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Abstract
In recent years, the transformative potential of deep neural networks (DNNs) for analysing and interpreting NMR data 
has clearly been recognised. However, most applications of DNNs in NMR to date either struggle to outperform existing 
methodologies or are limited in scope to a narrow range of data that closely resemble the data that the network was trained 
on. These limitations have prevented a widescale uptake of DNNs in NMR. Addressing this, we introduce FID-Net, a deep 
neural network architecture inspired by WaveNet, for performing analyses on time domain NMR data. We first demonstrate 
the effectiveness of this architecture in reconstructing non-uniformly sampled (NUS) biomolecular NMR spectra. It is shown 
that a single network is able to reconstruct a diverse range of 2D NUS spectra that have been obtained with arbitrary sampling 
schedules, with a range of sweep widths, and a variety of other acquisition parameters. The performance of the trained FID-
Net in this case exceeds or matches existing methods currently used for the reconstruction of NUS NMR spectra. Secondly, 
we present a network based on the FID-Net architecture that can efficiently virtually decouple 13Cα-13Cβ couplings in HNCA 
protein NMR spectra in a single shot analysis, while at the same time leaving glycine residues unmodulated. The ability for 
these DNNs to work effectively in a wide range of scenarios, without retraining, paves the way for their widespread usage 
in analysing NMR data.

Keywords NMR · Deep learning · Non-uniform sampling · Virtual decoupling · Spectral reconstruction

Introduction

Artificial intelligence (AI) and deep learning (DL) have 
led to huge advances in many fields, including computer 
vision and natural language processing, and is a methodol-
ogy that is now embedded in many everyday technologies 
(Lecun et al. 2015). Unlike traditional methods in which a 
pre-defined algorithm for performing a task is provided, in 
deep learning, neural networks are trained to ‘learn’ a map-
ping between an input and a desired output. To achieve this, 
the network must first extract the relevant features from the 
input data to produce the required output. This flexibility has 
made deep learning particularly successful at performing 
tasks that are often intuitively straightforward for human 

beings to perform, but difficult to formalise into an algorithm 
(Goodfellow et al. 2016).

Over several decades, NMR researchers have sought to 
automate different aspects of NMR data analysis, speed-
ing up the process and lowering the requirement for exten-
sive training. However, many of these methods currently 
struggle to match human performance or can only do so in 
cases of data with sharp well-resolved peaks and minimal 
noise. Given its ability to outperform traditional methods 
at tasks that are intuitive for humans to perform, there is a 
huge potential for deep learning approaches to automate or 
improve different analysis stages within NMR spectroscopy, 
increasing the efficiency, utility, and ease of use of NMR. 
The current state of deep learning within NMR and potential 
future directions have been reviewed recently by Chen et al. 
(Chen et al. 2020).

An application of deep learning that has gained particu-
lar attention recently is the reconstruction of non-uniformly 
sampled (NUS) NMR spectra (Bostock and Nietlispach 
2017; Miljenovic et al. 2018; Robson et al. 2019). NUS 
is an important tool for recording large multi-dimensional 
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NMR datasets with high-resolution in a practical timeframe. 
In a uniformly sampled multidimensional NMR spectrum 
all points in the indirect dimensions on a Nyquist grid 
are sampled before the final frequency domain spectrum 
is obtained by a Fourier transform. Conversely, in a NUS 
spectrum only a subset of the points on the full Nyquist grid 
are collected. The points from the grid that are sampled are 
given by a sampling schedule and the percentage of sampled 
points from the full grid gives the sparsity. The task of a 
reconstruction algorithm is then traditionally to ‘fill in’ the 
missing points on the grid so that the reconstructed spec-
trum can be transformed with a discrete Fourier transform. 
The advantage of NUS is that it allows the spectroscopist 
to attain multidimensional spectra with many points and 
thus high resolution in a fraction of the time, though clearly 
this requires that the NUS spectrum can be reconstructed 
with high fidelity. With the advent of increasingly high-field 
NMR instruments, NUS is essential for exploiting the full-
resolving power of these spectrometers, when both NMR 
time and sample stability can be limited. The development 
of new and better methods for reconstructing NUS spectra 
and for determining optimal sampling schedules thus remain 
active areas of research.

Several excellent algorithms for reconstructing NUS 
NMR spectra using non-DL methods exist including: 
SMILE (Ying et al. 2017), hmsIST (Hyberts et al. 2012) 
and MDD-NMR (Jaravine et al. 2006). Recent proof-of-
principles studies have shown that DL based reconstruction 
methods have the ability to give reconstructions more rap-
idly and with higher fidelity than existing methods (Hansen 
2019; Qu et al. 2020; Luo et al. 2020). Furthermore, these 
deep neural networks are trained and cross-validated exclu-
sively on synthetic data, before being tested on real data. The 
ability to use synthetic data for training the neural networks 
overcomes a significant potential bottleneck of obtaining 
large amounts of curated data required for training.

Existing DNNs for reconstructing NUS data follow dif-
ferent strategies. Studies by Qu et al. and Luo et al. both 
reconstruct data from the frequency domain (Qu et al. 2020; 
Luo et al. 2020). In these cases, the main aim is to remove 
the aliasing artefacts caused by the non-uniform sampling. 
Qu et al. achieve this using an architecture composed of 
five stacked ‘dense-convolutional’ layers whereas Luo 
et al. employ stacked encoder-decoder blocks, sandwiched 
between convolutional layers from down and up sampling. 
On the other hand, we have previously shown that an archi-
tecture based on reconstructing the points in the time domain 
using a modified long short-term memory (LSTM) architec-
ture is able to reconstruct lowly-sampled 2D spectra (12.5%), 
with lower error than either the SMILE or hmsIST algo-
rithms (Hansen 2019).

Despite these successful applications of DL in NMR, all 
of the existing DL approaches for reconstruction still suffer 

from significant drawbacks. While they show good perfor-
mance on spectra that strongly resemble their training data in 
terms of number of points, spectral width, sampling sched-
ule and sparsity, they fail to match existing algorithms for 
reconstructions when the spectra deviate significantly from 
this. While the networks can in theory be retrained to recon-
struct different spectra, the time and expertise required to do 
this likely represents an insurmountable hurdle to the wide-
spread usage of such methods. Thus, an important factor 
that limits DNNs for NUS reconstructions relative to other 
currently existing methodologies is a lack of versatility.

We present below FID-Net: a versatile DNN architecture 
that is able to reconstruct the time domain of a diverse set of 
2D NMR spectra with low error, matching or exceeding the 
performance of leading non-DL algorithms. FID-Net works 
effectively with arbitrary sampling schedules, meaning it 
can be deployed without further training and with minimal 
user input. We go onto demonstrate that this architecture is 
particularly adept at processing time domain data beyond 
reconstruction tasks. We show this network can also be used 
to virtually decouple 13Cα-13Cβ couplings in HNCA spectra 
in a single step, significantly improving the resolution of 
spectra.

Results

A flexible network architecture for analysing free 
induction decays

A key challenge when analysing free induction decays 
(FIDs; time domain data) is that the information about the 
individual resonances is contained within the entire length 
of the FID rather than within a localised section of it. This is 
unlike the frequency domain, where the information about a 
given resonance localises to a particular region in frequency 
space. From the perspective of designing DNNs for analys-
ing time domain data it is necessary to find both long- and 
short-term patterns embedded within the whole sequence 
of data.

Recurrent neural networks (RNNs) have been successful 
architectures for analysing sequences. Within these networks 
each item in a sequence is fed through a series of cells and 
the output of cell t is a function of both input t and the output 
of cell t-1. In this way the network is able to keep a track 
of both the sequence history and current input to identify 
important features. Previously, we showed that a neural net-
work based on a modified LSTM cells was capable of recon-
structing 2D NUS data with low sampling (12.5%) with very 
high fidelity (Hansen 2019). The versatile FID-Net architec-
ture demonstrated below is based on convolutional neural 
networks (CNNs) that connect both long- and short-term 
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patterns to provide both high quality reconstructions and a 
high degree of flexibility.

Convolutional layers have been crucial in the success 
of DNNs for analysing images (Guo et al. 2016). They are 
based on the idea that input data often has a hierarchical 
structure and each layer in a CNN learns a filter with a user 
defined size. These filters are then convolved with the input 
from the previous layer such that they will be activated when 
certain features in the data are identified. Typically, filter 
sizes in convolutional layers are fairly small giving them a 
small receptive field i.e. they are only sensitive to localised 
features from an input and cannot ‘learn’ long-range pat-
terns. While this is usually advantageous in image analysis, a 
large receptive field is required to extract information about 
resonances within an FID.

To overcome the receptive field issue of typical CNNs, 
FID-Net employs an approach similar to WaveNet, which 
was originally conceived in 2016 as a generative model 
for raw audio (Oord et al. 2016b). A raw audio signal is 
similar to an FID in that many time points are sampled in a 
short period of time and producing realistic audio requires 
an appreciation of both the short- and long-term patterns 
within the signal. In the WaveNet architecture, dilated con-
volution layers are used to give the network a large receptive 
field, which is capable of effectively analysing audio signals. 
Dilated convolutional layers skip a specified number of ele-
ments in the data, so it is effectively a convolutional layer 
with ‘holes’. By stacking convolutional layers with different 

dilation size, it is possible to create a block that acts like a 
normal convolutional layer with a very large filter size. This 
approach is indicated schematically in Fig. 1.

In FID-Net, the approach of dilated convolutions along 
with other features from WaveNet are employed. Gated 
activation units, as previously employed in the PixelCNN 
(Oord et al. 2016a) are used: these have both hyperbolic 
tangent and sigmodal activation functions in individual con-
volutional layers to help model the complex signal. FID-Net 
also employs skip and residual connections to aid the train-
ing and speed of convergence (He et al. 2015). However, a 
number of significant differences between the WaveNet and 
FID-Net architectures also exist. Firstly, the WaveNet archi-
tecture was designed as a generative audio model. Therefore, 
it is important that the temporal ordering of data points is 
maintained and predicted outputs depend only on preceding 
values. Consequently, causal padding is used in the convo-
lutional layers. Conversely, in the FID-Net model the aim 
is to recapitulate the full FID, for example, from a sparse 
starting point. To achieve this the FID-Net architecture needs 
to look both backward and forwards to help ascertain the 
correct value of a given FID time point. Secondly, in the 
WaveNet model a kernel size of two was used, whereas in 
FID-Net this is increased to eight. This is important when 
dealing with sparse data as a small kernel size will result in 
most inputs to the convolutional layers having no informa-
tion. With a kernel size of eight, when dealing with a sam-
pling rate of 12.5% in a 2D NMR spectrum, each time the 

Fig. 1  Schematic illustration 
of dilated convolutional layers 
that are extensively employed 
within FID-Net. These allow the 
network to have a large recep-
tive field, required for analysing 
FIDs, whilst individual filters 
are able to remain relatively 
small in size
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convolutional filter is applied one of the input values will on 
average be non-zero. Thirdly, the WaveNet model consid-
ers a single audio input channel at a time. In the context of 
NMR data, adjacent indirect FIDs will share features, for 
example, when analysing 2D spectra the direct dimension 
is first Fourier transformed and a resonance in such a spec-
trum, (ω2,t1), spans several ω2 slices. Therefore, in FID-Net 
2D convolutions are used and four FIDs are simultaneously 
reconstructed, giving an overall kernel size of 8 × 4. The 

model is applied as a sliding window across the input data 
to yield the final output. The full FID-Net architecture is 
given in Fig. 2.

Reconstructing 2D NUS spectra

In its current form, FID-Net is only able to reconstruct four 
FIDs at a time. However, the neural network is applied as 
a sliding window across the 2D NUS spectrum, Fig. 3, so 
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Fig. 2  The full network architecture employed within FID-Net. The 
architecture is similar to WaveNet (Oord et al. 2016b), with main dif-
ferences discussed in the text. The ‘ + ’ and ‘ × ’ symbols indicate the 

elementwise addition and multiplication operations. ‘ReLu’, ‘T’ and 
‘σ’ symbols refer to rectified linear, hyperbolic tangent and sigmoidal 
activation functions respectively

FID-Net

NUS Spectrum Reconstructed Spectrum

Fig. 3  Schematic illustration of how reconstructions of 2D NUS 
spectra are performed by FID-Net. The NUS spectrum is Fourier 
transformed in the direct dimension and then segmented. The seg-

mented sections form a batch that is then reconstructed in parallel and 
stitched back together to yield the final reconstructed spectrum
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that each individual FID is analysed four times and the 
average taken to yield the final reconstructed or otherwise 
transformed spectrum. To speed up the reconstructions the 
ability of modern GPUs is leveraged to perform a very large 
number of calculations in parallel and batch the input FIDs 
into the appropriate number of segments containing four 
points in the direct dimension. The segmented FIDs are 
then all transformed in parallel and the fully reconstructed 
spectra can be stitched back together as indicated in Fig. 3. 
Using this approach on an Nvidia 1070 Ti GPU card, 2D 
spectra can be reconstructed in a few seconds, a similar 
timeframe to either the SMILE or hmsIST algorithms. The 
latter algorithms do not require the use of a GPU for rapid 
performance, but these cards are now relatively affordable 
(the Nvidia 1070 Ti GPU used here is now available for less 
than $500) and users can use freely available resources on 
NMRBOX (Maciejewski et al. 2017) for the processing of 
NMR spectra.

As detailed in the methods (see below) the FID-Net archi-
tecture is trained on a diverse training set. This includes 
spectra with varying numbers of complex points, sweep 
widths and for each pass through the neural network a new 
random sampling schedule is calculated and applied to the 
spectrum and noise is added to the input sparsely sampled 
spectrum. This endows FID-Net with a high degree of 
robustness and flexibility compared to other DL approaches 
for spectral reconstruction.

In a very recent and elegant study, it was shown that a 
neural network could be interpreted and thus it was shown 
how each of the hidden layers can be mapped to specific 
actions and mathematical transformations (Amey et  al. 
2021). Such an approach is naturally highly attractive in 
order to fully understand the strengths and weaknesses of 
a DNN. However, with the large size of FID-Net, both in 
terms of number of hidden layers and number of trainable 
parameters, focus below is on evaluating the robustness and 
the versatility of FID-Net for reconstruction of NUS spectra 
as well as estimating when the network performs well, as 
opposed to delineating each of the transformations within 
the network.

To rigorously test the ability of the FID-Net architecture 
to reconstruct NMR spectra with high fidelity with respect to 
important spectroscopic parameters (linearity of recovered 
peak intensity, accuracy of recovered frequencies, recovery 

rate of actual peaks and minimisation of false positives) we 
use a small synthetic spectrum composed of nine partially 
overlapping peaks with different intensities (see supporting 
material and Fig S1). In this synthetic spectrum the ground 
truth parameters for the peaks can be accurately obtained 
and therefore robustly compared to those obtained for the 
reconstructions. The reconstructions are also carried out 
using the SMILE and hmsIST algorithms for comparison. 
This analysis reveals that FID-Net is particularly success-
ful at reconstructing spectra at very low sparsity and in the 
presence of appreciable noise compared to the other algo-
rithms (Fig. S2–S6). The DNN strikes a favourable balance 
between recovering real peaks with high probability while 
minimising the presence of artefacts even for challenging 
situations. When dealing with data at a higher sampling rate 
than the DNN is trained at, FID-Net maintains a high level 
of performance but the linearity of recovered peak intensi-
ties and accuracy of recovered frequencies is less than can 
be achieved using SMILE or hmsIST. However, the perfor-
mance of these well-established algorithms in the presence 
of noise drops much more than FID-Net and the lack of false 
positives or false negatives when using FID-Net is a clear 
advantage.

To demonstrate the versatility of the FID-Net architecture 
in the context of biomolecular NMR the network is used to 
reconstruct a varied set of typical biomolecular NMR spec-
tra. The results of reconstructing spectra on three different 
proteins are again compared to reconstructions obtained 
using the SMILE and hmsIST algorithms. Specifically, the 
spectra reconstructed are a 15N-1H HSQC spectrum of T4 
Lysozyme (19 kDa) with a large sweep width in the indirect 
dimension (Hansen 2019), a 15N-1H HSQC spectrum of the 
SH3 domain from ABP1P (6.5 kDa), and a 13C-1H methyl-
TROSY HMQC spectrum of HDAC8 (42 kDa). In all cases 
the reconstructions are conducted with 12.5% sampling and 
reconstructions are performed 200 times per spectrum with 
different sampling schedules: 100 sampling schedules with 
a different Poisson-gap sampling schedule (Hyberts et al. 
2010), with sinusoidal 0 → π/2 weighting that biases towards 
early time points, as well as 100 different random sampling 
schedules. The parameters in each of the spectra are sum-
marised in Table 1. Given the very low sparsity of the data 
and the large number of signals compared to the number 

Table 1  Summary of spectral 
parameters of the spectra 
employed in benchmarking 
FID-net

Protein Spectrum type B0 (MHz) # complex 
points

Indirect sweep 
width (Hz)

Half-
dwell 1st 
point

SH3 domain 15N-1H HSQC 600 120 1800 Yes
T4 Lysozyme 15N-1H HSQC 700 256 5100 No
HDAC8 13C-1H HMQC 800 192 4500 Yes
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of sampled points these reconstructions (particularly for T4 
Lysozyme and HDAC8) are very challenging.

The reconstruction results are shown in Fig. 4. In general, 
it is clear that all three methods, SMILE, hmsIST, and FID-
Net, can provide good quality reconstructions, even at the 
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low sampling rate (12.5%) considered here. For the hmsIST 
algorithm, performance improves substantially using Pois-
son-gap sampling schedules over random sampling, which 
has been shown previously (Hyberts et al. 2012). In contrast, 
for SMILE there is generally minimal advantage to using 
Poisson-gap sampling schedules. Using FID-Net there is an 
advantage to using Poisson-gap sampling schedules, but this 
is less marked than with hmsIST and the performance with 
random sampling schedules is also generally good, high-
lighting the robustness of the neural network approach.

While the performance between the algorithms is not 
too dissimilar, the ability of a single FID-Net to reconstruct 
a diverse set of spectra, including very challenging cases 
with a large number of signals compared to sampled points, 
with high quality and without retraining, represents a clear 
advance compared to previous neural networks. Another 
significant benefit of the FID-Net is that it can be run with 
minimal user input, since, like other DL methods, it contains 
no user adjustable parameters. All that is required is that the 
data is phased and Fourier transformed in the direct dimen-
sion and that the sampling schedule is provided so that the 
non-sampled points can be filled with zeros prior to recon-
struction. This relative ease of use facilitates that FID-Net 
can be easily implemented into automated data-processing 
pipelines incorporating NUS data.

A further advantage of using FID-Net is its robustness. 
To test this, we add different amounts of additive Gauss-
ian noise to our benchmark spectra prior to performing the 
reconstructions. Algorithms such as hmsIST and SMILE can 
through multiple iterations converge on very accurate recon-
structions in the presence of little noise as is the case in the 
benchmark spectra. A key advantage of the DNN approach is 
its ability to identify underlying resonance frequencies even 
in noisy data. This is demonstrated in Fig. 5: while FID-Net 
does not always give the highest fidelity reconstructions in 
the absence of additional noise, the reconstruction quality 
is maintained better than SMILE or hmsIST in the pres-
ence of noise (exemplar reconstructions with added noise 
are shown in the supplementary material Fig. S7-9). As 
alluded to above with the synthetic spectrum, FID-Net also 
shows good robustness with respect to the sampling rate in 

the NUS data, even when this is far from the sampling rate 
employed in training (Wang et al. 2020) (Fig. S10).

It should be noted that in the above analyses we have 
chosen the normalised RMSD between the reconstructed 
and fully sampled spectra as the metric for comparing the 
different reconstruction methods. This is a simple and robust 
method that penalises missing or lower intensity peaks as 
well as spectral artefacts or higher intensity peaks equally. 
Given that the dynamic range of the peaks in the bench-
mark spectra considered here is not large, the calculation is 
not dominated by a small number of high intensity peaks. 
For reconstructions performed with SMILE, the intensity 
of the reconstructed peaks is down-scaled to avoid noise 
spikes appearing as false-positive peaks. Consequently, the 
normalised RMSD becomes very high in the presence of 
noisy data (Fig. 5). The parameters we have employed here 
for the SMILE reconstructions give generally good results 
over a range of sampling schedules, however, the param-
eters used in SMILE reconstructions may be improved on a 
case-by-case basis to improve the quality of reconstructions. 
Conversely, with DL methods such as FID-Net no such opti-
misation is required by the user to achieve optimal results.

One issue that exists with all existing methods for per-
forming reconstructions is that they do not provide a direct 
measure of confidence in their final outputs, although 
attempts have been made to estimate the confidence using 
statistical methods such as the delete-d jackknife procedure 
(Mayzel et al. 2017). Deep neural networks provide a rela-
tively easily method for giving a measure of confidence by 
training and deploying an ensemble of networks and meas-
uring the variation in their outputs, as was done in the deep 
neural network processing of DEER data (Worswick et al. 
2018). The relatively long training times required to train 
an FID-Net preclude training a large ensemble of networks, 
but the fact that FID-Net is applied as a sliding window 
with four FIDs reconstructed simultaneously can be used to 
provide insight into the confidence in the output. Each slice 
in the reconstructed spectrum is reconstructed four times (at 
a different point in the kernel in the direct dimension). The 
final reconstruction is found by taking the average of these 
four reconstructions. A measure of confidence in the final 
result can therefore be provided by considering the standard 
deviation of the four individual reconstructions. The results 
of this analysis for the SH3 domain protein, T4 Lysozyme 
and HDAC8 proteins are shown in Fig. S11.

Virtual decoupling of HNCA spectra

FID-Net is a versatile architecture capable of being trained 
to perform tasks beyond reconstruction. Below, the FID-
Net architecture is trained to perform the task of virtu-
ally decoupling 13Cα-13Cβ couplings in triple-resonance 
HNCA and HN(CO)CA spectra (Kay et al. 1990). HNCA 

Fig. 4  Exemplar reconstructions and algorithm performance for 
(a) the SH3 domain from ABP1P, (b) T4 Lysozyme. and (c) human 
histone deacetylate 8 (HDAC8). Spectral parameters are listed in 
Table  1. In all cases the exemplar spectra are normalised and plot-
ted at the same contour level and only positive contours are shown. 
Exemplar reconstructions are performed from the same Poisson-gap 
sampling scheme with 12.5% sampling, which are listed in the sup-
porting material (Table S1). The bar graphs indicate the average and 
root-mean-squared-deviation (RMSD) between the normalised recon-
structed and fully sampled spectra using 100 Poisson-gap sampling 
schedules and 100 random sampling schedules

◂
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and HN(CO)CA are amongst the most important three-
dimensional spectra in biomolecular NMR for obtaining 
backbone 1H, 15N and 13Cα chemical shift assignments 
(Kay et al. 1990). Unfortunately, even when using long 
acquisition times in the 13C dimension, the resolution of 
the 13Cα peaks is limited by the one-bond scalar coupling 
between 13Cα and 13Cβ nuclei. This coupling, of approx-
imately 35 Hz and substantially larger than the typical 
intrinsic linewidth of 13Cα, is present for all residues 
except for glycine. Successfully removing the coupling 
from spectra improves both their sensitivity and resolu-
tion, aiding the assignment procedure. This is particularly 
important for large and/or intrinsically disordered proteins 
where signal overlap becomes more severe.

A number of approaches have been attempted to exper-
imentally eliminate the 13Cα-13Cβ couplings in HNCA and 
HN(CO)CA spectra. However, none of these have been 
completely successful and complications include glycine 
residues, which do not have a 13Cα-13Cβ coupling as well 
as serine and threonine residues, where the 13Cβ chemi-
cal shifts overlap with the 13Cα region. An alternative 
to experimental decoupling is to record a conventional 
HNCA or HN(CO)CA experiment, potentially with NUS, 
and then virtually decouple it in a post-acquisition step. 
A number of methods have already been developed to 
perform virtual decoupling using deconvolution fol-
lowed by maximum entropy reconstruction (Shimba et al. 
2003; Delsuc and Levy 1988) and in a recent study by 
deconvolution with compressed sensing reconstruction 

(Kazimierczuk et al. 2020). With both of these methods 
care must be taken with regards to glycine residues that 
do not form doublets in the 13C dimension. In the previ-
ous methods, a single average J-coupling constant must 
also be assumed for the entire spectrum, which may lead 
to distortions in the spectrum if the spectral linewidth is 
less than the difference between the actual and average 
coupling constant.

By contrast, as shown below, FID-Net can be trained to 
virtually decouple the 13Cα-13Cβ doublets in a single step 
and with no user intervention. Figure 6 shows the applica-
tion of a FID-Net to virtually decouple an HNCA spectrum 
of T4 Lysozyme. Essentially, all non-glycine residues are 
successfully decoupled giving a factor of two increase in 
the sensitivity and significantly improving the spectral 
resolution, while the glycine residues are left unaltered. 
For both decoupled and unaltered (glycine) residues the 
line shape following the virtual decoupling is excellent and 
shows no evidence of artefacts.

The FID-Net for virtual decoupling has no user defined 
parameters and so can easily be applied as part of auto-
mated or semi-automated processing routines. It is trained 
to run on fully sampled data and is a separate network with 
different parameters to the FID-Net described above for 
reconstruction, although the same architecture. The net-
work can be applied to a dataset that has been experimen-
tally fully acquired (as is done here) or to a non-uniformly 
sampled dataset that is first reconstructed, either using 
another FID-Net or another algorithm. By combining vir-
tual decoupling with NUS it is possible to dramatically 
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Fig. 5  Variation in reconstruction quality for the different methods as 
a function of added Gaussian noise with standard deviation between 
0.01 and 0.05 for a SH3 domain from ABP1P, b T4 Lysozyme and 
c human histone deacetylate 8 (HDAC8). In all cases the 12.5% 
sampling is used with 100 different Poisson-gap sampling schemes. 

The bars indicate the average normalised RMSD of the 100 recon-
structions between the reconstructed spectra and fully sampled spec-
trum with no added noise. The values in red indicate the RMSD for 
SMILE reconstructions when these are not within the y-axis range
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reduce the time required to attain highly resolved HNCA 
and HN(CO)CA spectra, reducing the overall time require-
ment for backbone assignment.

Methods

Network architecture

The FID-Net architecture consists of many convolutional 
layers stacked into residual units, as shown in Fig. 2. Each 
residual unit consists firstly of a dilated convolutional layer 
composed of n filters (n = 128 for reconstruction network 
and n = 64 for decoupling network) with an 8 × 4 kernel size. 
Half of the filters are activated by a sigmoidal activation 
function and the other half by a hyperbolic tangent function. 
The results of these two activations are then multiplied (cre-
ating a gated activation unit) and passed through a second 
convolutional layer, with no dilation, also composed of n 
filters and an 8 × 4 kernel size. The output of this layer is 
passed to the end layers of the network and also added to 
the input of the layer to create the input for the next gated 
activation unit in the network.

The dilations rates employed for FID-Net are cycled 
through the values: 1, 2, 4, 6, 8, 10, 12, 14, 16, 20, 24, 28 
and 32. These dilations rates were empirically found to give 

good performance at both reconstructing and virtual decou-
pling. Given the time taken to the train the network (on the 
order of weeks) a detailed comparison of the effects of dif-
ferent dilations rates has not been possible. These dilation 
rates are cycled through three times to make the full FID-
Net, as indicated by the three blocks in Fig. 2.

The outputs of all the individual gated activation units 
are then summed and passed through a further convolutional 
layer with rectified linear activation. The final output is pro-
duced with a final convolutional layer composed of a single 
filter followed by hyperbolic tangent activation to ensure 
the values are between − 1 and 1. The python code used to 
create the neural network is provided in the supplementary 
materials.

The total number of trainable parameters in the recon-
struction network is 30,424,897 and 7,610,273 for the 
decoupling network, reflecting the increased number of 
filters in the reconstruction network. While the increased 
number of filters in the reconstruction network improves its 
performance, excellent performance for the decoupling net-
work is achieved with a smaller network that has the benefit 
of being faster to train (vide infra).
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Fig. 6  1H-13C projection from an HNCA spectrum of T4 Lysozyme 
a before (blue) and b after (green) virtual decoupling. Only positive 
contours are shown. The 1D 13C slices  taken from the spectra in pan-
els c (i) and (ii) demonstrate how the doublets in the spectrum are 

successfully decoupled yielding an improvement in resolution and 
two-fold increase in sensitivity for these peaks while the singlet gly-
cine peaks are unaltered
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Training

In common with other recent DL networks for reconstructing 
non-uniformly sampled data, FID-Net is trained exclusively 
on synthetic data. The synthetic data is generated using the 
equation:

where n runs over the number of signals in the plane, An is 
the amplitude of signal n, ν1,n and ν2,n are the frequencies of 
signal n in the direct and indirect dimensions respectively, 
R
(1,n)

2
 and R(2,n)

2
 are the transverse relaxation rates in the direct 

and indirect dimensions respectively for signal n and Jn is 
the J coupling constant for signal n. The times t1 and t2 are 
given by multiplying 1/SW (for the relevant sweep width) 
by the series 0, 1, …N-1 where N is the number of complex 
points in this dimension.

For the reconstruction network: For each plane in the 
training set parameters are randomly (uniformly) selected 
from the intervals listed in the table below:

Number of signals 50–250
Amplitudea 0–2.0
Direct dimension complex points 128–512
Indirect dimension complex points 100–256
Direct dimension SW (Hz) 1500–3000
Indirect dimension SW (Hz) 1800–5400
J (Hz) 0.0

R
(1)

2
(s−1) 5.0–60.0

R
(2)

2
(s−1) 5.0–60.0

a Normal distribution with mean 1.0 and SD 0.5 that is truncated to 
between 0.0–2.0

For the virtual decoupling network: For each plane in the 
training set parameters are randomly (uniformly) selected 
from the intervals listed in the table below:

Number of signals 10–70
Amplitudea 0–2.0
Direct dimension complex points 128–512
Indirect dimension complex points 192–256
Direct dimension SW (Hz) 1800–5400
Indirect dimension SW (Hz) 4000–8000
J (Hz) 28–40b

R
(1)

2
(s−1) 5.0–60.0

R
(2)

2
(s−1) 5.0–60.0

a Normal distribution with mean 1.0 and SD 0.5 that is truncated to 
between 0.0 and 2.0.
b In training for 12% of residues couplings are randomly set to 0 Hz to 
reflect the presence of glycine residues.

S
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For both networks, frequencies ν1 and ν2 are determined 
by generating a random number in the interval [− 0.5, 0.5] 
and multiplying this by the relevant sweep width for the 
plane.

To simulate the reconstruction process, the calculated 
2D FIDs are phased and Fourier transformed in the direct 
dimension and random Gaussian noise with standard devia-
tion between 0.001 and 0.03 is added to the input plane. Four 
consecutive points in the plane are then randomly chosen 
for each member of a training batch. A random sampling 
schedule is calculated on the fly at a given sampling level 
(this is always set to 12.5% for applications here and the first 
point is always selected) and applied to the plane to give a 
non-uniformed sampled section. This means that in each 
epoch of training, the model will be trained on a different 
part of each plane subjected to a different sampling schedule. 
This substantially increases the effective size of the training 
data and minimises the potential for overfitting. The real 
and imaginary components of each complex point in the 
indirect NUS dimension are interleaved. To ensure the size 
of individual tensors in each batch are uniform they are zero 
filled up to 512 points so that each input plane in the batch 
has 512 × 4 points. The planes are normalised according to 
the highest intensity point.

The training data for virtual decoupling is very similar 
except for an average of 88% of residues in each plane also 
have a J-coupling of 28–40 Hz in size to match the size and 
spread of protein 13Cα-13Cβ couplings. The 12% of peaks 
with no coupling mimic glycine residues. The number of 
resonances in each plane is also reduced to between 10 and 
70, reflecting the increased sparsity of three-dimensional 
spectra.

The DL models are developed and trained using the Ten-
sorflow library (Abadi et al. 2016) with the Keras front-end 
(Chollet 2015). The cost function used to optimise the recon-
struction network was the mean squared error between the 
fully sampled data (with no noise) and the reconstructed data 
in the frequency domain. The cost function for the virtual 
decoupling network was the mean squared error between 
the virtually decoupled spectrum produced by the network 
and the fully decoupled synthetic spectra (with no noise) 
in the frequency domain. The RMSprop optimiser (Hinton 
2012) is used for training. Initially the learning rate was set 
to  10–4 until the change in validation loss between epochs 
plateaus. The learning rate was then reduced to  10–5 and 
continues until the validation loss plateaus. For the recon-
struction FID-Net, the RMSD between the fully sampled 
and reconstructed FIDs was 0.0278 at the end of training 
for the model used here. A batch size of 16 was used. On a 
standard desktop computer (Intel i7-7700 CPU @ 3.6 GHz 
and 16 GB RAM) equipped with an Nvidia Geforce GTX 
1070 GPU the total training time was approximately two 
weeks for the reconstruction network. The final RMSD for 
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the virtual-decoupling FID-Net was 0.0017. The decoupling 
network was trained on a desktop computer with the same 
specifications and the total training time for the network was 
approximately one week (the faster training time reflecting 
the smaller network).

For the application of FID-Nets for the reconstruction 
and virtual decoupling of actual spectra, extensive use is 
made of the nmrGlue python module for the reading, writing 
and manipulation of spectra (Helmus and Jaroniec 2013). In 
these cases, synthetic NUS data at a given sampling level are 
produced from the fully sampled data by removing points in 
the indirect dimension. The performance of the algorithms 
is then compared by calculating the RMSD with respect to 
the fully sampled spectrum.

NMR spectroscopy

T4 Lysozyme: A 2D 15N-1H HSQC correlation spectrum 
was recorded on a uniformly 13C, 15N isotope labelled sam-
ple of the L99A mutant of T4 Lysozyme. The sample was 
prepared as described previously (Bouvignies et al. 2011). 
The NMR spectrum was recorded at 298 K on an NMR 
spectrometer operating at 700 MHz 1H Larmor frequency 
and equipped with a helium-cooled TCI inverse cryoprobe. 
The fully sampled spectrum was acquired as a 1024 × 256 
complex matrix with spectral widths of 12 kHz (1H) and 
5.1 kHz (15N). An adiabatic 13C inversion pulse was applied 
in the centre of the 15N chemical shift evolution period to 
refocus 15N-13Cα and 15N-13CO scalar couplings. Four scans 
were collected for each  t1 increment with a recycle delay of 
1 s giving a total experiment time of 34 min.

The 3D HNCA spectrum was recorded on a triple labelled 
(2H, 13C, 15N) sample of T4 Lysozyme at 298 K. The spec-
trum was recorded on an NMR spectrometer operating at 
600 MHz 1H Larmor frequency equipped with a room tem-
perature TXI HCN inverse probe. The fully sampled spec-
trum was acquired as a 1024 × 28 × 256 complex matrix 
with spectral widths of 10.8 kHz (1H), 1.8 kHz (15N) and 
5 kHz (13C). 2H decoupling is applied through the sequence 
to eliminate scalar couplings to these nuclei and selective 
shaped inversion pulses are employed to remove couplings 
to 13CO nuclei. Eight scans were collected for each incre-
ment with a recycle delay of 1.5 s giving a total experiment 
time of approximately 112 h.

SH3 domain of ABP1P: A 2D 15 N-1H HSQC correla-
tion spectrum was recorded on a uniformly 13C, 15N isotope 
labelled sample of the SH3 domain of ABP1P, prepared as 
described previously (Vallurupalli et al. 2007). The spectrum 
was recorded at 298 K on an NMR spectrometer operat-
ing at 600 MHz 1H Larmor frequency and equipped with a 
room temperature TXI HCN inverse probe. The fully sam-
pled spectrum was acquired as a 513 × 120 complex matrix 
with spectral widths of 8 kHz (1H) and 1.8 kHz (15N). A 

composite 13C inversion pulse was used in the centre of the 
15N chemical shift evolution period to refocus scalar cou-
plings. Eight scans were collected for each  t1 increment 
with a recycle delay of 1 s giving a total experiment time 
of 36 min.

HDAC8: A 2D 13C-1H HMQC methyl-TROSY correla-
tion spectrum was recorded on a methyl-labelled (isoleucine, 
leucine and valine methyl groups are isotopically 13C-1H 
labelled with specific pro-(S) labelling for leucine and valine 
groups) HDAC8 sample, prepared according to previously 
reported protocols (Werbeck et al. 2020). The spectrum was 
recorded at 298 K on an NMR spectrometer operating at 
800 MHz 1H Larmor frequency and equipped with a helium-
cooled TCI inverse cryoprobe. The fully sampled spectrum 
was acquired as a 1024 × 192 complex matrix with spectral 
widths of 12.5 kHz (1H) and 4.5 kHz (13C). Four scans were 
collected for each  t1 increment with a recycle delay of 1 s 
giving a total experiment time of approximately 28 min.

The spectra are phased and Fourier transformed, with 
the relevant regions subsequently extracted using NMRPipe 
(Delaglio et al. 1995).

Reconstructions of NMR spectra

Reconstructions using the hmsIST algorithm were per-
formed using the default parameters. For reconstructions 
with SMILE the default parameters are employed except 
that the -nsigma parameter is set to 3; in our hands, using a 
higher value results in poorer reconstructions for the spectra 
considered here. The Fourier transform and phasing param-
eters are set as appropriate for each spectrum and a squared 
sine-bell window function is used (− xQ1 0.42 − xQ2 
0.98 − xQ3 2.0). The hmsIST and FID-Net reconstructed 
spectra are multiplied by the same window function and all 
spectra Fourier transformed in the indirect dimension. For 
the RMSD calculations all spectra are normalised according 
to the maximum intensity point.

Virtual decoupling of HNCA spectra

For virtual decoupling of 3D HNCA spectra, the spectrum 
is first processed and Fourier transformed in the 1H and 15N 
dimensions and kept in the time domain in the 13C domain. 
Each 1H-13C plane is then decoupled sequentially with the 
network passed as a sliding window over the 1H points as is 
done for the reconstruction network. After each plane has 
been decoupled the points in the 15N dimension are recom-
bined to give a 3D HNCA with the 13C plane in the time 
domain. This 13C dimension is then processed and Fou-
rier transformed to yield the final pure frequency-domain 
spectrum. Figure 6 shows the 1H-13C projection of the 3D 
spectrum.
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Conclusion

We demonstrated a new versatile deep learning architec-
ture, FID-Net, that can be trained to perform several tasks 
within common biomolecular NMR spectroscopy, includ-
ing reconstruction and virtual decoupling of spectra. A 
key strength of the networks presented is their robustness 
and ability to work effectively in a wide range of scenarios 
without a requirement for further retraining and no user 
adjustable parameters. This flexibility paves the way for 
these analyses to be incorporated as part of automated or 
semi-automated processing schemes and the use of deep 
learning analyses within the NMR community more gener-
ally. Moreover, reconstruction and virtual decoupling with 
FID-Net also provide the confidence level of the performed 
transformations, something that is unique to the presented 
method compared with other tools for reconstruction. As 
demonstrated with the virtual decoupling, DL approaches 
can also be trained to perform tasks that are difficult for 
traditional algorithmic approaches without prior assump-
tions, opening up new opportunities to perform innovative 
analyses with NMR data.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s10858- 021- 00366-w.
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