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Abstract. We consider a stabilized finite element method based on a spacetime formulation, where the
equations are solved on a global (unstructured) spacetime mesh. A unique continuation problem for the wave

equation is considered, where a noisy data is known in an interior subset of spacetime. For this problem,

we consider a primal-dual discrete formulation of the continuum problem with the addition of stabilization
terms that are designed with the goal of minimizing the numerical errors. We prove error estimates using

the stability properties of the numerical scheme and a continuum observability estimate, based on the sharp

geometric control condition by Bardos, Lebeau and Rauch. The order of convergence for our numerical
scheme is optimal with respect to stability properties of the continuum problem and the interpolation errors

of approximating with polynomial spaces. Numerical examples are provided that illustrate the methodology.

1. Introduction

We consider a data assimilation problem for the acoustic wave equation, formulated as follows. Let
n ∈ {1, 2, 3}, T > 0 and Ω ⊂ Rn be an open, connected, bounded set with smooth boundary ∂Ω. Let u be
the solution of the initial boundary value problem

(1.1)


�u = ∂2

t u−∆u = 0, on M = (0, T )× Ω,

u = 0, on Σ = (0, T )× ∂Ω,

u|t=0 = u0, ∂tu|t=0 = u1 on Ω.

The initial data u0, u1 are assumed to be a priori unknown functions, but the measurements of u in some
spacetime subset O = (0, T )× ω, where ω ⊂ Ω is open, is assumed to be known:

(1.2) u|O = uO.

The data assimilation problem then reads as follows:

(DA) Find u given uO.

The existence of a solution to the (DA)(DA) problem is always implicitly guaranteed in the sense that the
measurements uO correspond to a physical solution to the wave equation (1.11.1). On the other hand, assuming
that

(1.3) T > 2 max{dist(x, ω) |x ∈ Ω},

with dist(x, ω) defined as the infimum over the lengths of continuous paths in Ω, joining x and a point in
ω, it follows from Holmgren’s unique continuation theorem that the solution to (DA)(DA) is unique. Although
uniquely solvable, (DA)(DA) might have poor stability properties if only (1.31.3) is assumed. We will require the
(DA)(DA) problem to be Lipschitz stable, and for this reason we make the stronger assumption that the so-called
geometric control condition holds. This condition originates from [BLR88BLR88, BLR92BLR92] and we refer the reader
to these works for the precise definition. Roughly speaking, the condition requires that all geometric optic
rays in M, taking into account their reflections at boundary, intersect the set (0, T )× ω.
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We recall the following formulation of the observability estimates appearing in [BLR92BLR92, Theorem 3.3] and
[LRLTT17LRLTT17, Proposition 1.2]. For the explicit derivation of this version of the estimate, we refer the reader
to [BFO20BFO20, Theorem 2.2].

Theorem 1. Let ω ⊂ Ω, T > 0 and suppose that (0, T ) × ω satisfies the geometric control condition. If
u(0, ·) ∈ L2(Ω), ∂tu(0, ·) ∈ H−1(Ω), u|(0,T )×∂Ω ∈ L2(Σ), and �u ∈ H−1(M), then

u ∈ C1([0, T ];H−1(Ω)) ∩ C([0, T ];L2(Ω)),

and

sup
t∈[0,T ]

(
‖u(t, ·)‖L2(Ω) + ‖∂tu(t, ·)‖H−1(Ω)

)
6 C

(
‖u‖L2(O) + ‖�u‖H−1(M) + ‖u‖L2(Σ)

)
,

where C > 0 is a constant depending on M and ω.

Let us remark that the geometric control condition is sharp in the sense that Theorem 11 fails to hold if
the geometric control condition does not hold on the set (0, T )× ω [BLR88BLR88].

The objective of the paper is to design a stabilized spacetime finite element method for the data assimila-
tion problem (DA)(DA), which allows for higher order approximation spaces. The method will also allow for an
error analysis exploiting the stability of Theorem 11 and the accuracy of the spaces in an optimal way. To the
best of our knowledge this is the first complete numerical analysis of the data assimilation problem for the
wave equation, using high order spaces. The statement of our main theoretical result appears as Theorem 22
in Section 44.

1.1. Previous literature. Spacetime methods for inverse problems subject to the wave equation were in-
troduced in [CM15aCM15a] with an application to the control problem in [CM15bCM15b]. In those works however, the
required H2 regularity of the constraint equation was respected on the level of approximation leading to
an approach using C1-continuous approximation spaces in spacetime. Herein we instead use an approach
where the approximating space is only H1-conforming and we handle instabilities arising due to the lack
of conformity of the space through the addition of stabilization terms. This approach to stabilization of
ill-posed problems draws on the works [Bur13Bur13, Bur14Bur14], for the elliptic Cauchy problem. In the context of
time dependent problems, unique continuation for the heat equation was considered in [BO18BO18, BIHO18BIHO18],
with piecewise affine finite elements in space and finite differences for the time discretization. Finally using
a similar low order approach, with conventional, finite difference type time-discretization, the unique con-
tinuation and control problems for the wave equation were considered in [BFO20BFO20] and [BFO20BFO20] respectively.
Another strategy requiring only H1-regularity consists in reformulating the second order wave equation as
a first order system; it is examined in [MM19MM19] for the corresponding controllability problem.

Let us mention that the earlier works [BFO20BFO20, BFO19BFO19] studied the numerical implementation of data
assimilation and control problems for the wave equation using the similar idea of implementing numerical
stabilization terms in the discrete Lagrangian formulation. These earlier works are based on a first order
finite element method in the space variables and a finite difference scheme in the time variable. Analogously
to the theory here, the error estimates in these works are only based on the stability properties of the
continuum problem along with the numerical approximation errors. The main aim of the authors in the
works [BFO20BFO20, BFO19BFO19] was to show that even under a first order approximation scheme and with the
simple time-stepping discretization in time, it is possible to obtain optimal rates of convergence for the
numerical solutions to the (DA) and control problems. In contrast, the current work uses a mixed spacetime
formulation, having the key advantage that it easily generalizes to higher order approximation spaces while
still obtaining optimal error bounds, without resorting to C1-type approximation spaces.

There are several works that approach the data assimilation problem (DA), or its close variants, by solving
a sequence of classical initial–boundary value problems for the wave equation. Such methods have been
proposed independently in [SU09SU09], in the context of a particular application to Photoacoustic tomography,
and in [RTW10RTW10], based on the so-called Luenberger observers algorithm first introduced in an ODE context
in [AB05AB05]. An error estimate for a discretization of a Luenberger observers based algorithm was proven in
[HR12HR12], giving logarithmic convergence rate with respect to the mesh size. Better convergence rates can be
proven if a stability estimate is available on a scale of discrete spaces. Such discrete estimates were first
derived in [IZ99IZ99, M0̈5M0̈5] and we refer the reader to the survey articles [Zua05Zua05, EZ12EZ12] and the monograph
[EZ13EZ13], as well as the recent paper [EMZ16EMZ16] for more details. Optimal-in-space discrete estimates can be
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derived from continuous estimates [Mil12Mil12], however, spacetime optimal discrete estimates are known only
for specific situations.

The data assimilation problem (DA) can also be solved using the quasi-reversibility method. This method
originates from [LL67LL67], and it has been applied to data assimilation problems subject to the wave equation
in [KM91KM91, KR92KR92], and more recently to the Photoacoustic tomography problem in [CK08CK08]. We are not aware
of any works proving sharp convergence rates for the quasi-reversibility method with respect to mesh size.

The data assimilation problem (DA) arises in several applications. We mentioned already Photoacoustic
tomography (PAT), and refer to [Wan09Wan09] for physical aspects of PAT, to [KK08KK08] for a mathematical review,
and to [AM15AM15, CO16CO16, NK16NK16, SY15SY15] for the PAT problem in a cavity, the case closest to (DA). Another
interesting application is given in [BPD19BPD19] where an obstacle detection problem is solved by using a level set
method together with the quasi-reversibility method applied to a variant of (DA).

1.2. Outline of the paper. The paper is organized as follows. In Section 22 we introduce a few notations
used in the paper. In Section 33, we start by introducing the mixed spacetime mesh followed by the discrete
representation of (DA)(DA) in terms of a primal dual Lagrangian formulation. The Euler-Lagrange equations
are studied, showing in particular that there exists a unique solution to the discrete formulation of (DA)(DA).
Section 44 is concerned with proving the convergence rates for the numerical error functions corresponding
to the primal and dual variables. In Section 55, we provide two numerical examples that illustrate the theory
while also making a comparison with theH2-conformal finite element method introduced in [CM15aCM15a]. Finally,
in Section 66 we provide some concluding remarks.

2. Notations

We write ∇t,xu = (∂tu,∇u), where ∇u ∈ Rn is the usual gradient with respect to the space variables.
The wave operator may be written as

�u = −∇t,x · (A∇t,xu),

where A is the matrix associated to the Minkowski metric in R1+n, that is,

A =

[
−1 0[1,n]

0[n,1] I[n,n]

]
with I[n,n] denoting the n× n identity matrix. We introduce the notations

(u, v)M =

∫ T

0

∫
Ω

u(t, x)v(t, x) dx dt, ‖u‖M = (u, u)
1
2

M

and

(u, v)O =

∫ T

0

∫
ω

u(t, x)v(t, x) dx dt, ‖u‖O = (u, u)
1
2

O

and use an analogous notation for inner products over other subsets of M, with the understanding that the
natural volume measures are used in the case of subdomains. We also use the shorthand notation

a(u, z) = (A∇t,xu,∇t,xz)M,

and note in passing that given any (u0, u1) ∈ H1
0 (Ω)× L2(Ω), the solution u to equation (1.11.1) satisfies

a(u, v) = 0, ∀v ∈ H1
0 (M).

Finally, we fix an integer p, and make the standing assumption that the continuum solution u to (DA)(DA)
satisfies

u ∈ Hp+1(M) for some p ∈ N.

The index p defined above will correspond to the highest order of the spacetime polynomial approximations
that can be used for the discrete solution to (DA)(DA), while still getting optimal convergence for the numerical
errors.
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3. Discrete formulation of the data assimilation problem

Let us start this section by observing that the solution u to the data assimilation problem (DA)(DA) can be
obtained by analyzing the saddle points for the continuum Lagrangian functional J (u, z) that is defined
through

J (u, z) =
1

2
‖u− uO‖2O + a(u, z),

for any

u ∈ H1(0, T ;L2(Ω)) ∩ L2(0, T ;H1
0 (Ω)) and z ∈ H1

0 (M).

Here, the wave equation is imposed on the primal variable u by introducing a Lagrange multiplier z. It is
easy to verify the the solution u to (DA)(DA) together with z = 0 is a saddle point for the Lagrangian functional.

Motivated by this example, we would like to present a discrete Lagrangian functional to numerically solve
(DA)(DA). It is well-known that a naive discrete approximation of the continuum Lagrangian J (u, z) above will
fail to work, due to the appearance of high frequency instabilities. This was first discovered in a series of
works by Glowinski et al. in a series of works in early 1990s in the context of numerical controllability for
the wave equation. We refer the reader to Sections 6.8–6.9 of [GL94GL94] for a summary of these results. To
remedy the issue of these spurious modes arising at high frequencies, we will use discrete stabilizer (also
called regularizer) terms that guarantee the existence of a unique discrete saddle point. These terms will be
designed with the goal of minimizing the numerical error functions for the primal and dual variables. The
exact form of the discrete Lagrangian will be discussed later in Section 3.43.4.

We begin by introducing the spacetime mesh in Section 3.13.1. Then a discrete version of the bi-linear func-
tional a(·, ·) is provided in Section 3.23.2, followed by the introduction of the stabilization terms in Section 3.33.3.
Finally, we present the discrete formulation of (DA)(DA) in Section 3.43.4.

3.1. Spacetime discretization. In this section we will introduce the spacetime finite element method that
we propose. The method is using an H1-conforming piecewise polynomial space defined on a spacetime
triangulation that can consist of simplices, or prisms. Herein for simplicity we restrict the discussion to
the simplicial case. To be able to handle the case of curved boundaries without complicating the theory
with estimations of the error in the approximation of the geometry we impose boundary conditions using a
technique introduced by Nitsche [Nit71Nit71]. See also [Tho97Tho97, Theorem 2.1] for a discussion of the application
of the method to curved boundaries.

Consider a family T = {Th; h > 0} of quasi uniform triangulations ofM consisting of simplices {K} such
that the intersection of any two distinct simplices is either a common vertex, a common edge or a common
face. We let hK = diam(K) and h = maxK∈T hK , (see e.g. [EG04EG04, Def. 1.140]). By quasi-uniformity
h/hK is uniformly bounded, and therefore for simplicity the quasi-uniformity constant will be set to one
below. Observe that we do not consider discretization of the smooth boundary ∂M, but instead we allow
triangles adjacent to the boundary to have curved faces, fitting M. Finally, given any k ∈ N, we let V kh be
the H1(M)-conformal approximation space of polynomial degree less than or equal to k, that is,

V kh = {u ∈ C(M) : u|K ∈ Pk(K), ∀K ∈ Th},(3.1)

where Pk(K) denotes the set of polynomials of degree less than or equal to k ≥ 1 on K.
Next, we record two inequalities that will be used in the paper. The family T satisfies the following trace

inequality, see e.g. [BS08BS08, Eq. 10.3.9],

(3.2) ‖u‖L2(∂K) . h
− 1

2 ‖u‖L2(K) + h
1
2 ‖∇u‖L2(K), u ∈ H1(K),

The family T also satisfies the following discrete inverse inequality, see e.g. [EG04EG04, Lem. 1.138],

(3.3) ‖∇u‖L2(K) . h
−1‖u‖L2(K), u ∈ Pp(K).

Remark 1. We will use the notations A . B (resp., A & B) to imply that there exists a constant C > 0
independent of the spacetime mesh parameter h, such that the inequalities A 6 CB (resp., A > CB) hold.

Remark 2. It is also possible to consider the space V kh ∩ C1(M) with k > 2, for the approximation of the
primal variable. In this case the method coincides with that of [CM15aCM15a] and the analysis shows that optimal
error estimates are satisfied also in this case.
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Remark 3. We will use the approximation space V ph for the primal variable u. We will also fix an integer
q 6 p and use the space V qh for the approximation of the dual variable z. As we will see, using our method,
the approximation space of the dual variable can be quite coarse without sacrificing any rate of convergence
for the discrete primal variable (i.e we can take q = 1).

3.2. A discrete bi-linear formulation for the wave equation. Since no boundary conditions are im-
posed on the space V ph , the form a(u, z) needs to be modified on the discrete level. For the formulation to
remain consistent we propose the following modified bilinear form on V ph × V

q
h ,

ah(uh, zh) = a(uh, zh)− (A∇t,xuh · n∂M, zh)∂M − (∇zh · n∂Ω, uh)Σ.

Here n∂M and n∂Ω are the outward unit normal vectors on ∂M and ∂Ω respectively. The last term in the
right hand side is added to make the weak form of the Laplace operator symmetric even in the case where
no boundary conditions are imposed on the discrete spaces. Depending on how the stabilizing terms are
chosen below, this term is not strictly necessary in this work, but becomes essential if the formulation must
be consistent also for the adjoint equation.

Observe that, using integration by parts, there holds

(3.4) ah(u, zh) = (�u, zh)M − (∇zh · n∂Ω, u)Σ︸ ︷︷ ︸
=0

= (�u, zh)M

for all u ∈ H2(M) ∩ L2(0, T ;H1
0 (Ω)).

3.3. Formulation of the discrete stabilization terms for primal and dual variables. We denote by
Fh the set of internal faces of Th. For vector valued quantities u we define the jump across a face F ∈ Fh by

Jn · uKF = n1 · u|K1
+ n2 · u|K2

.

where K1,K2 ∈ Th are the two simplices satisfying K1 ∩K2 = F and nj is the outward unit normal vector
of Kj , j = 1, 2. Associating an arbitrary but fixed normal nF to each face (nF = n1 or nF = n2), the jump
of a scalar quantity u over a face F may be defined by

JuKF = u|K1
nF · n1 + u|K2

nF · n2.

The jump of a vector quantity may also be defined by applying the definition of the scalar jump componen-
twise, without modifications of the theory. Below we drop the normal to alleviate the notation. The norm
over all the faces in Fh will be denoted by

‖v‖Fh
=

( ∑
F∈Fh

‖v‖2F

) 1
2

,

and the norm over all the simplices {K} will be denoted by

‖v‖Th =

( ∑
K∈Th

‖v‖2K

) 1
2

.

For each K ∈ Th, we define the elementwise stabilizing form

(3.5) sK(uh, uh) = ‖h�uh‖2K + ‖h− 1
2uh‖2∂K∩Σ +

∑
F∈∂K∩Fh

‖h 1
2 JA∇t,xuhK‖2F .

A dual stabilizer is defined by

(3.6) s∗K(zh, zh) = ‖∇t,xzh‖2K + ‖h− 1
2 zh‖2∂K∩∂M.

Subsequently, the global stabilizers are defined by summing over all the elements:

s =
∑
K∈Th

sK and s∗ =
∑
K∈Th

s∗K

and we define the semi norms |u|s = s(u, u)
1
2 and |z|s∗ = s∗(z, z)

1
2 . Observe that the following stability

estimate holds:

(3.7) |wh|s∗ . ‖∇t,xwh‖M + ‖h− 1
2wh‖∂M ∀wh ∈ V qh .
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We also point out for future reference that for a solution to the data assimilation problem u ∈ H2(M) and
all uh ∈ V ph , there holds

s(u− uh, u− uh) = s(uh, uh).(3.8)

Remark 4. There is some freedom in the choices of the discrete regularization terms that yield the same
error estimates as in Theorem 22 below. The choice is more flexible for the dual variable z since the continuum
analogue for this variable is zero. For instance we can define the following stabilization term for the dual
variable:

(3.9) s∗K(zh, zh) = sK(zh, zh) + ‖h− 1
2 zh‖∂K∩(∂M\Σ) + ‖h 1

2 ∂tzh‖2∂K∩(∂M\Σ).

It is also possible to use a stabilization that is exclusively carried by the faces of the computational mesh
provided q ∈ {p− 2, p− 1, p}. In this case we define

(3.10) sK(uh, uh) =
∑

F∈∂K∩Fh

(
‖h 1

2 JA∇t,xuhK‖2F + ‖h
3
2

F J�uhK‖2F
)

+ ‖h− 1
2uh‖2∂K∩Σ.

In the second jump term we are allowed to split the operator in the time derivative and the Laplace operator
(or second order derivatives in space) without sacrificing stability or consistency since

‖h
3
2

F J�uhK‖2F 6 ‖h
3
2

F J∂2
t uhK‖2F + ‖h

3
2

F J∆uhK‖2F .
Weak consistency of the right order still holds since for a sufficiently smooth solution u

‖h
3
2

F J∂2
t uK‖2F + ‖h

3
2

F J∆uK‖2F = 0.

3.4. The discrete Lagrangian formulation for the data assimilation problem. Our finite element
method is defined by the discrete Lagrangian functional

L : V ph × V
q
h → R,

through

L(u, z) =
1

2
‖u− ũO‖2O +

γ

2
s(u, u)− γ∗

2
s∗(z, z) + ah(u, z),(3.11)

where γ, γ∗ > 0 are fixed constants. Here,

ũO = uO + δuO,

with uO denoting the restriction to the subset O of a continuum solution u ∈ Hp+1(M) to (1.11.1) and
δuO ∈ L2(O) denoting some experimental noise in our observable data.

The corresponding Euler-Lagrange equations read as follows. Find (uh, zh) ∈ V ph × V
q
h such that for all

(vh, wh) ∈ V ph × V
q
h there holds

ah(uh, wh)− γ∗s∗(zh, wh) = 0,(3.12)

(uh, vh)O + γs(uh, vh) + ah(vh, zh) = (ũO, vh)O.(3.13)

To simplify the notation we introduce the bi-linear form

Ah[(uh, zh), (vh, wh)] = (uh, vh)O + γs(uh, vh) + ah(vh, zh) + ah(uh, wh)− γ∗s∗(zh, wh).

The discrete problem (3.123.12)-(3.133.13) can then be recast as follows. Find uh, zh ∈ V ph × V
q
h such that

(3.14) Ah[(uh, zh), (vh, wh)] = (ũO, vh)O, ∀(vh, wh) ∈ V ph × V
q
h .

Note that by definition,

Ah[(uh − u, zh), (vh, wh)] = (uh − u, vh)O + γs(uh − u, vh) + ah(vh, zh) + ah(uh − u,wh)− γ∗s∗(zh, wh).

By (3.43.4), ah(u,wh) = 0. Together with (3.83.8) we can simplify the above expression to obtain

Ah[(uh − u, zh), (vh, wh)] = (uh − u, vh)O + γs(uh, vh) + ah(vh, zh) + ah(uh, wh)− γ∗s∗(zh, wh).

Finally, applying (3.123.12)–(3.133.13) and the fact that u|O = uO, we conclude that

(3.15) Ah[(uh − u, zh), (vh, wh)] = (δuO, vh)O.

Define the residual norm
|‖(u, z)‖|2S = ‖u‖2O + |u|2s + |z|2s∗ ,
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and a continuity norm

‖u‖∗ = ‖∇t,xu‖M + ‖h 1
2A∇t,xu · n‖∂M + ‖h− 1

2u‖Σ.
For the purpose of our error analysis later, we also introduce a family of interpolants πkh, that are required

to satisfy

Assumption 1. πkh : Hk(M)→ V kh preserves Dirichlet boundary conditions and additionally satisfies

‖u− πkhu‖Hm(M) . h
s−m‖u‖Hs(M) for all u ∈ Hs(M) with s = 0, 1, . . . , k + 1 and m = 0, 1, . . . , s.

An example of such an interpolant is the Scott-Zhang interpolant [SZ90SZ90]. For brevity, we will use the
notations:

πh = π1
h and Πh = πph.

We have the following lemma regarding the residual norm. We remind the reader that the notation . is as
defined in Remark 11.

Lemma 1. Let u ∈ Hp+1(M). There holds:

|‖(u−Πhu, 0)‖|S . hp‖u‖Hp+1(M),

Proof. Note that
|‖(u−Πhu, 0)‖|S = ‖u−Πhu‖O + |u−Πhu|s.

For the first term we immediately see that

‖u−Πhu‖O 6 ‖u−Πhu‖M . hp+1‖u‖Hp+1(M).

To bound the contribution from the stabilization term, recall by definition that

|u − Πhu|2s =
∑
K∈Th

(
‖h�(u−Πhu)‖2K + ‖h− 1

2 (u−Πhu)‖2∂K∩Σ +
∑

F∈∂K∩Fh

‖h 1
2 JA∇t,x(u−Πhu)K‖2F

)
.

We proceed to bound the three terms on the right hand side. For the first term, we note that∑
K∈Th

‖h�(u−Πhu)‖2K .
∑
K∈Th

‖∇t,x(u−Πhu)‖2K . h2p‖u‖2Hp+1(M).

For the second term, we define ∆F = {K : K̄ ∩ F 6= ∅}, ∆̃F = {K : K̄ ∩ ∆̄F 6= ∅} and use (3.23.2) to write

‖h− 1
2 (u−Πhu)‖2F . h−1‖u−Πhu‖2∆F

+ ‖∇t,x(u−Πhu)‖2∆F
. h2p|u|2

Hp+1(∆̃F )
.

By collecting the above local bounds and using the fact that ∆̃F have finite overlaps, we conclude that∑
K∈Th

‖h− 1
2 (u−Πhu)‖2∂K∩Σ . h

2p|u|2
Hp+1(∆̃F )

.

For the last term, observe that using (3.23.2) again, we have:

‖h
1
2

F JA∇t,x(u−Πhu)K‖2F .
∑
K∈∆F

(
‖∇t,x(u−Πhu)‖2K + h2‖D2

t,x(u−Πhu)‖2K
)
. h2p|u|2

Hp+1(∆̃F )
,

where D2
t,x denotes the Hessian matrix consisting of second order derivatives in space and time variables.

The claim follows by collecting the above local bounds analogously to the second term above. �

Next lemma is concerned with approximation properties of the continuity norm ‖ · ‖∗ defined earlier. The
proof is analogous to the proof of the previous lemma and follows from the Definition of the interpolant Πh

together with (3.23.2) and is therefore omitted.

Lemma 2. Let u ∈ Hp+1(M). There holds:

‖u−Πhu‖∗ . hp‖u‖Hp+1(M),

where we recall that
‖u‖∗ = ‖∇t,xu‖M + ‖h 1

2A∇t,xu · n‖∂M + ‖h− 1
2u‖Σ.

We end this section by proving that the solution to (3.143.14) exists and is unique.

Proposition 1. The Euler-Lagrange equation (3.143.14) has a unique solution (uh, zh) ∈ V ph × V
q
h .
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Proof. Since equation (3.143.14) defines a square system of linear equations, existence is equivalent to uniqueness
and we only need to show that for uO ≡ 0, the solution (uh, zh) = (0, 0) is unique. Indeed, suppose that
equation (3.143.14) with uO ≡ 0 holds for some (uh, zh) ∈ V ph × V

q
h . First observe that

|‖uh, zh‖|2S . Ah((uh, zh), (uh,−zh)) = 0.

This means that |zh|s∗ = 0. Consequently, zh = 0 follows immediately by the Poincaré inequality. Next,
considering uh we immediately have that and uh|O = 0 and uh|Σ = 0. Using the definition of the stabilization
(3.53.5) we see that by partial integration, followed by the Cauchy-Schwarz inequality and the trace inequality
(3.23.2) there holds for all w ∈ H1

0 (M)

a(uh, w) = (�uh, w)Th +
∑
K∈Th

(A∇t,xuh · n∂K , w)∂K . h
−1(‖h�uh‖Th︸ ︷︷ ︸

=0

+ ‖h 1
2 JA∇t,xuhK‖Fh︸ ︷︷ ︸

=0

)‖w‖H1(M).

As a consequence
‖�uh‖H−1(M) = sup

w∈H1
0 (M)

‖w‖H1(M)=1

a(uh, w) = 0.

By construction uh ∈ C0(M)∩H1(M) and in particular uh(0, ·) ∈ L2(Ω), ∂tuh(0, ·) ∈ L2(Ω), uh|(0,T )×∂Ω ∈
L2(Σ). We conclude that uh vanishes thanks to Theorem 11. �

4. Error estimates

We will consider the derivation of error estimates in three steps. First, we will establish the continuity
of ah( ) with respect to |‖ · ‖|S and ‖ · ‖∗ on the one hand (see Lemma 33) and then a continuity for the
exact solution with respect to |‖ · ‖|S and H1 norms (see Lemma 44) on the other hand. Then, we will prove
convergence of the error in the |‖ · ‖|S norm. Finally, we will use these results to prove a posteriori and a
priori error estimates based on the observability estimate of Theorem 11. We remind the reader again that
the notation . in this section is as defined in Remark 11.

Lemma 3. Let v ∈ H2(M) + V ph and wh ∈ V qh . Then there holds

|ah(v, wh)| . ‖v‖∗|wh|s∗ .

Proof. First, observe that by (3.23.2), (3.33.3) there holds

(4.1) ‖h 1
2A∇t,xwh · n‖Σ . ‖∇t,xwh‖M.

Next, using the Cauchy-Schwarz inequality we write:

|ah(v, wh)| 6 ‖∇t,xv‖M‖∇t,xwh‖M + ‖h 1
2∇t,xv · n‖∂M‖h−

1
2wh‖∂M + ‖h 1

2∇t,xwh · n‖Σ‖h−
1
2 v‖Σ.

The claim follows by combining the previous two bounds.
�

Lemma 4. Let u ∈ Hp+1(M) be the exact solution of (1.11.1) satisfying (1.21.2) and let (uh, zh) ∈ V ph × V
q
h be

the unique solution of the discrete Euler-Lagrange equation (3.143.14). There holds

‖�(u− uh)‖H−1(M) = sup
w∈H1

0 (M)
‖w‖H1(M)=1

a(uh, w) . |‖(uh, zh)‖|S .

Proof. First observe that
‖�(u− uh)‖H−1(M) = sup

w∈H1
0 (M)

‖w‖H1(M)=1

a(u− uh, w).

Since �u = 0, we have a(u,w) = 0 for all w ∈ H1
0 (M) thus establishing the first equality in the claim. Using

(3.123.12) we see that,

(4.2) a(uh, w) = a(uh, w − πhw) + a(uh, πhw)− ah(uh, πhw) + γ∗s∗(zh, πhw).

Using integration by parts in the first term of the right hand side we see that

a(uh, w − πhw) + a(uh, πhw)− ah(uh, πhw) = (�uh, w − πhw)Th +
∑
K∈Th

(A∇t,xuh · n∂K , w − πhw)∂K
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+ (A∇t,xuh · n∂M, πhw)∂M + (uh,∇πhw · n)Σ = I + II + III + IV.

For the term I we have

|I| = |(�uh, w − πhw)Th | 6 ‖h�uh‖Th(h−1‖w − πhw‖Th) . ‖h�uh‖Th‖w‖H1(M).

Observe that the term III is absorbed by the same quantity with opposite sign in II, eliminating all terms
πhw on the boundary. Since also w|∂M = 0, we see that

|II + III| = |
∑
K∈Th

(A∇t,xuh · n∂K , w − πhw)∂K\∂M| 6 ‖h
1
2 JA∇t,xuhK‖Fh

‖w‖H1(M),

where we are using (3.23.2) and the definition of the interpolant πh. Finally, for the term IV we use the
Cauchy-Schwarz inequality to get the bound

|IV | = |(∇t,xπhw · n, uh)Σ| 6 ‖h−
1
2uh‖Σ ‖h

1
2∇t,xπhw · n‖Σ . ‖h−

1
2uh‖Σ ‖w‖H1(M),

where we used the bound (4.14.1) in the last step.
Collecting the above bounds we have that

a(uh, w − πhw) + a(uh, πhw)− ah(uh, πhw) . (‖h�uh‖Th + ‖h 1
2 JA∇t,xuhK‖Fh

+ ‖h− 1
2uh‖Σ)‖w‖H1(M).

Using the definition of |‖(uh, 0)‖|S , we may rewrite this as

a(uh, w − πhw) + a(uh, πhw)− ah(uh, πhw) . |‖(uh, 0)‖|S‖w‖H1(Ω).

For the remaining term in the right hand side of (4.24.2) we observe that by Cauchy-Schwarz inequality

s∗(zh, πhw) 6 |‖(0, zh)‖|S |πhw|s∗ .
We can now use (3.73.7) to deduce

|πhw|s∗ . ‖∇t,xw‖M + ‖h− 1
2πhw‖∂M . ‖w‖H1(M).

�

We now prove convergence in the residual norm.

Proposition 2. Let u be the solution to (1.11.1), satisfying (1.21.2). Let (uh, zh) ∈ V ph × V
q
h be the solution of

(3.143.14). Then
|‖(u− uh, zh)‖|S . hp‖u‖Hp+1(M) + ‖δuO‖L2(O).

Proof. Let uh − u = uh −Πhu︸ ︷︷ ︸
eh

+ Πhu− u︸ ︷︷ ︸
eΠ

= eh + eΠ. Using the triangle inequality we write

|‖(uh − u, zh)‖|S 6 |‖(eΠ, 0)‖|S + |‖(eh, zh)‖|S .
Recalling Lemma 11 we only need an estimate for |‖(eh, zh)‖|S . There holds

C|‖(eh, zh)‖|2S 6 Ah[(eh, zh), (eh,−zh)],

where C > 0 only depends on γ and γ∗. Using (3.153.15) we have

Ah[(eh, zh), (eh,−zh)] = −Ah[(eΠ, 0), (eh,−zh)] + (δuO, eh)O.

Clearly,
|(δuO, eh)O| 6 ‖δuO‖O‖eh‖O 6 ‖δuO‖O|‖(eh, zh)‖|S .

Also, by definition
Ah[(eΠ, 0), (eh,−zh)] = (eΠ, eh)O + γs(eΠ, eh)− ah(eΠ, zh).

As a consequence, applying the Cauchy-Schwarz inequality in the two first terms in the right hand side and
the continuity of Lemma 33 in the last term we get the bound

|Ah[(eΠ, 0), (eh,−zh)]| . (‖eΠ‖O + |eΠ|s + ‖eΠ‖∗)(‖eh‖O + |eh|s + |zh|s∗)
. (‖eΠ‖O + |eΠ|s + ‖eΠ‖∗)|‖(eh, zh)‖|S .

Collecting the above bounds and applying Lemmas 11–22 we conclude that

|‖(eh, zh)‖|S . ‖eΠ‖O + |eΠ|s + ‖eΠ‖∗ . hp‖u‖Hp+1(M) + ‖δuO‖O.
�
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We are now ready to state our main theorem as follows.

Theorem 2. Let p, q ∈ N, let M = (0, T ) × Ω and ω ⊂ Ω be such that the set O = (0, T ) × ω satisfies the
geometric control condition. Let u ∈ Hp+1(M) solve the continuum equation (1.11.1) subject to some unknown
initial data u0, u1 and assume that uO = u|O is a priori known modulo some observable noise δuO ∈ L2(O).
Let the discrete Lagrangian L : V ph × V

q
h → R be defined by (3.113.11). Let (uh, zh) ∈ V ph × V

q
h be the unique

solution to the Euler-Lagrange equations (3.143.14). Then we have the a posteriori error estimate

sup
t∈[0,T ]

(
‖(u− uh)(t, ·)‖L2(Ω) + ‖∂t(u− uh)(t, ·)‖H−1(Ω)

)
.

(∑
K∈T

η2
K

) 1
2

where

η2
K = ‖uh − uO‖2O∩K + sK(uh, uh) + s∗K(zh, zh).

Moreover, the following a priori error estimate holds for the primal variable11

sup
t∈[0,T ]

(
‖(u− uh)(t, ·)‖L2(Ω) + ‖∂t(u− uh)(t, ·)‖H−1(Ω)

)
. hp‖u‖Hp+1(M) + ‖δuO‖O.

Proof. Taking the square of the inequality of Theorem 11 we see that with e = u− uh
sup
t∈[0,T ]

(‖e(t, ·)‖L2(Ω) + ‖∂te(t, ·)‖H−1(Ω))
2 . ‖e‖2O + ‖�e‖2H−1(M) + ‖e‖2Σ.

First we observe that

‖e‖2O =
∑
K∈Th

‖uh − uO‖2O∩K

and

‖e‖2Σ =
∑
K∈Th

‖uh‖2Σ∩K 6
∑
K∈Th

‖h− 1
2uh‖2Σ∩K 6 |uh|2s.

Applying Lemma 44 we see that

‖�e‖2H−1(M) .
∑
K∈Th

η2
K

which proves the first claim.
For the a priori error estimate observe that by definition and by (3.83.8) we have( ∑

K∈Th

η2
K

) 1
2

. ‖e‖O + |‖(e, zh)‖|S

and we conclude by applying the error bound of Proposition 22 to the right hand side. This concludes the
proof. �

Remark 5. Tracking the influence of the stabilization parameters on the hidden constants in Theorem 22
leads to factors of the form γ

1
2 , γ−

1
2 , (γ∗)

1
2 , (γ∗)−

1
2 , showing that the present analysis does not allow

either parameter to vanish or to become too large. The sensitivity to the parameter choice is explored in the
numerical section.

Remark 6. Theorem 22 can be used to make a number of observations. Firstly, the discrete algorithm
is stable in the presence of the noise δuO. Secondly, when the size of the noise is comparable to hp the
method converges optimally with respect to the approximation order of the finite element spaces that are
used. Finally, this latter observation suggests that in cases where some a priori knowledge of the sizes of the
physical solution and the noise is known, the mesh size h should be taken to be of order ‖δuO‖O/‖u‖Hp+1(M).

Remark 7. Observe that the preceding analysis shows that the order of the discretization space for the dual
variable zh, namely q, can be taken to be one without sacrificing any rate of convergence for the primal
variable uh. This is advantageous since then the system size only grows with increasing p.

1 The convergence for the dual variable zh is given by Proposition 22.
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5. Numerical experiments

We implement the stabilized finite element method introduced and analyzed in the previous sections with
p ≥ q and assuming no noise in the observed data, that is to say δuO = 0. We also discuss the rate obtained
according, notably, to the regularity of the initial condition to be reconstructed in the case n = 1. The re-
sults are compared with those obtained with the H2-conformal finite element method introduced in [CM15aCM15a]
which reads as follows:

Find (u, z) ∈ V × L2(0, T ;H1
0 (Ω)), with V = {u ∈ L2(M),�u ∈ L2(0, T ;H−1(Ω)}, solution of

(5.1)


(u, v)O + γ

∫ T

0

(�u,�v)H−1(Ω)dt+

∫ T

0

(z,�v)H1
0 (Ω),H−1(Ω)dt = (uO, v)O, ∀v ∈ V,∫ T

0

(w,�u)H1
0 (Ω),H−1(Ω)dt = 0, ∀w ∈ L2(0, T ;H1

0 (Ω)),

where (·, ·)H1
0 (Ω),H−1(Ω) denotes the dual pairing between H1

0 (Ω) and H−1(Ω) so that

(z,�u)H1
0 (Ω),H−1(Ω) =

(
∇z,∇(−∆−1�u)

)
L2(Ω)

, ∀z ∈ H1
0 (Ω), u ∈ V.

For any γ > 0, this well-posed mixed formulation is associated to the Lagrangian

L̃ : V × L2(0, T ;H1
0 (Ω))→ R

defined as follows

(5.2) L̃(u, z) =
1

2
‖u− uO‖2O +

γ

2
‖�u‖2L2(H−1) −

∫ T

0

(z,�u)H1
0 (Ω),H−1(Ω)dt.

At the finite dimensional level, the formulation reads: find (uh, zh) ∈ Vh × Ph solution of

(5.3)

{
(uh, vh)O + γh2(�uh,�vh)M + (zh,�vh)M = (uO, vh)O, ∀vh ∈ Vh,
(wh,�uh)M = 0, ∀wh ∈ Ph,

where Vh ⊂ V and Ph ⊂ L2(0, T ;H1
0 (Ω)) for all h > 0. As in [CM15aCM15a], we shall use a conformal approximation

Vh based on the C1 triangular reduced HCT element (see [BH81BH81]). Concerning the approximation of the
multiplier z, we consider Ph = {z ∈ C(M) : u|K ∈ P1(K),∀K ∈ Th}. This method does not enter the above
framework, however if a dual stabilizer as in (3.63.6) is added, the above theory may be applied and leads to
error bounds also in this case.

The experiments are performed with the FreeFem++ package developed at the University Paris 6 (see
[Hec12Hec12]), very well-adapted to the spacetime formulation.

Remark 8. The cases where p < q were included in the numerical study. Although the expected convergence
rates were observed, such methods turned out to be very sensitive to the choice of stabilization parameters.
This locking phenomenon lead to unsatisfactory results and the results are not reported here.

5.1. Example 1. For our first example, we take simply Ω = (0, 1) and first consider an observation uO
based on the smooth initial condition (u0(x), u1(x)) = (sin(3πx), 0) completed with T = 2 and ω = (0.1, 0.3).
Observe that the corresponding solution is simply the smooth function

(Ex1) u(t, x) = sin(3πx) cos(3πt).

In view of Theorem 22, we expect a rate equal to p for the primal variable u when approximated with elements
in V ph . Tables 33, 44, 55, 66 provide the norms

‖u− uh‖L2(M)/‖u‖L2(M), ‖(u− uh)(0, ·)‖L2(0,1)/‖u(0, ·)‖L2(0,1), ‖(u− uh)t(0, ·)‖L2(0,1)

with respect to h for the primal variable and the norm ‖zh‖L2(0,T ;H1
0 (0,1)) with respect to h for the dual

variable. These are obtained from the formulation (5.35.3) based on a conformal approximation with γ = 10−3

and from the formulation (3.143.14) based on a non conformal approximation with p, q ∈ {1, 2, 3}, p ≥ q (see
(3.13.1)). For the latter, we use the dual stabilizer (3.63.6) with γ = 10−3, γ? = 1. The linear system associated
to the mixed formulation (3.123.12)-(3.133.13) is solved using the multi-frontal LU direct solver UMFPACK.
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Concerning the primal variable u, we obtain the following behavior

‖u− uh‖L2(M)/‖u‖L2(M) ≈ β × hτ

with

(5.4)

β = e1.40, τ = 1.66, (uh, zh) ∈ V 1
h × V 1

h ,

β = e1.38, τ = 3.06, (uh, zh) ∈ V 2
h × V 1

h ,

β = e1.16, τ = 4.06, (uh, zh) ∈ V 3
h × V 1

h ,

β = e1.81, τ = 3.35, (uh, zh) ∈ V 2
h × V 2

h ,

β = e1.01, τ = 4.01, (uh, zh) ∈ V 3
h × V 2

h ,

β = e1.21, τ = 4.08, (uh, zh) ∈ V 3
h × V 3

h ,

β = e1.02, τ = 3.67, (uh, zh) ∈ HCT × V 1
h ,

in agreement with Theorem 22. We observe actually a super convergence in all cases, very likely due to
the regularity of the solution to be reconstructed. Figure 11-Left depicts the evolution of the relative error
‖u − uh‖L2(M)/‖u‖L2(M) with respect to h for the approximation V ph × V 1

h , p ∈ 1, 2, 3 and for the HCT

element based on a H2(QT ) approximation. We notice that the case p = 3 produces similar results than
the H2(QT ) based approximation HCT × V 1

h . We also observe that the value of q does not affect the rate
in agreement with Remark 77 (see Figure 11-Right). Table 22 collects the CPU time observed for various
discretization and indicates that the use of the space V 2

h × V 1
h seems very appropriate.

Since uO is a well-prepared solution, we check from Table 33 that the approximation zh of the dual variable
(which has the meaning of a Lagrange multiplier for the weak formulation of the wave equation) goes to zero
with h for the L2(0, T ;H1

0 (0, 1)) norm.
With respect to the role of γ and γ?, here taken equal to 10−3 and 1 respectively, we have observed the

following phenomenon: when p is strictly larger than q, i.e. when the primal variable is approximated in a
richer space than the dual one, the value of γ? has no influence on the quality of the result. In particular
γ? = 0 still leads to a well-posed discrete formulation and provides the same results compared to for instance
γ? = 1. This suggests, as least in the one dimensional setting for which d = 1, that the finite element spaces
satisfy an inf-sup condition and that the stabilized term s?(zh, zh) for the dual variable z is not necessary.
Moreover, in that case, whatever be the value of γ?, γ must be small but strictly positive; the choice γ = 0
leads to a non invertible formulation. Still in the case p > q, we also observed that the rate of convergence
with respect to h is independent of the value of the parameter γ. Small values strictly positive leads however
to better constants as reported in Figure 22. It should be noted that smaller value of γ leads to an increasing
amount of CPU time needed to solve the formulation 3.143.14 through the UMFPACK solver (in view of the
ill-posedeness for γ = 0).

On the contrary, when the same finite element space is used for primal and dual variables, i.e. when p = q,
we observe that the stabilization of the dual variable, i.e. γ? > 0 is compulsory to achieve well-posedness.
In that case, the choice γ = 0 provides excellent results (except for p = q = 1 and h not small enough). We
remark that similar qualitative and quantitative conclusions are observed with structured meshes.

mesh ]1 ]2 ]3 ]4 ]5
h 1.57× 10−1 8.22× 10−2 4.03× 10−2 2.29× 10−2 1.25× 10−2

card(Th) 442 1750 7164 29182 116300
]vertices 252 936 3703 14832 58631

card(Vh) - P2 945 3621 14569 58845 233561
card(Vh) - P3 2080 8056 32599 132040 524791

card(Vh) - HCT 1449 5493 21975 88509 350823

Table 1. Data of five triangular meshes associated to M = (0, 1)× (0, 2).

We also emphasize that the spacetime discretization introduced in the previous sections is very well-
appropriated for mesh adaptivity. Using the V 2

h ×V 1
h approximation, Figure 44-left depicts the mesh obtained

after seven adaptive refinements based on the local values of gradient of the primal variable uh. Starting with
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V 1
h × V 1

h V 2
h × V 1

h V 2
h × V 2

h V 3
h × V 1

h V 3
h × V 2

h V 3
h × V 3

h HCT × V 1
h

1.74 4.78 8.46 16.19 19.27 28.59 10.76

Table 2. (Ex1); CPU time (in second) to solve (3.123.12)-(3.133.13) with the mesh ]4.

h 1.57× 10−1 8.22× 10−2 4.03× 10−2 2.29× 10−2 1.25× 10−2

(5.35.3) - HCT × V 1
h 9.88× 10−4 1.22× 10−4 1.83× 10−5 2.49× 10−6 3.52× 10−7

(3.143.14) - V 1
h × V 1

h 4.64× 10−2 4.79× 10−2 3.03× 10−2 1.51× 10−2 7.76× 10−3

(3.143.14) - V 2
h × V 1

h 6.14× 10−3 1.45× 10−3 4.07× 10−4 9.96× 10−5 2.64× 10−5

(3.143.14) - V 3
h × V 1

h 2.23× 10−4 3.02× 10−5 4.02× 10−6 4.99× 10−7 6.85× 10−8

(3.143.14) - V 2
h × V 2

h 4.10× 10−2 1.16× 10−2 2.68× 10−3 6.49× 10−4 1.61× 10−4

(3.143.14) - V 3
h × V 2

h 2.57× 10−3 3.98× 10−4 4.83× 10−5 6.43× 10−6 7.76× 10−7

(3.143.14) - V 3
h × V 3

h 9.06× 10−3 1.10× 10−3 1.25× 10−4 1.55× 10−5 1.92× 10−6

Table 3. (Ex1); ‖zh‖L2(0,T ;H1
0 (0,1)) w.r.t h.

h 1.57× 10−1 8.22× 10−2 4.03× 10−2 2.29× 10−2 1.25× 10−2

(5.35.3) - HCT × V 1
h 1.32× 10−2 9.24× 10−4 8.72× 10−5 8.37× 10−6 1.20× 10−6

(3.143.14) - V 1
h × V 1

h 8.07× 10−1 4.94× 10−1 1.81× 10−1 4.90× 10−2 1.25× 10−2

(3.143.14) - V 2
h × V 1

h 1.00× 10−1 9.41× 10−3 1.23× 10−3 2.12× 10−4 4.03× 10−5

(3.143.14) - V 3
h × V 1

h 7.61× 10−3 5.16× 10−4 4.15× 10−5 2.64× 10−6 2.63× 10−7

(3.143.14) - V 2
h × V 2

h 1.58× 10−1 1.27× 10−2 1.21× 10−3 2.05× 10−4 3.01× 10−5

(3.143.14) - V 3
h × V 2

h 6.49× 10−3 3.97× 10−4 3.21× 10−5 2.29× 10−6 2.52× 10−7

(3.143.14) - V 3
h × V 3

h 9.07× 10−3 5.31× 10−4 3.92× 10−5 2.74× 10−6 3.01× 10−7

Table 4. (Ex1); ‖u− uh‖L2(M)/‖u‖L2(M) w.r.t. h.

h 1.57× 10−1 8.22× 10−2 4.03× 10−2 2.29× 10−2 1.25× 10−2

(5.35.3) - HCT × V 1
h 6.64× 10−3 6.23× 10−4 6.55× 10−5 6.25× 10−6 1.20× 10−6

(3.143.14) - V 1
h × V 1

h 8.02× 10−1 4.94× 10−1 1.81× 10−1 4.89× 10−2 1.25× 10−2

(3.143.14) - V 2
h × V 1

h 1.04× 10−1 8.45× 10−3 9.30× 10−4 1.57× 10−4 2.32× 10−5

(3.143.14) - V 3
h × V 1

h 4.81× 10−3 3.48× 10−4 3.68× 10−5 2.46× 10−6 1.85× 10−7

(3.143.14) - V 2
h × V 2

h 1.55× 10−1 9.29× 10−2 1.03× 10−3 1.85× 10−4 2.00× 10−5

(3.143.14) - V 3
h × V 2

h 4.22× 10−3 3.26× 10−4 2.23× 10−5 1.93× 10−6 1.65× 10−7

(3.143.14) - V 3
h × V 3

h 5.23× 10−3 3.52× 10−4 2.87× 10−5 2.50× 10−6 1.99× 10−7

Table 5. (Ex1); ‖(u− uh)(·, 0)‖L2(0,1)/‖u(·, 0)‖L2(0,1) w.r.t. h.

h 1.57× 10−1 8.22× 10−2 4.03× 10−2 2.29× 10−2 1.25× 10−2

(5.35.3) - HCT × V 1
h 1.74× 10−1 9.29× 10−2 3.81× 10−2 1.85× 10−2 8.96× 10−3

(3.143.14) - V 1
h × V 1

h 2.85× 10−2 4.57× 10−2 2.68× 10−2 1.48× 10−2 7.09× 10−3

(3.143.14) - V 2
h × V 1

h 3.87× 10−2 8.56× 10−3 2.03× 10−3 4.95× 10−4 1.19× 10−4

(3.143.14) - V 3
h × V 1

h 6.10× 10−3 6.71× 10−4 6.32× 10−5 6.89× 10−6 8.32× 10−7

(3.143.14) - V 2
h × V 2

h 3.18× 10−2 8.20× 10−3 2.01× 10−3 4.82× 10−4 1.14× 10−4

(3.143.14) - V 3
h × V 2

h 6.82× 10−3 6.50× 10−4 6.24× 10−5 6.94× 10−6 8.28× 10−7

(3.143.14) - V 3
h × V 3

h 7.36× 10−3 6.69× 10−4 6.26× 10−5 6.87× 10−6 8.26× 10−7

Table 6. (Ex1); ‖(u− uh)t(·, 0)‖H−1(0,1) w.r.t. h.
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Figure 1. (Ex1)- Relative error ‖u − uh‖L2(M)/‖u‖L2(M) with respect to h for various

approximation spaces (see Table 44); γ = 10−3, γ? = 1.
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Figure 2. (Ex1)- Relative error ‖u− uh‖L2(M)/‖u‖L2(M) with respect to h and γ for the

approximation spaces V 1
h × V 1

h (Left), V 2
h × V 1

h (Right) and V 3
h × V 1

h (Bottom); γ? = 1.

a coarse mesh composed of 288 triangles and 166 vertex, the final mesh is composed with 13068 triangles
and 6700 vertices. We obtain the following values: ‖zh‖L2(H1

0 ) = 4.32 × 10−4; ‖u − uh‖L2(M)/‖u‖L2(M) =

8.42 × 10−3; ‖(u − uh)(0)‖L2(0,1)/‖u(0)‖L2(0,1) = 8.30 × 10−3; ‖(u − uh)t(0)‖H−1(0,1) = 1.47 × 10−3 for a
CPU time equal to 3.01.
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5.1.1. Iterative solution using a conjugate gradient algorithm. Finally, we recall that the mixed formulation
(3.123.12)-(3.133.13) associated to the Lagrangian L defined in (3.113.11) may be reformulated into an equivalent ex-
tremal problem involving only the dual variable zh: precisely, if (uh, zh) ∈ V ph × V

q
h is the saddle-point of L,

then zh ∈ V qh is the minimizer of the functional J ? : V qh → R defined by

J ?(z) :=
1

2
(uz, uz)O +

γ

2
s(uz, uz) +

γ?

2
s?(z, z)− ah(uz0 , z)

where, for any z ∈ V qh , uz ∈ V ph solves, for all vh ∈ V ph
(5.5) (uz, vh)O + γs(uz, vh) + ah(vh, z) = 0

and where uz0 ∈ V
p
h solves, for all vh ∈ V ph

(uz0 , vh)O + γs(uz0 , vh) = (ũO, vh)O.

The minimization of J ? may be done iteratively through the conjugate gradient algorithm. Each iteration
requires the resolution of the well-posed problem (5.55.5), simpler - notably in terms of computational ressource
- than the direct resolution of (3.123.12)-(3.133.13). This reformulation is mainly of interest for multi-dimensional
cases for which n > 1. We refer for instance to [CM15aCM15a, section 2.2] where this is employed. The conjugate
gradient is initialized with the zero function and stopped as soon as the gradient gk ∈ V qh at the iteration k
satisfies |gk|s?/|g0|s? < 10−4. Moreover, at each iteration, problem (5.55.5) is solved with the Cholesky solver.
Once the minimizer zcgh of J ? is obtained, the corresponding primal solution is defined as ucgh = uzcgh + uz0 .

We checked that the above stopping criterion ensures a value of ‖uh−ucgh ‖L2(M) +γ|uh−ucgh |s+γ?|zh−zcgh |s?
of the order 10−5, 10−6 and 10−7 when the approximations V 1

h × V 1
h , V 2

h × V 1
h and V 3

h × V 1
h are employed

respectively. Consequently, we simply report in Table 77 the number of iterations of the algorithm for
γ? = 1 and γ ∈ {1, 10−1, 10−2, 10−3}. As expected, a larger value of γ increases the coercivity property
of the functional J ?. In view of Figure 22, the approximation V 3

h × V 1
h combined with γ = 1. leads to an

appropriate choice.

h 1.57× 10−1 8.22× 10−2 4.03× 10−2 2.29× 10−2 1.25× 10−2

(3.143.14) - V 1
h × V 1

h - γ = 10−3 98 160 275 496 922
(3.143.14) - V 2

h × V 1
h - γ = 10−3 69 124 261 561 1257

(3.143.14) - V 3
h × V 1

h - γ = 10−3 49 101 216 474 997

(3.143.14) - V 1
h × V 1

h - γ = 10−2 37 54 92 168 314
(3.143.14) - V 2

h × V 1
h - γ = 10−2 50 89 169 338 699

(3.143.14) - V 3
h × V 1

h - γ = 10−2 43 82 174 357 682

(3.143.14) - V 2
h × V 1

h - γ = 10−1 24 41 74 140 280
(3.143.14) - V 3

h × V 1
h - γ = 10−1 25 46 85 160 292

(3.143.14) - V 3
h × V 1

h - γ = 1. 11 18 31 58 102

Table 7. (Ex1); Number of iterations for the CG algorithm w.r.t. h and γ; γ? = 1.

5.2. Example 2. For our second numerical example, we consider the observation uO based on the initial
condition u0(x) = 1− |2x− 1| ∈ H1

0 (Ω), u1(x) = 1(1/3,2/3)(x) ∈ L2(Ω) and T = 2, ω = (0.1, 0.3), considered

in [CM15aCM15a, section 5.1]. The corresponding solution u belongs to H1(M) but not in H2(M) and is given by

(Ex2)


u(t, x) =

∑
k>0

(
ak cos(kπt) +

bk
kπ

sin(kπt)

)√
2 sin(kπt),

ak =
4
√

2

π2k2
sin(πk/2), bk =

1

πk

(
cos(πk/3)− cos(2πk/3)

)
, k > 0.

We define the observation uO as the restriction over (0.1, 0.3)×(0, 2) of the first fifty terms in the previous
sum. Tables 88, 99, 1010, 1111 provide the norms

‖u− uh‖L2(M)/‖u‖L2(M), ‖(u− uh)(0, ·)‖L2(0,1), ‖(u− uh)t(0, ·)‖L2(0,1)
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with respect to h for the primal variable and ‖zh‖L2(H1
0 ) with respect to h for the dual variable, obtained

from the formulation (5.35.3) and from the formulation (3.143.14) with p ∈ {1, 2, 3}, q ∈ {1, 2} and q 6 p (see (3.13.1)).
We use again the dual stabilizer (3.63.6) with γ = 10−3 and γ? = 1.

Figure 33-Left depicts the relative error ‖u − uh‖L2(M)/‖u‖L2(M) ≈ β × hτ with respect to h. We get
a convergence rate around one, independent of approximation order or smoothness of the approximation
space. More precisely

(5.6)

β = e−0.20, τ = 0.83, (uh, zh) ∈ V 1
h × V 1

h ,

β = e−0.58, τ = 1.02, (uh, zh) ∈ V 2
h × V 1

h ,

β = e−0.68, τ = 1.23, (uh, zh) ∈ V 3
h × V 1

h ,

β = e−0.75, τ = 1.17, (uh, zh) ∈ HCT × V 1
h .

and confirm, in agreement with Theorem 22, that the rate of convergence depends on the regularity of the
solution u. Note that the observed rate also here is better than what is predicted by Theorem 22. We also
check that increasing the order of the space for the dual variable does not improve the accuracy. Moreover,
we observe the same property as the first example with respect to the choice of the parameter γ and γ?.
In particular, as depicted in Figure 33-Left, a lower value of γ allows to improve the reconstruction of the
solution.

We remark that, since the solution u to be reconstructed, develops singularities along characteristic lines
starting from the point x = 1/2 (due to the initial position u0) and from the points x = 1/3, 2/3 (due to
the initial velocity u1), the adaptative refinement of the mesh mentioned in the previous subsection is of
particular interest here. Using the V 2

h ×V 1
h approximation, Figure 44-left depicts the mesh obtained after ten

adaptative refinements based on the local values of gradient of the primal variable uh. Starting with a coarse
mesh composed of 288 triangles and 166 vertex, the final mesh is composed with 12118 triangles and 6213
vertices. We obtain the following values: ‖zh‖L2(H1

0 ) = 5.15×10−5; ‖u−uh‖L2(M)/‖u‖L2(M) = 1.74×10−3;

‖(u−uh)(0, ·)‖L2(0,1)/‖u(0, ·)‖L2(0,1) = 7.63×10−4; ‖(u−uh)t(0, ·)‖H−1(0,1)/‖ut(0, ·)‖H−1(0,1) = 2.93×10−1

for a CPU time equal to 3.13. The final mesh clearly exhibits the singularities generated by the initial data
(u0, u1). On the contrary, the refinement strategy coupled with the HCT element does not permit to capture
so clearly such singularities, in particular the weaker ones starting from the point x = 1/3 and x = 2/3 (see
[CM15aCM15a, Figure 1]).

h 1.57× 10−1 8.22× 10−2 4.03× 10−2 2.29× 10−2 1.25× 10−2

(5.35.3) -HCT × V 1
h 4.70× 10−4 2.69× 10−4 1.48× 10−4 8.80× 10−5 2.44× 10−5

(3.143.14) - V 1
h × V 1

h 1.41× 10−2 9.02× 10−3 4.31× 10−3 2.37× 10−3 1.43× 10−3

(3.143.14) - V 2
h × V 1

h 9.47× 10−4 5.27× 10−4 3.13× 10−4 1.64× 10−4 9.55× 10−5

(3.143.14) - V 3
h × V 1

h 2.15× 10−4 1.23× 10−4 7.24× 10−5 4.70× 10−5 6.61× 10−6

Table 8. (Ex2); ‖zh‖L2(0,T ;H1
0 (0,1)) w.r.t. h.

h 1.57× 10−1 8.22× 10−2 4.03× 10−2 2.29× 10−2 1.25× 10−2

(5.35.3) -HCT × V 1
h 2.15× 10−2 9.80× 10−3 4.70× 10−3 2.34× 10−3 4.90× 10−4

(3.143.14) - V 1
h × V 1

h 1.34× 10−1 7.34× 10−2 4.22× 10−2 2.62× 10−2 1.60× 10−2

(3.143.14) - V 2
h × V 1

h 3.84× 10−2 2.02× 10−2 1.01× 10−1 5.30× 10−2 2.68× 10−3

(3.143.14) - V 3
h × V 1

h 2.10× 10−2 9.30× 10−3 4.33× 10−3 1.88× 10−3 1.79× 10−4

Table 9. (Ex2); ‖(u− uh)‖L2(M)/‖u‖L2(M) w.r.t. h.

6. Concluding remarks

We have introduced and analyzed a spacetime finite element approximation of a data assimilation problem
for the wave equation. Based on an H1-approximation that is nonconformal in H2, the analysis yields error
estimates for the natural norm

L∞(0, T ;L2(Ω)) ∩H1(0, T ;H−1(Ω))
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h 1.57× 10−1 8.22× 10−2 4.03× 10−2 2.29× 10−2 1.25× 10−2

(5.35.3) -HCT × V 1
h 1.84× 10−2 9.08× 10−3 4.20× 10−3 1.96× 10−3 1.33× 10−3

(3.143.14) - V 1
h × V 1

h 1.30× 10−1 6.84× 10−2 4.10× 10−2 2.57× 10−2 1.57× 10−2

(3.143.14) - V 2
h × V 1

h 3.70× 10−2 1.94× 10−2 9.69× 10−3 4.88× 10−3 2.36× 10−3

(3.143.14) - V 3
h × V 1

h 1.72× 10−2 8.38× 10−3 3.65× 10−3 1.67× 10−3 1.73× 10−3

Table 10. (Ex2); ‖(u− uh)(·, 0)‖L2(0,1)/‖u(·, 0)‖L2(0,1) w.r.t. h.

h 1.57× 10−1 8.22× 10−2 4.03× 10−2 2.29× 10−2 1.25× 10−2

(5.35.3) -HCT × V 1
h 6.20× 10−1 4.28× 10−1 3.68× 10−1 3.26× 10−1 4.54× 10−1

(3.143.14) - V 1
h × V 1

h 6.47× 10−1 4.35× 10−1 3.63× 10−1 3.21× 10−1 3.05× 10−1

(3.143.14) - V 2
h × V 1

h 3.01× 10−1 2.85× 10−1 2.96× 10−1 2.90× 10−1 2.94× 10−1

(3.143.14) - V 3
h × V 1

h 3.15× 10−1 2.87× 10−1 2.98× 10−1 2.91× 10−1 3.01× 10−1

Table 11. (Ex2); ‖(u− uh)t(·, 0)‖H−1(0,1)/‖(ut(·, 0)‖H−1(0,1) w.r.t. h.

10-2 10-1
10-4

10-3

10-2

10-1

10-2 10-1

10-3

10-2

10-1

Figure 3. (Ex2)- Left:Relative error ‖u−uh‖L2(M)/‖u‖L2(M) with respect to h for various
approximation spaces (see Table 99); Right: Relative error ‖u − uh‖L2(M)/‖u‖L2(M) with

respect to h and γ for the approximation V 2
h × V 1

h .

of order hp, where p is the degree of the polynomials used to describe the primal variable u to be reconstructed.
The numerical experiments performed for two initial data, the first one in Hk × Hk−1 for all k ∈ N, the
second one in H1 × L2, exhibit the efficiency of the method.

We emphasize that spacetime formulations are easier to implement than time-marching methods, since
in particular, there is no kind of CFL condition between the time and space discretization parameters.
Moreover, as shown in the numerical section, they are well-suited for mesh adaptivity.

In comparison with the formulation introduced in [CM15aCM15a], the H1-formulation of the present work
does not require the introduction of sophisticated finite element spaces. On the other hand, the formulation
requires additional stabilized terms which are function of the jump of the gradient across the boundary of each
element, see the definition of sk in (3.53.5). These kinds of terms are known from non-conforming approximation
of fourth order problems [EGH+02EGH+02]. So the approach can be interpreted as a non-conforming, stabilized
version of the method in [CM15aCM15a]. The implementation of the stabilized terms is not straightforward, in
particular, in higher dimension, and is usually not available in finite element softwares. In such cases one
can apply the so-called orthogonal sub-scale stabilization [Cod00Cod00], which can be shown to be equivalent,
but requires the introduction of additional degrees of freedom, one for each component of the spacetime
gradient. Another possible way to circumvent the introduction of the gradient jump terms is to consider
non-conforming approximation of the Crouzeix-Raviart type as in [Bur17Bur17]. A penalty is then needed on the
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x

t

x

t

Figure 4. Locally refine spacetime meshes for the example 1 (Left) and the example 2 (Right).

solution jump instead to control the H1-conformity error. For the time discretization one could also explore
the possibility of using discontinuous Petrov-Galerkin methods (see for instance [SZ18SZ18, EW19EW19]).

The analysis performed can easily be extended to more general wave equations of the form

utt − div(a(x)∇u) + p(x, t)u = 0

with a ∈ L∞(Ω,R+
? ) and p ∈ L∞(M) allowing to consider, through appropriate linearization techniques, data

assimilation problem for nonlinear wave equation of the form utt−∆u+g(u) = 0. From application viewpoint,
it is also interesting to explore if a spacetime approach based on a non conformal H1-approximation can be
efficient to address data assimilation problem from boundary observation. We refer to [CM15bCM15b] where a H2

conformal approximation -similar to (5.35.3) - is discussed, assuming that the normal derivative ∂νu ∈ L2(Σ)
is available on a part large enough of Σ = (0, T ) × ∂Ω. Eventually, the issue of the approximation of
controllability problems for the wave equation through non conformal spacetime approach can very likely be
addressed as well: remember that the control of minimal L2(O × (0, T )) norm for the initial data (z0, z1) ∈
H1

0 (Ω)×L2(Ω) is given by v = u1O where u together with z is the saddle point of the following Lagrangian

L̂ : V × L2(0, T ;H1
0 (Ω))→ R

L̂(u, z) =
1

2
‖u‖2O +

γ

2
‖�u‖2L2(0,T ;H−1(Ω)) −

∫ T

0

(z,�u)H1
0 (Ω),H−1(Ω)dt

+ 〈ut(·, 0), z0〉H−1(Ω),H1
0 (Ω) − 〈u(·, 0), z1〉L2(Ω),

very close to (5.25.2). We refer to [CCM14CCM14].
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