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Clinical decision-support tools (DSTs) represent a valuable resource in healthcare. However, lack of Human
Factors considerations and early design research has often limited their successful adoption. To complement
previous technically focused work, we studied adoption opportunities of a future DST built on a predictive
model of Alzheimer’s Disease (AD) progression. Our aim is two-fold: exploring adoption opportunities for
DSTs in AD clinical care, and testing a novel combination of methods to support this process. We focused
on understanding current clinical needs and practices, and the potential for such a tool to be integrated
into the setting, prior to its development. Our user-centred approach was based on field observations and
semi-structured interviews, analysed through workflow analysis, user profiles, and a design-reality gap model.
The first two are common practice, whilst the latter provided added value in highlighting specific adoption
needs. We identified the likely early adopters of the tool as being both psychiatrists and neurologists based in
research-oriented clinical settings. We defined ten key requirements for the translation and adoption of DSTs
for AD around IT, user, and contextual factors. Future works can use and build on these requirements to stand
a greater chance to get adopted in the clinical setting.
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1 INTRODUCTION
Clinical decision-support tools (DSTs) have the potential to aid specialists dealing with complex
conditions, characterised by a quantity of data that is not always "knowledge rich" [1]. Medical
data users can be overwhelmed by the volume and heterogeneity of inputs they have to handle,
which inhibits their decision making. These tools are normally powered by innovative algorithms,
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allowing users to see patterns and trends from big datasets that would not be detectable otherwise,
and supporting important medical decisions [30].
A major hurdle is facilitating DST adoption in clinical practice. Many innovations fail when

moved to the clinical context [4, 27, 60]. As noted by others, failure can be caused by unsuccessful
integration with the existing workflow [49], social context, and trust in the system [60], which
can all be summarised as a lack of Human Factors considerations [60]. This is particularly true for
DSTs, as they are developed and deployed to support specific tasks for specific medical conditions.
In our work, we aim to explore opportunities and barriers to the design and development of

a future novel DST for Alzheimer’s Disease (AD). AD is a chronic condition that would benefit
from DSTs, given the burden it places on society and the challenges in interpreting the volume and
heterogeneity of data over a prolonged time frame. In collaboration with the EuroPOND project
[17], which is developing predictive models to forecast AD progression over time, we studied how
an innovative DST could be conceptualised and integrated with current clinical practice. For this
project, we focus on a specific model for disease progression and staging called an Event-Based
Model (EBM) [19, 62]. This data-driven algorithm combines information from different data sources
into a longitudinal and individual picture of disease development, offering clear opportunities
for clinical utility (supporting clinicians in synthesising data from multiple sources, helping with
assessing staging and progression, and stratification of patients).
Defining the potential for translation considering the scope, end users, and context prior to

any technical implementations will provide key guidelines and recommendations to inform future
system development, not only saving time and resources, but also enhancing the chances of the
resulting tool being ultimately used. We adopted a user-centred perspective to study current
needs and practices around AD clinical management and decision-making. By using a novel
combination of exploratory methods (workflow analysis, user profiles, and design-reality gap
assessment), we framed the problem around barriers and opportunities in translating predictive
algorithms for clinical use in AD care. We identified the likely early adopters amongst AD healthcare
professionals, and we proposed requirements to adopt this technology in the field. This initial set
of recommendations will inform the development of a DST that will integrate the EBM in the care
workflow. To our knowledge, this is the first time that opportunities for adoption are explicitly
studied in the development of a DST for AD. These requirements can be used and extended in
further work on similar tools for AD.

2 RELATEDWORK
2.1 Clinical Decision Support Tools
Clinical DSTs are software which, based on a given input, produce outputs that clinicians can use
to support their decision-making [7, 53, 61]. “DSTs” is an umbrella term to identify a broad range
of tools, each with different underlying rules, output, and purpose. Horsky et al. [29] describe
six main types of DSTs, including notifications, guidelines, and clinical pathways. Berlin et al.
[7] propose a taxonomy to classify DSTs, the categories being: context, knowledge, data source,
decision support, information delivery, and workflow. Advantages of DSTs are not only related to
the knowledge brought to the clinical routine. Sutton et al. [53] have outlined in their review a
number of benefits that go beyond diagnostic and decision support, touching on aspects such as
workflow and documentation improvement, patient safety, reduction of human error and cognitive
workload, cost containment, and administrative automation. Whilst some DSTs are knowledge-
based, meaning they are built on rules deriving from clinical evidence, the vast majority of tools
are non-knowledge based, making use of data mining techniques such as Artificial Intelligence
(AI), Machine Learning (ML), or pattern recognition [53].
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2.2 AI systems for healthcare and predictive models
Large volumes of biomedical data are being generated every day. This phenomenon is supported by
more advanced computing technologies, such as imaging techniques, storage space, or simply by
the increased availability of tracking sensors [6, 38]. The higher demand, however, does not always
come with improved knowledge, as "data can be a great asset to healthcare organisations, but they
have to be first transformed into information" [35]. In fact, ways to turn big data into "smart data"
[22] are needed. To this end, data analytics and Artificial Intelligence (AI) can uncover patterns in
noisy and high dimensional datasets, to produce actionable knowledge. These techniques are not
new to computational researchers, who have deployed them for years in business or finance, but
the health sector is a relative latecomer. The causes lie in healthcare’s peculiar complexities, such
as heterogeneity and variable quality of data, high-dimensionality, specialised domain knowledge,
and more stringent privacy and security requirements, to mention a few [44]. AI has to adapt
to a whole new set of challenges, but in doing so it promises to deliver unprecedented value to
healthcare: to foster precision medicine; to generate tailored diagnostics and treatment plans; to
predict readmission to hospital; or to monitor progression for disease subtypes [38]. One particular
application of AI in medicine is the development of predictive models, which "can use patient-specific
information to predict the outcome of interest and to thereby support clinical decision-making" [6].
While clinicians still use their intuition and expertise to integrate information from patient history
and measured data into predictions, data scientists have tackled the problem in a variety of ways.
Basic statistics include regression [25], where clinical markers at one time are used to predict values
at a later point. Recent advances in AI and ML have moved the discipline towards increasingly
automated processes, especially in assessing associations, classifications, and relationships amongst
data [1], based on supervised and unsupervised ML techniques. Supervised learning techniques
learn mappings from input data to outcome from a large set of labelled data; unsupervised learning
aims to identify patterns from unlabelled data. Disease ProgressionModels (DPMs) are unsupervised
learning techniques that aim to learn patterns of disease progression, i.e. temporal series of changes,
from data sets with no a-priori labelling of patient stage. Some DPMs use discrete staging, such as
the EBM [19, 62]; others aim to capture continuous temporal evolution, such as continuous models
[14, 42], or spatio-temporal models [50].

2.3 Alzheimer’s Disease and the EBM
DPMs offer potential benefit in understanding and managing dementia. Alzheimer’s Disease, the
most common cause of dementia, is a global emergency: it affects over 46 million people in the
world [51], causing a substantial socioeconomic burden. Moreover, causes and treatments are still
not well understood. What is clear is that therapeutic interventions are most likely to be effective
at early stages, before symptom onset and irreversible neurodegeneration have occurred. Various
clinical indicators, called biomarkers, are considered reliable detectors for these early stages, and
they come in different forms, depending on the source of data: medical imaging, cognitive and
clinical tests, analysis of biological fluids, and many others. DPMs can integrate information from
large cross-sectional data sets of biomarkers into quantifiable longitudinal pictures of disease
development, at both a population and a personalised level.

In this work, as part of the collaboration with the EuroPOND Project, we consider the EBM. Its
simplicity and robustness lends itself to translation, as evidenced by its growing usage in a number
of disease areas, such as Huntington Disease [59], Multiple Sclerosis [16], but particularly to our
case in AD [19, 62]. The EBM conceives disease progression as a sequence of discrete, irreversible
events. Every new event is created when a biomarker value moves outside the standard range,
with no option of returning back (an assumption based on the degenerative nature of the disease).
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Therefore, the course of the disease is represented by the order in which biomarkers leave the
standard range of values, thus predicting the probable future course of the disease over time.
Although the EBM is only one amongst many disease progression models emerging over recent
years, translating this into a useful and usable tool would pave the way for more sophisticated
approaches to follow through subsequently.

2.4 Human factors considerations for DST design
In recent decades, almost all DSTs have failed when moved to clinical practice [15, 31, 33, 60, 61].
Looking at possible causes, it becomes clear that these tools need transparency and explainabil-
ity even more than those in other sectors, because of personal data handling, ethics, and legal
requirements [28]. A common pitfall, though, is that DST development often lacks Human Factors
considerations [60]. The importance of Human Factors is illustrated in the work of Yang et al [61],
who studied the existing decision process around a heart-pump implant, to identify opportunities
for the integration of a new DST. Lack of considerations such as poor fit within the workflow,
context, and attention to clinical needs [61] open a gap between design and reality. According to
Heeks [27], the severity of this gap can be assessed along seven dimensions that are representative
of the users in the context and can predict the likelihood of the system failing or succeeding. The
bigger the gap, the greater the change needed to successfully adopt the innovation and, conse-
quently, the chances of failure [27]. This framework reinforces the importance of realigning "work
as imagined" and "work as done" [8], a necessary effort that innovators should consider in the
"design thinking" phase to deliver a system that is truly fit for purpose [8]. Involving the intended
users from the early stages of the design process promotes efficiency, effectiveness and safety
[37, 40, 43], according to user-centred design principles (ISO 9241-210:2010 [13]). This approach is
fundamental, as the design of a single DST is uniquely linked to the medical condition and tasks that
the tool will support, as well as greatly dependent on the end users’ beliefs, context, and current
practice. A user-centred design approach was adopted from the very early stages of development in
ADappt [57], where AD clinical specialists and patients’ feedback were iteratively included in the
design and implementation of an AD diagnostic tool. Whilst every application differs, some general
guidance on how to best design such tools have been reported in reviews [29, 34, 47, 53], the main
areas being attributes and quality of the technology (e.g. information quality, information delivery),
usability (user control, design conventions, trust), and structure (context, workflow integration,
and interoperability).

2.5 Technology adoption and barriers
While implications for design can be considered an established contribution in HCI projects,
user-centred design would benefit from considering technology adoption in the case of emerging
technologies, to support design thinking and identify key research questions when translating from
research to practice. Lindley et al. [41] suggest an early evaluation of implications for adoption to
prevent failure, referring to research-based speculations on the future potential adoption of a novel
technology. This concept is often linked to the rhetoric of a “proximate future” [5], particularly
affecting technology innovations that could only exist in a very controlled environment, without
a vision of translating and integrating them into the real world. Thinking of adoption from the
first stages of DST development will set the path for a long-term vision. However, this approach
requires a change in perspective, the focus being on the potential of the product and its contextual
fit with the environment. However, as Lindley et al. note [41], there is little guidance on how to
capture and present this concept in HCI projects.
Frameworks on the analysis of technology adoption already exist, such as the Technology

Acceptance Model (TAM) [12], the Theory of Planned Behaviour (TPB) [3], or Innovation Diffusion
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Theory (IDT) [52]. However, these have been developed for already implemented technologies,
and are not suitable for our design concept where a safety-critical diagnostic tool has not yet been
designed in detail. We need reasonable confidence that the innovation would be a valuable asset to
the intended users, and methods to identify possible routes to adoption of a future design concept
by clinicians or researchers involved in AD care.

From a practical perspective, Gagnon et al. [21] propose a set of factors (barriers and facilitators)
to the implementation of a new system in the medical setting. These factors are derived from case
studies on IT adoption by clinical professionals and are overall divided into four main areas: factors
related to IT, individual and professional factors, human environment, and organisational environment.
This work demonstrates that the most important facilitators in IT adoption are represented by
users’ perceptions of technology potential and the context of implementation. Another important
requirement is the impact of a novel technology on the workflow [23]. It is necessary to fit the
novel system into an existing workflow, without disrupting users’ beliefs, but promoting safety,
data quality, and work efficiency.

Technology adoption leads to the importance of diffusion of innovation. Rogers [52] defines it as
"the process in which an innovation is communicated through channels over time among the members
of a social system". Diffusion of innovation is influenced by multiple factors (context [18], leaders
and champions [24], or network [24]). First and foremost, however, the innovation process is guided
and influenced by people, where a particular key role is covered by "early adopters". Lettl et al. [40]
describe how this group of users can unlock and disseminate the take up of radical innovations.
Early adopters are often skilled professionals [48], embedded in interdisciplinary contexts, with
facilitated access to specialised resources, and whose needs anticipate those of their peers, making
them motivated and open to innovation [40]. Therefore, we need to identify this user group and
their context in relation to the tool’s purposes. They can facilitate the introduction of the target
innovation in the workflow, collaborate in defining elements to better adapt the technology to a
wider context, and diffuse the innovation to their peers.

2.6 Contribution of this work
In this project, we studied opportunities and barriers to the adoption of a DST specifically intended
for AD clinical practice. As part of the EuroPOND project, we focused on a tool built on the EBM,
with the long term goal of using this research to inform the design and development of a DST
that is usable, fit for purpose, and adoptable. Technical papers on the EBM anticipated its potential
clinical utility as providing a new understanding of the disease to help clinicians put measurements
into perspective, providing more accurate prognosis and a staging system that may guide treatment,
care choices, and communication with patients. However, previous work has been technically
focused, neglecting the need to clarify whether these tools are realistic and, if so, how we should
best package and present relevant information to exploit its potential.
This work addresses an unmet need in the burgeoning field of DSTs for healthcare [15, 31, 33,

60, 61], and to our knowledge this is the first time that opportunities for adoption are explored
for a DST to be used by AD specialists. This study makes two main contributions. (1) Providing a
better understanding of adoption opportunities and barriers for DSTs intended for AD clinical use;
(2) proposing and testing a novel combination of HCI methods that can guide adoption research
in the early stages of a tool’s development. The methods used (workflow analysis, user profiles,
and design-reality gap assessment [27]) were aimed to identify the likely early adopters amongst
AD clinical specialists, and how the proposed technology might enhance their work. Like a few
other studies [43, 61], we engaged with clinical participants (in our case, AD specialists) from an
early stage of the development process, prior to any prototype development. This should shape
the future design and translation process into healthcare to fit clinical needs and context, and
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promote explainability and trust. The outcome from this work is relevant to engineers and clinical
researchers working on DSTs for AD care, to use and build on, whilst setting up an adoption and
clinical integration strategy from the early stages of the development process.

3 METHODS
3.1 Approach
Methods selected in this work aim to understand users’ current needs and practices and identify
possible early adopters and contexts of use. This is done for an interactive system that has not yet
been developed. We focussed on the following three questions: (Q1) How is work currently done
in AD clinical management?; (Q2) What are the characteristics and needs of front-line clinicians
in AD?; (Q3) What are the perceived challenges and potential for adoption of the tool? These
findings enabled us to define the key implications for the EBM to express its potential in AD clinical
decision-making, and the early adopters and context that are best placed to initially benefit from
the EBM.

Workflow analysis. Successful integration of innovative technologies in a real world setting requires
adaptation of an existing workflow [60, 63]. Thus, we decided to conduct workflow analysis
to understand phases in the assessment of an AD patient [45], that will also support design
considerations [55]. We generalised the sequence of tasks using a box-and-arrows representation.

User profiles. We described users’ characteristics and needs through the definition of profiles that
synthesise ethnographic research on a cohort of similar users [39].

Heeks’ design-reality gap model (DRGm). Heeks’ model is a semi-quantitative assessment of the
possible failure or success of a novel technology, along seven dimensions that are representative of
a complex socio-technical system [26, 27]. It has the advantage of being applied pre- and post-hoc.
We adopted this method to assess how barriers and needs within the considered settings might
influence the adoption of a possible system, before any design commitments.

3.2 Data collection
We conducted field observations and semi-structured interviews. To identify potential early adopters,
the settings for observations and participant recruitment covered different options, with an eye
on people orientated towards research and innovation. Observations were conducted at multi-
disciplinary discussion team (MDT) meetings, venues where a team of clinicians with different
expertise meets to discuss complex clinical cases, including interpretation of imaging scans and
treatment planning [32]. Semi-structured interviews involved neurologists and old age psychiatrists
(recognised as front line specialists in the tasks for which the models are most likely to be beneficial),
from hospitals and memory clinics. Ethical clearance to conduct the studies refers to Project ID
UCLIC/1213/015 (Principal investigator Ann Blandford).

Field observations. A total of 6 MDT observation sessions were conducted at the National Hospital
for Neurology and Neurosurgery, Queen Square (London). This setting was chosen to familiarise
with the terminology and the issues discussed by clinicians, data mentioned, features of the disease,
and the workflow. Approximately 10 to 15 medical professionals attended each meeting, including
a lead neuro-radiologist, neurologists, training students and others from related disciplines. At
each meeting, 13 patients were discussed on average (min 6, max 22), within approximately one
hour. Participants gave verbal informed consent to being observed. It was not possible to audio or
video record the meeting, since patients’ names were read out, so data was recorded in the form of
hand-written notes. Relevant information to record were identified through preliminary meetings

, Vol. 1, No. 1, Article . Publication date: May 2021.



7

with doctors, and iteratively adjusted as more meetings were attended. Field notes included data
regarding: general workflow, questions asked by the audience, use of data and images, terminology
and concepts describing the disease, and decision-making process. Finally, a neurologist, who was
not participating in the study, helped to clarify ambiguous clinical terminology or statements that
were made during the observations.

Semi-structured interviews. Six clinicians specialising in AD were interviewed: 5 neurologists and 1
psychiatrist. Participants belonged to first referral (n=2) and secondary and tertiary referral (n=4)
centres, located in the London area (n=5) and Belgium (n=1). For privacy purposes and due to the
small number of participants, affiliations are not mentioned here.

Participants were contacted through MDT meetings and word-of-mouth. Prior to the interview,
participants were provided with information sheets, informed consent, and a background ques-
tionnaire, to track the variety of the sample. Interviews had a dual purpose: to clarify insights
from field observations, and explore the perceived value of predictive models. Questions related
to the first point addressed both individual clinical practice and MDT sessions (inspired by the
work of Lanceley et al. [36]). Regarding the second point, participants were prompted to reflect
on the EBM’s potential through a set of visual stimuli based on EBM visualisations used by the
developers. These included six different examples of output screens (two examples are shown in
Fig. 1) with incremental complexity of information provided. The fixed content for all screens was
the sequence of stages generated by the EBM and the classification of the patient at a certain point
of the scale. This represented the minimum information, as reported in the left example of Fig. 1.
Additional information was introduced gradually in the subsequent visuals, by reporting the list of
markers becoming abnormal at each stage, the probability curve of a patient being classified at
a particular stage, and the positional variance for each marker. The example on the right of Fig.
1 represents the case with the highest complexity. These were used to stimulate discussion with
participants, who were asked to comment on the visual stimuli and reflect on their understanding
and applicability to the clinical scenario. Interviews were piloted with two neuro-radiologists and
adjusted based on feedback. All interviews lasted between 40 and 70 minutes and all but two were
recorded and transcribed. For non-recorded interviews, detailed notes were collected and checked
with the interviewees. Participants were offered a free trial of the system once it becomes available.

Fig. 1. Two examples of the six visual stimuli used in the semi-structured interviews (credits: icometrix early
implementation).
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3.3 Analysis
The methods listed and their order of application are the result of an exploratory process, whilst
addressing our main questions. Firstly, the notes collected during field observations were used to
generate a written report. This report grouped the observed information around three different
themes: main topics discussed, general patients discussion pattern, and clinical terminology. The
content from the report informed the script for the semi-structured interview, which was structured
in three main parts: (1) MDT meetings and the process of patients discussion; (2) Participant’s
individual practice; (3) Introduction to EBM and discussion around its potential and limitations. We
first conducted an inductive thematic analysis on field notes and transcribed interviews (software
used: NVivo 12): the content was analysed by generating a set of 20 codes that were then grouped
into 7 main themes. This first round of analysis revealed correspondence of themes with the factors
reported in Gagnon’s work [21]. As Gagnon’s factors represent a more consolidated framework,
they were then used as themes to run a second top-down analysis. All Gagnon’s sub-factors were
covered by the analysis, except for 5 third-level factors out of 35 and 16 fourth-level factors out of
32. This is due to the fact that interviews were not conducted based on this framework, and also
because these factors aim to be generalisable, making it unlikely that a single case study would
cover all of them. Findings from the top-down thematic analysis were used to apply the methods
described above, which aimed to address our main questions, in chronological order: workflow
analysis contributed to the understanding of how work is currently done in AD management, user
profiles gave insights into the characteristics and needs of front-line clinicians in AD, and Heeks’
design-reality gap model (DRGm) assessed the perceived challenges and potential for adoption of the
EBM technology. To provide more strength to the DRGm assessment, we paired Heeks’ dimensions
with relevant Gagnon’s factors, as reported in Table 4.

4 RESULTS
Results follow the set of questions outlined in section 3.1, where each question is addressed by
a particular method. Illustrative quotations are identified by participant number (P1, P2, ...) and
clinical context (care-oriented: C-O or research and care: R+C) as described below, to maintain
anonymity of participants.

4.1 Current clinical practice and needs
Q1: How is work currently done in AD clinical management? We performed a standard
workflow analysis of AD current clinical practice, and in particular of AD patients’ diagnosis and
prognosis, information the EBM is designed to support. We produced a workflow for MDTs and
one for individual clinical practice; their combination is represented in Fig. 2. The process starts
from availability of adequate data to support a diagnostic decision. Participants reported relying
primarily on clinical history and symptoms, followed by cognitive assessment, and then biological
and imaging analyses. The first barrier in the process (Fig. 2, point 1) was identified in the challenge
of gathering the breadth and quality of data to run the EBM. Typical issues on accessing and
interpreting imaging scans were: long waiting lists, delays in obtaining scans, frequent lack of
radiologists’ reports or interpretation inaccuracies, and low quality images. However, clinicians
belonging to research-orientated clinics reported having access to higher quality data, and reports
from specialised radiologists. In the subsequent step, a provisional diagnosis is made, combining
various cross-sectional data, and led by experience. However, (point 2, Fig. 2) in cases of critical
diagnostic uncertainty, further investigations or MDT should be considered. The MDT, on the right
side of the map, amplifies the individual expertise and is recognised by all clinicians as a support
to clinical uncertainty. The case discussion includes a precise request to the radiologist and to
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Fig. 2. Combination of workflow’s representations: individual and MDT. Barriers are represented by numbers
1 - 4. (1) Availability and sufficient quality of data; (2) Diagnostic uncertainty; (3) Lack of outcome from MDT;
(4) Uncertainty in prognosis.

peers, usually to interpret or compare medical imaging data, and advice on further clinical action.
The efficiency of MDTs (point 3, Fig. 2) can be disrupted by lack of data clarity or difficulties in
converging to a conclusion, leading again into the loop of the diagnosis’ decision node. When
a provisional diagnosis is fulfilled, a prognosis might be attempted (point 4, Fig. 2). Clinicians
confirmed that they reason about prognosis, depending on their confidence in the current diagnosis.
However, some interviewees focus more on how they communicate this information to patients,
whilst others’ interest is in understanding the progression of the disease to more severe stages.
The first ones tend not to be too precise in reporting the prognosis, to avoid giving misleading
information. The progression of the disease largely depends on its past course and individual
differences. One neurologist declared:

"Generally [the principle is that] the speed [at which it] has started will continue. Sometimes
is quite difficult to define." (P3, C-O)

Other clinicians, more interested in early detection of the disease and generally belonging to
research-orientated clinics, placed more importance on their ability to detect critical conditions
early on, and to monitor patients at risk until a diagnosis is made.

"The other fundamental point is progression. Understanding what percentage of MCI (mild
cognitive impairments) will convert. Because if there is a high probability that a patient
will convert from MCI or AD, we would keep them." (P6, R+C)

While MDT workflow is built on consistent responses from all participants, some discrepancies
emergedwith respect to the individual workflow. Therefore we investigated the variations in context
for the clinical specialisations, to clarify how this can influence their needs and, consequently, the
technology translation.

Q2: What are the characteristics and needs of front-line clinicians in AD?. To answer this
question, we developed three user profiles, characterised by a set of parameters and based on
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Table 1. Comparison of three user profiles

Description Profile 1 Profile 2 Profile 3
Neurologist, C-O Neurologist, R+C Psychiatrist, R+C

Resources Clinical data Clinical data Clinical data
Cognitive tests (basic) Cognitive tests (complete) Cognitive tests (complete)
Imaging (low quality, delays) Imaging (high quality, delays) Imaging (high quality, delays)

Context Limited time and resources Available time and resources Available time and resources
characteristics Patients: all stages of disease Patients: uncertain and rare cases Patients: at early stages

If uncertainty: sent to later referral Discharged at diagnosis Discharged at diagnosis
Needs Diagnosis Diagnosis Diagnosis

Patient management Understand disease progression Understand disease progression
Understand unclear and early cases Understand unclear and early cases

outcomes from Q1, observations, and interview data. Table 1 compares and contrasts representative
parameters (needs, context, and resources) for the main contexts identified in Q1: Care-Oriented
(C-O), and Research+Care (R+C). A C-O context includes general memory clinics, where patients
are referred directly from the primary healthcare provider. Here patients present at very different
stages, the visit time is limited, and there is restricted or no access to specialised data collection
procedures; routine data collection mainly involves clinical and cognitive tests, while imaging is
of variable quality and may or may not be informative for diagnosis and prognosis. R+C refers to
specialised memory clinics, research centres, and tertiary care in general. These settings are more
frequently involved in uncertain cases and early detection of the disease, until diagnostic criteria
are met and the patient is discharged. Access to specialised data is facilitated and systematically
recorded.

As per Table 1, firstly we explored whether, considering the same clinical professional role, but
in two different contexts, differences emerged around needs, procedures and resources. Therefore,
we compared the profiles of neurologists, based within two different contexts (Profile 1 in C-O and
Profile 2 in R+C). Fundamental differences were found in the quality and availability of resources,
characteristics of patients and clinical needs, more focused on supporting the disease path in profile
1, whilst more orientated to discern aspects of the disease in profile 2. We also explored the contrast
between two different clinical professionals, a neurologist and a psychiatrist (Profiles 2 and 3),
within a similar context (R+C). In this comparison, the availability of resources, time, goals, and
needs of the team are aligned, regardless of the type of specialist involved. We found that the R+C
vision of a clinical context is shaped by characteristics of the clinical centre’s director (who we will
define as the champion), who might stimulate innovative ideas and a research-orientated mindset.

This analysis of user profiles gave a stronger perspective to the most suitable early adopters for
our proposed tool, revealing that the type of specialisation (i.e. neurologist or psychiatrist) was
not critical to the adoption of the EBM, provided that context and needs are aligned. We identified
key factors that overcome these distinctions, like the presence of a champion who has a particular
research-orientated vision and has access to particular facilities and resources.

4.2 Future technology adoption assessment
We then moved to framing the gap between the prospective technology and its clinical use, to assess
the probability of failure or success. To meet this goal, we applied DRGm to our themes, particularly
drawing on interview responses about individual practice and the reasoning around the visual
stimuli (Fig. 1). DRGm was preferred to other adoption models because it is suitable for assessing a
technology even at very early stages, whilst providing a semi-quantitative outcome around critical
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areas for a successful adoption. Moreover, Gagnon’s factors [21] used for the thematic analysis
were in line with each dimension in Heeks’ model (see Table 4 in Appendix A).

Q3: What are the perceived challenges and potential for adoption of the tool? Given that
two main different contexts of adoption emerged from the previous analysis, we assessed both with
DRGm, and the results are reported in Table 2. Each dimension provides an estimate of the actual
gap between design and reality. The rating scale is derived by Hawari and Heeks [26], where 0
indicates the absence of gap, 5 is a moderate degree of mismatch, and 10 represents a profound
divergence between design and reality. Ratings were assigned by the first author, who conducted
the interviews and the analysis, and were reviewed by other authors. Single values were then
combined to provide an overall score.

Information. The most relevant themes here referred to the EBM’s benefit (defining stage and
progression of the disease), reliability, and validity. The EBM would be beneficial to address the
need for more detailed information, particularly on progression, expressed by both clinicians and
patients.

"It’s a question most patients ask: how is this going [to progress], how is the evolution
going to be, what is my prognosis? [...] And at this moment we don’t have any ways to
predict the prognosis." (P2, C-O)

On the other hand, a frequent concern touched on the validation and reliability of the EBM, it still
being at an experimental stage. Another concerning factor was the reliability of the biomarkers’
sequence generated by the model. What differentiated the two contexts is the availability of some
biomarkers: in C-O clinics it is harder to access sophisticated data such as lumbar-puncture and
comprehensive neuroimaging scans, whilst it is routine in R+C centres. Moreover, in R+C the
majority of patients are referred for clinical uncertainty or difficult diagnosis, which shapes the
information sought by the medical staff.

"It is easy to diagnose an evident AD. The real need is to understand more about this grey
area, if we are keeping these patients." (P6, R+C)

Technology. This dimension examined whether the current technical set-up of the workplace
is suitable for the integration of the EBM. Given that the future DST can be easily implemented
in desktop computers and that hospitals and clinics are already equipped with PCs, no additional
technology would be needed. Notwithstanding this, data handling and interoperability need to be
carefully considered.

Process. This analysis was based on the process of data collection, the workflow, and the openness
to additional steps that the EBM as a tool might require (Gagnon factor attitude). The heterogeneity
of many biomarkers that are site-dependent (e.g. cognitive tests) or asset-dependent (fluids) can be
an obstacle to the use of the EBM and to a scalable tool.

"Certainly MMSE (Mini-Mental State Examination - cognitive test) is very rough test but
very commonly used, then yes, the test might depend on the site. I think cognitive tests
used are very site dependent, unfortunately. That needs standardisation." (P1, R+C)

Regarding imaging scans, the EBM uses volumetric data as input, which is not available to clinicians.
This will require an additional pipeline to the tool’s back-end system.

Generally, R+C contexts have facilitated access to higher quality data and a workflow that will
accommodate the future tool’s usage tasks, such as the systematic recording of data in a digital
database. Once the diagnosis is reached, the patient is discharged. Thus, clinicians’ main interest is
to follow them up in the early stages and during the eventual progression to more severe ones.
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Interestingly, the tool was envisioned as a useful resource to facilitate the discussion process in
MDTs:

"In one MDT session a multitude of cases are discussed and that implies remembering
numbers of all tests, eventually compared with previous scores and other information. It is
hard to keep track of all information for each." (P6, R+C)

Objectives and values. This dimension highlighted attitudes towards the prospective tool’s benefits
and limitations, uncertainty, and interactions with patients. All interviewees affirmed they would
require support in the diagnosis, with extra information on stages and progression. However, it
is commonly recognised that the EBM would be primarily suitable for clinical trials and research
settings.

"Where this can be very important is if you are going to do a trial for example or if you
are going to pick any offered treatment for people in a particular stage, that might be
helpful." (P5, R+C)

The majority of clinicians were concerned about a precise numerical outcome for a stage,
preferring a degree of uncertainty. This would allow them to combine the outcome from the EBM
with their expertise. Regarding disease progression, clinicians would remain vague and hypothetical.
The C-O context was more patient-focused, and concerned about how to communicate these
contents to patients.

"We talk in vague terms about what to expect in the future, [...] we don’t tend to talk very
much in time spans because that’s so difficult." (P2, C-O); "if you put a scale up like that
[...] and say right, you’ve just started having memory problems, it’s all very mild, that
means you are at stage 5 out of 12, [the patient might reply] ’well, I think you blind me, I
am half-way gone!’, whereas we know that, although the disease may be present in their
brain for 10 years, symptomatically they are at the beginning of that journey." (P3, C-O)

Conversely, the R+C context was more disease-focused, highlighting the value of the EBM in
advancing research, or as a support tool in daily practice.

"In this sense a visualisation would work. What we do now is doing that in our head, we
compare with our experience, but it would be interesting to see how computers think" (P6,
R+C)

Staffing and skills. Participants reported medium/high technical skills in using electronic medical
software and inspecting MRI scans, given appropriate resources and training. They found the
proposed visual stimuli hard to interpret from a medical perspective.

Management. While most of the management issues are influenced by external factors (such as
availability and quality of resources), the internal management structure of both C-O and R+C
contexts was judged adequate to adopt a DST for the EBM, given regular quality checks and system
assessment performed by a technician. Clinical champions with unique characteristics might be
beneficial to encourage openness to innovation within the team, even in less suitable contexts. The
implementation of the EBM can also address legal matters, as highlighted by one participant:

"[Staging] has a number of consequences with regard to reimbursement of medication and
also to the driving capacities etcetera..." (P1, R+C)

Other resources. The most relevant factors within this dimension were cost and time-related issues.
The DST should not have a high impact on additional tasks or time-on-task. However, gathering
all required data and feeding it in the tool would require additional steps that have to be carefully
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Table 2. Assessment of Heeks’ dimensions for the two contexts. [*critical score when equal or higher than 5.]

Heeks’ dimensions Care-Oriented Research+Care
Information 5* 4
Technology 2 2
Process 6* 3
Objectives and Values 7* 4
Staffing and Skills 4 4
Management 3 3
Other resources 2 2
Total 29 22
Legend (likelihood as cause of failure): 0-2 very unlikely;
3-4 unlikely; 5 possible; 6-8 likely; 9-10 very likely.

considered. Costs were not explicitly assessed yet, excluding those already allocated for medical
examinations.
A total score was derived from the DRGm assessment, as a sum of the scores given for each

dimension (see Table 2). According to the work of Hawari and Heeks [26], the total score can be
predictive of failure or success. The context related to C-O received a score of 29 ("Project might fail
totally, or might well be a partial failure, unless action is taken to close the design-reality gap" [26]),
while the R+C scored 22 ("Project might be a partial failure" [26]). These results reflected a smaller
design-reality gap in the R+C scenario, compared to the C-O one.

5 DISCUSSION
We presented an illustrative case study of opportunities for translation and adoption of a DST
built on a predictive model of disease progression called the EBM. We focussed on identifying the
early adopters of a future tool and the more suitable context of use (addressed through workflows
and user profiles), then explored the factors contributing to the success or failure of the novel
technology [27]. We found a narrower design-reality gap in the R+C context, so this is better placed
to initially adopt a future EBM support tool for AD, being mindful of the barriers highlighted by
clinical experts. We will now highlight the specific barriers and facilitators in the future adoption
of such tool as identified in this study, and generalised requirements for similar DSTs for AD.

5.1 Barriers and facilitators in the adoption of an EBM-based DST
In this work, the design-reality gap affected three main areas: IT factors, user factors, and contextual
factors. IT factors are the elements of innovation proposed by the EBM and the tool; user factors
are represented by the characteristics of the users, their expectations and beliefs; contextual factors
indicate elements of the setting, resources, and external variables. Each of these areas contributed
to define barriers and facilitators regarding the adoption of the tool considered in this study (first
two columns in Table 3), as well as providing requirements for adoption of DSTs for AD in general
(final column in Table 3). This last one will be further discussed in the next section (5.2).

Within IT factors, one barrier to adoption of a DST built on the EBM was the lack of validity and
reliability. Whilst EBM has proven potential, its evidence has only been tested with research datasets.
To overcome this barrier, the EBM needs to be tested in a controlled healthcare environment, and
replicate its results based on a more diverse set of data. As for interpretability, a critical factor was
the use of terminology. In our specific case, the EBM is programmed to detect very early stage
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AD, before any symptoms occur. However, "early stages" in clinical terms are only defined when
patients start to show visible symptoms, which would feature as mid-way through in the EBM
staging. Therefore, this discrete numbering of stages would not suit current clinical terminology,
and might also disrupt the communication with patients. On the other hand, what can facilitate the
uptake of this DST is a clear and simple visualisation of the EBM output, designed based on the
current terminology and data used, and that could particularly support team discussion.

User factors included attitudes, meaning the perceived usefulness of the EBM, but also the benefit
gained from it. Clinicians who focus more on the disease, because of their need to assess early or
uncertain cases, were more open to the advantages brought by the EBM. Some study participants
were already familiar with the model, and could see aspects of it that might improve clinical practice
and early detection of at-risk individuals. Whilst specialists did not find the presentation of a precise
stage number useful, they suggested the inclusion of a degree of uncertainty. The EBM does provide
this information, and including it in the visualisations will supplement the clinician’s expertise.
Other implications around user factors were mostly interrelated with contextual ones, since

users’ needs and practices are influenced by their context of work [61]. The EBM tool was judged
useful in MDTs, to converge perspectives from multiple disciplines towards a consensus diagnosis.
This is in line with the projected key role of technology in the context of MDT meetings mentioned
by Kane et al. [32]. In particular, DST in this context can foster a “shared awareness of the diagno-
sis” by facilitating the communication and interaction of specialists, whilst optimising the time
commitment. We also noted that the EBM is not currently applicable to all contexts. We can in fact
see an early-late stage continuum, where contexts addressing early stages of AD (such as R+C) are
focused on early detection, risk of conversion, and uncertain cases, whereas needs for late stage
contexts do not properly match with the EBM purposes, as they focus more on accompanying
patients through their daily-life, when the condition is evident. This is an important finding, as it
highlights that the EBM is likely to be more beneficial for one context than another, which will
influence subsequent design decisions. However, the presence of a champion can represent an
exception to these C-O contexts, e.g. by bringing a more systematic and specialised data collection
approach in their team.
This study identifies and clarifies a potential value of introducing an EBM-based DST to AD

clinical practice. Experiments determined that a research-oriented context is the most suitable
to begin with, as the EBM will address a gap in the quantitative assessment of early stages of
the disease and data-driven evolution, given multiple sources of biomarkers. However, it will be
necessary to overcome current barriers to adoption related to technical, organisational and social
assets. The most disruptive were the need for rigorous validation, adequate fit within context,
and resource accessibility. Clarifying all these can contribute not only to guiding the research on
the tool’s development, but also to a higher probability of translating the EBM into a tangible
technology.

5.2 Opportunities to adopt DSTs in AD clinical practice
Some of our findings can be generalised to DSTs developed for AD, but built on different underlying
algorithms. This is reported in the last column of Table 3. From the IT perspective, clinicians needed
transparency on DST output to feel confident in adopting them. This touches on key topics about
explainability and trustworthiness of AI systems in healthcare [28, 56]. Healthcare is a particularly
challenging space, where the demand for explanation is much higher compared to other applications
[2], and where explanations depend more profoundly on domain knowledge and the needs of the
specific context. Within healthcare, AD brings additional challenges given by its heterogeneity,
which affects the range of explanations that models have to account for. Moreover, the variety of
data recorded and the longitudinal characteristic of this condition makes it hard to account for
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Table 3. Table summarising barriers and facilitators related to our study, and requirements for adoption of
DSTs for AD.

Barriers Facilitators Requirements for Adoption

IT factors Does not use clinical terminology Visualisation and team discussion IT terminology adapted to clinical setting
Lack of validity and reliability Data reliability and validity

Interpretability
User Patient-focussed clinicians Disease-focussed clinicians System perceived as useful

factors Not properly fitting workflow Need to assess early or uncertain cases System meets critical needs
Familiarity with the EBM System should fit with workflow
Presence of a champion Team/champion promoting IT

Contextual Lack of data quality Availability of specialised data Availability of resources
factors C-O settings R+C settings Specialised settings

Costs Costing support

consistency and data quality. Various data sharing initiatives in AD aim to generate a common
platform that could guide towards data harmonisation, as a more solid base for computational
models to be developed and deployed [20, 54].

Another important point refers to Human Factors, such as stakeholders’ needs and beliefs [61].
Involving users early in the design process [43, 56, 57, 64] can fulfil these requirements, saving time
and resources, and avoiding critical errors. Their engagement can guide in defining the intended
use of DSTs. In fact, we are not only translating the outcome from an algorithm into a tool. We
are actually translating a concept between two very different fields. To translate a concept, we
need to take into account each side’s beliefs, mental models, and terminology. In some cases (e.g.
critical care where decisions are made under time-pressure), timing is also important. Therefore,
how can we make this ’black-box’ more transparent? Human Factors contribution is absolutely
critical. For instance, Cai et al. [10] demonstrated that instead of improving the performance of
imperfect algorithms, researchers could work on improving users’ interaction with the system. This
will stimulate users to build appropriate mental models through the interaction with the algorithm,
and therefore gather those explanations in a progressive enquiry process.

We also stressed the importance of technology fitting within the current workflow in a seamless
and interoperative way, while simultaneously bringing about positive behaviour change. This refers
to the applicability or the extent to which the innovation might be suitable for a particular clinical
situation (workflow, setting, needs, type of patient, and resources). One barrier to adoption was
the time taken to input data in the system and who would be completing that task. Since most
clinicians make use of written notes and do not record patients’ data in datasets, this additional
step might limit the integration of the tool into clinical routine. Other contextual factors included
those external variables that do not depend on the user or the technology [18], such as facilitated
access to data, data quality and heterogeneity, costing, and technical resources.

Our work aligns with these threads. Ours is one of the few studies [43, 61] where clinical experts
were involved in the development of a clinical DST, prior to an actual tool being developed. This
approach allowed us to define strategies for the future adoption of this particular predictive model
in a DST for AD. Based on these outcomes, we outlined critical requirements that apply to other
DSTs developed for the AD context.

5.3 Limitations and future directions
HCI research in the healthcare space is characterised by inevitable and acknowledged challenges
[60], which affected this study in various ways. From a practical perspective, this included accessing
clinical spaces, involving medical specialists and allocating time with them, recording protected
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data, or running any tests that can interfere with doctors’ routines [60]. Therefore, parts of our
data collection were recorded as notes, which may be more susceptible to transcription errors than
audio recordings. Moreover, our sample was not extensive, due to difficulties in recruiting suitable
participants and to their limited time availability, but also to the niche target audience considered
in this study. However, this number was sufficient to identify challenges, as reported above. Similar
studies [9, 48, 58, 60, 61] involved small data sets to test and learn from different frameworks’
applications, the sizes of which are comparable to ours. Despite this, we acknowledge that further
evidence should be collected to validate our findings. From a methodological perspective, the DRGm
requires the analyst to assign quantitative scoring to each of the seven dimensions. Whilst there
is an inherent subjectivity in quantifying qualitative results, the real value from this conceptual
contribution lies in the process that led to those scoring [46]. The scoring is presented after the
description of findings for each dimension, where the reader could find critical justification for
the assigned numbers. Ultimately, scoring is here intended more as a tool for the analyst to think
about which gaps are more difficult to address. We have extensively used interviews for this study,
which on one hand is more suitable for getting a rich input at this early stage of the development
(given limited number of participants and the complex scenario), but on the other hand heavily
depends on participants’ ability to articulate relevant gaps in the current workflow. In particular,
it is hard for prospective users to assess the real impact of a future tool on their workflow, and
how they would adapt to innovation (also know as the "task artefact cycle" [11]). This is also why
end-users should be kept in the loop at all stages of the development process, as they will become
increasingly aware of a tool’s potentials and use.
This work made progress towards a long-term goal to develop a tool that brings innovative

predictive models from the EuroPOND project [17] into AD clinical practice, tailored around
clinicians’ needs, beliefs, and expected use. Although further engagement with a greater number
of clinicians and multiple centres is needed to ensure this innovation can scale, our contribution
provided the knowledge needed to confidently accomplish our next research steps, overcoming the
risk of the "proximate future", so common in HCI research. By studying the barriers and potential
from the real context, that could constrain the development and adoption of our future DST, we
set our development goals to be totally embedded and integrated with real-world characteristics.
Our future plan is to design an EBM-based DST prototype based on these requirements, and test it
with the intended users to make sure we have met their needs. In the long run, and with multiple
iterations, this will lead to a mature tool that can access live patient data so that a future study
can test this approach "in the wild" (i.e., in ongoing clinical practice). Finally, this paper presented
one example of a DST for AD; more application areas (e.g. other neurodegenerative conditions or
different DPMs) should be explored, to consolidate the proposed requirements for the translation
and adoption of DSTs for AD.

6 CONCLUSIONS
We explored opportunities for a novel predictive model-based DST for AD to be adopted in clinical
practice, where it could advance the understanding and management of this debilitating condition.
DSTs often fail when introduced to the real-world setting, due to limited human factors considera-
tions. This is one of the few studies involving end users prior to an actual tool being developed,
but it also contributed with a novel combination of methods to explore barriers and facilitators
in the future adoption of such tool. There are no prior methodological guidelines on translation
and adoption of a future technology in this application area, so we combined a set of methods
that allowed us to tackle our key questions. We found that research-oriented centres represent
a narrower gap to adoption in our case, because early adopters would be advantaged to take on
the tool thanks to their facilitated access to relevant data, and their need for early diagnosis and
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quantification of patients’ progression that better matches the tool’s capabilities. However, other
internal and external factors can influence this transition, such as the validation and trust in the
model, presence of a relevant champion, or characteristics and needs of the environment. Generally,
the tool was perceived as having potential, if the hurdles identified can be properly addressed.
This is one of the few contributions towards this topic that includes clinical users early in the
process, before the implementation of the actual technology. Despite our focus on an EBM-based
DST, we contributed with general requirements for other DSTs to be developed for the AD setting.
Defining strategies for adoption early in the process through a user-centred approach would give
timely directions for future development stages towards clinical needs. Strategies for adoption will
aid future researchers in avoiding possible misconceptions, or abandonment of the technology,
promoting a positive impact in real world scenarios.
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Table 4. Gagnon’s factors organised by Heeks’ dimensions.

Heeks’ dimensions Gagnon’s factors
Information 1. IT related factors

1.2 Innovation characteristics
1.3 System reliability
1.6 Evidence regarding benefits
1.7 Validity of resources

Technology 1. IT related factors
1.1 Design and technical concerns
1.3 System reliability

Process 2. Individual factors
2.2 Attitude
4. Organisational environment
4.1 Internal environment

Objectives and values 2. Individual factors
2.2 Attitude
3. Human environment
4. Organisational environment
4.1 Internal environment

Staffing and skills 2. Individual factors
2.1 Knowledge
4. Organisational environment
4.1 Internal environment

Management 1. IT related factors
1.5 Legal issues
1.9 Environmental issues
4. Organisational environment

Other resources 1. IT related factors
1.8 Cost issues
4. Organisational environment
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