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Abstract—This paper proposes an unsupervised
learning-based precoding framework that trains deep
neural networks (DNNs) with no target labels by
unfolding an interior point method (IPM) proximal
‘log’ barrier function. The proximal ‘log’ barrier func-
tion is derived from the strict power minimization
formulation subject to signal-to-interference-plus-noise
ratio (SINR) constraint. The proposed scheme ex-
ploits the known interference via symbol-level pre-
coding (SLP) to minimize the transmit power and
is named strict Symbol-Level-Precoding deep network
(SLP-SDNet). The results show that SLP-SDNet out-
performs the conventional block-level-precoding (Con-
ventional BLP) scheme while achieving near-optimal
performance faster than the SLP optimization-based
approach.

I. Introduction
Recent studies on interference exploitation have shown

that known inferences can be effectively managed and
transformed into valuable signals to improve the system’s
quality-of-service (QoS) [1]. The concept of constructive
interference (CI) is first introduced in [2], where instan-
taneous interference is categorized into constructive and
destructive. Suboptimal strategies that exploit CI are first
introduced in [3]. Optimal SLP schemes using convex
optimization-based CI with strict phase constraints on the
received constellation point are proposed in [1], [4]–[6]. De-
spite the performance benefits offered by the optimization-
based SLP schemes, computational complexity is still an
issue in their implementation on practical systems.

Due to the low computational cost of online training,
there has been an increasing interest in designing ML-
based precoding schemes recently for MU-MISO downlink
transmission. Alkhateeb.et al. in [7] propose an ML-based
coordinated beamforming technique to improve the link
reliability and low latency associated with millimeter-
wave (mmWave) communications. A robust deep neural
networks (DNNs) precoding method is introduced in [8]
for decentralized decision making. In [9], Huang.et al.
propose a fast beamforming design based on unsupervised
learning, in which the learning-based solution nearly ap-
proximates the solution obtained via the weighted mini-
mum mean-squared error (WMMSE) algorithm with much
lower complexity. A convolutional neural networks (CNNs)
framework for downlink beamforming optimization using
expert knowledge based on the known structure of optimal
iterative solutions is proposed in [10]. However, most of the
learning-based strategies mentioned above are based on
supervised learning, where the constraints are implicitly
contained in the training dataset obtained from conven-
tional optimization solutions. This requires solving the
optimization problem twice, first by traditional optimiza-
tion and second by approximating the optimal solution

using DNN. However, if it was difficult to obtain the
optimal solutions via conventional optimization methods,
the learning-based solutions may be impractical.

This paper proposes a learning-based precoding scheme
that requires no target level for power minimization prob-
lems under signal-to-interference-noise-ratio (SINR). The
learning framework is designed by unfolding an IPM it-
erative algorithm via IPM proximal log barrier function
that considers the convexity of the inequality constraint.
A case scenario of strict phase angle rotation is considered
under a known perfect channel condition.

II. System Model
Suppose a MISO downlink channel in a single cell with

N transmit antennas at the BS provides signals to K
single-antenna users. The channel between users and the
BS is assumed to be quasi-static flat-fading and is denoted
by hi ∈ CN×1. Therefore, the received signal at user i is
expressed as [4]

ỹi = hTi
K∑
k=1

vkej(φk−φi)di +Ni (1)

where hi, vi, di, φi, Ni denote the channel vector, precod-
ing vector, data symbol, symbol of interest phase angle
and received noise for the i-th user.
A. Conventional Power Minimization

Traditionally, the power minimization problem tries to
minimize the average transmit power by handling all inter-
ference as harmful subject to QoS constraints, as described
below [11]

min
{vi}

K∑
i=1
‖vk‖22

s.t. |hTi vi|2∑
k=1,k 6=i |hTi vk|2 +N0

≥ Γi , ∀i.
(2)

where Γi is the SINR of the i-th user. From an instan-
taneous viewpoint, problem (2) does not consider the fact
that interference can additively improve the received signal
power [12]. Therefore, the solution is sub-optimal.

Fig. 1 shows the the generic geometrical representation
of the CI, where the received the signal is expressed as
ỹi , hTi

∑K
k=1 vkej(φk−φ1). From the received symbol

expression, the real and imaginary parts are respectively
given by: λRe = Re

(
hTi
∑K
k=1 vkej(φk−φ1)

)
and λIm =

Im
(
hTi
∑K
k=1 vkej(φk−φ1)

)
. The real part of the received

symbol (λRe) gives a measure of the received constel-
lation along the theoretical constellation axis. Likewise,
the imaginary part (λIm) shows the extent of the phase
displacement from the primary constellation point.
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CI Optimization region

Fig. 1: Generic geometrical optimization regions for interference
exploitation for Precoding design in QPSK [4]

B. Power Minimization via Symbol-Level Precoding
The instantaneous interference in a multi-user downlink

channel scenario for M-phase shift keying (M-PSK) modu-
lation can be categorized into constructive and destructive
based on the known criteria defined in [13]. Therefore,
CI is defined as the interference that pushes the received
symbols away from the modulated-symbol constellation’s
decision edges [4]. For further details on SLP and its
formulation (3), we refer the reader to [14]. Therefore, the
problem in (2) is modeled to incorporate CI in the power
minimization formulation. Consequently, the interfering
signals align with the symbol of interest constructively
by precoding vectors, offering useful signals. Hence, for
M-PSK, the power minimization SLP-based optimization
can be reformulated based on the classification criteria
explained in [3] as

min
{vi}

∥∥∥∥∥
K∑
k=1

vkej(φk−φ1)

∥∥∥∥∥
2

2

s.t. ∠

(
hTi

K∑
k=1

vksk

)
= ∠(si) , ∀i

Re
(
hTi

K∑
k=1

vkej(φk−φi)

)
≥
√

ΓiN0 , ∀i.

(3)

The real part of the received symbol in (1) gives a measure
of the received constellation along the theoretical constel-
lation axis. Likewise, the imaginary part shows the extent
of the phase displacement from the primary constellation
point.

III. Learning-Based SLP for Power minimization
problem

This section presents detailed formulations of a learning-
based CI power minimization problem for strict phase an-
gle rotation assuming a perfect channel state information
(CSI) known at the BS. The power minimization problem
for the case where the phase angle of the interfering
symbols strictly aligns with the angle of the symbols of
interest is obtained from (3). If the maximum angle shift
in the constructive interference region is zero, i.e., all
the interfering signals completely overlap on the signal

of interest (ϕ = 0, see [14] for details), the optimization
problem is formulated as [4]

Pst:

min
{vi}

∥∥∥∥∥
K∑
k=1

vkej(φk−φ1)

∥∥∥∥∥
2

2

s.t. Im
(
hTi

K∑
k=1

vkej(φk−φi)

)
= 0 , ∀i

Re
(
hTi

K∑
k=1

vkej(φk−φi)

)
≥
√

ΓiN0 , ∀i.

(4)

It is often difficult to derive the closed-form solution to
problem Pst due to the in-equality constraints. Therefore,
conventional iterative solvers are usually used to find sub-
optimal solutions. Motivated by the recent adoption of an
IPM for image restoration [15], we propose an unsuper-
vised learning framework that unfolds a constrained opti-
mization problem into a sequence of neural network layers
for a multi-user MIMO beamforming. We first convert (4)
to a general form of proximal IPM. The measure of the
fidelity of the solution to (4) is determined by learning a set
of penalty parameters in the form of Lagrange multipliers
associated with the constraints. We define the channel
vector based on (4) as follows

h̃i = hi

K∑
k=1

ej(φk−φi) (5)

v =
K∑
k=1

vk. (6)

The product of complex vectors (5) and (6) can be
written as

h̃iv = (h̃Ri + jh̃Ii)(vR + jvI) (7)

where h̃R = Re(h̃i), h̃I = Im(h̃i), vR = Re(v) and vI =
Im(v).

Let Υ = [h̃R ; h̃I ], v1 = [vR −vI ]T and v2 = [vIvR]T .
To simplify the analysis, we partition the complex vectors
into the real and imaginary parts as follows: Re(h̃Ti v) =
ΥT
i v1 and Im(h̃Ti v) = ΥT

i Ωv1, where

v2 = Ωv1 and Ω =
[
ON −IN
IN ON

]
; ∈ R2N×2N . (8)

From (7), we have v = [1 −j1]
[

vR
−vI

]
=
[
1 − j1

]
v1.

Substituting for v in (4) and simplify, Pst finally be-
comes

Pst1 :

min
{v1}

‖v1‖2

s.t. ΥT
i Ωv1 = 0 , ∀i

ΥT
i v1 ≥

√
ΓiN0 , ∀i.

(9)



A. Interior Point Method (IPM)
Consider a general form of a nonlinear constrained

optimization of the form [16]:
min

x∈RN
f(z)

s.t. C(z) = 0
z ≥ 0.

(10)

The reason for adopting IPM is to replace the initial
constrained optimization problem with a chain of uncon-
strained sub-problems of the form:

min
x∈RN

f(z) + λD(z) + µB(z). (11)

where B is the logarithmic barrier function associated
with inequality constraint with unbounded derivative at
the boundary of the feasible domain, D is associated with
equality constraint, µ and λ are the Lagrangian multipliers
for inequality and equality constraints, respectively.

To facilitate the solution of Pst1, we introduce additional
notations. For every inequality constraint, γ ∈ {0, +∞}
and v1 ∈ R2N×1, we define the proximity operator as
in [16] with respect to (11), which we shall later use to
compute the projected gradient descent as

proxγG(v1) = argmin
v1∈R2N×1

1
2 ‖v0 − v1‖

2

2
+ γG(v1) , (12)

where γ is the step-size taken for computing the gradients
of the objective function, G is the function that defines the
barrier operator and v0 is the initial value of the precoding
vector.

To convert (3) into its equivalent barrier function prob-
lem, we get raid of the inequality constrain and translate
it into a barrier term of the form [17]

min
xi∈Rn

f(z)− µ
p∑
i=1

ln(xi)

s.t. D(z) = 0.
(13)

1) Affine Constraints: Consider a half-space constraint
expressed as [15]:

C = {z ∈ RN |bT z ≤ c} (14)

As shown in [15], the B function associated to (14) is
defined as

B(z) =
{
− ln

(
c− bT z

)
, if bT z < c, ∀ z ∈ RN

+∞, otherwise
(15)

Following (13), we can express (??) as
Pst2 :

min
w1

f(v1)− µ
p∑
i=1

ln
(
ΥT
i v1 −

√
ΓiN0

)
s.t. ΥT

i Ωv1 = 0.
(16)

For all µ > 0, λ > 0 and v1, we define B as in (15), so
that the proximity operator can be defined as follows

Φ(v1, γ,µ) = proxγµB(v1). (17)

In what follows, we provide the expression of Φ and
its corresponding derivatives with respect to the optimiza-
tion variable v1, the step-size and the barrier parameters

(γ,µ) for affine constraint, which will be used for train-
ing the neural network using a gradient backpropagation
algorithm. Finally, following the above formulations, the
proximal barrier function for the strict phase rotation is
reduced to the following expression

B(v1) =
{
− ln

(
ΥT
i v1 −

√
ΓiN0

)
, if ΥT

i v1 ≥
√

ΓiN0

+∞, otherwise.
(18)

It can be easily shown that for every precoding vector v1 ∈
R2N×1, the proximity operator of µγB at v1 is given by

Φ(v1,µ, γ) = v1+

ΥT
i v1 −

√
ΓiN0 −

√
(ΥT

i v1 −
√

ΓiN0)2 + 4γµ
∥∥ΥT

i

∥∥2
2

2 ‖Υi‖22
Υi.

(19)

Furthermore, the Jacobian matrix of Ω with respect to
v1, and the derivatives of Ω with respect to γ and µ are
as follows

JΦ |(v1)= I2Nt
+ 1

2 ‖Υi‖22
×1− ΥT

i −
√

ΓiN0√
(ΥT

i v1 −
√

Γ1N0)2 + 4γµ
∥∥ΥT

i

∥∥2
2

ΥiΥT
i (20)

∆Φ |(µ)=
−γ√

(ΥT
i v1 −

√
Γ1N0)2 + 4γµ

∥∥ΥT
i

∥∥2
2

Υi (21)

∆Φ |(γ)=
−µ√

(ΥT
i v1 −

√
Γ1N0)2 + 4γµ

∥∥ΥT
i

∥∥2
2

Υi (22)

where I ∈ R2(Nt×Nt) is identity matrix.
Finally, the learning algorithm for every update rule is

thus the unfolded Pst1 as a sequence of sub-problems with
respect to the constraints as follows

min
v1∈R2N×1

‖v1‖22 + λ(ΥT
i Ωv1) + µB(v1). (23)

Using the proximity operator of the barrier, the update
rule for every iteration is given by

v[r+1]
1 = proxγ[r]µ[r]B

(
v[r]

1 − γ[r]∆E(v[r]
1 ,λ[r])

)
, (24)

where
E(v[r]

1 ,λ[r]) = ‖v1‖22 + λ(ΥT
i Ωv1). (25)

The update function can thus be expressed as

H(v[r]
1 , γ[r],µ[r],λ[r]) =

proxγ[r]µ[r]B

(
v[r]

1 − γ[r]∆E(v[r]
1 ,λ[r])

)
, (26)

and ∆ = ∂E(v[r]
1 ,λ[r])
∂v[r]

1
.



2) Duality and Loss Function for the Strict Phase For-
mulation: Since we are interested in learning the optimal
solution via unsupervised learning (without target labels),
we firstly formulate a primal-dual problem. This formu-
lation is then used to derive the optimization variable
(precoding vector) as a function of dual variables (La-
grangian multipliers) associated with the constraints. The
Lagrangian function can be expressed as

Lst(v1,λ, µ) = ‖v1‖22 +
K∑
k=1

λkΥT
i Ωv1+

K∑
k=1

µk

(√
ΓiN0 −ΥT

i v1

)
. (27)

The optimal precoder can be found by minimizing (27)
with respect to v1 (differentiating Lst(· ) w.r.t v1). The
optimal precoder is thus

v1 = µT ·Υi − λT ·ΩΥi

2 . (28)

The above expression in (28) is used to generate the
training input (precoding vector) by initializing the La-
grangian multipliers (λ and µ) randomly and then train
the neural network to learn their best values that minimize
the loss function (Lagrangian function). The loss function
is modified by adding l2-norm regularization over the
weights to adjust the learning coefficients to stabilize the
learning process. The loss function over B training batches
is finally expressed as

Lst(v1,λ, µ) = 1
B

B∑
i=1

(
‖v1‖22 + λΥT

i Ωv1
)

+

1
B

B∑
i=1

(
µ
(√

ΓiN0 −ΥT
i v1

))
+ ϑ

BL

B∑
i=1

L∑
i=1
‖θi‖22, (29)

where θ is the learning parameter associated with the
weights and ϑ > 0 is the penalty parameter that controls
the bias and variance of the learning coefficients, B and
L are training batch size (number of channel realization)
and the number of layers respectively.

B. Deep Proximal Strict Symbol-Level Precoding Network
(SLP-SDNet)

The optimization problem is unfolded over r-th iter-
ations, and the Lagrange multiplier associated with the
equality constraint is wired across the network to provide
additional flexibility [15]. The unfolded neural network is
trained in an unsupervised fashion without target labels.
We build the structure of the learning framework based
on (24) and the algorithm presented in [15], which gives
rise to Algorithm 1.

For every r-th iterations (r-th layer) L[r], there exist
three latent structures associated with the learnable pa-
rameters (µ, γ and µ) L

[r]
µ , L

[r]
γ and L

[r]
λ . As shown in

Fig. 2, each of these structures forms a learning block for
computing the barrier parameter (µ) associated with the
inequality constraint, the step-size for update rule (γ) and
finally (λ), which is related to the equality constraint and
all of them must be positive. To impose such constraint,

Algorithm 1 Feed-forward-Backward Proximal IPM

Input: v[0]
1 , γ[0], λ[0] and µ[0]

Output: v1
Initialization :

1: randomly initialize v[0]
1 ∈ R2Nt×1, µ[0] > 0, λ[0] > 0

and γ[0] > 0 ∀ i = 1, · · · , K
Loop over r-th iterations

2: for r = 0 to L do
3: v[r+1]

1 = proxγ[r]µ[r]B

(
v[r]

1 − γ[r]∆E(v[r]
1 ,λ[r])

)
.

4: end for
5: return v1

Algorithm 2 Proximity Barrier Operator for Strict phase
rotation
Input: hR, hI, Γi and N0 (noise power)
Output: v1, γ, µ and λ

Initialization :
1: randomly initialize v0 ∈ R2N×1, µ[0] > 0, λ[0] > 0 and
γ[0] > 0 ∀ i = 1, · · · , K.

2: Compute the Barrier function B(v1) using
function (15).

3: Compute the Proximity Operator of the Barrier at
v0 using (12), where G = µB(v1) .

4: Compute the derivatives of the Proximity Operator
w.r.t v1, µ and γ using (20), (21) and (22).

5: Update the training variables as follows:
(a) µ[r+1] = µ[r] − η ∂Φ

∂µ

(b) γ[r+1] = γ[r] − η ∂Φ
∂γ

(c) λ[r+1] = λ[r] − η ∂E(v[r]
1 ,λ[r])
∂λ[r] using (25)

where η is the learning rate.
6: Use the results in step 5 and the Algorithm 1

to obtain the optimal precoding tensor.

a ‘Softplus sign’ function is used. Hence, the step-size and
the parameters associated with the constraints can all be
estimated as γ[r] = L

[r
γ = Softplus(z[r]). The output

of the last three hidden structures is connected to an
auxiliary processing module (APM) to convert it into the
required transmit precoding vector. The APM consists
of 4 convolution layers and 3 activation layers, a “Batch
Normalization” layer placed between them. Therefore, the
Proximal Barrier function for a strict phase formulation is
summarized in Algorithm 2.

Finally, the output from the auxiliary processing block
is the precoding vector in the real domain. The relation:
v1 = [vR − vI ]T is used to convert it to its equivalent
complex domain for every SINR value of the i-th user.

C. The proposed Learning Structure and the general NN
Architecture

Using (24) and Algorithm 1, we show a startling corre-
lation between our scheme and the universal feed-forward
DNN. Generally, an open-chained neural network (NN)
structure can be derived from (24) as follows

v[r+1]
1 = proxγ[r]µ[r]B

[(
IN − 2γ[r]

)
v[r]

1 + λ[r]ΥiΩ
]

. (30)
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Fig. 2: Complete SLP-SDNet Architecture showing the internal structure of the Barrier Operator.
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By letting vr = I2N − 2γ[r], br = λ[r]ΥiΩ and Πr =
proxγ[r]µ[r]B, the r-layer network L[r−1] ◦ · · · ◦ L[0] will
correspond to the following

ΠR−1 ◦
(
vR−1 + bR−]

)
◦, · · · , ◦ Π0 ◦ (v0 + b0)
∀ 0 ≤ r ≤ R− 1 ∈ R-layers, (31)

where [vr]0≤r≤R−1 and [br]0≤r≤R−1 are described as
weight and bias parameters respectively. The identity
square matrix is defined as I2N ∈ R2(N×N). The nonlinear
activation functions are defined by [Πr]0≤r≤R−1 and can
be obtained from the proximal operator. Furthermore, Πr

can be expressed as sum of a bias and a proximal activation
operator.

D. SLP-SDNet Training and Testing
The SLP-SDNet has two modules; the parameter mod-

ule and the auxiliary module. The parameter module
consists of three structures associated with Lagrangian
multipliers (equality and inequality constraints) and the

training step-size. The proximity barrier function is related
to the inequality constraint and forms the parameter
module. It is constructed with one convolutional layer,
an average pooling layer, a fully connected layer, and
a softPlus layer so that the output is constrained to a
positive real value. The parameter update module contains
r-th blocks and is trained block-wise for l-th number of
iterations. Similarly, the auxiliary unit is trained for k-
th iterations. It is important to note that the number of
training iterations of the parameter update module may
not necessarily be equal to that of the auxiliary unit. We
train the parameter update unit with 15 iterations and
the auxiliary unit for 10 iterations. During the inference,
a feed-forward pass is performed over the whole layers
using the learned Lagrangian multipliers to calculate the
precoding vector using (28). The trained model is run over
different SINR values to output the optimal precoding
matrix.



IV. Results and Discussion
A. Simulation Setup

We consider a downlink scenario, where the BS has four
antennas (N = 4) that serve K single users, assuming a
perfect known CSI. We generate 50,000 training samples
and 2000 test samples of the channel coefficients randomly
drawn from a normal distribution with zero mean and unit
variance using (5). The datasets are normalized by the
data symbol so that data entries are within the nominal
range. The transmit data symbols are modulated using
a QPSK and 8PSK modulation schemes; and the SINR
is randomly generated from uniform distribution Γtrain ∼
U(Γlow, Γhigh). A stochastic gradient descent algorithm
with Adam optimizer is used to minimize the Lagrangian
function (loss function). For every training iteration, the
learning rate is reduced by β = 0.65 to help the learning
algorithm converge faster. The implementation is done on
Pytorch 1.7.1 and Python 3.7.8 on a computer with the
following specifications: Intel(R) Core (TM) i7-6700 CPU
Core, 32.0GB RAM.

B. Performance Evaluation of SLP-SDNet
We consider a SLP-SDNet for strict phase angle rotation

problems (29). Our proposed unsupervised learning frame-
work’s performance is evaluated against the benchmark
precoding designs in [4], [11]. We compare the average
transmit power of the conventional BLP approach (2), the
SLP-based problems (4), the proposed SLP learning-based
precoding scheme based on Algorithm 2. Fig. 3 shows
that the SLP-SDNet gives less transmit power than the
conventional BLP scheme because, for a 4×4 system, there
is inadequately available transmit power at the BS. It is
also essential to note that the transmit power given by
an SLP-SDNet is the same as for an SLP optimization-
based solution at SINR values below 30dB. However, the
transmit power increases by 8% for an SLP-SDNet solution
over SLP optimization-based approach at SINR greater
than 30dB.

C. Complexity Evaluation
For a fair comparison, we measure the complexities

of our proposals and the benchmark optimization-based
precoding schemes in terms of the optimization algo-
rithms’ average execution time, as shown in Figs. 4. We
observe that the average execution time of the SLP-SDNet
scheme per symbol averaged over 2000 test samples offers
2× decrease in execution time per data symbol because
the predominant operations in SLP-SDNet during online
training are matrix-matrix or vector-matrix convolution.
This shows that the proposed unsupervised learning-based
precoding scheme offers a desirable trade-off between per-
formance and computational complexity.

V. Conclusion
This paper proposes a fast unsupervised learning-based

precoding framework for a multi-user downlink MISO
system. The proposed learning technique exploits the con-
structive interference for the power minimization problem
so that for given QoS constraints, the transmit power
available for transmission is minimized. We use domain

knowledge to develop an unsupervised learning architec-
ture by unfolding the proximal interior point method bar-
rier ‘log function. Proximal barrier function for strict phase
rotation is derived based on the nature and characteristics
of the inequality constraints.
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