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Abstract

A common goal in the analysis of neural data is to compress large population
recordings into sets of interpretable, low-dimensional latent trajectories. This prob-
lem can be approached using Gaussian process (GP)-based methods which provide
uncertainty quantification and principled model selection. However, standard GP
priors do not distinguish between underlying dynamical processes and other forms
of temporal autocorrelation. Here, we propose a new family of “dynamical” priors
over trajectories, in the form of GP covariance functions that express a property
shared by most dynamical systems: temporal non-reversibility. Non-reversibility is
a universal signature of autonomous dynamical systems whose state trajectories
follow consistent flow fields, such that any observed trajectory could not occur in
reverse. Our new multi-output GP kernels can be used as drop-in replacements
for standard kernels in multivariate regression, but also in latent variable models
such as Gaussian process factor analysis (GPFA). We therefore introduce GPFADS
(Gaussian Process Factor Analysis with Dynamical Structure), which models
single-trial neural population activity using low-dimensional, non-reversible latent
processes. Unlike previously proposed non-reversible multi-output kernels, ours
admits a Kronecker factorization enabling fast and memory-efficient learning and
inference. We apply GPFADS to synthetic data and show that it correctly recovers
ground truth phase portraits. GPFADS also provides a probabilistic generalization
of jPCA, a method originally developed for identifying latent rotational dynamics
in neural data. When applied to monkey M1 neural recordings, GPFADS discovers
latent trajectories with strong dynamical structure in the form of rotations.

1 Introduction

The brain has evolved as a rich dynamical system to control and coordinate the other dynamical
systems that make up the body. High-dimensional neural activity can often be efficiently recapitulated
by lower dimensional latent dynamics, and multiple methods have been proposed over the years to
tackle the challenge of extracting interpretable and actionable latent trajectories.
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A first class of methods focuses on explicitly learning the transition function of an underlying
dynamical system. These include parametric models such as linear dynamical systems (LDS)
models (Buesing et al., 2012a,b; Churchland et al., 2012; Macke et al., 2011; Roweis and Ghahramani,
1999) and switching variants (Linderman et al., 2017; Petreska et al., 2011), probabilistic deep learning
approaches such as LFADS (Pandarinath et al., 2018), as well as more flexible non-parametric models
of the transition function and its uncertainty (Deisenroth and Rasmussen, 2011; Duncker et al., 2019).
While appealing in principle, the latter methods do not allow exact inference, must combat pervasive
local optima during training, and are computationally intensive. As such, they have yet to be more
widely adopted in the field.

The second class of methods focuses on modeling the statistics of the latent processes directly,
rather than learning a dynamical model for them. Such methods include Gaussian-process factor
analysis (GPFA) and variants (Yu et al., 2009). Gaussian process (GP)-based methods are data
efficient and have closed form formulas allowing for uncertainty estimation and principled model
selection (Rasmussen and Williams, 2006). Yet, these models fail to capture features of dynamical
systems beyond basic smoothness properties, limiting our capacity to study the dynamics of brain
computations.

We set out to bridge these two classes of models by imparting some notion of “dynamics” to GP-based
models. A key property of autonomous dynamical systems is that they define a consistent mean
flow field in state space, such that any segment of state-trajectory produced by the system is unlikely
to be visited in the opposite direction (though this is not true of strongly input-driven, or partially
observed systems). To capture this property in the Gaussian process framework, we introduce a
measure of second-order non-reversibility and derive a new family of GP covariance functions for
which this measure can be made arbitrarily large. These kernels can be derived from a variety of
usual scalar stationary covariance functions, such as the squared-exponential kernel or the more
expressive spectral mixture kernel (Wilson and Adams, 2013). Conveniently, our non-reversible
multi-output GP construction affords a specific Kronecker structure; we discuss how this property
enables scalability to very large datasets. We validate these kernels on a regression problem where
we show that non-reversible covariances yield better model fits than reversible ones for datasets
originating from dynamical systems. We then introduce non-reversible kernels in GPFA, and call
this variant GPFADS, Gaussian Process Factor Analysis with Dynamical Structure. We show how
GPFADS allows demixing of dynamical processes from other high-variance latent distractors, even
where demixing could not be performed by comparing lengthscales alone. Finally, we apply GPFADS
to population recordings in monkey primary motor cortex. We find that it discovers latent processes
with clear rotational structure, consistent with earlier findings (Churchland et al., 2012).

2 Background: Gaussian Process Factor Analysis (GPFA)

Notation In the following, we use bold x for column vectors, and capital X for matrices whose
elements we denote by xij . In any context where matrix X has been introduced, x̃ is a shorthand
notation for vec

(
X>
)
, where vec(·) is the operator which vertically stacks the columns of the matrix.

The transpose is needed for consistency with the convention used in the rest of the paper, which
requires that the rows be transposed and stacked vertically instead of columns. Finally, IN denotes
the N ×N identity matrix, and 1N denotes the column vector whose N elements are all ones.

Latent variable models offer a parsimonious way of capturing statistical dependencies in multivariate
time series. Gaussian process factor analysis (GPFA; Yu et al., 2009) is one such popular model
used for simultaneous dimensionality reduction and denoising/smoothing of neural population
recordings. Missing data are straightforward to handle, but for simplicity of exposition, we assume
that observations y(t) ∈ RN are available for each of N variates at each of T time points. GPFA
assumes that such observations arise as the noisy linear combination of a smaller set of M latent
trajectories, x(t) = (x1(t), . . . , xM (t))> ∈ RM , each modelled as an independent Gaussian process.
Formally,

xi(·) ∼ GP(0, ki(·, ·))
y(t) ∼ N (µ+ Cx(t), R) (1)

where ki(·, ·) is the covariance function (or “kernel”) of the ith latent GP. The model is trained by
maximizing the log marginal likelihood L(θ) w.r.t. the parameter vector θ, which comprises all kernel
parameters (see below), a mean vector µ ∈ RN×1, a mixing matrix C ∈ RN×M , and a diagonal
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matrix of private observation noise variances R ∈ RN×N . For a data sample Y ∈ RN×T , the log
marginal likelihood is proportional (up to an additive constant) to

L(θ, Y ) ∝ − log |Kyy| − [ỹ − µ⊗ 1T ]
>
K−1yy [ỹ − µ⊗ 1T ] (2)

with Kyy = (C ⊗ IT )Kxx(C> ⊗ IT ) + (R⊗ IT ) (3)

where ỹ = vec
(
Y T
)
, Kxx ∈ RMT×MT is the prior Gram matrix, and ⊗ denotes the Kronecker

product. As the latents are a priori independent in this original formulation, Kxx is block diagonal
with the ith diagonal block corresponding to the T × T Gram matrix of latent xi.

Given a particular observation ỹ ∈ RNT , the posterior mean and covariance over latent trajectories
are given by:

E(x̃|ỹ) = Kxx(C> ⊗ IT )K−1yy [ỹ − µ⊗ 1T ] (4)

Cov(x̃|ỹ) = Kxx −Kxx(C> ⊗ IT )K−1yy (C ⊗ IT )Kxx. (5)

Note that once ṽ = K−1yy [ỹ − µ⊗ 1T ] is computed, the rest of the computation of the posterior
mean can be sped up by using the Kronecker identity (C> ⊗ IT )ṽ = vec

(
V >C

)
. We further outline

how the relevant quantities for inference and learning can be stably and efficiently computed for the
original and our own model in Appendix F.1. We also discuss a highly scalable implementation in
Appendix F.2.

3 Nonreversible Gaussian processes

A major limitation of the original GPFA model summarized in Section 2 is the assumption that the
latent processes are independent a priori. This in turn severely impairs the ability to extrapolate
or look into any learned prior relationships between latents in search for dynamical structure (e.g.
consistent phase lags between latents, delays, etc.).

In this paper, we introduce novel multi-output covariance functions aimed at expressing a key property
of dynamical systems: that they produce state-space trajectories that follow lawful flow fields and are
therefore temporally non-reversible. We begin by formalizing this idea of temporal non-reversibility
for stationary GPs, before describing our construction of non-reversible multi-output GP kernels,
which we then combine with GPFA, yielding GPFADS, Gaussian Process Factor Analysis with
Dynamical Structure.

3.1 Quantifying non-reversibility and decomposing multi-output GP covariances

Consider a stationary zero-mean multi-output Gaussian process x(t) = (x1(t), . . . , xM (t)) with
covariance functions kij(τ) , E [xi(t)xj(t+ τ)]. We define x to be temporally reversible if, and
only if, all pairwise cross-covariance functions have no odd part, i.e. kij(τ) = kij(−τ) for all
i 6= j and τ ∈ R. This is equivalent to the condition that the spatial cross-covariance matrix
K(τ) , E

[
x(t)x(t+ τ)>

]
be symmetric for any lag τ . Thus, only multi-output GPs can be made

non-reversible. To quantify departure from pure reversibility in a multi-output GP, we introduce the
following measure of non-reversibility:

ζ =

(∫∞
−∞ ‖K(τ)−K(−τ)‖2F dτ∫∞
−∞ ‖K(τ) +K(−τ)‖2F dτ

)1/2

(6)

where ‖ · ‖F denotes the Frobenius norm. In Appendix A, we prove that 0 ≤ ζ ≤ 1. We note that, by
this definition, any scalar (one-dimensional) GP is necessarily fully reversible (ζ = 0).

Our goal is to construct GP covariance functions that break reversibility. As a first step, we prove in
Appendix B that any stationary M -output GP covariance admits a finite “Kronecker” decomposition:

K(τ) =

n+∑
`=1

λ+` A
+
` f

+
` (τ) +

n−∑
`=1

λ−` A
−
` f
−
` (τ) with


Tr
(
A±` A

±
`′
>
)

= δ``′∫
f±` (τ)f±`′ (τ) dτ = δ``′

(7)
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x1

x2

squared exponential
reversible (ζ = 0)

squared exponential
non-reversible (ζ = 1)

cosine
non-reversible (ζ = 1)

spectral mixture
non-reversible (ζ = 1)

Figure 1: Sample trajectories from various planar GP kernels, defined in Eq. 9. Five samples
trajectories are shown over an interval of 5 time units for the following kernels, in this order: SE kernel
f(τ) = exp(−τ2/2) with α = 0, SE kernel with α = 1, cosine kernel f(τ) = cos(0.15× 2πτ) with
α = 1, and spectral mixture kernel f(τ) = exp(−τ2/(2× 2.52) cos(0.06× 2πτ) with α = 1. Here
we have set σ1 = σ2 and ρ = 0, resulting in spherical planar processes.

where n+ + n− = M2 and λ±` ≥ 0. In this decomposition, {A±` } is a collection of M × M
symmetric (+) or skew-symmetric (-) matrices, all orthonormal to each other in the sense expressed
in Eq. 7. Similarly, {f±` } is a matching set of orthonormal even (+) or odd (-) scalar functions. We
assume without loss of generality that the weighting coefficients {λ±` } are ordered by decreasing
value within each (+) and (-) sets.

The decomposition in Eq. 7 is a “Kronecker” decomposition (Van Loan, 2000), because the Gram
matrix instantiating K(τ) at a discrete set of time points is composed of a sum of Kronecker products:
K =

∑
` λ

+
` A

+
` ⊗ F+

` +
∑
` λ
−
` A
−
` ⊗ F−` with F+

` and F−` ∈ RT×T . This decomposition
conveniently isolates terms that either strengthen (+) or break (-) reversibility. In particular, we
show in Appendix B that the non-reversibility index of the process is related to the {λ±` } coefficients
through:

ζ =

(∑
(λ−` )2∑
(λ+` )2

)1/2

. (8)

Thus, breaking reversibility requires the presence of skew-symmetric/odd terms. However, the
decomposition does not immediately tell us how to construct such a non-reversible covariance
function. Although one can show that the first term A+

1 f
+
1 (τ) must be positive definite, the addition

of even a single A−1 f
−
1 (τ) odd term will not preserve positive definiteness in general, unless carefully

specified. One of the main contributions of this work is to provide a constructive way of building
sums of Kronecker products similar to Eq. 7, for which positive-definiteness is preserved while ζ can
differ substantially from zero.

3.2 Planar non-reversible processes

To build intuition, we begin with a planar (two-output) process, x(t) = (x1(t), x2(t))>, with zero
mean and stationary matrix-valued covariance function K(·). If x1(t) and x2(t) are independent
(kij(·) = δijf(·)) as in the original GPFA model (Yu et al., 2009), then the process is fully reversible.
Consider, instead, the following construction:

K(τ) =

(
σ2
1 σ1σ2ρ

σ1σ2ρ σ2
2

)
︸ ︷︷ ︸

A+

f(τ) + α

(
0 σ1σ2

√
1− ρ2

−σ1σ2
√

1− ρ2 0

)
︸ ︷︷ ︸

A−

H[f ](τ) (9)

where f(·) is any scalar covariance function (an even function),H[f ](·) denotes its Hilbert transform
(an odd function), |ρ| ≤ 1 and α ∈ R. We show in Appendix C that Eq. 9 is a valid, positive
semi-definite covariance, provided that |α| ≤ 1. Since H[f ](0) = 0, the first matrix on the r.h.s.
parameterizes the instantaneous covariance K(0) of the two processes (up to a positive scalar given
by f(0)). Moreover, marginally, both x1(t) and x2(t) have temporal autocovariance function f(·).

Importantly x1 and x2 are now temporally correlated in such a way that reversibility is broken. In
fact, Eq. 8 shows that |α| is related to the non-reversibility index ζ defined in Eq. 6 in the following
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stationary kernel f(τ) Hilbert transformH[f ](τ)

exp(−τ2/2) 2π−1/2D(τ/
√

2)

cos(ω0τ) sin(ω0τ)

sin(ω0τ)/(ω0τ) [1− cos(ω0τ)]/(ω0τ)

(1 + τ2)−1 τ(1 + τ2)−1

exp(−|τ |)
[
e−τEi(τ)− eτEi(−τ)

]
/π

exp(−τ2/2) cos(ω0τ) exp(−τ2/2) sin(ω0τ) + exp(−ω2
0/2) Imw((τ + jω0)/

√
2)

Table 1: Hilbert transforms of usual scalar GP kernels. Non-unit length-scales can be accom-
modated via a simple change of variable. Here, D(·) denotes the Dawson function, Ei(·) is the
exponential integral, and w(·) is the Faddeeva function.

way:

ζ = |α|
[

2(1− ρ2)

(σ1/σ2)2 + (σ2/σ1)2 + 2ρ2

]1/2
, (10)

which has a maximum of |α| when σ1 = σ2 and ρ = 0, i.e. for an instantaneously spherical process.
Thus, Eq. 9 lets us construct planar GPs with arbitrary degrees of non-reversibility, with ζ ranging
from 0 to 1.

For the construction of Eq. 9 to be of any use, one needs a practical way of evaluating the Hilbert
transform of the marginal temporal covariance f(·). In Table 1, we provide a list of Hilbert transform
pairs for several commonly used stationary GP kernels. Notably, we cover the case of the spectral
mixture kernel (SM, last row of the table; Wilson and Adams, 2013), which currently achieves
state-of-the-art results in GP-based extrapolation for one-dimensional timeseries. Although some
of the Hilbert transforms that we were able to derive involve exotic functions, such as the Dawson
and Faddeeva functions, these are readily available in most numerical programming environments.
Moreover, they have analytical derivatives (Appendix D), such that they can easily be added to
standard automatic differentiation software to enable automatic gradient computations for the model
evidence e.g. in GP regression or GPFA (see below).

Fig. 1 illustrates the behavior of various spatially spherical planar GP kernels constructed from Eq. 9
with different kernels f(·). In cases where ζ = 1, we emphasize that the time-reversed version of
each of the samples shown (or indeed, of any subset thereof) has zero probability density under the
prior from which it was drawn (Appendix C).

3.3 Fourier domain interpretation

To gain more insight into planar non-reversible GPs, we present an alternative construction of the
process defined in Eq. 9, in the frequency domain. This construction can also serve as an alternative
proof that Eq. 9 constitutes a valid GP covariance (see also Appendix C). We begin by noting that the
Fourier transform ofH[f ] equals −j sgn(ω)f̂(ω), where f̂(ω) is the Fourier transform of f . In other
words,H[f ] is the real function that is phase shifted by π/2 away from f at all frequencies. Thus,
using the Wiener-Khinchin theorem, the Fourier-domain equivalent of Eq. 9 is:

E
[
x̂1(ω)x̂1(ω)

]
= σ2

1 f̂(ω), E
[
x̂2(ω)x̂2(ω)

]
= σ2

2 f̂(ω), (11)

E
[
x̂1(ω)x̂2(ω)

]
= σ1σ2f̂(ω)

[
ρ− α

√
1− ρ2 j sgn(ω)

]
, (12)

where · denote the complex conjugate and E[·] denotes expectations w.r.t. the joint processes
(x̂1, x̂2) specified in the frequency domain. It is easy to verify that these (cross-)spectral densities can
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be achieved by sampling the two processes according to:

x̂1(ω) = σ1

√
f̂(ω)

[
ε̂1(ω)

√
1− β + η̂(ω)

√
β
]

(13)

x̂2(ω) = σ2

√
f̂(ω)

[
ε̂2(ω)

√
1− β + η̂(ω) exp(j sgn(ω)ϕ)

√
β
]

(14)

where ε1(t), ε2(t) and η(t) are independent white noise processes with unit variance, and β and ϕ
obey the following parameter correspondance: ρ = β cos(ϕ) and α

√
1− ρ2 = β sin(ϕ). In other

words, x1(t) and x2(t) are each entrained to a common latent process η(t) with some degree of
coherence β, and some frequency-independent phase lag (0 for x1 without loss of generality, and ϕ
for x2). In particular, for an instantaneously uncorrelated joint process (ρ = 0), we have ϕ = π/2
and β = α. Spatial correlations ρ 6= 0 can be introduced through phase shifts ϕ different from π/2.

3.4 Higher-dimensional non-reversible priors

The non-reversible planar processes described in Section 3.2 can be extended to M -output processes
with M > 2 in several ways. Here, we focus on simple combinations of individual planes, but
see Appendix E for potentially more flexible approaches. Specifically, we construct an M-output
covariance function as a superposition of planar processes of the form of Eq. 9:

K(τ) =
∑

1≤i<j≤M

Aij+fij(τ) + αijA
ij−H[fij ](τ) (15)

with

Aij+uv = σ2
ij,1δuiδvi + σ2

ij,2δujδvj + σij,1σij,2ρij(δuiδvj + δujδvi) (symm. PSD matrix) (16)

Aij−uv = σij,1σij,2

√
1− ρ2ij (δuiδvj − δujδvi) (skew-symm. matrix) (17)

and |αij | ≤ 1. Note that A+
ij and A−ij are defined in the same way as A+ and A− in Eq. 9, and

involve only two of the latent dimensions (i and j). Thus, each term in the sum describes a covariance
over a pair of dimensions. This sum of planar kernels is motivated by the general decomposition in
Eq. 7, though it does not obey the orthogonality constraints therein. In our GPFADS experiments, we
further truncate this sum to M/2 non-overlapping planes with no shared latent dimensions.

4 Experiments

In this section, we begin by demonstrating the utility of non-reversible GP priors for modeling
time-series data produced by dynamical systems. We then go on to introduce such non-reversible
priors in GPFA, and show that GPFADS recovers the Markov state of low-dimensional dynamical
systems embedded in high-dimensional data. We also apply GPFADS to primary motor cortex data,
where it automatically discovers rotational dynamics that have been shown to emerge during reaching
movements (Churchland et al., 2012).

4.1 Non-reversible GP priors better capture dynamics

Fig. 2 illustrates the relevance of non-reversible planar processes of the type of Eq. 9 for modelling
multivariate time-series produced by dynamical systems. We simulated state trajectories of the
classical pendulum (ẋ1 = x2 and ẋ2 = − sin(x1)) as well as the Duffing oscillator (ẋ1 = x2
and ẋ2 = x1 − x31), starting from random initial conditions (Fig. 2A). We then fitted a GP with
kernel given by Eq. 9, either with α optimized as part of the fit (‘non-rev’), or pinned to zero (‘rev’).
The non-reversible model consistently outperformed the reversible one on cross-validated marginal
likelihood (Fig. 2B). Importantly, by optimizing the non-reversibility parameter α, the model learned
to capture the phase relationship between x1 and x2, resulting in much better extrapolations than
for the reversible model (Fig. 2C). In particular, it was possible to accurately reconstruct x2 by only
conditioning on x1 and the initial condition for x2.
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Figure 2: Non-reversible GP regression on state trajectories of the classical pendulum (top)
and the Duffing oscillator (bottom). (A) Five of the 20 planar trajectories (x1(t), x2(t)) used for
training. Each bout of training data (color-coded) is of the same duration and contains several
cycles, the exact number of cycles depending on the (conserved) Hamiltonian energy. (B) Marginal
likelihood for 10 individual test trajectories, for the planar reversible SE kernel (x-axis, α pinned to
zero) and its non-reversible counterpart (y-axis, α optimized to 0.99 for the pendulum, and 0.9 for
the Duffing oscillator). (C) Posterior over x2(t) in each model, conditioned on the full time course of
x1 (dashed black) but only on the first time bin of x2. Ground truth x2(t) is in solid black.

4.2 GPFADS: recovering embedded latent dynamical systems

We now combine GPFA with the non-reversible multi-output priors introduced in Section 3, and
call this combination GPFADS, Gaussian Process Factor Analysis with Dynamical Structure. In
this section, we investigate the extent to which this extension of GPFA allows us to learn something
about the dynamics that might underlie a set of multivariate time-series. We reason that noise tends
to be more time-reversible than signal generated from a dynamical process, such that placing a
non-reversible prior over latent trajectories might let us demix signal with dynamical structure from
noise. To demonstrate this, we embedded a 2D dynamical system, the Van der Pol oscillator (ẋ1 = x2
and ẋ2 = (1 − x21)x2 − x1), into a higher dimensional ambient space (N = 6). We also included
another (orthogonal) latent plane in which activity was drawn independently for each of the two
dimensions from a GP with squared-exponential kernel. We matched the timescales of this reversible
“distractor” process to the characteristic timescales of the Van der Pol oscillator.

We trained both GPFADS and GPFA with M = 4 latent dimensions on the same set of 50 trajectories,
with the Van der Pol oscillator seeded with random initial states in each one. For GPFADS, we
used the kernel described in Eq. 15 with all fij(·) set to the squared-exponential kernel (with
independent hyperparameters), and with the sum over (i, j) planes restricted to (1, 2) and (3, 4) –
i.e. two independent, orthogonal planes. For GPFA, we placed independent squared-exponential
priors on each of the 4 latent dimensions (Yu et al., 2009). We note that the two models had the same
number of parameters: GPFA had two more timescales than GPFADS, but the latter model had two
learnable non-reversibility parameters α12 and α34.

We found that GPFADS successfully demixed the plane containing the oscillator from that containing
the distractor process. Indeed, after training, one of the two latent planes was highly non-reversible
(|α12| = 0.88, vs. |α34| = 0.13), and posterior trajectories in the non-reversible plane recovered the
state trajectories of the Van der Pol oscillator (Fig. 3, left). In contrast, despite GPFA being able to
correctly learn the various timescales in the latent processes, it failed to demix signal from noise, such
that no clear dynamical picture emerged (Fig. 3, right). GPFA also performed worse than GPFADS
based on the cross-validated marginal likelihood (not shown).
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Figure 3: GPFADS recovers the state trajectories of
a dynamical system embedded in a high-dimensional
ambient space. GPFADS and GPFA latent trajectories
(posterior mean) inferred from observations arising as a
mixture of trajectories produced by the Van der Pol oscilla-
tor and a noisy process of equal variance, each embedded
in 6D and added together with white noise (see text for
details). For GPFADS, we show the two latent planes over
which separate non-reversible planar priors were placed.
For GPFA, we only show two arbitrarily chosen planes,
but any other combination of latent dimensions resulted in
similar unstructured trajectories.

4.3 Uncovering rotational dynamics in M1

Collective neural activity in monkey and human primary motor cortex (M1) has been shown to embed
strong rotational latent dynamics (Churchland et al., 2012; Pandarinath et al., 2018). The extraction
of these dynamics has historically relied on a method called jPCA purposely designed to extract latent
rotations wherever they exist. At the heart of such analysis is the desire to reveal dynamical structure
in population activity, but one potential concern with jPCA is that it biases this search towards pure
rotations, whereas dynamics could in fact be of other forms. With this in mind, we applied GPFADS
to M1 population recordings performed in monkey during reaching (Fig. 4; Churchland et al., 2012),
to investigate the extent to which rotational dynamics are revealed by a method which does not
explicitly look for them, but only indirectly through a search for non-reversible behavior.

The data consisted of N = 218 neurons whose activity time-course was measured in each of 108
different movement conditions, and aligned temporally to the onset of movement. For each neuron,
activity was averaged over hundreds of stereotypical repetitions of each movement, and further
smoothed and ‘soft-normalized’ (Churchland et al., 2012). We fitted GPFADS with an increasing
number of latent dimensions (M = 2, 4, 6; Fig. 4A-C). For each M , we used a non-reversible
M -output GP kernel of the form described in Eq. 15, though we restricted the number of possible
planes to M/2 independent planes with no shared dimensions. As C was not constrained to be
orthogonal we fixed ρ = 0, as any prior spatial correlations in a given plane could in this case be
absorbed by a rotation of the corresponding two columns of C. Due to the smoothing of neural
activity at pre-processing stage (which we did not control), we found that fitting GPFA(DS) was
prone to so-called Heywood cases where some diagonal elements of R in Eq. 1 converge to very
small values if allowed to (Heywood, 1931; Martin and McDonald, 1975). To circumvent this, here
we constrained R ∝ I , but note that this issue would likely not arise in the analysis of single-trial,
spiking data.

For M = 2, GPFADS learned a mixing matrix C that was near identical (up to a rotation) to the
one learned by the original GPFA model (not shown). This is not surprising: for M = 2, a good fit
for GPFADS and GPFA alike is likely to be one in which the two columns of C capture the most
data variance, regardless of how non-reversible latent activity happens to be in the plane defined
by these two columns. Nevertheless, we found that GPFADS learned a non-reversibility parameter
α12 = 0.72 in this case, indicating that dynamics were fairly non-reversible in this top subspace.
Importantly, when GPFADS was fit with a larger latent dimension (M = 4 or 6; Fig. 4B-C), it cleanly
segregated latent trajectories into strongly rotatory planes (|αij | ∈ {0.94, 0.85, 0.95}) and planes
that absorbed remaining fluctuations with less apparent dynamical structure (|αij | ∈ {0.35, 0.59}).
With increasing latent dimension, we found that allowing for non-reversibility in the prior yielded
increasing benefits over an equivalent model where all {αij} parameters were set to zero (and the
other parameters optimized as normal; Fig. 4D).

5 Discussion

A great challenge in neuroscience is to unravel the dynamical mechanisms that underlie neuronal
computations. As a first step to this, many data analysis methods focus on inferring latent processes
which compactly summarize observations of neural activity in various tasks. Gaussian process-
based methods, such as GPFA (Yu et al., 2009), offer data-efficient ways of extracting such latent
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Figure 4: Discovering latent dynam-
ical structure in primary motor cor-
tex with GPFADS. (A-C) GPFADS
latent trajectories (posterior mean) for
M = 2 (A, one plane), M = 4 (B,
two planes) and M = 6 (C, three
planes), for all movement conditions.
The value of |αij | in Eq. 15 for each
of the M/2 planes is shown near each
plot. All plots share the same scale,
and planes are ordered from top to bot-
tom by decreasing total variance in the
learnt prior (σ2

i + σ2
j ). (D) Difference

in marginal likelihood for each of 35
trajectories in the test set, between GP-
FADS (in which the non-reversibility
parameters {αij} are learned) and a
similar model where these parameters
are pinned to zero. Colors refer to the
3 models (see title colors in A-C). Re-
sults were found to be highly consis-
tent over independent splits of the 108
conditions into train and test sets.

processes along with associated uncertainty. However, these methods fail to explicitly capture the
dynamical nature of neural activity beyond basic smoothness properties. Here, we set out to impart
some notion of “dynamics” to GP-based models, using temporal non-reversibility as a proxy for
dynamics. We introduced a measure of second-order non-reversibility and derived a new family of
GPs for which any sample has lower probability of occurring in reverse. We found that these priors
outperform standard reversible ones on a number of datasets known to emanate from dynamical
systems, including recordings from primary motor cortex.

An instance of a non-reversible kernel was introduced previously by Parra and Tobar (2017), which
extended the spectral mixture model to a multi-output covariance expressing a variety of time delays
and phase lags between dimensions (see also Appendix G). Here we have taken a different approach
using the Hilbert transform, which – unlike Parra and Tobar (2017)’s kernel – admits a Kronecker
factorization enabling scalability to large datasets.

While temporal non-reversibility is an expected property of most dynamical systems in which state
trajectories follow a lawful flow-field (unless they are strongly input driven), it is an incomplete
characterization. In particular, the trajectories generated by our non-reversible GP models (Fig. 1)
often cross over, which would not occur in an autonomous dynamical system where the flow would
be entirely determined by the momentary state (unless the state is only partially observed). It would
be interesting to explore non-reversible GP kernels that also express this complementary property
— while the cosine kernel in Table 1 satisfies both properties, it is unclear if a more general, less
constraining form exists. Such models might be particularly well-suited for modeling population
activity in M1 which is markedly “untangled” (Russo et al., 2018), i.e. lacks cross-overs.

Other non-probabilistic methods have been proposed for reducing the dimensionality of datasets
whilst preserving “dynamical” characteristics. For example, Dynamical Components Analysis (DCA;
Clark et al., 2019) seeks the lower-dimensional subspace that maximizes predictive information. The
authors showed that DCA can successfully recover the Markov state of low-dimensional dynamical
systems embedded in high dimensions, similarly to GPFADS in Fig. 3. GPFADS is even more closely
related to another dimensionality reduction technique which we have proposed previously, Sequential
Components Analysis (SCA; Rutten et al., 2020), in which the low-dimensional projection is chosen
to maximize our measure of second-order non-reversibility in Eq. 6. However, in contrast to SCA,
GPFADS does not explicitly seek to maximize this measure, but instead automatically learns the
degree of non-reversibility (determined by the kernel hyper-parameters) that best explains the data.
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Broader impact

From molecules to stock-markets, from short timescales to long, the arrow of time can be seen
in the evolution of natural living systems. Indeed, the dynamics of natural living systems are not
time-reversible, they depart from “thermodynamic equilibrium” (Gnesotto et al., 2018). Despite
the ubiquity and importance of non-reversibility, there is a paucity of methods for exploring the
spatio-temporal structure of irreversibility in multivariate time series. The new class of non-reversible
covariance functions we developed makes use of this intrinsic property, offering the potential of
exploiting this natural feature in a range of data analysis algorithms.

In general, quantifying and tracking changes in reversibility over time could be useful in detecting
the early onset of real world events. More specifically, we expect that one of the larger impacts
of the method will be in the field of brain-machine interfaces (BMI) and neuroprosthetics. BMIs
have the possibility of revolutionizing how we live. Optimizing the interface both at the hardware
and software level is key to making this a reality. Regarding software, identifying actionable latent
variables embedded in high-dimensional neural activity is of particular importance in facilitating
communication. Given that behavior is non-reversible, the neural activity that causally drives this
behavior is likely to also be non-reversible, thus seeking latents with such property seems highly
promising. Moreover, BMI algorithms often need to be run online which the scalability of our method
would also permit. These applications come with ethical and societal concerns, in particular regarding
privacy and responsibility. These ethics challenges are being actively investigated by the field of
bioethics (Clausen, 2008) and the broader community; and we hope that such considerations will
continue to shape the future research and reality.
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