filtration induces an embedding of X in the complex variety

G of flags in V (C) of the same type as Fx0(V ). By definition the embedding

X → G is equivariant with respect to the action of P (R)U(C) moreover, the

inclusion P (R)U(C)⊂ P (C) induces the factorisation

X → P (C).x0 ∼= P (C)/exp(F0
x0(LieP )→G. (1.14)

P (C)/exp(F0
x0(LieP ) is a complex algebraic subvariety of G and by [1.7, Pin90]

the map on the left is an open immersion. Define

X∨ = P (C)/exp(F0
x0(LieP ). (1.15)

Finally we observe that since the action of P (C) on X∨ is algebraic and

P (R)U(C) is a semi-algebraic subset of P (C), X is a semi-algebraic subset of

X∨.
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We have obtained the following result similar to the Borel embedding

theorem in the pure case.

Theorem 1.55. X can be realised as a semi-algebraic open subset of its dual

X∨ and the action of P (R)U(C) on X is semi-algebraic.

The next piece of information we will need is the definability of the uni-

formisation map. Fix an arithmetic subgroup Γ of P , since the uniformisation

map is periodic under the action of Γ it is necessary to restrict it to a subset

of X to have definability. The following result due to Gao contains all the

information we will need.

Theorem 1.56 ([Gao20, Section 10.1]). Let (P,X ) be a connected mixed

Shimura datum, Γ and arithmetic subgroup of P . There exists a fundamen-

tal domain F for the action of Γ on X such that the uniformisation map

unif : X →M = Γ\X is definable in the o-minimal structure Ran,exp when re-

stricted to F .

We can now recall the statement of the Ax-Lindemann-Weierstrass the-

orem. The fact that X can be embedded as a open semi-algebraic set of an

algebraic variety allows us to talk about semi-algebraic subsets of X .

Theorem 1.57 ([Theorem 1.2, Gao17]). Let (P,X ) be a connected mixed

Shimura datum, Γ an arithmetic subgroup of P and M the associated mixed

Shimura variety with uniformisation map unif. Let Y ⊂M be an algebraic

subvariety. Let Z ⊂ unif−1(Y ) be a maximal irreducible semi-algebraic subset;

then Z is a weakly special subset of X .

Below we recall a consequence of the mixed Ax-Lindemann-Weierstrass

theorem we will need in the sequel.

Theorem 1.58 ( [Theorem 12.2, Gao17] ). LetM = Γ\X be a connected mixed

Shimura variety associated to the mixed Shimura datum (P,X ). Let Y be a

Hodge generic irreducible subvariety of S Then there exists N /P such that for

the following diagram
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(P,X )

S

(P ′,X ′) = (P,X )/N

S′

unif
[ρ]

ρ

unif ′

the following hold:

• the union of positive dimensional weakly special subvarieties of S′ that

are contained in Y ′ = [ρ](Y ) is not Zariski dense in Y .

• Y = [ρ]−1(Y ′).



Chapter 2

Holomorphic Curves in mixed

Shimura varieties

The aim of this chapter is to prove the following result.

Theorem 2.1. Let (P,X ) be a connected mixed Shimura datum and Γ an

arithmetic subgroup of P . Let M be the mixed Shimura variety associated to

the above data and unif : X → M be the complex uniformisation map. Let

π : P → G be the projection modulo the unipotent radical and let (G,XG) be

the corresponding pure Shimura datum. Identify X with XG×Cm. Using the

Harish-Chandra embedding of XG we may identify X as a subset of CN ×Cm.

Let f : C→ CN ×Cm be a holomorphic function such that the composition of

f with the projection to CN is non constant and the image of f intersects X .

Then the Zariski closure of unif(f(C)) is a weakly special subvariety of M .

2.1 First reductions and notation
We keep all the notation as in the statement of the Theorem. Start by restrict-

ing the datum (P,X ) to the smallest special subvariety containing the image

of f . As the conclusion of our theorem is invariant under finite coverings, we

may assume that the arithmetic subgroup Γ can be written as a semi-direct

product Γ = ΓGnΓW , where ΓW = Γ∩W and ΓG = Γ/ΓW , cf. [PR94, 4.1,

Corollary 2]. Moreover, we may assume there is a faithful finite dimensional

representation ρ : P → GL(E) of P defined over Q and some lattice EZ such
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that Γ = P (Z) = P (Q)∩GL(EZ). With this assumptions, we can give the

following definition.

Definition 2.2. Let ρ : P → GL(E) be the faithful finite dimensional rep-

resentation of P fixed above; for any γ ∈ Γ write ρ(γ) = (γi,j)i,j . For any

φ ∈ End(ER) define

|φ|∞ = max
i,j
|φi,j | . (2.1)

Moreover, define the height of γ ∈ Γ as

H(γ) = max(1, |ρ(γ)|∞).

Remark 2.3. Let n be the dimension of E, then for any γ1,γ2 ∈ Γ, we have

H(γ1γ2)≤ nH(γ1)H(γ2). (2.2)

Consider the set A′ = (π ◦ f)−1(π ◦ f(C) ∩XG); A′ is open in C and

π ◦f(A) ∩ ∂XG 6= ∅. It is possible to find some R > 0 such that the set

A = A′ ∩BC(0,R) has the same property, where BC(0,R) is the Euclidean

ball in C of centre 0 and radius R.

Define Z = f(A) ⊂ X , Y = unif(Z)Zar ⊂ M and finally Ỹ the analytic

component of unif−1(Y ) that contains Z. As (P,X ) is the smallest special

subvariety containing the image of f , Y is Hodge generic.

Lemma 2.4.

• A is bounded definable in Ran

• Z is definable in Ran

• Assuming unif(Z)Zar is weakly special, unif(Z)Zar = unif(f(C)∩X )Zar

Proof. The projection π can be viewed as the coordinate projection CN ×

Cm→ Cm so is definable. f |B(0,R) is the restriction of an analytic function to

an open ball and by definition can be extended to an open neighbourhood of
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the closed ball B(0,R), so is definable in Ran. When embedding XG ⊂Cm via

the Harish-Chandra embedding, XG is a semi-algebraic set. This shows that

all sets and maps used in the definition of A are definable in the o-minimal

structure Ran so also A is.

Z is the image of an Ran-definable set by an Ran-definable map, so is Ran-

definable. Let Z̃ be the analytic component of unif−1(unif(Z)Zar) containing

Z. As we assumed unif(Z)Zar to be weakly special, Z̃ is semi-algebraic. By

analytic continuation we have f(C)⊂ Z̃Zar ⊂ CN ×Cm, hence the result.

Finally, fix a fundamental domain F for the action of Γ on X and define

NZ(T ) = #{γ ∈ Γ|γ.F ∩Z 6= ∅ and H(γ)≤ T} . (2.3)

To recap our notation, we have

• Z is a definable subset of X such that π(Z)∩∂XG 6= ∅

• Y = unif(Z)Zar = unif(f(C)∩X )Zar is Hodge generic

• Ỹ the analytic component of unif−1(Y ) containing Z

• F a fundamental domain for the action of Γ on X

• NZ(T ) = #{γ ∈ Γ|γ.F ∩Z 6= ∅ and H(γ)≤ T}.

2.2 Proof of Theorem 2.1
We start by stating the main counting result that will be proven in the next

section.

Proposition 2.5. There exist constants c1, c2 > 0 such that for all T > 0 suf-

ficiently large

NZ(T )≥ c1T c2 . (2.4)

Using this counting result together with the Pila-Wilkie theorem we can

prove that the stabiliser of Ỹ is large. More precisely we prove
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Proposition 2.6. There exists a positive dimensional semi-algebraic set X ⊂

P (R)+U(C), that is not contained in the stabilizer of any point, such that

X.Z ⊂ Ỹ .

Proof. We start by proving

Lemma. Consider the sets

Σ(Y ) =
{
h ∈ P (R)+U(C) |dim(h.Z ∩F ∩π−1(Y )) = dim(Z)

}
Σ′(Y ) =

{
h ∈ P (R)+U(C) |Z ∩h−1.F 6= ∅

}
.

(2.5)

Then

• Σ(Y ) is definable in Ran,exp

• For all h ∈ Σ(Y ), h.Z ⊆ π−1(Y ).

• Σ(Y )∩Γ = Σ′(Y )∩Γ.

Proof. The set Σ(Y ) is definable in Ran,exp because all sets and maps involved

in its definition are.

The second assertion follows from the definition of Σ(Y ) by analytic con-

tinuation.

Finally the equality

Σ(Y )∩Γ = Σ′(Y )∩Γ (2.6)

follows from the definition of Σ(Y ) and the fact that π−1(Y ) is Γ-invariant.

We now consider the set

Σ(Y )(T ) = {γ ∈ Γ∩Σ(Y ) |H(γ)≤ T} (2.7)

and let NΣ(Y )(T ) = #Σ(Y )(T ). Using Σ(Y )∩Γ = Σ′(Y )∩Γ and Proposition

2.5 we see that

NΣ(Y )(T ) =NZ(T )≥ c1T c2 (2.8)
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for some numbers c1, c2 > 0.

As the set Σ(Y ) is definable, we may apply Pila-Wilkie’s Theorem 1.53

which implies that for any ε > 0 there exists a constant c3 > 0 such that the

points in Σ(Y )(T ) are contained in at most c3T ε definable blocks.

This implies that for any integer k we can find a semi-algebraic set X ⊂

Σ(Y ) containing more than k points of Γ; choosing k big enough we may

assume that X is not contained in the stabilizer of any point. Finally from

the second claim in the Lemma we get that X.Z ⊂ π−1(Y ), thus proving the

proposition.

Corollary 2.7. The union of all weakly special subsets of X contained in Y

is Zariski dense in Y .

Proof. Let z ∈ Z be any point, then by Proposition 2.6, the maximal semi-

algebraic subset X of Ỹ containing z has positive dimension. By [PT13,

Lemma 4.1], X is a complex algebraic subset of Ỹ and by the Ax-Lindemann-

Weierstrass theorem 1.57 for mixed Shimura varieties it is a weakly special

subset of X+ contained in Ỹ . This implies that unif(Z) is covered by positive

dimensional weakly special subsets of S contained in Y . As unif(Z) is Zariski

dense in Y we get the result.

We can now complete the proof of the theorem. Since by assumption Y

is Hodge generic, we may apply Theorem 1.58 and obtain a normal subgroup

N of P with the following properties. Let ρ : P → P/N denote the quotient

map and let [ρ] : S → SP/N be the associated map on Shimura varieties, let

Y ′ = [ρ](Y ). Then the set of weakly special subvarieties of SP/N contained in

Y ′ is not Zariski dense in Y ′ and Y = [ρ]−1(Y ′).

By definition of weakly special subvariety we only need to prove that Y ′

is reduced to a point. Since Y ′ = [ρ](Y ) and Y = [ρ]−1(Y ′), we have that

[ρ](unif(Z)) is Zariski dense in Y ′. If, by contradiction, Y ′ had dimension

bigger than zero, the composition ρ◦f : C→X+∨
P/N would be non constant, so

the data (P/N,XP/N ) and the map ρ◦f would satisfy the assumptions of the
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theorem; we could then apply Corollary 2.7 to this new data to get a set of

weakly special subvarieties of SP/N contained in Y ′ and Zariski dense in it.

This contradicts the definition of Y ′, so Y ′ must be reduced to a point and Y

is weakly special.

2.3 Proof of Proposition 2.5
We first prove the counting result in the pure case, then use this deduce the

general case.

2.3.1 Proof in the pure case
We start by proving Proposition 2.5 in the pure case, that is, we assume

(P,X ) = (G,XG), to stress this we will use the notation (G,X ) for the Shimura

datum.

As in the Ax-Lindemann-Weierstrass theorem, there are two parts to the

proof, first a lower bound on the volume of the intersection of Z with geodesic

balls in X . Second an upper bound for the volume of the intersection of Z

with translates of the fundamental domain F .

We start by proving the lower bound, this is the analogue of the theorem

of Hwang-To used in the proof of the Ax-Lindemann-Weierstrass theorem.

Lemma 2.8. Let R̃ be an o-minimal structure. Assume R̃ admits analytic cell

decomposition (cf. Definition 1.45). Let U be a connected R̃-definable subset

of X of dimension 2 such that dimR(U ∩∂X ) = 1. Fix a point x0 ∈ X . Then

there exist real numbers c1, c2 such that for any R > 0 sufficiently large

V ol(B(x0,R)∩U)≥ c1 exp(c2R), (2.9)

where B(x0,R) is the geodesic ball in X of centre x0 and radius R.

Proof. In the course of the proof we will use the following notation:

• ∆α.β = {r exp iθ|0≤ r < 1 and α < θ < β} where 0<α< β are real num-

bers,
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• Cα.β = {exp iθ|α < θ < β},

• ∆α,β = ∆α,β ∪Cα,β

Since R̃ admits analytic cell decomposition, we may fix an analytic cell U ′

of dimension 2 such that U ∩ ∂X is a connected real analytic curve. This

implies that we can find positive real numbers α,β and a real analytic map

ψ : ∆α,β → U ′ with the following properties:

• ψ(∆α,β) is contained in U ′,

• ψ extends to a real analytic function in a neighbourhood of ∆α,β such

that ψ(Cα,β)⊂ U ′∩∂X is a non-constant real analytic curve.

We now recall two useful lemmas due to Ullmo and Yafaev.

Lemma 2.9 ([UY14b, Lemma 2.4]). Let de be the Euclidean metric on CN

restricted to X and dh be the Bergman (hyperbolic) metric on X . There exist

positive real numbers a1,a2, θ depending only on X and a choice of x0 ∈ X ,

such that, for all x ∈ X ,

−a1 logde(x,∂X )− θ ≤ dh(x,x0)≤−a2 logde(x,∂X ) + θ (2.10)

Lemma 2.10 ( [UY14b, Lemma 2.8] ). With notation as above, let ω be the

Kähler form on X associated to the Bergman metric and ω∆ the Poincaré

metric on the unit disk. Then we have the following:

(a) There exists a positive integer s such that, up to changing α and β

ψ∗ω = sω∆ +η (2.11)

for a (1,1) form η smooth in a neighbourhood of Cα,β.

(b) Let de,∆ be the Euclidean metric on C restricted to the unit disk. Chang-

ing α and β if necessary, there exists λ′ > 0 and C ′ > 0 such that, for all

z ∈∆α,β, ∣∣∣logde(ψ(z),∂X )−λ′ logde,∆(z,∂∆)
∣∣∣≤ C ′ (2.12)
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Now given R > 0, consider the set

IRα,β =
{
z ∈∆α,β|c3e−R−1 ≤ d∆,e(z,∂∆)≤ c3e−R

}
(2.13)

this set is an annular sector inside the unit circle. The main point in considering

this set is that as R tends to infinity the hyperbolic distance of IRα,β from the

origin tends to infinity and its volume is exponential in R. We now use the two

lemmas above to see that, up to changing α and β there exist a constant c3 > 0

such that the image ψ(IRα,β) in X is contained in the geodesic ball BX ,h(x0,R).

We are now ready to calculate volumes. Let R > 0 be sufficiently large, then

Vol(U ∩B(x0,R))≥
∫
IRα,β

ω∆ ≥ c1 exp(c2R) (2.14)

for some positive constant c1, c2 > 0.

We now address the upper bound.

Lemma 2.11. There exists a positive constant c3 such that for any γ ∈ Γ

VolγC(γC ∩F )≤ c3, (2.15)

where VolγC is the volume with respect to the Riemannian metric on γC in-

duced by the metric on X .

Proof. By definition, F = J.Σ for a finite subset J ⊂ G(Q) and some Siegel

subset Σ⊂X . Hence it is sufficient to prove the theorem for the Siegel set Σ.

In turn, every Siegel set is covered by a finite number of open subsets Θ as in

proposition 1.36, so it is sufficient to prove that

VolγC(γC ∩Θ)≤ c4 (2.16)

for some constant c4 > 0. Let ω be the natural Kähler form on X , then

V olγC(γC ∩Θ) =
∫
γC∩Θ

ω (2.17)



2.3. Proof of Proposition 2.5 56

On XF we have the Poincaré metric defined by

ωF =
∑ dx1∧dxi

Im(xi)2 +
∑

dyj ∧dyj +
∑

dfk ∧dfk. (2.18)

By a result of Mumford [Mum77, Theorem 3.1], there is a constant c5 such

that on X

ω ≤ c5ωF . (2.19)

Hence

V olγC(γC ∩Θ)≤
∫
γC∩Θ

ωF . (2.20)

Now let w be a coordinate between xi, yj or fk, denote by pw : XF → C the

projection to the w axis. Let w0 ∈ C and g ∈G(R) define

ng.C,w(w0) = number of points in g.C ∩p−1
w (w0) counted with multiplicity.

(2.21)

Consider the set

W =
{

(z0,g,w0) ∈ (Ui∩B(xi,Ri))×G(R)×C |g.f(z0) ∈ p−1
w (w0)

}
. (2.22)

Note that the map pw is the projection on one component from the semi-

algebraic set XF , hence is definable; moreover in [UY14b, Proposition 4.1]

Ullmo and Yafaev proved that the action of G on X is semi-algebraic. Finally,

by construction, the function f |U∩B(xi,Ri) is definable. This implies the defin-

ability of the set W . Now we consider W as a definable family over G(R)×C.

By proposition 1.43 the number of connected components in a definable fam-

ily, hence in this case the cardinality of the sets in the family, is uniformly

bounded by a constant cw. We now observe that the fibre of W over a point

(g,w0) ∈ G(R)×C is the set f−1(p−1
w (w0)∩ g.C) whose cardinality is exactly

ng.C,w(w0). Hence

nγC,w(w0)≤ cw (2.23)

for all w0 ∈C and all γ ∈ Γ. Let c6 be the maximum of cw with w equal to xi,
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yj or fk, then

VolγC(γC ∩Θ)≤ c5
(∑∫

pxi(Θ)
nγC

(
p−1
xi (xi)

) dxi∧dxi
Im(xi)2 +

∑∫
pyj (Θ)

nγC
(
p−1
yj (yj)

)
dyj ∧dyj +

∑∫
pfk (Θ)

nγC
(
p−1
fk

(fk)
)
dfk ∧dfk

)

≤ c5c6
(∑∫

pxi(Θ)

dxi∧dxi
Im(xi)2 +

∑∫
pyj (Θ)

dyj ∧dyj+
∫
pfk (Θ)

dfk ∧dfk
)

(2.24)

Now we observe that from the description of Θ, the projection pxi(Θ) is con-

tained in a finite union of usual fundamental domains in the upper half plane,

which have finite hyperbolic area. Moreover, if w is one of yj or fk, then, again

from the description of Θ, it follows that pw(Θ) is relatively compact in the

plane and hence has finite Euclidean area.

These two results allow us to apply the same strategy used to prove the

counting result in the setting of the Ax-Lindemann-Weierstrass theorem also

in this case. Below we recall the main steps in the proof.

Lemma 2.12 ([KUY16, Lemma 5.4]). Let x0 ∈X be a base point. There exists

a constant c7 such that for any g ∈G(R) the following inequality holds

log (c7 |g|∞)≤ d(g.x0,x0). (2.25)

Lemma 2.13 ([KUY16, Lemma 5.5]). Let F be the fundamental domain for

the action of Γ fixed in the previous section. There exists a positive constant

c8 such that for all γ ∈ Γ and for all u ∈ γF

H(γ)≤ c8 |u|n∞ . (2.26)

Proof of Proposition 2.5. Choose a base point x0 ∈ C, let c7 and c8 the

constants given by Lemma 2.12 and Lemma 2.13 and consider the inter-
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section C ∩B(x0,R) of C with the geodesic ball of centre x0 and radius

R = log
(

c7
c81/nT

1/n
)
. On the one hand, we have by Lemma 2.8

VolC(C ∩B(x0,R))≥ c7c9
c8

1/n
T
c10
n . (2.27)

On the other hand, by Lemma 2.12 and Lemma 2.13

B(x0, logR)⊆ {g ·x0 |g ∈G(R), |g|∞ ≤ T
1/n/c1/n

8 }

⊆
⋃
γ∈Γ

H(γ)≤T

γF . (2.28)

Hence, by Lemma 2.11

VolC(C ∩B(x0, logR))≤
∑
γ∈Γ

γF∩C 6=∅
H(γ)≤T

Volγ−1C(γ−1C ∩F)≤NC(T )c3 (2.29)

We conclude comparing the lower bound and the upper bound

c7c9
c8

1/n
T
c10
n ≤NC(T )c3 (2.30)

2.3.2 Reduction to the pure case

The assumption that the restriction of the projection map π :X →XG, implies

that f(C) us not contained in any fibre of π. Below we prove that it also implies

that the set Z is uniformly bounded in the fibres.

Lemma 2.14. There is a finite subset Λ of ΓW such that Z ⊂ ΛΓG.F .

Proof. As Z is a subset of f(B(0,R)) for some R > 0 and f is defined on all

of C, the maximum modulus principle implies that f(B(0,R)) and hence Z

are bounded in CN+m. This also implies that the projection of Z to Cm is

bounded, which implies the result.
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Remark 2.15. Notice that since (π(Z))∩∂X 6= ∅, we need all of ΓG to get a

set that contains Z in the above lemma.

We now reduce to the pure case.

Lemma 2.16. Assume Proposition 2.5 is true when (P,X ) is a pure Shimura

datum, then it is true in general.

Proof. Let Λ ⊂ ΓW be as in the previous proposition and k = maxγ∈ΛH(γ).

Let γG ∈ ΓG such that γGFG ∩ZG 6= ∅. Then by the previous proposition,

there exist γ ∈ Γ such that π(γ) = γG, γF ∩Z 6= ∅ and H(γ)< kH(γG). This

together with the pure case implies

NZ(T )> c1
kc2

T c2 (2.31)

as wanted.



Chapter 3

Totally geodesic subvarieties of

mixed Shimura varieties

3.1 Differential geometry of Hermitian vector

bundles
In this section we recall some notions regarding the differential geometry of

holomorphic Hermitian vector bundles over complex manifolds. All the mate-

rial in this section is classical, proofs can be found for instance in [Kob87].

Let M be a complex manifold and E a holomorphic Hermitian vector

bundle of rank r on M with Hermitian form h.

Definition 3.1. • We denote by Ap(E) the p-forms over M with values in

E, i.e. Ap(E) = E ⊗Ωp(M).

• Given α⊗ s ∈ Ak(E) and β⊗ t ∈ Al(E), define

h(α⊗ s,β⊗ t) = h(s, t)α∧β ∈ Ak+l(E). (3.1)

• A connection ∇ on E is a map ∇ : A0(E)→ A1(E) that satisfies the

Leibniz rule

∇(fσ) = df ⊗σ+f ·∇σ. (3.2)
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• A connection ∇ on E is called metric if

dh(α,β) = h(∇α,β) +h(α,∇β) (3.3)

• Given a connection ∇ on E , define ∇ :Ak(E)→Ak+1(E) by

∇(α⊗ s) = dα⊗ s+ (−1)kα∧∇s (3.4)

• The curvature Θ of a connection ∇ on E is ∇◦∇ :A0(E)→A2(E)

Similarly to the usual exterior differentiation on a complex manifold, one

can decompose a connection ∇ on E as sum of its (1,0) and (0,1) parts.

Lemma 3.2. There is a unique metric connection ∇ on E such that ∇(0,1) = ∂,

this is called the Chern connection of (E,h).

Lemma 3.3. The curvature of the Chern connection of E is of type (1,1).

Let F be a holomorphic sub-bundle of E and G the quotient bundle. We

are interested in seeing how the Chern connections of E and F are related.

Let ∇E and ∇F be the Chern connections on E and F respectively. Then,

σF =∇E−∇F is a one form in A1(Hom(F ,E)). It can be proven that actually

σF ∈ A(1,0)(Hom(F ,G)).

Definition 3.4. σ is called the second fundamental form of the sub-bundle F .

Lemma 3.5. Let ΘE and ΘF be the curvatures of E and F respectively. We

have the equality

ΘF = ΘE −σt∧σ (3.5)

Definition 3.6. Assume M is Kähler. A submanifold N ⊂M is called totally

geodesic if its second fundamental form vanishes.

Remark 3.7. The above definition is equivalent to the usual one in terms of

geodesics. That is, N ⊂ M is totally geodesic if for any point p ∈ N any

geodesic curve through p in M that is tangent to N is contained in N .
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3.2 Curvature of Kuga varieties

Let (P,X ) be a connected mixed Shimura datum of Kuga type. Recall this

implies there is a short exact sequence of algebraic groups defined over Q

0→ V → P →G→ 0 (3.6)

where V is the unipotent radical of P , additionally V is abelian and the rep-

resentation of S on Lie(V ) induced by any x ∈ X has type (−1,0),(0,−1).

Denote by (G,XG) be the associated quotient pure Shimura datum.

We will start by describing a one parameter family of inequivalent P -

invariant Kähler metrics on X then we will proceed to analyse curvatures.

As a first step we analyse the structure of holomorphic vector bundle on

X in terms of Hodge theory.

The action of V (R)⊂ P (R) on X gives an identification

V (R)×XG ∼= V (R).(XG×{0}) = X . (3.7)

Since V is an abelian unipotent group, the exponential map exp : Lie(V )→ V

is an isomorphism, which yields an identification

Lie(V )R×XG ∼= X . (3.8)

The axioms of mixed Shimura datum guarantee that the local system

Lie(V )Q × XG carries a polarised variation of Hodge structures of type

{(−1,0),(0,−1)}. Associated to the local system Lie(V )R×XG we have a

vector bundle Ṽ together with the Gauss-Manin connection ∇GM whose local

system of horizontal sections is, by definition, Lie(V )R×XG. The variation of

Hodge structures on Lie(V )Q×XG defines a holomorphic sub-bundle F 0ṼC of

ṼC whose fibre over a point x∈XG is the term F 0 LieVC in the Hodge filtration
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of LieVC induced by the point x . This discussion gives the following maps

X → Ṽ → ṼC→ ṼC/F 0(ṼC). (3.9)

The composition X → Ṽ/F 0(ṼC) gives X its structure of holomorphic vector

bundle mentioned in Proposition 1.17.

Definition 3.8. A section of X is called horizontal if it is the image of a

horizontal section for the Gauss-Manin connection.

Remark 3.9. Since XG is a Hermitian symmetric domain, it is simply con-

nected; this implies that X is a trivial holomorphic vector bundle over XG. We

then get two different trivialisations of X , on the one hand X = Lie(V )R×XG∼=

R2g×XG, and on the other X = ṼC/F 0(ṼC)∼= Cg×XG. A section of X is hori-

zontal if it is constant in the first trivialisation. This does not imply in general

that horizontal sections are constant also in the second. We will see this effect

in practice below when we will explicitly calculate these identifications in the

case of the mixed Shimura datum associated to the universal family of abelian

varieties.

Finally we note that the axioms of mixed Shimura datum imply that the

variation of Hodge structures on Ṽ is polarisable; fixing a polarisation gives

rise to a positive definite P -invariant Hermitian metric on X .

The above construction can be also seen in terms of families of abelian

varieties in the following way1. Let Γ be a neat arithmetic subgroup of P

and ΓV = Γ∩VR. Then π :A = ΓV \X → XG is an analytic family of abelian

varieties over the complex analytic set XG. We can identify the local system

Lie(V )×XG with R1π∗QA, where QA is the locally constant local system on

A with fibre Q. The variation of Hodge structures on R1π∗QA given by the

identification

R1π∗QA⊗QXG
OXG ∼=H

1
dr(A/XG)∨ (3.10)

1A similar discussion can be found in [Gao20].
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coincides with the variation of Hodge structures described above over Lie(V )×

XG. This gives an identification

ṼC/F 0(ṼC)∼=H1
dr(A/XG)∨/F 0(H1

dr(A/XG)∨)∼= Lie(A/XG). (3.11)

So that we get an identification

X ∼= Lie(A/XG). (3.12)

The maps we described above have some interesting properties:

• the map i : Lie(V )×XG→ ṼC/F 0(ṼC) is real analytic

• the image i(a×XG) is a complex analytic

• i is a group homomorphism when restricted to any fibre.

We can now define the above mentioned Kähler metrics on X . We start

by noting that the quotient map π : X → XG induces a short exact sequence

of vector bundles over X

0→W → T (X )→ π∗T (XG)→ 0. (3.13)

Where W is the kernel of dπ. As remarked above, we have an identification

of X with its structure of holomorphic vector bundle over XG with the bundle

V = ṼC/F 0(ṼC). Fix a polarisation for the variation of Hodge structures on Ṽ ,

as remarked above, the polarisation induces a G-invariant Hermitian metric

on V ; denote this metric by h. By translation in the vertical direction, we can

identifyW ∼= π∗V and pulling back h we obtain a P -invariant Hermitian metric

on W . In a similar way, from the canonical Kähler metric on XG we obtain a

P -invariant Hermitian metric g on π∗TXG. To obtain a P -invariant Hermitian

metric on TX we only need to define a P -invariant splitting TX =W⊕π∗TXG,

that is a P -invariant section of dπ. This can be achieved by using the horizontal

sections of π defined above; for every point (Z,w) ∈ X we identify a vector
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µ ∈ π∗T (XG)(Z,w) with dσ(µ) ∈ T (X ) where σ is the only horizontal section

through (Z,w). This gives an identification of π∗T (XG) with a P invariant

sub-bundle of TX .

Given this decomposition we can now define a one parameter family of

inequivalent Hermitian metrics on X as follows. Given a tangent vector ξ ∈ TX

denote by ξ = h+ v its decomposition into horizontal and vertical tangent

vectors, then define

‖ξ‖2t = ‖h‖2g + t2 ‖v‖2h . (3.14)

These metrics are exactly the ones defined in [Sat80, Chapter IV, §8] and the

corresponding (1,1)-forms νt are Kähler.

Example 3.10. We now carry out explicitly the above computations in the case

of the mixed Shimura datum (Hg×Cg,Sp2gnG2g
a ), for a similar discussion see

[MT93]. First we need to make explicit the identification Hg×R2g→Hg×Cg.

For this we recall that, by definition of Hg, the Hodge structure in the fibre

over Z ∈ Hg is defined by H0,−1
Z having the columns of the matrix

(
Z
Id

)
as a

basis. So the complex structure on the fibre over Z ∈Hg×R2g is given by

Jz =

Z Z

Id Id


iId 0

0 −iId


Z Z

Id Id


−1

, (3.15)

rearranging the matrices we get

JZ

Z Z

Id Id

=

Z Z

Id Id


iId 0

0 −iId

 . (3.16)

Which is equivalent to saying that the identification is given by the map

Hg×R2g→Hg×Cg

(Z,(a,b)) 7→ (Z,Za+ b).
(3.17)

We put on Hg×R2g the canonical symplectic form, which is invariant under

G = Sp2g(R) by definition. Denoting by (Z,w) coordinates on Hg×Cg, the
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pull-back of this symplectic form gives rise to the Hermitian metric

h(w,w′) = w′t(ImZ)−1w. (3.18)

This describes the vector bundle V with its invariant Hermitian metric in

the notation used above. Notice that in this case we have an isomorphism

Sym2(V ,h)∼= (THg,g), where the isomorphism is given by the map

w�w′ 7→ 1
2
(
wtw′+w′tw

)
(3.19)

when identifying the tangent space to Hg with the space of complex symmetric

matrices. The one parameter family of Kähler forms defined by these metrics

is

νt = i∂∂
(
t2(Imw)t(Imτ)−1(Imw) + logdet(Imτ)−1

)
(3.20)

We now analyse the curvature of Kuga varieties. Let (P,X ) be a mixed

Shimura datum of Kuga type with a given Shimura embedding (P,X ) →

(Sp2g×G2g
a ,Hg×Cg). The induced map XG→Hg is a totally geodesic immer-

sion. Since XG is a Hermitian symmetric domain, the centre of the stabilizer

KG
x ⊂ G(R) of a point x ∈ XG is isomorphic to the circle group S1, this im-

plies that it is the same as the centre of the stabilizer KSp2g
x ⊂ Sp2g(R) when

considering x ∈ XG ⊂ Hg. As noted above, the tangent bundle THg is the

symmetric square of the vertical bundle VHg , hence we can find an element

kx of the centre of KSp2g
x that acts as multiplication by −1 on TxHg and as

multiplication by i on VHg,x. Since the centre of KG
x coincides with the centre

of KSp2g
x , the element kx stabilizes XG and acts in the same way on TxXG and

VXG . Using the invariance of the curvature tensor of X under the action of G

we see that it must have the following form

T t
ααββ

=Rαhαhβhβh+t2
(
Θβvβvαhαh

+ Θαvαvβhβh
+ 2ReΘβvαvαhβh

)
+t4Tαvαvβvβv .

(3.21)

where the term R indicates the curvature tensor of XG and Θ the curvature
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tensor of the vector bundle V .

3.3 Totally geodesic subvarieties of mixed

Shimura varieties
In this section we study totally geodesic subvarieties of mixed Shimura vari-

eties. Let (P,X ) be a connected mixed Shimura datum and Γ an arithmetic

subgroup of P . Since the action of Γ is properly discontinuous, a subvariety

Y of M = Γ\X is totally geodesic if and only if one complex analytic com-

ponent Ỹ of unif−1(Y ) is totally geodesic. Hence we analyse totally geodesic

subvarieties of the uniformising space X .

3.3.1 The pure case
Proposition 3.11. Let X be a Riemannian globally symmetric space given as

the quotient G/K of a real semisimple Lie group modulo a compact subgroup.

Let Y ⊂X be a totally geodesic subvariety of X . The subgroup F ⊂G of isome-

tries preserving Y acts transitively on Y and Y is a Riemannian symmetric

space.

Proof. See [Hel78] Theorem 7.2, Chapter IV and following remark.

If additionally we know that the pair (G,X ) forms a pure Shimura datum

we can be more precise on the structure of the subgroup F .

Proposition 3.12 (cf. [UY18a]). Let (G,X ) be a pure Shimura datum. Let

Y ⊂X be complex a totally geodesic subvariety. Fix a point y ∈ Y . There exists

a semisimple real algebraic subgroup F of G without compact factors such that

y factors through F NG(F ) and Y = F (R)+.y.

Vice versa, given a semisimple subgroup F of G without compact factors

and a point x ∈ X such that x : S→G(R) factors through F NG(F ), the sub-

manifold F (R)+.x of X is a complex totally geodesic subvariety.

Proof. First fix a complex totally geodesic subvariety Y of X and fix a point

y ∈ Y . Since Y is a totally geodesic submanifold, there exists a semisimple
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subgroup F such that Y = F (R)+.y this is the group of biholomorphisms of Y .

We need only prove that F is normalized by y(S), this is the same as proving

its Lie algebra is. Finally we note that since y(S) is the Zariski closure of

y(U1), it is sufficient to show that Lie(F ) is invariant under this second group.

Lie(F ) can be decomposed as the direct sum of a Lie algebra of compact type

ky, the Lie algebra of the stabilizer of y plus the tangent space Ty(Y ) of Y

at y. Let K be the stabilizer of y in G and k its Lie algebra. By [Hel78, Ch.

VII, p352ff] y(U1) is in the centre of K and induces the complex structure on

Ty(Y ). The first fact implies that ky is invariant under y(U1) and the second

plus the fact that Y is a complex submanifold of X implies that Ty(Y ) is.

Conversely let F be a semisimple subgroup of G without compact factors

and x∈X such that x factors through F NG(F ). Let Y = F (R)+.x x(
√
−1) is

a Cartan involution for G whose action induces the geodesic inversion around

x on X . Since F is normalized by x(S), Y is invariant under x(
√
−1), that is

Y is symmetric around x, since it is homogeneous it is symmetric and hence

totally geodesic. The fact that x(U1) induces the complex structure on X and

x(S) normalises F implies that Y is a complex submanifold of X . Finally since

F is algebraic, Y is complex subvariety of X .

3.3.2 The mixed case
Let (X ,P ) be a mixed Shimura datum of Kuga type with a given Shimura

embedding (X ,P )→ (Hg×Cg,Sp2goG2g
a ), so that the curvature formula cal-

culated above applies. Let Y be a weakly special subset of X . As usual, denote

by (XG,G) the quotient pure Shimura datum, π the projection map and by a

subscript G the image of subsets of X by π, for instance YG = π(Y ).

Recall that by Proposition 1.30, given a neat arithmetic subgroup Γ of

P , the image unif(Y ) in S = ShΓ(X ,P) can be described as the translate of

an abelian subvariety of S|unif(YG) by a torsion section of S plus a section

of the constant part of S|unif(YG). This implies that Y is the translate of a

holomorphic sub-bundle of X|YG by a section of Q2g×XG plus a section of the

constant part of X|YG . The constant part of X|YG is the largest holomorphic
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sub-bundle X ′ over YG such that the restriction of the identification X =

XG×Cn ∼= XG×R2n to X ′ is constant.

Definition 3.13. Let Y ′ be the holomorphic sub-bundle of X|YG associated

to Y . We say that Y has non trivial constant part if the constant part of Y ′

has positive dimension.

Proposition 3.14. Assume Y has non trivial constant part, then Y is not

totally geodesic.

Proof. Since the identification X ∼=XG×R2g restricted to the constant part X ′

of X|YG is constant, we can extend any constant section of X ′ to a horizontal

section of X over XG. As all sections ofQ2g×XG are horizontal, Y is a translate

of a holomorphic sub-bundle of X|YG by a horizontal section. As V (R) acts

by translation by horizontal sections and the curvature of X is invariant under

the action of P (R), we may assume that Y is a holomorphic sub-bundle of

X|YG .

• Let Y ′ be the constant part of Y , then Y ′G = YG and by hypothesis the

fibres of π|Y ′ are positive dimensional.

• Let ∇, T t and ∇Y ′ , T t,Y ′ be the Chern connections and curvatures of X

and Y ′ respectively.

• Let σY ′ be the second fundamental form of Y ′.

• Let v,w be two vertical tangent vectors to Y ′ at a point y.

As Y ′ is constant, the restriction of the Kähler metric νt from X to Y ′ is a

product metric and by definition of νt the metric on the fibres of Y ′ is euclidean.

Then by Lemma 3.5

0 =T t,Y
′
(v,v,w,w) =T t(v,v,w,w)−‖σY ′(v,w)‖2 = t4 |h(v,w)|2−‖σY ′(v,w)‖2 .

(3.22)

This already implies that Y ′ is not totally geodesic in X ; we will now show

that it also implies that Y is not totally geodesic in X .
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As the fibres of Y ′ are euclidean ∇Y ′v w= 0. This is true in particular when

Y ′ = Y = π−1(x), where the relation

∇vw =∇π
−1(x)
v w+σπ−1(x)(v,w) = σπ−1(x)(v,w) (3.23)

implies that ∇vw is a horizontal vector. In the general case, ∇vw= σY ′(v,w)∈

(TY ′)⊥, as ∇vw is a horizontal vector we actually have 0 6= σY ′(v,w) ∈

(TY ′G)⊥ = (TYG)⊥ which implies that also σY (v,w) 6= 0, so Y is not totally

geodesic in X .

Corollary 3.15. The fibres of projection map π are weakly special but not

totally geodesic.

Using the explicit computations carried out in Appendix B we can give a

more precise result.

Proposition 3.16. The smallest complete totally geodesic submanifold of X

containing one fibre of the map π is X itself.

Proof. Let x ∈ Xg and Y = π−1(x). Here we use the same notation as in

Appendix B. From Lemma B.4 we have

Γzpwk,wm = it2

2
(
δm,p1δk,p2 + δm,p2δk,p1

)
. (3.24)

This means that for any coordinate zj we can find a pair of vertical vectors

v1,v2 such that ∇v1v2 has a non zero component in the direction of zj . Let Y ′

be the smallest complete totally geodesic submanifold of X containing Y , then

at any point in Y the tangent space to Y ′ must contain the space generated

by all of the zj . Using the completeness of Y ′ we see it must then be equal to

X .

Next we prove that, in contrast to the pure case, there are totally geodesic

submanifolds of X that are not orbits under subgroups. The argument below

is due to N. Mok.



3.3. Totally geodesic subvarieties of mixed Shimura varieties 71

Proposition 3.17. Let t > 0 and γ : (a,b)→X be a geodesic curve in (X ,νt)

parametrised by arc length. Then the image Γ of γ is not contained in any

fibre of π.

Proof. Assume on the contrary that there is some geodesic curve γ : (a,b)→X

parametrised by arc length that is contained in a fibre π−1(x) for some x ∈X .

By completeness of (X ,νt) as a Riemannian manifold, we may extend γ to

(−∞,∞) and, without loss of generality, we may assume that the extension of

γ to (a− ε,b+ ε) is an embedding. Since the Kähler metric νt is real analytic

also γ and its extension to (−∞,∞) must be real-analytic. After extending

γ to (a− ε,b+ ε), by complexification in local holomorphic coordinates, Γ

admits a complexification to a holomorphic curve C. Since Γ is contained in

the fibre π−1(x) and fibres of π are complex submanifolds of X , also C must

be contained in π−1(x).

Recall that the complexification C of Γ can be defined as the image of a

holomorphic map defined in neighbourhood of the closed interval [a,b] in C.

Then, for any point p = γ(τ) ∈ Γ we have TR
p (C) = Tp(Γ) +JTp(Γ), where J

denotes the integrable almost complex structure on X . Moreover, TR(C) is

J invariant and is equal to the real part of the holomorphic tangent bundle

T (C) = TC(C)(1,0). So, the tangent vector γ̇ to γ extends to a real analytic

vector field on C such that the vector field γ̇− iJγ̇ is holomorphic. In what

follows we will consider γ̇ extended to a real-analytic vector field as described

above.

Denote by ∇ the metric connection on (X ,νt). Since γ is a geodesic curve,

∇γ̇ γ̇ = 0. As (X ,νt) is Kähler, the almost complex structure J is parallel and

we have ∇γ̇Jγ̇ = J∇γ̇ γ̇ = 0. It follows that

∇γ̇−iJγ̇ γ̇− iJγ̇ = (∇γ̇ γ̇−∇Jγ̇Jγ̇)− i(∇Jγ̇ γ̇+∇γ̇Jγ̇) =−(∇Jγ̇Jγ̇+ i∇Jγ̇ γ̇).

(3.25)

As the connection ∇ is torsion free and the tangent space TR(C) is J invariant
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we have

∇Jγ̇ γ̇ =∇Jγ̇ γ̇−∇γ̇Jγ̇ = [Jγ̇, γ̇] ∈ Γ(C,A0(TR(C))). (3.26)

From the J-invariance of TR(C) we also get

∇Jγ̇Jγ̇ = J(∇Jγ̇ γ̇) ∈ Γ(C,A0(TR(C))). (3.27)

Combining the last three displays we obtain

∇γ̇−iJγ̇ γ̇− iJγ̇ ∈ Γ(C,A0(TC(C))). (3.28)

Denote by σX the second fundamental form of C in X . The last equation

implies that σX (α,α) = 0 for any (1,0)-vector α ∈ Tp(C) and any p ∈ Γ. As a

consequence, denoting by S the curvature tensor of C, for α 6= 0 we have

Sα,α,α,α = T tα,α,α,α−
∥∥∥σX (α,α)

∥∥∥2
= t4 |h(α,α)|2 > 0. (3.29)

On the other hand, C ⊂ π−1(x) and Ex = π−1(x) is flat; denoting σEx the

second fundamental form of C in Ex we have

Sα,α,α,α =−
∥∥∥σEx(α,α)

∥∥∥2
≤ 0. (3.30)

This gives a contradiction, completing the proof.

Corollary 3.18. Let t > 0, x ∈ XG and Ex = π−1(x). Let p ∈ Eq, 0 6=

v ∈ TR
p (Ex) and γ : (−∞,∞) → X be the unique geodesic curve through

parametrized by arc length through p such that γ̇(p) ∈ Rv. Then the image

Γ of γ is not the orbit under any 1-parameter subgroup of P .

Proof. Since the vector bundle of vertical tangent vectors V is P -invariant, any

smooth and immersed orbit of p under a 1-parameter subgroup of P whose

tangent vector at p is vertical and non-zero must be contained in the fibre Ex.

On the other hand, by Proposition 3.17, Γ is not contained in any fibre of

π.



Chapter 4

Algebraic flows

In what follows we will always use (P,X ) to denote a connected mixed Shimura

datum of Kuga type, as above, (G,XG) will denote the corresponding con-

nected pure Shimura datum and π will denote the projection map. M will

denote a connected mixed Shimura variety associated with (P,X ) and an

arithmetic subgroup Γ of P and [π] : M → S the Shimura morphism to the

associated pure Shimura variety induced by the projection π.

The aim of this section is to prove the following theorem.

Theorem 4.1. Let F ⊂ P be a real algebraic subgroup such that the projec-

tion FG = π(F ) is a real semisimple Lie group without compact almost simple

factors. Let Γ⊂ P be an arithmetic subgroup and M the associated connected

mixed Shimura variety. Let Z = F (R).x for some point x ∈ X . The closure of

unif(Z) in the analytic topology of M is a real weakly special subvariety.

Recall that in the setting of mixed Shimura varieties we define real weakly

special subvarieties as follows.

Definition 4.2. Let (G,XG) be a connected Shimura datum. An algebraic

subgroup H of G defined over Q is said to be of type H if H/Ru(H) is a non

trivial semisimple group with no compact simple factor.

A subvariety Y of a mixed Shimura variety M is a real weakly special

subvariety if there exists an algebraic subgroup H ⊂ P defined over Q such

that π(H) is of type H and Y = unif(H(R)+.x) for some x ∈ X .
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Similarly to the pure case it is possible to prove the following.

Proposition 4.3 (cf. [UY18a, Proposition 2.6]). The Zariski closure of a real

weakly special subvariety Y of a mixed Shimura variety M is weakly special.

Proof. From the definition of real weakly special subvariety we know that

there exists an algebraic subgroup H of P defined over Q such that Y =

unif(H(R)+.x) for some x ∈ X .

Let Ỹ =H(R)+.x, V = Ru(P ) and HV =H ∩V .

We start by analysing the Zariski closure of the Zariski closure of a single

fibre of Y . Let y ∈ Y and ỹ ∈ Ỹ such that unif(ỹ) = y; consider the fibre

Ẽỹ =HV (R)+.ỹ and Ey = unif(Ẽỹ).

Recall that we have an isomorphism of complex vector spaces

V (R)→ π−1(π(ỹ))

v 7→ v.ỹ
(4.1)

where the complex structure on the left is given by identifying V (R) with

LieV (R) via the exponential map, and the complex structure on LieV (R)

induced by the homomorphism S(C)→ P (C) associated to the point ỹ. This

induces an isomorphism of the fibre Ay of the map [π] containing the point

y with ΓV \V (R)1. As the action of P (R) on X is semi-algebraic, we have

that Ẽỹ is a semi-algebraic subset of the fibre V (R).ỹ. We can now use the

Ax-Lindemann-Weierstrass theorem for abelian varieties to conclude that the

Zariski closure of Ey is a translate of an abelian subvariety of Ay.

Now we turn back to the whole of Y . We may without loss of generality

assume that Y is Hodge generic and fix an Hodge generic point y ∈ Y . By

[UY18a, Proposition 2.6] we have that YG
Zar is a weakly special subvariety,

so there exists a normal Q-algebraic subgroup NG of G such that YG
Zar =

unif(NG(R)+.ỹ), where, as above unif(ỹ) = y. By the previous part we have
1since we are working with data of Kuga type the fibre Ay is an abelian variety, however

the isomorphism is not an isomorphism of abelian varieties but only of algebraic varieties;
it can be decomposed as an isomorphism of abelian varieties composed with the translation
by y.
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that there is a normal subgroup NV ⊂ V containing HV such that the Zariski

closure of Ey in Ay is unif(NV (R).ỹ).

To show the Zariski closure of Y is weakly special we need to show that

NV is an NG-module in V so that the extension N of NV by NG is a subgroup

of P , additionally we need to show that N is normal in P . Note that as

NG is normal in G we only need to show that NV is a G-module to prove

N to be normal, this also implies that NV is an NG module. This assertion

then follows from the assumption that the point y be Hodge generic. Indeed,

from the definition of NV , NV (R) is a complex vector subspace of V (R) for the

complex structure induced by the point ỹ, this implies that it is invariant under

the image of SC in PC by the homomorphism hỹ associated to ỹ. In particular

NV is then invariant under the Q-Zariski closure of hỹ(S(C)) =MT (ỹ) which,

by assumption, is the whole of P .

Remark 4.4. In the above proof we have used the version of the Ax-Lindemann-

Weierstrass theorem for abelian varieties that states that given an irreducible

semi-algebraic subset2 X ⊂ Cm, then the complex Zariski closure of unif(X)

in the abelian variety is a translate of an abelian subvariety.

We recall an important result of Ratner in arithmetic dynamics before

stating and proving the main result of this part.

Theorem 4.5 ([Theorem 3 and 4, Rat95]). Let G be a Lie group and U ⊂G

Lie subgroup generated by Ad-unipotent elements. Let Γ be a lattice in G and

x ∈ Γ\G, then the closure of the orbit x.U in Γ\G is homogeneous.

Theorem 4.6. Let Z be a subvariety of X such that π(Z) ⊂ XG is totally

complex geodesic and Z is a vector bundle over π(Z) that is homogeneous

under the action of a Lie subgroup F of P (R)+. Then the closure with respect

to the analytic topology of unif(Z) is a real weakly special subvariety.
2A semi-algebraic subset is called irreducible if it is not the union of two non-empty

relatively closed subsets in the topology induced on it by the Zariski topology og algebraic
sets defined over R, cf. [PT13]
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Proof. As we noted above the proof follows [UY18a] with very minor modifi-

cations.

Let F be the Lie group in the statement of the theorem, then by the

assumption on Z we have that Ru(F ) = F ∩V (R) and Z = F.x for x ∈ Z.

The idea is to apply Ratner’s theorem to the group F to get that the

closure of unif(F.x) is homogeneous, then prove that it is real weakly special.

To apply Ratner’s theorem we first need to check that F is generated

by its 1-parameter unipotent subgroups. The assumption on F implies that

is is the semi-direct product of its unipotent radical with a semisimple sub-

group without compact almost simple factors. The unipotent radical is clearly

generated by its 1-parameter unipotent subgroups; the same is true for the

semi-simple quotient by [Proposition 7.6, PR94].

We can now apply Ratner’s Theorem 4.5 and conclude that the closure of

Γ\ΓF in Γ\P (R)+ is homogeneous under a subgroup H of P . From [UY18a]

we know that the projection HG of H to G is MT (FG)(R)+, where MT (FG)

indicates the smallest connected Q-algebraic subgroup of G whose real points

contain F . Moreover we know that the image of MT (F )(R)+ in Γ\P (R)+ is

closed. These two facts imply that H =MT (F )(R)+.

To complete the proof we only need to recall that the map Γ\P (R)+→

Γ\X defined by Γ.g 7→ unif(g.x) is proper (cf. [Pin90, Lemma 1.17]).



Appendix A

Ax-Lindemann-Weierstrass for

Gn
m

In this appendix we give a proof of the Ax-Lindemann-Weierstrass theorem

for tori recalling all definitions and result needed. Recall the statement of the

Ax-Lindemann-Weierstrass theorem in this context.

Theorem A.1 (Ax-Lindemann-Weierstrass). Let Y ⊂Cn be an algebraic sub-

variety and π : Cn→ (C∗)n be as in the previous section. Then π(Y )Zar is a

weakly special subvariety of (C∗)n, where V Zar indicates the Zariski closure of

V .

We will actually prove the theorem in a different formulation.

Theorem A.2. Let V ⊂ (C∗)n be an algebraic subvariety and π : Cn→ (C∗)n

as above. Let Y be a maximal irreducible algebraic subvariety of Cn contained

in π−1(V ). Then π(Y ) is weakly special.

We start by proving the two formulations are equivalent.

Proof. First, assuming the first version we prove the second. Let V ⊂ (C∗)n

be an algebraic subvariety and Y ⊂ Cn be a maximal irreducible algebraic

subvariety contained in π−1(V ). Then, by the first formulation of the theorem,

Ỹ = π(Y )Zar is a weakly special subvariety. Now, since Ỹ is weakly special,

the analytic component of inverse image π−1(Ỹ ) containing Y is algebraic and,
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by maximality of Y , it is equal to it. Thus, π(Y ) = Ỹ = π(Y )Zar and π(Y ) is

weakly special.

Vice versa, let Y ⊂ Cn be an algebraic subvariety and let Y ′ ⊂ Cn be a

maximal algebraic subvariety contained in π−1(π(V )Zar) and containing Y .

By the second version of the theorem, π(Y ′) is a weakly special subvariety,

and, by construction, π(Y ) ⊂ π(Y ′) ⊂ π(Y )Zar. Hence, π(Y ′) = π(Y )Zar and

it is a weakly special subvariety.

As in the statement, we fix an algebraic subvariety V ⊂ (C∗)n and a

maximal complex algebraic subvariety Y ⊂ Cn such that Y ⊂ π−1(V ). We

may and do assume that V is the Zariski closure of π(Y ). Moreover we let F

be the set {(z1, . . . , zn) ∈Cn | 0<Re(zi)< 1 i= 1, . . . ,n}; F is the interior of a

fundamental domain for the action of Zn = kerπ on Cn.

First we recall a result needed later.

Lemma A.3 ([PT13, Lemma 4.1]). Let Z ⊂Cn be a complex analytic set and

X ⊂Z a connected irreducible real semi-algebraic set1. Then there is a complex

algebraic variety X ′ ⊂ Z such that X ⊂X ′

Recall the definition of height in this context.

Definition A.4. Let γ = (m1, . . . ,mn) ∈ Zn, define the height of γ as

H(γ) = max{|m1|, . . . , |mn|}. (A.1)

We now define and give the most important properties of the definable

set central to the proof.

Lemma A.5. Define

Σ =
{
z ∈ Cn | (Y +x)∩F 6= ∅ and Y +x⊂ π−1(V )

}
. (A.2)

1See note on page 75
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Then there exists a real constant T0 such that, for all T > T0,

#{z ∈ Σ∩Zn |H(z)< T} ≥ T/2. (A.3)

Proof. Since Y ⊂ Cn is an affine complex algebraic variety, there is one pro-

jection Y → C to one of the components of Cn which is surjective; we may

suppose that this projection is the one onto the first factor. Hence, we can

find a function φ = (φ1, . . . ,φn) : [0,∞)→ Y such that the image of φ1 has

unbounded real part.

Now consider the set

Γφ = {z ∈ Zn | Imφ∩ (F +x) 6= ∅} (A.4)

and observe that, since π−1(V ) is Zn-invariant, we can describe the set Σ∩Zn

as

{z ∈ Zn | (Y +x)∩F 6= ∅} . (A.5)

Hence Γφ ⊂ Σ∩Zn.

Each time the image of φ crosses the boundary between two sets F + z

and F+z′, with z,z′ ∈Zn, the height of x and x′ differs by at most one. Thus,

the heights of points in Γφ form a set of consecutive integers.

Since the real part of φ1 is unbounded, the set Γφ contains points of

arbitrary large height. Hence there is some t0 such that, for any t > t0, Γφ
contains at least one point of height t. Thus we can take T0 = 2t0.

Lemma A.6. The set Σ defined in Lemma A.5 is definable in the o-minimal

structure Ran,exp.

Proof. First we observe that

Σ =
{
z ∈ Cn | (Y +x)∩F 6= ∅ and (Y +x)∩F ⊂ π−1(V )∩F

}
. (A.6)

This is true because both Y +x and π−1(V ) are analytic sets, Y +x is irre-

ducible and (Y +x)∩F is open in Y +x. Hence, by analytic continuation, the
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condition (Y +x)∩F ⊂ π−1(V )∩F implies that Y +x⊂ π−1(V ).

Now we observe that the set above is defined using only analytic functions

restricted to compact sets or the exponential function and is thus definable in

the o-minimal structure Ran,exp.

Recall the definition of algebraic part of a subset of Rn and the statement

of the Pila-Wilkie theorem.

Definition A.7. Let X ⊂ Rn, the algebraic part of X is the set Xalg defined

as the union of all real semi-algebraic subsets of X of positive dimension.

We are now in place to apply Pila-Wilkie Theorem to the set Σ.

Theorem A.8 ([PW06, Theorem 1.8]). Let X ⊂ Rm be a set definable in an

o-minimal structure. Let ε > 0 There exists a constant c, depending only on

X and ε, such that, for all T > 1,

#
{
x ∈X \Xalg | x ∈Qn and H(x)< T

}
≤ cT ε. (A.7)

We now construct a semi-algebraic set from the properties of the set Σ

and the Pila-Wilkie theorem, we then show how to produce from this a semi-

algebraic set that stabilises Y .

Corollary A.9. The set Σ contains a positive dimensional semi-algebraic set.

Proof. This is a direct consequence of Pila-Wilkie Theorem and of the Lemmas

A.5 and A.6.

Lemma A.10. If W ⊂ Σ is a connected irreducible semi-algebraic set and

w0 ∈W ∩Zn, then W +Y −w0 ⊂ Y .

Proof. By definition of Σ and the fact that π−1(V ) is Zn invariant, we have

Y ⊂ Y +W −w0 ⊂ π−1(V ).

By Lemma A.3, there is a complex algebraic variety Y ′ ⊂ π−1(V ) such

that Y +W −w0 ⊂ Y ′. Then, by maximality of Y among complex algebraic

subvarieties contained in π−1(V ), we obtain Y = Y +W −w0 = Y ′.
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Lemma A.11. Let Θ be the stabiliser of Y in Cn and G⊂ (C∗)n the identity

component of the stabiliser of V . Then π(Θ) =G.

Proof. We start by showing that π(Θ) ⊂ G. Let z ∈ Θ, then Y − z = Y ⊂

π−1(V ) and, applying π, π(Y ) ⊂ V π(z). We now recall that, by assumption,

π(Y ) is Zariski dense in V ; hence, π(Y ) = π(Y + z) = π(Y )π(z) is dense in

V π(z). Together, these observations give us V = V π(z). Finally to get that

π(Θ) ⊂ G as desired, we need only observe that Θ is connected, so its image

is connected and thus contained in G.

Now we have to show that G⊂ π(Θ). Let Θ′ be the identity component of

π−1(G). First, we observe that π(Θ′) =G, since both are analytic subgroups of

(C∗)n of the same dimension and π(Θ′)⊂G. This implies that it is sufficient to

show that Θ′ ⊂Θ. Since G stabilises V , Θ′ stabilises π−1(G); hence Y + Θ′ ⊂

π−1(V ). But Y +Θ′ is an irreducible complex algebraic subset of V containing

Y , so, by maximality of Y , Y + Θ′ ⊂ Y .

We can now finish the proof of the Ax-Lindemann-Weierstrass Theorem.

Let G and Θ be as in the last Lemma. By Corollary A.9 and Lemma A.10,

we have dimG > 0. Then, by Lemma A.11, we have a commutative diagram

of quotient maps

Cn

(C∗)n

Cn/Θ

(C∗)n/G

π π′

q

q

Now let V ′ = q(V ) and Y ′ the closure of q(Y ) in Cn/Θ. Observe that,

since we are taking the quotients by groups stabilising V and Y respectively, we

have q−1(V ′) = V and q−1(Y ′) = Y . Moreover, by the maximality of Y follows

that Y ′ is a maximal algebraic subvariety of Cn/Θ contained in π′−1(V ′). If

we had dimY ′ > 0 then we could repeat the argument above to obtain that

the stabiliser of V ′ in (C∗)n/G has positive dimension, and, taking the inverse
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image of this stabiliser under q, we would obtain a subgroup of (C∗)n containing

properly G and stabilising V . But this contradicts the construction of G.

Hence the image Y ′ of Y is a point and this implies that π(Y ) is a translate

of the subgroup G.



Appendix B

Explicit computations of

Curvature terms

In this chapter we explicitly calculate some of the curvature terms in a Kuga

variety. Recall that the Kähler metric on the universal family of abelian vari-

eties can be written as

νt = i∂∂
(
Imwt (ImZ)−1 Imw+ logdet(ImZ)−1)

Consider a mixed Shimura datum (P,X ) of Kuga type with a given Shimura

embedding into (Sp2gnG2g
a ,Hg × Cg). This embedding induces a totally

geodesic embedding XG → Hg, we may assume that X is the pull-back of

Hg×Cg to XG by this embedding. Up to the action of Sp2g on Hg, we may

assume that XG is the submanifold ofHg identified by setting some of the coor-

dinates equal to 0. With these assumption, the Kähler metric on X described

in 3.2 is the restriction of the metric on Hg to X .

Our aim is to calculate

R (v1,v1,v2,v2)

and

∇v1v2



84

for vertical tangent vectors v1,v2. The first result is needed in Chapter 4 when

proving that weakly special subvarieties of X with a non-trivial constant part

are not totally geodesic, while the second will show that with the assumptions

above X is not totally geodesic in Hg×Cg.

In the calculations below we will use coordinates z on XG and w in the

vertical direction of X . Greek letters will denote any of the coordinates z,w.

When denoting one of the coordinates z we will often use just one index, e.g.

zj , however these coordinates are actually entries in a matrix the index j is a

pair j = (j1, j2).

We will denote by gα,β the metric coefficients, by Γγα,β the Christoffel

symbols and by Rα,β,γ,ε the curvature coefficients on X . gα,β denotes the coef-

ficients of the inverse of the metric and we use throughout Einstein’s convention

on summation on repeated indices. We start by recalling some formulas for

the connection and curvature coefficients in Kähler manifolds, cf. [Bal06]

Γγα,β = gγ,ε
∂gε,β
∂α

Rαβ,γ,ε =−
∂Γαβ,ε
∂γ

Rα,β,γ,δ = gα,ζR
ζ
β,γ,ε

Rα,β,γ,δ =Rα,β,γ,δ

(B.1)

We write the matrix of the metric on X as a block matrix separating the

coordinates z from the coordinates w

(
gα,β

)
=

gzj ,zk gzj ,wm

gwl,zk gwl,wm

=

A B

B
t
D

 .
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Then

Aj,k = ∂2

∂zj∂zk

(
Imwt (ImZ)−1 Imw− logdetImZ

)
Bj,m = ∂2

∂zj∂wm

(
Imwt (ImZ)−1 Imw

)
Dl,m = ∂2

∂wl∂wm

(
Imwt (ImZ)−1 Imw

)

Using the division in blocks of the metric g we can use the following

formula to calculate its inverse

(
gα,β

)
=


(
A−BD−1Bt

)−1
−
(
A−BD−1Bt

)−1
BD−1

−D−1Bt
(
A−BD−1Bt

)−1
D−1D−1Bt

(
A−BD−1Bt

)−1
BD−1



We recall some facts that will help us calculate these terms.

Lemma B.1.

• Let M be a square invertible matrix, then

∂

∂x
M−1 =−M−1∂M

∂x
M−1.

and
∂ detM
∂x

= detM ·Tr
(
M−1∂M

∂x

)

• For any j we have

∂ ImZ

∂zj
=−∂ ImZ

∂zj
=− i2

∂Z

∂zj
. (B.2)

• For all l we have
∂ Imw

∂wl
= ∂ Imw

∂wl
=− i2el

Using these formulas and the fact that Z is symmetric we can calculate
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Lemma B.2.

Aj,k = t2

2 (Imw)t (ImZ)−1 ∂Z

∂zj
(ImZ)−1 ∂Z

∂zk
(ImZ)−1 Imw+ ∂2 logdet(ImZ)−1

∂zj∂zk

Bj,m =−t
2

2 (Imw)t (ImZ)−1 ∂Z

∂zj
(ImZ)−1 em

D = t2

2 (ImZ)−1 .

We now turn to the inverse of the metric. We start by calculating

BD−1Bt.

(
BD−1Bt

)
j,k

=

= t2

2

(
(Imw)t (ImZ)−1 ∂Z

∂zj
(ImZ)−1 el

)
ImZl,m

(
em (ImZ)−1 ∂Z

∂zk
(ImZ)−1 (Imw)

)

= t2

2 (Imw)t (ImZ)−1 ∂Z

∂zj
(ImZ)−1 ∂Z

∂zk
(ImZ)−1 (Imw)

Using this plus the identities in lemma B.1 we get.

Lemma B.3.

(
A−BD−1Bt

)
j,k

= ∂2 logdet(ImZ)−1

∂zj∂zk
= 1

4 Tr
[
∂Z

∂zk
(ImZ)−1 ∂Z

∂zj
(ImZ)−1

]

We now go on to analyse the Christoffel symbols Γαwl,wm . From the for-

mulas in equation B.1 we have

Γαwl,wm = gα,β
∂gβ,wm
∂wl

As the derivative of D in any of the wl is the zero matrix, we must have β = zj

for some j. We then have two different cases to consider

(a) The case α = zk

(b) The case α = wn
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In the first case we get

Γzpwk,wm = gzp,zr
∂gzr,wm
∂wk

and in the second

Γwpwk,wm = gwp,zr
∂gzr,wm
∂wk

This can be translated in terms of matrices as

Γzpwkwm =
(A−BD−1Bt

)−1 ∂B
t

∂wk


p,m

Γwpwkwm =−
(
D−1Bt

(
A−BD−1Bt

)−1 ∂Bt

∂wk

)
p,m

From the expressions for B and (A−BD−1Bt), we have that the derivative of

Γzkwl,wm in any of the wn is zero. This implies that for the curvature terms we

have

Rwj ,wk,wl,wm = gwj ,αR
α
wk,wl,wm

= gwj ,α
∂Γαwk,wm
∂wl

= gwj ,wn
∂Γwnwkwm
∂wl

Using the fact that the derivative of both D and (A−BD−1Bt) in any wl is

zero, we can rewrite this equality in terms of matrices as

(
Rwj ,wk,wl,wm

)
{j,m}

=−D ∂

∂wl

(
−D−1Bt

(
A−BD−1Bt

)−1 ∂B

∂wk

)

= ∂Bt

∂wl

(
A−BD−1Bt

)−1 ∂B

∂wk

(B.3)

Lemma B.4. We have

(
∂Bt

∂wk

)
zr,wj

= it2

4
[
(1− δr1,r2)(ImZ)−1

j,r1
(ImZ)−1

r2,k
+ (ImZ)−1

j,r2
(ImZ)−1

r1,k

]
.
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and

Γzpwk,wm =
((
A−BD−1Bt

)−1 ∂B

∂wk

)
zp,wm

= it2

2
(
δm,p1δk,p2 + δm,p2δk,p1

)

Where δ is the Kronecker delta symbol, and the coordinate zp is identified with

the entry p= (p1,p2) of matrices in Hg as remarked at the start of this section.

Proof. As the coordinate zp corresponds to the entry (p1,p2) of matrices in Hg
we have the following formula for the derivative of Z

∂Z

∂zp
= ∂Z

∂zp
= ((1− δp1,p2)δs,p1δu,p2 + δs,p2δu,p1){s,u} .

Using this and the symmetry of Z we can calculate

(A−BDtB)zr,zs = 1
4 Tr

[
∂Z

∂zs
(ImZ)−1 ∂Z

∂zr
(ImZ)−1

]

= 1
4
[
(2− δr1,r2− δs1,s2− δr1,r2δs1,s2)(ImZ)−1

s1,r2
(ImZ)−1

r1,s2

+(2− δr1,r2−ds1,s2)(ImZ)−1
s1r1

(ImZ)−1
r2,s1

]
and
(
∂B

∂wk

)
zr,wl

= it2

4 el (ImZ)−1 ∂Z

∂zr
(ImZ)−1 ek

= it2

4
[
(1− δr1,r2)(ImZ)−1

l,r1
(ImZ)−1

r2,k
+ (ImZ)−1

l,r2
(ImZ)−1

r1,k

]
.

It is easy to verify the following relations between the two expressions

• if s1 = s2 = l = k, then the second expression differs from the first only

by a factor of it2

• if either l = s1 and m = s2, or m = s1 and l = s2, and s1 6= s2 then the

two expressions differ by a factor of it
2

2 .

Then, up to a factor, the rows of ∂B
∂wk

are the same as some of the rows of

A−BD−1Bt. Using this and the precise relation between the rows of ∂B
∂wk

and

A−BD−1Bt we get the desired result.
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Proposition B.5.

Rwj ,wk,wl,wm = t4

8 (ImZ)−1
m,j (ImZ)−1

k,l + (ImZ)−1
j,k (ImZ)−1

l,m .

In particular

Rwj ,wj ,wl,wl = t4

8

[(
(ImZ)−1

j,l

)2
+ (ImZ)−1

j,j (ImZ)−1
l,l

]
= t4

8
(
|h(wj ,wl)|2 +h(wj ,wj)h(wl,wl)

)
.

Where in the last equality we are denoting by h the normalised Hermitian form

on the vertical tangent bundle as in Section 3.2 and wj , wl are the vertical

tangent vector corresponding to derivations along the coordinate wj and wl

respectively.

Proof. The second display follows from the first and the definition of the Her-

mitian metric h. From equation B.3 we have

(
Rwj ,wk,wl,wm

)
{j,m}

=−∂B
t

∂wk
(A−BD−1Bt) ∂B

∂wl

Using the formulas in the previous lemma this evaluates to

t4

8
(
δj,r1δl,r2 + δj,r2δl,r1

)[
(1− δr1,r2)(ImZ)−1

m,r1
(ImZ)−1

r2,l
+ (ImZ)−1

m,r2
(ImZ)−1

r1,l

]
=

t4

8 (ImZ)−1
m,j (ImZ)−1

k,l + (ImZ)−1
j,k (ImZ)−1

l,m .
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