
Nonlinearity
            

PAPER • OPEN ACCESS

Large time behavior for a compressible two-fluid model with algebraic
pressure closure and large initial data
To cite this article: Yang Li et al 2020 Nonlinearity 33 4075

 

View the article online for updates and enhancements.

This content was downloaded from IP address 144.82.114.179 on 04/05/2021 at 13:34

https://doi.org/10.1088/1361-6544/ab801c


London Mathematical Society Nonlinearity

Nonlinearity 33 (2020) 4075–4094 https://doi.org/10.1088/1361-6544/ab801c

Large time behavior for a compressible
two-fluid model with algebraic pressure
closure and large initial data

Yang Li1, Yongzhong Sun2 and Ewelina Zatorska3,4

1 School of Mathematical Sciences, Anhui University, Hefei 230601, People’s
Republic of China
2 Department of Mathematics, Nanjing University, Nanjing 210093, People’s
Republic of China
3 Department of Mathematics, University College London, Gower Street, London,
WC1E 6BT, United Kingdom

E-mail: lynjum@163.com, sunyz@nju.edu.cn and e.zatorska@ucl.ac.uk

Received 15 December 2019
Accepted for publication 16 March 2020
Published 2 July 2020

Abstract
In this paper, we consider a compressible two-fluid system with a common
velocity field and algebraic pressure closure in dimension one. Existence,
uniqueness and stability of global weak solutions to this system are obtained
with arbitrarily large initial data. Making use of the uniform-in-time bounds for
the densities from above and below, exponential decay of weak solution to the
unique steady state is obtained without any smallness restriction to the size of
the initial data. In particular, our results show that degeneration to single-fluid
motion will not occur as long as in the initial distribution both components are
present at every point.
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1. Introduction

In multi-component flows the presence of topologically complex interphase separating the
components is a great difficulty from physical as well as mathematical point of view. How-
ever, in most of engineering applications precise description of motion of each component of
interphase are not rarely needed and only the averaged macroscopic description is important.
We will focus on the averaged two-component model derived in the monograph of Ishii and
Hibiki in its in viscid form [1]. We refer the interested reader to [2] for concise overview of
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various modelling and mathematical aspects related to such models. In the present paper we
immediately assume that the two components of the flow share a common velocity field and that
their pressures are equal (algebraic pressure closure). We obtain the following one-dimensional
system of partial differential equations:

∂t(α±�±) + ∂x(α±�±u) = 0, (1.1)

∂t[(α+�+ + α−�−)u] + ∂x[(α+�+ + α−�−)u2] + ∂x p = μ∂xxu, (1.2)

α+ + α− = 1, α± � 0, (1.3)

p = p+ = p−, (1.4)

with the space variable x ∈ Ω := (0, 1) and the time variable t ∈ (0, T). Here, α+ and α− are
the volumetric rates of the two fluids; �+ and �− are the two mass densities; u is the com-
mon velocity field, and μ > 0 is the viscosity coefficient. The two internal pressures are given
by

p+ = �
γ+
+ , p− = �

γ−
− , (1.5)

for adiabatic exponents γ± > 1. The algebraic closure (1.4) is only one of possible choices,
but it seems to be well accepted in the physics community. For more thorough discussion on
this and other choices we refer to [1, 2].

We restrict ourselves to the case of Dirichlet boundary conditions for the velocity:

u|x=0,1 = 0. (1.6)

Following [3], we introduce the notation

R = α+�+, Q = α−�−, Z = �+, (1.7)

and reformulate (1.1)–(1.5) to

∂tR + ∂x(Ru) = 0, (1.8)

∂tQ + ∂x(Qu) = 0, (1.9)

∂t[(R + Q)u] + ∂x[(R + Q)u2] + ∂xZγ+ = μ∂xxu, (1.10)

again supplemented with the Dirichlet boundary conditions (1.6) for the velocity and the initial
conditions:

(R, Q, u)|t=0 = (R0, Q0, u0).

Without loss of generality, we may assume that∫
Ω

(R0 + Q0)(ξ)dξ = 1. (1.11)

Due to the algebraic closure (1.4), Z is an implicit function of R and Q interrelated by

Q =

(
1 − R

Z

)
Zγ , γ :=

γ+
γ−

, (1.12)
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R � Z. (1.13)

The same model, but in semi-stationary Stokes regime, has been recently investigated by
Bresch, Mucha and the third author in the three-dimensional setting. They proved the global-
in-time existence of weak solutions without any restriction on the initial data. Similar result
for the general Navier–Stokes system, with generalized equation of state was later obtained
by Novotný and Pokorný [4]. Earlier results in this spirit concern existence of weak solutions
to very particular two-component models including the fluid model of atmospheric flow with
transport of potential temperature [5], and the hydrodynamic limit of Vlasov–Fokker–Planck
system modelling suspension of the particles in the compressible fluid [6]. For other related
results in case of one-dimensional two-fluid models, including density dependent coefficients
or the so-called drift-flux model, we refer to [7], to the works of Evje et al [8–12] and to the
recent overview paper [13].

The present paper is, as far as we know, the first attempt to provide some more information
about quantitative properties of weak solutions to this system. In order to investigate the large
time behavior of solutions, we furthermore rewrite (1.8)–(1.10) in Lagrangian coordinates. To
do this, we make the change of variables

y :=
∫ x

0
(R + Q)(ξ, t)dξ, s := t.

Observing that y is nondecreasing with respect to x and, in light of (1.8), (1.9) and (1.11),∫
Ω

(R + Q)(ξ, t)dξ =

∫
Ω

(R0 + Q0)(ξ)dξ = 1,

we find that y ∈ [0, 1] when x ∈ [0, 1]. Based on this property, we deduce from (1.6) that the
velocity obeys the Dirichlet boundary conditions in the Lagrangian coordinates as well.

As a consequence,

∂tτ = ∂yu, (1.14)

∂t(Qτ ) = 0, (1.15)

∂tu = ∂y

(
μ
∂yu
τ

− Z(R, Q)γ+
)

, (1.16)

where y ∈ Ω, t ∈ (0, T) and

τ :=
1

R + Q
.

It follows readily that R satisfies

∂t(Rτ ) = 0.

By introducing the two time-independent quantities

c+(y) :=
R0

R0 + Q0
, c−(y) :=

Q0

R0 + Q0
,
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which are called concentrations of the components, we realize then the pressure takes the form

p = p(y, τ ) = Zγ+

(
c+(y)
τ

,
c−(y)
τ

)
.

Hence, we may reformulate (1.14)–(1.16) in a more convenient form⎧⎪⎨⎪⎩
∂tτ = ∂yu,

∂tu = ∂y

[
μ
∂yu
τ

− Zγ+

(
c+(y)
τ

,
c−(y)
τ

)]
.

(1.17)

The equation (1.17) are reminiscent of 1D viscous, barotropic, compressible Navier–Stokes
system with pressure depending on both the specific volume and the Lagrangian mass coordi-
nate. In [14] Zlotnik showed the existence, uniqueness and Lipschitz continuous dependence
on the initial data of weak solutions to 1D barotropic (or heat-conductive) flow in Lagrangian
mass coordinate; regularity of weak solutions was also considered therein. We refer to [15]
for asymptotic behavior of weak (or strong) solutions to the two-scale equations of a viscous
compressible barotropic medium. The main ideas, in particular the asymptotic analysis, of the
aforementioned papers play a crucial role in our model system.

The equation (1.17) are supplemented with the initial and boundary conditions as follows:

(τ , u)|t=0 = (τ0, u0), (1.18)

u|y=0,1 = 0, (1.19)

and we denote

τ0 :=
1

R0 + Q0
. (1.20)

This paper is mainly devoted to the large time behavior of weak solutions to (1.17)–(1.19)
with large initial data. Existence, uniqueness and stability of weak solutions are obtained by
making full use of the specific structure of the equations. Unlike in the three-dimensional
regime [3, 4], we prove the existence of weak solutions by approximation based on the strong
solutions. Then the stability of weak solutions is verified by adapting the arguments for single-
fluid equations [16, 17]. The key step in the asymptotic analysis is to show uniform-in-time
bounds on the densities from above and below. Due to the complicated form of the pressure,
classical methods used in [18–22] cannot be applied here. However, thanks to the structure of
the pressure, we are able to adapt the argument from [23] so as to obtain the two-sided bounds;
see lemma 4.1. Based on these bounds, we show the exponential decay of weak solution by
choosing suitable test functions in the momentum equation and making another use of the
structure of the pressure.

Notation. We denoteΩt :=Ω× (0, t); Lp stands for the Lebesgue space Lp(Ω) with the norm
‖ · ‖Lp; H1 denotes the Sobolev space W1,2(Ω). H1

0 is the subspace of H1 with vanishing trace.
Further we denote

L∞(0, T; L2) :=

{
f : (0, T) → L2 strongly measurable : ess sup

t∈(0,T)
‖ f (·, t)‖L2 < ∞

}
.

For f = f(y, t), we define

‖ f ‖V2(ΩT ) := ‖ f ‖L∞(0,T;L2) + ‖∂y f ‖L2(ΩT ).
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Before stating our main results, we specify the meaning of weak solutions.

Definition 1.1. Let R0, Q0, u0 satisfy

0 < R0 � R0 � R0 < ∞, (1.21)

0 < Q0 � Q0 � Q0 < ∞, (1.22)

u0 ∈ L2. (1.23)

A triple (R, Q, u) is said to be a weak solution of (1.17)–(1.19) on ΩT provided that

• (R, Q, u) belongs to the spaces

0 < R(y, t), Q(y, t), a.e. in ΩT ,(
R, Q,

1
R

,
1
Q

)
∈ L∞(ΩT),

(∂tR, ∂tQ) ∈ L2(ΩT), u ∈ V2(ΩT ),

• The initial-boundary conditions

(R, Q, u)|t=0 = (R0, Q0, u0), u|y=0,1 = 0,

are satisfied in the sense of traces,
• The equation

∂tτ = ∂yu,

makes sense in L2(ΩT) and the equalities

R =
c+(y)
τ

, Q =
c−(y)
τ

, τ =
1

R + Q
,

hold true a.e. in ΩT,
• The momentum equation is understood in the sense of distributions, i.e.,∫

ΩT

{
u∂tφ−

[
μ
∂yu
τ

− Zγ+

(
c+(y)
τ

,
c−(y)
τ

)]
∂yφ

}
dyds = 0,

for any φ ∈ C∞
c (ΩT ).

Remark 1.1. Given (R0, Q0) in (1.21) and (1.22), we tacitly assume that Z0 satisfies⎧⎪⎨⎪⎩
Q0 =

(
1 − R0

Z0

)
Zγ

0 ,

R0 � Z0.

(1.24)

Clearly, the positive lower bound of Z0 follows from (1.24)2 and moreover R0 < Z0 a.e. in Ω in
accordance with (1.24)1. To get the upper bound of Z0 we again make use of (1.24)1. Indeed,
suppose on the contrary that Z0 > max

{
2R0, (2Q0)1/γ

}
, then we would have

Q0 � Q0 =

(
1 − R0

Z0

)
Zγ

0 � 1
2

Zγ
0 > Q0,
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which is a contradiction. Therefore Z0 must be bounded from above, more precisely

Z0 � max
{

2R0, (2Q0)1/γ
}
.

The main results of this paper are the following two theorems. The first one is concerned
with Lipschitz continuous dependence on the initial data of weak solutions.

Theorem 1.1. Let γ± > 1 and (1.21)–(1.23) be satisfied. Then there exists a unique global-
in-time weak solution to (1.17)–(1.19). Moreover, if (R, Q, u) and (R̃, Q̃, ũ) are two weak solu-
tions on ΩT corresponding to the initial data (R0, Q0, u0) and (R̃0, Q̃0, ũ0), respectively, then(

‖R − R̃‖L∞(ΩT ) + ‖Q − Q̃‖L∞(ΩT ) + ‖u − ũ‖V2(ΩT )

)
� C

(
‖R0 − R̃0‖L∞ + ‖Q0 − Q̃0‖L∞ + ‖u0 − ũ0‖L2

)
, (1.25)

where C is a positive constant depending on the lower and upper bounds of (R0, Q0, R̃0, Q̃0),
the L2-norms of (u0, ũ0), μ, γ±, and T.

The second theorem gives the large time behavior of weak solutions. More precisely, we
show the asymptotic decay of weak solutions to (R∞, Q∞, u∞)—the unique steady state for
problem (1.17)–(1.19) given implicitly by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q∞ = c−τ
−1
∞ , R∞ = c+τ

−1
∞ ,

τ∞ := (R∞ + Q∞)−1,

u∞ = 0, Z
γ+
∞ = C	,

Q∞ =

(
1 − R∞

Z∞

)
Zγ
∞, R∞ � Z∞,∫

Ω

τ∞dy =

∫
Ω

τ0dy.

(1.26)

Here, C	 is the positive constant uniquely determined by R0, Q0, γ± and the conservation of
mass (1.26)5.

Theorem 1.2. Let (R, Q, u) be the unique weak solution to (1.17)–(1.19) provided by
theorem 1.1. Then, for any t � 0, it holds

‖(R − R∞, Q − Q∞, u − u∞)‖L2 � C1 exp(−C2t). (1.27)

Here, C1 and C2 are positive constants depending on the initial data, μ, γ±, but independent
of time.

Remark 1.2. Given suitably regular initial data, i.e.,

(R0, Q0) ∈ L∞, (∂yR0, ∂yQ0) ∈ L∞, u0 ∈ H1
0 ,

0 < R0(y), Q0(y), for any y ∈ Ω,

it can be shown, adapting the arguments from [23, 24], that

‖(R − R∞, Q − Q∞, u − u∞)‖H1 � C1 exp(−C2t).
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Remark 1.3. Theorems 1.1 and 1.2 are obtained based on the hypothesis that the two compo-
nents of flows share the same velocity field. However, it is not straightforward how to generalise
these results to system with two different velocities. First of all, it is not clear how to transform
such system from Eulerian to Lagrangian coordinates. Secondly, the pressure term in the two-
velocity system would not be in the conservative part, causing that the energy estimates and
all the good properties of the pressure would be much harder to obtain.

The rest of this paper is structured as follows. In section 2.1 we show global existence
and uniqueness of strong solutions to (1.17)–(1.19). In section 2.2 we prove the existence of
global weak solutions via approximation based on regular solutions corresponding to regular-
ized initial data and the weak convergence method. In section 3 we verify the stability of weak
solutions. In section 4, we obtain the exponential decay of weak solution to the unique steady
state in L2-norm with large initial data.

2. Global existence of weak solutions

2.1. Global well-posedness to (1.17)–(1.19)

In this subsection, we prove global existence and uniqueness of strong solutions to
(1.17)–(1.19) with large data. This will be useful in construction of weak solutions. Through-
out this section, we denote by C a generic positive constant depending on the initial data, μ, γ±
and T.

Proposition 2.1. Let (1.21) and (1.22) be satisfied. Assume that

(R0, Q0) ∈ H1, u0 ∈ H1
0 . (2.1)

Then there exists a unique global strong solution (R, Q, u) to (1.17)–(1.19). Furthermore,
for any 0 < T < ∞, it holds that

C−1 � R(y, t), Q(y, t), Z(y, t) � C, for any (y, t) ∈ ΩT , (2.2)

‖u‖L∞(0,T;L2) + ‖∂yu‖L2(ΩT ) � C, (2.3)

‖∂tR‖L2(ΩT ) + ‖∂tQ‖L2(ΩT ) � C. (2.4)

Local-in-time existence and uniqueness of strong solutions to (1.17)–(1.19) is proved by the
classical method based on the linearization of the problem and Banach fixed point theorem.
We refer to [25, 26] for similar calculations. Therefore, it remains to derive sufficient global a
priori estimates so as to extend the local solution globally.

We start by giving the conservation of mass and the elementary energy inequality. To
simplify the expression, we define

α :=
R
Z
. (2.5)

Lemma 2.1. Let (R, Q, u) be a smooth solution to (1.17)–(1.19) on ΩT with regular initial
data (2.1), then we have∫

Ω

τ (y, t)dy =

∫
Ω

τ0(y)dy, for any t ∈ [0, T], (2.6)
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sup
0�t�T

∫
Ω

(
1
2

u2 +
(c+)γ+

γ+ − 1
(ατ )−γ++1 +

(c−)γ−

γ− − 1
[(1 − α)τ ]−γ−+1

)
dy

+μ

∫
ΩT

(∂yu)2

τ
dyds � C. (2.7)

Proof. (2.6) follows from (1.17)1 immediately after integration over Ω. To show (2.7), we
adopt to the Lagrangian coordinates the technique of pressure decomposition in [3]. One
deduces from (1.4), (1.7), and (2.5) that(

R
α

)γ+

=

(
Q

1 − α

)γ−

. (2.8)

Thus we can decompose the pressure as

Zγ+ = α

(
R
α

)γ+

+ (1 − α)

(
Q

1 − α

)γ−

. (2.9)

Multiplying (1.17)2 by u and integrating by parts yields

0 =
1
2

d
dt

∫
Ω

u2dy −
∫
Ω

Zγ+∂yudy + μ

∫
Ω

(∂yu)2

τ
dy

=
1
2

d
dt

∫
Ω

u2dy −
∫
Ω

Zγ+∂tτdy + μ

∫
Ω

(∂yu)2

τ
dy. (2.10)

The second term on the right-hand side of (2.10) can be computed, with the help of (2.9),
through

−
∫
Ω

Zγ+∂tτdy = −
∫
Ω

α

(
R
α

)γ+

∂tτdy −
∫
Ω

(1 − α)

(
Q

1 − α

)γ−

∂tτdy

= −
∫
Ω

( c+
ατ

)γ+
α∂tτdy −

∫
Ω

(
c−

(1 − α)τ

)γ−

(1 − α)∂tτdy

= −
∫
Ω

( c+
ατ

)γ+
∂t(ατ )dy +

∫
Ω

( c+
ατ

)γ+
τ∂tαdy

−
∫
Ω

(
c−

(1 − α)τ

)γ−

∂t[(1 − α)τ ]dy +
∫
Ω

(
c−

(1 − α)τ

)γ−

τ∂t(1 − α)dy

= −
∫
Ω

( c+
ατ

)γ+
∂t(ατ )dy −

∫
Ω

(
c−

(1 − α)τ

)γ−

∂t[(1 − α)τ ]dy

=
d
dt

∫
Ω

(c+)γ+

γ+ − 1
(ατ )−γ++1dy +

d
dt

∫
Ω

(c−)γ−

γ− − 1
[(1 − α)τ ]−γ−+1dy, (2.11)

where we have used (2.8) in the fourth equality. Thus, combining (2.10) and (2.11) gives rise
to (2.7). This finishes the proof of lemma 2.1. �

By virtue of lemma 2.1 and the specific mathematical structure of the equations, we are
able to show the upper and lower bounds for R and Q. This plays a crucial role in the proof of
proposition 2.1.
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Lemma 2.2. Let the assumptions of lemma 2.1 be satisfied. Then

C−1 � R(y, t), Q(y, t), Z(y, t) � C, for any (y, t) ∈ ΩT . (2.12)

Proof. We observe first that the positiveness of R and Q follow from the method of charac-
teristics and the regular initial data. Given positive R and Q, there exists a unique Z satisfying
(1.12) and (1.13). This fact can be justified easily and we refer to lemma 2.1 in [3] for the
details. That is, Z can be regarded as a function of R and Q. Furthermore, due to R =

c+
τ

and

Q = c−
τ , Z can be also seen as a function of y and τ , i.e., Z = Z

(
c+(y)
τ , c−(y)

τ

)
.

Rewriting (1.12) as

c−τ
−1 =

(
1 − c+τ−1

Z

)
Zγ . (2.13)

Differentiating both sides of (2.13) with respect to τ leads to

−c−τ
−2 = γZγ−1∂τZ −

(
c+τ

−1(γ − 1)Zγ−2∂τZ − c+τ
−2Zγ−1

)
,

or equivalently,

∂τZ = − c−τ−2 + c+τ−2Zγ−1

γZγ−1 − c+τ−1(γ − 1)Zγ−2
. (2.14)

The denominator is positive as we have

γZγ−1 − c+τ
−1(γ − 1)Zγ−2 = Zγ−2[γZ − (γ − 1)R]

= Zγ−2[γ(Z − R) + R] � Zγ−2R > 0, (2.15)

due to (1.13), assumption about the smoothness of the solution, and remark 1.1. Therefore,

∂τ (Zγ+) = γ+Zγ+−1∂τZ < 0, (2.16)

which means that the pressure is decreasing with respect to τ . Based on this crucial observation,
the two-sided bounds of τ are proved by the same method as Zlotnik [14] (see also Antontsev
et al [27]). The details are omitted here. The two-sided bounds of Z follows in the same manner
as remark 1.1. �

With lemma 2.2 at hand, high-order energy estimates are obtained in a routine manner. Thus,
the local-in-time solution can be extended globally. Uniqueness of solutions is proved by the
classical energy method. This finishes the proof of proposition 2.1.

2.2. Existence of weak solutions

The main task of this subsection is to construct global-in-time weak solutions to (1.17)–(1.19)
using approximation based on regular solutions. We start from regularizing the initial data
(R0, Q0, u0) in such a way that {(Rε

0, Qε
0, uε

0)}ε>0 satisfy

(Rε
0, Qε

0) ∈ C2(Ω), C−1 � Rε
0, Qε

0 � C, uε
0 ∈ C2

c (Ω),

(Rε
0, Qε

0, uε
0) → (R0, Q0, u0) strongly in L2 as ε→ 0.

Moreover, we define

τε0 := (Rε
0 + Qε

0)−1, τε := (Rε + Qε)
−1.
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Therefore, it follows from proposition 2.1 that there exists a unique global strong solution
(Rε, Qε, uε) to (1.17)–(1.19) with initial data (Rε

0, Qε
0, uε

0). Furthermore, from proposition 2.1
we conclude the following uniform-in-ε estimates:

C−1 � Rε(y, t), Qε(y, t) � C, for any (y, t) ∈ ΩT , (2.17)

‖uε‖L∞(0,T;L2) + ‖∂yuε‖L2(ΩT ) � C, (2.18)

‖∂tRε‖L2(ΩT ) + ‖∂tQε‖L2(ΩT ) � C. (2.19)

From (2.17)–(2.19) it follows that there exists a subsequence of {(Rε, Qε, uε)}ε>0, not relabel-
ing, such that as ε→ 0,

(Rε, Qε) → (R, Q) weakly − ∗ in L∞(ΩT ), (2.20)

uε → u weakly − ∗ in L∞(0, T; L2), (2.21)

(∂tRε, ∂tQε, ∂yuε) → (∂tR, ∂tQ, ∂yu) weakly in L2(ΩT ), (2.22)

for some limit triple (R, Q, u), and we infer from (2.17)–(2.22) that

C−1 � R(y, t), Q(y, t) � C, for a.e. (y, t) ∈ ΩT , (2.23)

‖u‖L∞(0,T;L2) + ‖∂yu‖L2(ΩT ) � C, (2.24)

‖∂tR‖L2(ΩT ) + ‖∂tQ‖L2(ΩT ) � C. (2.25)

The weak convergence results (2.20)–(2.22) are not sufficient to pass to the limit in
(1.17)–(1.19), in particular, in the strongly nonlinear pressure function. For the moment we
only know that Zε is the unique solution of

Qε =

(
1 − Rε

Zε

)
Zγ
ε , Rε � Zε.

To identify the pressure term, it suffices to verify that the pointwise limit of {Zε}ε>0 is the
unique solution of

Q =

(
1 − R

Z

)
Zγ , R � Z,

for which we need the strong convergence of the sequence {Zε}ε>0. In fact, since Qε =
Qε

0τ
ε
0 τ

−1
ε , Rε = Rε

0τ
ε
0 τ

−1
ε , Zε can also be regarded as Zε = Zε(Qε

0, Rε
0, τε0 , τε). Therefore the

strong convergence of {Zε}ε>0 will follow from that of {τε}ε>0. The necessary compactness
property in space is provided by the following lemma.

Lemma 2.3. For any 0 < h < 1, there holds

‖Δhτε‖L∞(0,T;L2) � C(‖ΔhR0‖L2 + r‖ΔhQ0‖L2 + h), (2.26)

where ΔhF(y) :=F(y + h) − F(y) is the translation in spatial variable with the step h.

Proof. By setting

σε :=μ
∂yuε

τε
− Z

γ+
ε ,
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it follows that

τε = Dε

(
τε0 +

1
μ

∫ t

0
D−1

ε (y, s)
(
τεZ

γ+
ε

)
(y, s)ds

)
, (2.27)

where

Dε(y, t) := exp

(
1
μ

∫ t

0
σε(y, s)ds

)
.

By definition it holds that

Δhτε(y, t) = ΔhDε(y, t)

(
τε0 (y + h) +

1
μ

∫ t

0
D−1

ε

(
τεZ

γ+
ε

)
(y + h, s)ds

)

+Dε(y, t)

(
Δhτ

ε
0 (y) +

1
μ

∫ t

0
D−1

ε (y + h, s)Δh

(
τεZ

γ+
ε

)
(y, s)ds

)

−Dε(y, t)

(
1
μ

∫ t

0
D−1

ε (y + h, s)D−1
ε (y, s)

(
τεZ

γ+
ε

)
(y, s)ΔhDε(y, s)ds

)
. (2.28)

Thanks to (2.17), we have

C−1 � Zε(y, t), Dε(y, t) � C, for any (y, t) ∈ ΩT . (2.29)

The delicate issue is to compute Δh

(
τεZ

γ+
ε

)
. In fact,

Δh

(
τεZ

γ+
ε

)
= Z

γ+
ε Δhτε + τε(y + h, t)ΔhZ

γ+
ε . (2.30)

Furthermore,

ΔhZε = (∂Qε
0
Zε)ΔhQε

0 + (∂Rε
0
Zε)ΔhRε

0 + (∂τε0 Zε)Δhτ
ε
0 + (∂τεZε)Δhτε.

Subsequent differentiations of (2.13) with respect to Qε
0, Rε

0, τε0 , and τ ε give rise to

∂Qε
0
Zε =

τε0 τ
−1
ε

γZγ−1
ε − Rε

0τ
ε
0 τ

−1
ε (γ − 1)Zγ−2

ε

,

∂Rε
0
Zε =

τε0 τ
−1
ε Zγ−1

ε

γZγ−1
ε − Rε

0τ
ε
0 τ

−1
ε (γ − 1)Zγ−2

ε

,

∂τε0 Zε =
Qε

0τ
−1
ε + Rε

0τ
−1
ε Zγ−1

ε

γZγ−1
ε − Rε

0τ
ε
0 τ

−1
ε (γ − 1)Zγ−2

ε

,

∂τεZε = − Qε
0τ

ε
0 τ

−2
ε + Rε

0τ
ε
0 τ

−2
ε Zγ−1

ε

γZγ−1
ε − Rε

0τ
ε
0 τ

−1
ε (γ − 1)Zγ−2

ε

.

In view of (2.15), (2.17) and (2.29), it follows that

‖
(
∂Qε

0
Zε, ∂Rε

0
Zε, ∂τε0 Zε, ∂τεZε

)
‖L∞(ΩT ) � C. (2.31)

Consequently, we conclude from (2.17) and (2.18) and (2.28)–(2.31) that
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‖Δhτε(y, t)‖L2 � C
(
‖ΔhDε(y, t)‖L2 + ‖Δhτ

ε
0‖L2

+

∫ t

0

(
‖ΔhDε(y, s)‖L2 + ‖Δhτε(y, s)‖L2 + ‖ΔhQε

0‖L2 + ‖ΔhRε
0‖L2

)
ds

)

� C

(
h‖uε − uε

0‖L∞(0,T;L2) + ‖ΔhQε
0‖L2 + ‖ΔhRε

0‖L2 +

∫ t

0
‖Δhτε(y, s)‖L2ds

)

� C

(
h + ‖ΔhQ0‖L2 + ‖ΔhR0‖L2 +

∫ t

0
‖Δhτε(y, s)‖L2ds

)
. (2.32)

Finally, (2.26) follows from (2.32) immediately by invoking Gronwall’s inequality. The proof
of lemma 2.3 is thus finished. �

Based on lemma 2.3, the relation ∂ tτ ε = ∂yuε and (2.18), we see

‖τε(·+ h, ·+ s) − τε‖L∞(0,T−s;L2) � C
(
‖ΔhQ0‖L2 + ‖ΔhR0‖L2 + h + s

1
2

)
,

for any 0 < h < 1, 0 < s < T. This particularly implies the strong convergence of {τε}ε>0 to
τ in L2(ΩT) and furthermore in Lp(ΩT) for any 1 � p < ∞. Consequently, it holds that

Qε → c−τ
−1, Rε → c+τ

−1, a.e. in ΩT ,

which yields

Q = c−τ
−1, R = c+τ

−1, a.e. in ΩT . (2.33)

Recalling that Zε = Zε(Qε
0, Rε

0, τε0 , τε), we find Zε converges to some limit function Z almost
everywhere. Upon passing to the limit in the relations

Qε =

(
1 − Rε

Zε

)
Zγ
ε , Rε � Zε,

we conclude from (2.29) that {Zε}ε>0 converges to Z strongly in Lp(ΩT) for any 1 � p < ∞
and Z solves exactly

Q =

(
1 − R

Z

)
Zγ , R � Z. (2.34)

This finishes the proof of existence of a weak solution.

3. Stability of weak solutions

In the present section, we show Lipschitz continuous dependence on the initial data of weak
solutions, i.e., we prove our first main theorem 1.1. We remark that the proof relies on the
structure of the equations. As a preliminary step, we state the following lemma, the proof of
which is omitted as it is similar to relevant results from [17, 24]. Throughout this section,
various positive constants are denoted by the same symbol C depending on the initial data,
μ, γ± and T.

Lemma 3.1. Let (R, Q, u) be a weak solution to (1.17)–(1.19). Then

τ (y, t) = exp

(
1
μ

∫ t

0
σ(y, s)ds

)
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×
(
τ0 +

1
μ

∫ t

0
exp

(
− 1
μ

∫ ξ

0
σ(y, s)ds

)
(τZγ+ ) (y, ξ)dξ

)
, (3.1)

and ∫ t

0
σ(y, s)ds = (I(u − u0))(y, t) +

∫ t

0
〈σ(·, s)〉ds, (3.2)

where

σ(y, t) :=

(
μ
∂yu
τ

− Zγ+

)
(y, t),

I f (y) :=
∫ y

0
f (ξ)dξ −

〈∫ y

0
f (ξ)dξ

〉
, 〈 f 〉 :=

∫
Ω

f (y)dy.

To verify the stability estimate (1.25) from theorem 1.1, we follow the arguments in [16,
24]. Let us start from introducing the following notation:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Δτ ,ΔR,ΔQ,Δu) := (τ − τ̃ , R − R̃, Q − Q̃, u − ũ),

(Δτ0,ΔR0,ΔQ0,Δu0) := (τ0 − τ̃0, R0 − R̃0, Q0 − Q̃0, u0 − ũ0),

Δσ := σ − σ̃, σ̃ :=μ
∂yũ
τ̃

− (Z̃)γ+ ,

D := exp

(
1
μ

∫ t

0
σ(y, s)ds

)
, D̃ := exp

(
1
μ

∫ t

0
σ̃(y, s)ds

)
,

�̃ := R̃ + Q̃, Δ� := �− �̃.

Recalling that Q = c−τ−1, R = c+τ−1, one has in light of uniform bounds for R, Q from below
and above, i.e., (2.23), that

|ΔR| � C
(
|ΔR0|+ |Δτ0|+ |Δτ |

)
� C

(
|ΔR0|+ |ΔQ0|+ |Δτ |

)
;

|ΔQ| � C
(
|ΔQ0|+ |Δτ0|+ |Δτ |

)
� C

(
|ΔR0|+ |ΔQ0|+ |Δτ |

)
. (3.3)

Consequently, in order to estimate L∞(ΩT)-norm of ΔR and ΔQ, it suffices to control
‖Δτ‖L∞(ΩT ). This is the key step in proving stability of weak solutions. We follow the idea
in [16, 17] to accomplish this goal.

Lemma 3.2. Let the assumptions of theorem 1.1 be fulfilled, then we have

‖Δτ‖L∞(Ωt ) � C
(
‖ΔR0‖L∞ + ‖ΔQ0‖L∞ + ‖Δu0‖L2

+ ‖Δu‖L∞(0,t;L2) + ‖∂y(Δu)‖L2(Ωt)

)
(3.4)

for any t ∈ (0, T].

Proof. It follows from (3.1) that

Δτ = D

{
Δτ0 +

1
μ

∫ t

0

(
τZγ+

(
D−1 − (D̃)−1

)
+

τZγ+ − τ̃ (Z̃)γ+

D̃

)
ds

}
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+
(

D − D̃
)(

τ̃0 +
1
μ

∫ t

0

τ̃ (Z̃)γ+

D̃
ds

)
. (3.5)

Similarly to (2.29), it holds that

C−1 �
(

Z, Z̃, D, D̃
)

(y, t) � C, for a.e. (y, t) ∈ ΩT . (3.6)

Indeed, the upper bound of Z and Z̃ is derived by the same argument as (2.29). Based on (2.23)
and (3.6), we observe that∣∣∣τZγ+ − τ̃ (Z̃)γ+

∣∣∣ � C
(
|Δτ |+ ‖ ∂τZ‖L∞(ΩT )|Δτ |+ ‖ ∂Q0Z‖L∞(ΩT )|ΔQ0|

+ ‖ ∂R0 Z‖L∞(ΩT )|ΔR0|+ ‖ ∂τ0Z‖L∞(ΩT )|Δτ0|
)

� C
(
|Δτ |+ |ΔR0|+ |ΔQ0|

)
, (3.7)

where we used a version of (2.31) for the limit functions. Therefore, we deduce from
(3.5)–(3.7) that

|Δτ | � C

(
|ΔR0|+ |ΔQ0|+

∫ t

0

(∣∣∣∣∫ s

0
Δσdξ

∣∣∣∣+ |Δτ |
)

ds

)
+ C

∣∣∣∣∫ t

0
Δσds

∣∣∣∣ ;

whence

‖Δτ (·, t)‖L∞ � C

(
‖ΔR0‖L∞ + ‖ΔQ0‖L∞+ ‖

∫ s

0
Δσdξ‖L∞(Ωt) +

∫ t

0
‖Δτ (·, s)‖L∞ds

)
.

(3.8)

The rest of the proof follows the same lines as [24], and we write down the details only for the
convenience of the reader. First, from the identity (3.2) and Hölder’s inequality we obtain

‖
∫ s

0
Δσdξ‖L∞(Ωt) �

(
‖ I(Δu0)‖L∞+ ‖ I(Δu)‖L∞(Ωt) + ‖Δσ‖L2(Ωt)

)
. (3.9)

It remains to bound Δσ. Notice that we have

Δσ = μ
∂y(Δu)

τ
+ μ(Δ�)∂yũ −

(
Zγ+ − (Z̃)γ+

)
,

and so, as for (3.7) we obtain

|Δσ| � C
(
|∂y(Δu)|+ |Δτ |(|∂yũ|+ 1) + |ΔR0|+ |ΔQ0|

)
.

It follows that

‖Δσ‖L2(Ωt) � C
(
‖∂y(Δu)‖L2(Ωt) + ‖ΔR0‖L∞ + ‖ΔQ0‖L∞

+

∫ t

0
(‖(∂yũ)(·, s)‖L2 + 1)‖Δτ (·, s)‖L∞ds

)
. (3.10)

Since from (2.24) we deduce that
∫ T

0 ‖∂yũ‖2
L2ds � C, and therefore we can put together (3.9)

and (3.10), and apply Gronwall’s inequality to (3.8) to deduce (3.4). The proof of lemma 3.2
is thus finished. �
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In order to use (3.4) to conclude (1.25), we need the estimates for Δu. In fact, standard
energy estimate for parabolic equation [28] gives

Lemma 3.3. For any t ∈ (0, T], it holds that

‖Δu‖L∞(0,t;L2) + ‖∂y(Δu)‖L2(Ωt) � C
(
‖Δu0‖L2 + ‖ΔR0‖L∞ + ‖ΔQ0‖L∞

+ ‖
(
‖(∂yũ)(·, s)‖L2 + 1

)
‖Δτ (·, s)‖L∞‖L2((0,t))

)
. (3.11)

Having this, (1.25) follows by suitable combination of lemmas 3.2 and 3.3. For the sake of
brevity, we omit the details and refer the reader to [24] for similar steps. Clearly, (1.25) implies
the uniqueness of weak solutions and so the proof of theorem 1.1 is complete. �

4. Large time behavior of weak solution

In this section, we show the exponential decay of weak solution in L2-norm. The classical
methods to handle the large time behavior of the one-dimensional single-phase Navier–Stokes
equations [20–22] are not readily applicable to our two-fluid model system. In [23], the author
developed a new technique to treat one-dimensional viscous barotropic gas with nonmonotone
pressure. Of great importance in [23] is to obtain the uniform-in-time bounds of the density
from above and below. It turns out that the idea can be adapted to our two-fluid model. As a
matter of fact, it has already been successfully adapted before to the case of one-dimensional
nonresistive magneto hydrodynamic equations [24].

4.1. Two-sided bounds for R and Q

To begin with, we notice that the estimates in lemma 2.1 are uniform-in-time. Then we have
the following lemma, which is essential for the proof of theorem 1.2. Throughout this section
we use C and Ci to denote generic positive constants depending on the initial data, μ, γ±, while
independent of time.

Lemma 4.1. Let (R, Q, u) be the unique weak solution to (1.17)–(1.19) ensured by theorem
1.1. Then

C−1 � R(y, t), Q(y, t) � C, for a.e. (y, t) ∈ Ω∞. (4.1)

Proof. From (2.33) and the assumptions on the initial data (1.21) and (1.22) one sees that ver-
ification of (4.1) requires only to show the two-sided bounds for τ . By adapting the arguments
in [23] (see also [24]), this follows from lemma 2.1 and the three items below.

•

0 < C1 �
∫
Ω

τZγ+dy � C2 < ∞,

• Zγ+ is sufficiently large if τ is sufficiently small,
• Zγ+ is sufficiently small if τ is sufficiently large.

As a consequence, it remains to check that the three items above are satisfied. By the identity
of pressure decomposition (2.9) and (2.33), it holds that∫

Ω

τZγ+dy =

∫
Ω

(
τα

(
R
α

)γ+

+ τ (1 − α)

(
Q

1 − α

)γ−)
dy
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=

∫
Ω

(
(c+)γ+(ατ )−γ++1 + (c−)γ−[(1 − α)τ ]−γ−+1

)
dy

� C2,

where we have used the energy estimate (2.7). Clearly, we conclude from the definition of α,
i.e., (2.5), and Jensen’s inequality that∫

Ω

τZγ+dy =

∫
Ω

(
τα

(
R
α

)γ+

+ τ (1 − α)

(
Q

1 − α

)γ−)
dy

�
∫
Ω

α−γ++1τ−γ++1(c+)γ+dy

� C
∫
Ω

τ−γ++1dy

� C

(∫
Ω

τdy

)−γ++1

� C1.

Suppose now that τ is small, i.e., R + Q is large and we consider two possible cases. If R is
large, then Zγ+ is also large due to R � Z. If, on the other hand, Q is large, then also Z is large.
Indeed, otherwise, we would arrive at a contradiction in the relation

Q =

(
1 − R

Z

)
Zγ .

The third item is verified by using similar observation as above. We refer to [23] and lemma 5.3
in [24] for the remaining details. �

Remark 4.1. The key observations in lemma 4.1 are as follows. Firstly, the pressure term is
a function with variables y and τ by virtue of (1.12) and (1.13), tending to infinity as τ goes
to zero and tending to zero as τ goes to infinity. Secondly, the two internal pressures satisfy γ-
laws. This leads to a positive lower bound of the integral

∫
ΩτZγ+dy; while the upper bound is

obtained by the energy inequality. In this way, the arguments in [23, 24] are naturally adapted.

4.2. Exponential decay

In this subsection, we prove the exponential decay of weak solution in L2-norm by adapting the
ideas from [23, 24]. It should be emphasized that the structure of pressure function is crucial
for a modification of these arguments to work.

Step 1. Let (R∞, Q∞, u∞) be the unique steady state for problem (1.17)–(1.19) given by
(1.26). Thanks to (1.26)3, we rewrite the momentum equation (1.17)2 as

∂tu + ∂y

(
Zγ+ − Z

γ+
∞

)
= μ∂y

(
∂yu
τ

)
. (4.2)

Since Z is a function of y and τ , it follows that Z∞ = Z(y, τ∞). Therefore, testing (4.2) by u
and integrating by parts yields

1
2

d
dt

∫
Ω

u2dy +
∫
Ω

(Zγ+ (y, τ∞) − Zγ+ (y, τ )) ∂yudy + μ

∫
Ω

(∂yu)2

τ
dy = 0.
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Using the continuity equation (1.17)1, one has∫
Ω

(Zγ+ (y, τ∞) − Zγ+ (y, τ )) ∂yudy =

∫
Ω

(Zγ+ (y, τ∞) − Zγ+ (y, τ )) ∂tτdy

=
d
dt

∫
Ω

G(y, τ , τ∞)dy,

where we denoted

G(y, τ , τ∞) :=
∫ τ

τ∞
(Zγ+(y, τ∞) − Zγ+ (y, ξ)) dξ.

Thus we obtain

d
dt

∫
Ω

(
1
2

u2 + G(y, τ , τ∞)

)
dy + μ

∫
Ω

(∂yu)2

τ
dy = 0. (4.3)

Step 2. The key step in obtaining the exponential decay is to show that

C−1(τ − τ∞)2 � G(y, τ , τ∞) � C(τ − τ∞)2. (4.4)

The main observation is as follows. By setting

F(τ ) := −
∫ τ

τ∞
Zγ+ (y, ξ)dξ,

G(y, τ , τ∞) is reformulated as

G(y, τ , τ∞) = F(τ ) − F(τ∞) − F′(τ∞)(τ − τ∞). (4.5)

Therefore, in order to deduce (4.4) it is enough to estimate the second derivative of F(τ ). To
this purpose we use the expression for ∂τZ from (2.14) to get

∂τ (Zγ+) = −γ+Zγ+−1 c−τ−2 + c+τ−2Zγ−1

γZγ−1 − c+τ−1(γ − 1)Zγ−2
. (4.6)

As in (2.15) we first observe that the denominator is strictly positive. Moreover, in spirit of
remark 1.1, we infer from (4.1) and the relation Q =

(
1 − R

Z

)
Zγ that

C−1 � Z(y, t) � C, for a.e. (y, t) ∈ Ω∞, (4.7)

which together with lower and upper bound for τ implies boundedness of the numerator of
(4.6).

The remaining arguments follow largely the ones from [23, 24]. We incorporate the detailed
proof for the sake of completeness.

Step 3. Let 0 < ε < 1 and

K(y, t) :=
∫ y

0
(τ (ξ, t) − τ∞(ξ))dξ.

Testing (4.2) by εK gives rise to

d
dt

∫
Ω

εuKdy − ε

∫
Ω

(Zγ+(y, τ ) − Zγ+ (y, τ∞)) (τ − τ∞)dy
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− ε

∫
Ω

u2dy + ε

∫
Ω

μ
∂yu
τ

(τ − τ∞)dy = 0. (4.8)

From (4.3) and (4.8) we obtain

d
dt

∫
Ω

(
1
2

u2 + G(y, τ , τ∞) + εuK

)
dy

+μ

∫
Ω

(∂yu)2

τ
dy − ε

∫
Ω

(Zγ+ (y, τ ) − Zγ+ (y, τ∞)) (τ − τ∞)dy

= ε

∫
Ω

u2dy − ε

∫
Ω

μ
∂yu
τ

(τ − τ∞)dy. (4.9)

It follows from (4.1), (4.6) and (4.7) that∫
Ω

(Zγ+ (y, τ ) − Zγ+ (y, τ∞)) (τ − τ∞)dy � C1

∫
Ω

(τ − τ∞)2dy. (4.10)

With the help of Cauchy–Schwarz’s inequality and (4.1), we find∣∣∣∣∫
Ω

μ
∂yu
τ

(τ − τ∞)dy

∣∣∣∣ � C2

2C1
μ

∫
Ω

(∂yu)2

τ
dy +

C1

2

∫
Ω

(τ − τ∞)2dy; (4.11)

∫
Ω

u2dy � C3μ

∫
Ω

(∂yu)2

τ
dy. (4.12)

Using (4.10)–(4.12), (4.9) implies

d
dt

∫
Ω

(
1
2

u2 + G(y, τ , τ∞) + εuK

)
dy

+
C1ε

2

∫
Ω

(τ − τ∞)2dy +

(
1 − C2ε

2C1
− C3ε

)∫
Ω

μ
(∂yu)2

τ
dy � 0. (4.13)

Step 4. Due to the definition of K, it holds that∣∣∣∣∫
Ω

εuKdy

∣∣∣∣ � ε

2

∫
Ω

u2dy +
ε

2

∫
Ω

(τ − τ∞)2dy. (4.14)

Based on (4.14), after choosing ε suitably small, we see

C−1(‖τ − τ∞‖2
L2 + ‖u‖2

L2) �
∫
Ω

(
1
2

u2 + G(y, τ , τ∞) + εuK

)
dy

� C(‖τ − τ∞‖2
L2 + ‖u‖2

L2),

where we essentially used the property (4.4) from step 2. Combining the above with (4.13)
leads to

‖τ − τ∞‖L2 + ‖u‖L2 � C exp(−Ct), (4.15)

for any t � 0.
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Step 5. Finally, the exponential decay of ‖R − R∞‖L2 and ‖Q − Q∞‖L2 is a direct conse-
quence of (4.15) and the relations

Q = c−τ
−1, R = c+τ

−1;

Q∞ = c−τ
−1
∞ , R∞ = c+τ

−1
∞ .

The proof of theorem 1.2 is complete. �
Remark 4.2. We observe that the exponential decay of Z follows from that of τ . Indeed,

‖Z(y, τ ) − Z(y, τ∞)‖L2 �‖ ∂τZ‖L∞‖τ − τ∞‖L2 � C exp(−Ct),

in light of (4.6), (4.7) and (4.15).

Remark 4.3. The strategy adopted in this paper is strong enough to show existence, stability
and exponential decay of global weak solution to two-fluid models with more general form
of pressure considered for example in [4]. In particular, the two-fluid model with pressure
satisfying γ-laws could be included.
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