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Abstract: Angiotensin-converting enzyme 2 (ACE2) is the entry receptor for severe acute respira-
tory syndrome coronavirus-2 (SARS-CoV-2), the cause of Coronavirus Disease-2019 (COVID-19) in
humans. ACE-2 is a type I transmembrane metallocarboxypeptidase expressed in vascular endothe-
lial cells, alveolar type 2 lung epithelial cells, renal tubular epithelium, Leydig cells in testes and
gastrointestinal tract. ACE2 mediates the interaction between host cells and SARS-CoV-2 spike (S)
protein. However, ACE2 is not only a SARS-CoV-2 receptor, but it has also an important homeostatic
function regulating renin-angiotensin system (RAS), which is pivotal for both the cardiovascular and
immune systems. Therefore, ACE2 is the key link between SARS-CoV-2 infection, cardiovascular
diseases (CVDs) and immune response. Susceptibility to SARS-CoV-2 seems to be tightly associated
with ACE2 availability, which in turn is determined by genetics, age, gender and comorbidities.
Severe COVID-19 is due to an uncontrolled and excessive immune response, which leads to acute
respiratory distress syndrome (ARDS) and multi-organ failure. In spite of a lower ACE2 expression
on cells surface, patients with CVDs have a higher COVID-19 mortality rate, which is likely driven by
the imbalance between ADAM metallopeptidase domain 17 (ADAM17) protein (which is required
for cleavage of ACE-2 ectodomain resulting in increased ACE2 shedding), and TMPRSS2 (which
is required for spike glycoprotein priming). To date, ACE inhibitors and Angiotensin II Receptor
Blockers (ARBs) treatment interruption in patients with chronic comorbidities appears unjustified.
The rollout of COVID-19 vaccines provides opportunities to study the effects of different COVID-19
vaccines on ACE2 in patients on treatment with ACEi/ARB.

Keywords: cardiovascular system; ACE2; RAS; COVID-19; SARS- CoV-2; TMPRSS2; ADAM17;
pandemic; vaccines

1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first identified as
a novel human pathogen in December 2019 and since has caused a worldwide pandemic [1].
As of 8 February 2021, there have been over 105 million Coronavirus Disease-2019 (COVID-
19) cases including 2.3 million deaths reported by the World Health Organization (WHO) [2].
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Epidemiologic studies highlight that age, gender and comorbidities (hypertension, renal
insufficiency, diabetes and ischemic heart disease) are frequently associated with greater
mortality risk after SARS-CoV-2 infection [3,4].

The pathogenesis of COVID-19 has two stages [5–7]: the first one, where SARS-CoV-2
replicates and patients manifest a range of non-specific symptoms (e.g., fever, muscle
aches, shortness of breath, headache, sore throat and gastrointestinal discomfort) [3,6]. The
second stage is characterized by an adaptive immune response with humoral, cellular and
cytokine responses manifesting in a large range of clinical presentations [6]. Some patients
develop the most severe forms of COVID-19, leading to fatal complications such are acute
respiratory distress syndrome (ARDS), acute kidney injury and thromboembolism [3,6].

Angiotensin-converting enzyme 2 (ACE2) is the entry receptor for SARS-CoV-2, which
is the cause of COVID-19 in humans. ACE2 is a type I transmembrane metallocarboxypep-
tidase expressed in endothelial cells, alveolar type 2 lung epithelial cells, renal tubular
epithelium, Leydig cells in the testes, and gastrointestinal tract [7]. ACE2 mediates the
interaction between host cells and SARS-CoV-2 spike (S) protein [8]. However, ACE2 is
not only a SARS-CoV-2 receptor. Indeed, it also has an important homeostatic function
regulating renin-angiotensin system (RAS), which is pivotal for both the cardiovascular
and immune systems [9]. Therefore, ACE2 appears to be the key link between SARS-CoV-2
infection, cardiovascular diseases (CVDs) and immune response [8,10,11]. RAS pathway
has a fundamental role in human body homeostasis and its imbalance is associated with
inflammation and cardiovascular alterations [12,13]. SARS-CoV-2 binds to human cells
through ACE2, and it appears that pre-existing alterations in ACE2 expression and activity
could determine susceptibility to SARS-CoV-2 infections [4,14].

The aim of this review is to summarize the state of the art in ACE2-SARS-CoV-2
interactions in the context of the cardiovascular system and to discuss the implications
and impact of the use of ACE inhibitors (ACEi) and angiotensin receptor blockers (ARB)
in patients with SARS-CoV-2 infection. We also discuss the rollout of COVID-19 vaccines
and the opportunities this provides to study the effects of different COVID-19 vaccines on
ACE2 in patients on treatment with ACEi/ARB.

2. ACE2 Physiological Role

The ACE2 gene, located on chromosome Xp22, consists of 18 exons and 20 introns [15]
and encodes a type I transmembrane glycoprotein of 805 amino acids [16,17]. The N-
terminal catalytically active domain is located in the extracellular space while the intracel-
lular C-terminal consists of a collectin and an insulin-like domain [16,17].

In RAS, Renin produces Angiotensin I (Ang I) starting from Angiotensinogen, then
angiotensin-converting enzyme (ACE) removes two amino acids from Ang I generating the
active peptide Angiotensin II (Ang II) [18]. In the classical RAS, Ang II binds to angiotensin
type 1 and 2 receptors (AT1R e AT2R) promoting vasoconstriction, inflammation, increase
of blood pressure and myocardial contraction [18]. ACE2 acts in a different way: specifically,
it generates Angiotensin 1-7 (Ang 1-7) after Ang II cleavage [18,19]. Subsequently, Ang 1-7
is responsible for vasodilatation and for the production of anti-inflammatory molecules
by interacting with Mas receptor (MasR) [18]. Furthermore, ACE2 acts on Ang I, forming
Angiotensin 1-9 (Ang 1-9), thus contributing to the reduction of Ang I availability for
classical RAS [13].

ACE2 undergoes proteolytic cleavage at different sites by both the type II transmembrane
serine protease (TMPRSS2) and ADAM Metallopeptidase Domain 17 (ADAM17) [20–22].
Specifically, ADAM17 activity on ACE2 generates an extracellular soluble ACE2 (sACE2)
fragment (i.e., shedding) [20]. A recent study demonstrated that, after shedding, the remain-
ing transmembrane fragment is targeted by γ-Secretase generating an intracellular domain
(ICD) [23]. Preliminary analyses suggest that ICD is not involved in the regulation of ACE2,
TMPRSS2 or ADAM17 expression [23]. The ADAM17-mediated shedding is a constitutive
mechanism that is suppressed by TMPRSS2 activity [24,25].
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3. ACE2 Balance and SARS-COV-2 Infection

SARS-CoV-2 interacts with host cells through the surface spike (S) protein [26]. Ini-
tially, S protein undergoes activation after proteolytic cleavage by furin and TMPRSS2 (i.e.,
priming) on the cell surface [26]. This cleavage allows the separation between S1 and S2
subunits of S protein [27]. As a result, the S2 subunit rearranges permitting the interaction
with ACE2 and the subsequent endocytosis of viral particles [26,28]. Evidence of ACE2
cleavage by both TMPRSS2 and ADAM17, in physiological conditions and in SARS-CoV-2
infection, provides new insights for greater complexity in virus-host interaction [24]. Specif-
ically, ACE2-S protein interaction increases ADAM17 activity [16]. The increase of ACE2
shedding reduces its availability on the cell surface and it also leads to the accumulation
of Ang II, which in turn generates positive feedback for ACE2 shedding by enhancing
ADAM17 activity [14,20]. At first sight, the reduced availability of ACE2, due to ADAM17
shedding, could be evaluated as a protective mechanism against SARS-CoV-2. However,
ADAM17 activity could not be considered fully beneficial to counteract SARS-CoV-2 infec-
tion. In fact, it is still questionable whether SARS-CoV-2 trapping by sACE2 could promote
the clearance of viral particles and prevent them from being internalized [27,28]. Nonethe-
less, it is likely that the protective effect of sACE2 is neutralized in case of high viral load.
Furthermore, evidence suggests that ACE2 shedding could facilitate viral entry [16]. After
viral infection, the innate immune system drives initial response via pattern recognition
receptors (PRRs), as RIG-like receptors (RLRs) and Toll-like receptors (TLRs), mediating
inflammation [29]. It has been documented that TLRs could activate ADAM17 leading
to tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6) and epidermal growth factor
receptor (EGFR) after viral infection [14,30]. Furthermore, because the role of ACE2 is not
limited to being a viral receptor [18], the Ang II accumulation causes the massive release of
cytokines via AT1R [16]. Therefore, the “cytokine storm” triggers an uncontrolled immune
response and tissue damage [16,29] (Figure 1).
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Figure 1. Schematic representation of host cell-SARS-CoV-2 interaction during infection before the
interaction between virus and host cell, furin and TMPRSS2 cut the spike (S) protein. The process
allows the interaction between S protein and ACE2, which triggers the innate immune response. Ang
II contributes to the inflammation sustaining the production of cytokines. ADAM17 and TMPRSS2
mediate the shedding process producing the soluble form of ACE2 thus influencing ACE2 availability
on the cell surface and the interaction with SARS-CoV-2. ADAM17, ADAM metallopeptidase domain
17; TMPRSS2, type II transmembrane serine protease; sACE2, soluble ACE2; Ang II, angiotensin II;
RLRs, RIG-like receptors; TLRs, toll-like receptors.
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4. Does ACE2 Influence Probability of SARS-COV-2 Infection and Worse Outcome?

There is great interest in factors that affect immune responses and increase suscep-
tibility toward SARS-CoV-2 infection because they could be of great help in predicting
patient outcomes. As described for other viral infections, part of the inter-individual
susceptibility is determined by genetic variants [31]. “The COVID Human Genetic Effort”
consortium has been formed to identify monogenic variants for resistance or susceptibility
to SARS-CoV-2 [31] and study the differences of allele frequency among ethnic groups to
explain the different susceptibility among various populations [31,32]. Analysis of ACE2,
TMPRSS2 and ADAM17 genes is of particular interest because variants may influence the
probability of cell–virus interaction and host response against SARS-CoV-2 infection [33]. In
particular, the ACE2 gene exhibits high variability and up to date, more than 1700 variants
have been described [15]. Some single nucleotide polymorphisms (SNPs) could influence
ACE2 gene expression, activity and interaction with the S protein thus affecting its binding
affinity to SARS-CoV-2 [15,33–36]. Furthermore, several TMPRSS2 and ADAM17 poly-
morphisms have been identified and it has been demonstrated that some of these variants
have higher expression and activity, thus influencing susceptibility toward SARS-CoV-2
infection [15,34,35]. Therefore, the association of polymorphisms with COVID-19 severity
needs further investigation [15,35].

Along with genetic factors, habits such as cigarette smoking and diet seem to have
a significant effect on ACE2. Nicotine appears to promote classical RAS accounting for
cardiovascular complications and reduction of immune response efficiency [37,38], and the
expression of nicotinic acetylcholine receptors in airway cells may promote SARS-CoV-2
uptake through nicotine-mediated cellular signaling [39]. Consequently, smoking may
influence susceptibility and therefore explain why many individuals with severe COVID-19
are also smokers [37,40–42]. In addition, salt- and glucose-rich diets may also influence
ACE2 expression and activity, increasing the risk of RAS imbalance and SARS-CoV-2
susceptibility [14].

Studies are required to determine how age, gender and comorbidities influence ACE2
levels on the cell surface [4,14]. ACE2 expression is known to decrease with age and
its reduction is stronger in males than females [43,44]. Because the ACE2 locus on the
X-chromosome is only partially inactivated, in theory, females have double the dose of
the ACE2 gene with respect to males [45]. The discrepancy in ACE2 expression between
genders could be also explained by hormonal factors [46,47]. Specifically, the decline of
sex hormones with age could contribute to reduced ACE2 expression thus influencing
SARS-CoV-2 susceptibility [43,46,47]. Furthermore, ACE2 shedding shows differences
according to age and gender [48]. In line with this, preliminary observations propose that
TMPRSS2 and ADAM17 transcription is also affected by sex hormones [15,22]. These data
suggest that the association between age, gender and shedding needs further investigations.
Furthermore, gender differences in susceptibility towards SARS-CoV-2 might be related to
the immune response. In fact, many immune-associated genes (e.g., TLRs, RLRs) have an
X-linked expression pattern, which is activated by hormones [45]. Specifically, estrogens
have immuno-stimulant effects, while androgens are immunosuppressive [45]. Taken
together, it is likely that the increase in ACE2 expression, reduced ACE2 cleavage and the
more efficient immune response could contribute to lower SARS-CoV-2 susceptibility in
females (Figure 2).
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Figure 2. Schematic representation of ADAM17 activity, which efficiency depends on its polymor-
phisms. Differences between individuals for ACE2 are influenced by genetics factors coupled with
habits such as smoking and diet. Therefore, the reduction of ACE2 availability on cell surface could
explain variations in susceptibility among populations. ADAM17, ADAM metallopeptidase domain
17; ACE2, angiotensin-converting enzyme 2; sACE2, soluble ACE2.

Notably, although ACE2 has positive effects, its expression in human tissues exac-
erbates pathologies such as myocardial infarction, hypertension, diabetes mellitus and
heart failure [49,50]. The reason for this discrepancy could be explained by the enhanced
ADAM17 expression and activity in pathologic conditions, which corresponds to the in-
crease of sACE2 concentration in plasma samples [30,51]. sACE2 concentration increases
in patient cohorts with heart failure, mostly in males, and in patients with worse New York
Heart Association functional class (NYHA) [18,51–53]. In patients with CVDs, the relation
between the reduction of ACE2 protein on membranes and the susceptibility toward SARS-
CoV-2 is still unclear. These patients could manifest a higher risk of adverse outcomes
after SARS-CoV-2 infection because the virus uptake could worsen the pre-existing RAS
disequilibrium [54]. Furthermore, patients with diabetes could have a higher susceptibility
to SARS-CoV-2 infection because diabetes is frequently associated with an altered immune
system [37]. Specifically, diabetic patients have delayed immune response and maladaptive
inflammatory response as a consequence of the infection of β-cells by SARS-CoV-2 may
aggravate clinical conditions [3,37] (Figure 3).
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Figure 3. Pathologies such as myocardial infarction, hypertension, diabetes mellitus and heart failure
increase the availability of ACE2 suggesting that comorbidities cause high susceptibility towards
SARS-CoV-2. ADAM17, ADAM metallopeptidase domain 17; ACE2, angiotensin-converting enzyme
2; sACE2, soluble ACE2.

5. SARS-COV-2 Infection Starts from Lungs and Involves Heart

Airway epithelial cells are the first target of SARS-CoV-2 infection [29]. Severe cases
of COVID-19 are frequently associated with multi-organ failure due to direct SARS-CoV-
2 cytotoxicity and massive cytokines release [29,55–57]. It is suggested that classifying
ACE2 organ distribution could be useful to understand SARS-CoV-2 pathogenesis [9].
ACE2 expression was detected in various organs such as the heart, lung, kidneys, oral
cavity, brain, pancreas, gastrointestinal tract and brain [7]. Therefore, it is likely that organ
vulnerability and severity of pathology depend on the level of ACE2 gene expression [7,9,58],
aligning with the hypothesis that high ACE2 levels have been detected in both lungs and
heart [9,16,59]. In addition, alveolar epithelial type II cells and cardiomyocytes (mostly
aged ones) have high expression of genes that positively regulate viral reproduction and
transmission thus, consistently with lung and heart vulnerability [22,60]. In contrast, the
ileum is not the most vulnerable organ although it has the highest ACE2 expression [9].
This discrepancy requires further study. Additionally, alternative mechanisms of infection
and organ susceptibility have been proposed such as ACE2 homodimers, co-receptor, and
alternative receptors [9]. In ACE2 knockout mice, SARS-CoV-2 infection decreases but it is
not completely prevented thus alternative host–virus interactions such as virus uptake in
endosomes via cathepsin L need to be defined [9,26,61,62]. It is likely that multiple entry
mechanisms might coexist, depending on target cell expression and pathological stages [9].

In severe COVID-19, it seems that early death occurs because of simultaneous respira-
tory failure and cardiac injury [36,55]. Autopsies on patients affected by COVID-19 with
and without comorbidities clarified microscopic and macroscopic alterations in various
organs after SARS-CoV-2 infection [63]. SARS-CoV-2 enhances classical RAS and may
lead to multi-organ involvement and higher mortality. Interestingly, even patients without
comorbidities manifest heart impairment [63] since patients admitted to intensive care
units (ICU) have significantly increased levels of myocardial injury markers (i.e., creatine
kinase-MB, high-sensitivity cardiac Troponin I) [7]. To date, the exact molecular mecha-
nisms that correlate with myocardial injury following SARS-CoV-2 infection remain to
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be defined [64]. Current data indicate that cardiovascular injury in COVID-19 is proba-
bly of multifactorial origin. Specifically, ARDS and reduced pulmonary functionality are
due to an excessive and uncontrolled immune response, which has destructive effects on
vasculature and alveoli [7,65]. Consequently, ARDS leads to low oxygen saturation levels
and low oxygen supply to organs causing hypoxia and oxidative stress, which alter their
normal functionality. Severe hypoxia increases the probability of cardiovascular injury
and mortality risk [6]. SARS-CoV-2 infection leads to systemic inflammation causing an
increase in blood viscosity, endothelial dysfunction, activation of the coagulation cascade
and atherosclerotic plaque rupture [57]. Autopsies of individuals with COVID-19 have
shown the presence of macrophages infiltration in damaged tissues [66]. It is likely that
the increased systemic levels of pro-inflammatory cytokines could explain the elevated
macrophage infiltration [67]. However, it may be that myocardial injury is associated with
other mechanisms than macrophages infiltration [67]. Myocyte necrosis could be due to
lymphocytes infiltration [66,68] and direct SARS-CoV-2 cytotoxicity after cardiomyocyte
infection occurring in cases of high viral load and longer exposure time [64]. Thus, SARS-
CoV-2-associated myocardial damage could be due to increased cytokines, cell-mediated
immune response and direct cardiomyocytes infection [64,67,69]. All these factors increase
the probability of the formation of micro-thrombi and myocardial infarction.

Apart from immune response and direct cytotoxicity, the effects of SARS-CoV-2 on
the heart may arise from RAS disequilibrium. Severe cardiovascular complications are
frequently associated with Ang II accumulation because of ACE2 decrease [13]. In par-
ticular, Ang II induces the increase of cardiomyocyte contractility and converts cardiac
fibroblasts to pro-fibrotic myofibroblasts, which enhance the production of RAS signaling
component and TGF-β [12]. Additionally, Ang II exerts effects on endothelial cells, which
secrete cytokines, and on inflammatory cells leading to their activation [12]. As a result,
the previously described effects of Ang II combined with Ang II-mediated oxidative stress
promote cardiac remodeling, leading to hypertrophy. Therefore, ACE2-virus internaliza-
tion and ACE2 shedding in SARS-CoV-2 infection suggests that these alterations could
exacerbate cardiovascular damage [7].

6. Is ACEI/ARB Therapy during SARS-COV-2 Infection Safe?

According to guidelines, ACEi/ARB therapy reduces mortality rates in patients with
acute myocardial infarction, heart failure, hypertension and diabetes [70,71]. ACEi/ARB
blocks the ACE/Ang II/AT1R axis thus limiting Ang II production and enhance ACE2
expression thus potentiating its positive effects [70,71]. Because of increased ACE2 expres-
sion in patients with chronic treatment with ACEi/ARB, it is suggested that these patients
might have a higher risk of SARS-CoV-2 infection and severe COVID-19 [72]. On the other
hand, therapy suspension may worsen chronic illness and reduce survival probability after
SARS-CoV-2 infection. Considering SARS-CoV-2 perturbations on RAS equilibrium, there
is a great interest in evaluating the necessity of ACEi/ARB therapy suspension or compli-
ance in the context of SARS-CoV-2 infection. Numerous studies suggest that ACEi/ARB
therapy does not influence negatively mortality or susceptibility to virus infection [73–77].
Furthermore, evidence of ACEi/ARB effectiveness is reported in publications based on
meta-analysis as well [78,79]. The recent BRACE-CORONA trial suggests that treatment
interruption does not positively affect the survival of COVID-19 patients, thus ACEi/ARB
therapy should be continued [80]. On the contrary, a small number of studies do not recom-
mend the use of ACEi/ARB. However, these studies suffer from limited cohort numbers
that confound the interpretation and significance of the analysis [81,82]. Therefore, current
guidelines of international and Italian scientific cardiovascular societies recommend not to
interrupt ACEi/ARB treatment in patients with chronic comorbidities, even temporarily.

7. Do COVID-19 Vaccines Influence ACE2 Availability?

As of 7 April 2021, according to the WHO, there are 86 COVID-19 vaccines in clinical
development and 186 under pre-clinical evaluation [83]. The Pfizer-BioNTech (BNT162b2),
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Moderna (mRNA-1273) and AstraZeneca ChAdOx1 nCoV-19 (AZD1222) vaccines are being
rolled out currently [84,85]. All three vaccines promote humoral and cellular immune
responses against S protein of SARS-CoV-2 [86,87]. At the present time, European Medicine
Agency (EMA) is evaluating additional three COVID-19 vaccines: Russia’s Gamaleya
National Centre of Epidemiology and Microbiology (Sputnik V), CureVac AG (CVnCoV)
and Novavax CZ AS (NVX-CoV2373) [88].

In BNT162b2 and mRNA-1273, lipid nanoparticles (LNPs) carry nucleoside-modified
RNA coding full-length S proteins with two proline mutations to keep it in the pre-fusion
conformation [86,87,89]. Specifically, BNT162b2 administration consists of two doses of
30 µg within 21 days of each other, while two doses of 100 µg at the same time distance
are needed for mRNA-1273 [90,91]. Clinical studies guarantee 95% and 94.1% efficacy
for BNT162b2 and mRNA-1273 respectively [90,91]. On the other hand, AZD1222 uses
a replication-incompetent chimpanzee adenovirus vector as a delivery vehicle for the
wild-type version of S protein [92]. According to a pre-clinical trial on rhesus macaques, the
main advantage of this strategy consists of inducing innate and adaptive immune response
as in the case of viral infection [87]. The injection of 5 × 1010 viral particles leads to 70% of
efficacy once the second dose is administrated after about 21 days within the first dose [92].
Recent events of thromboembolisms after AZD1222 administration indicated the necessity
of further investigations on its safety. However, the EMA final report indicates that the
vaccine is not associated with an increased risk of blood clotting [93].

Furthermore, among the COVID-19 vaccines under clinical evaluation, the Italian
biotechnological company ReiThera developed the GRAd-COV2 vaccine based on replication-
incompetent gorilla adenoviral vector encoding the full-length S protein [94]. This viral
vector has advantages as low human exposure to gorilla adenovirus, high vector efficacy
and possible strong immune response [94]. In light of the success of phase 1 trials approved
by the Italian Medicine Agency (AIFA), the COVITAR trial is currently assessing phase two
and three of clinical trials [94–96].

The aim of these strategies is to deliver nucleic acid, via LNPs or viral vector, which
subsequently allows for S protein production in host cells. The presentation of peptides,
from S protein, on class I and class II MHC, drives the humoral and cell-mediated immune
response [97]. Studies confirm that vaccine administration leads to the production of neu-
tralizing antibodies and robust CD8+ and CD4+ T-cell (Th1) response [90–92,98]. However,
because BNT162b2 and mRNA-1273 are injected intramuscularly, it is likely that they do
not induce strong mucosal immunity with the production of IgA to protect the upper
respiratory tract [87]. Based on previous observations on SARS-CoV, S protein induces the
reduction of ACE2 expression [99]. Notably, in a recent study, in vitro and in vivo analyses
show that the S protein of SARS-CoV-2 could cause an ACE2 decrease as well [100]. How-
ever, it is still unknown if SARS-CoV-2 S protein expression in host cells could affect ACE2
availability on the cell surface after vaccination thus further investigations are needed.

8. Challenges

The unprecedented global efforts in developing safe and effective vaccines and making
them available after rapid approval is an encouraging starting point to contain the explosive
global spread of SARS-CoV-2. Apart from a regular supply of vaccines, prioritizing vaccine
rollout and cold chain administration issues, several challenges remain. These include
the effects of vaccines in older patients and those with comorbidities, as well as the long-
term immunity benefits and efficacy on new South Africa, UK and Brazil SARS-CoV-2
variants [101,102]. To date, vaccination priority lists vary among nations depending on
various socio-economic factors [101].

The discovery of new variants and slow vaccination campaigns might raise the risk
of immune escape [103]. New emerging evidence has confirmed the worldwide presence
of three main SARS-Cov-2 variants, 501Y.V1 (B.1.1.7), 501Y.V2 (B.1.351) and 501Y.V3 (P.1)
respectively identified in The United Kingdom, South Africa and Brazil, which show
immune escape thus, raising doubts about their influence on the effectiveness of current
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vaccines and hyper-immune serum. Hyper-immune serum obtained from the plasma of
patients who had COVID-19 or animals, thereby inoculated with SARS-CoV-2 antigens,
has been also authorized to successfully treat COVID-19 patients showing benefits in
asymptomatic or symptomatic patients within three days [104,105]. Interestingly, the
501Y.V2 (B.1.351) viral variant confers partial to complete resistance to hyper-immune
serum and reduces the efficacy of the AZD1222 vaccine [92] and sera from Pfizer-BioNTech
and Moderna subjects displayed considerably decreased effects on 501Y.V2 [106]. As
a consequence, pharmaceutical companies, proposing that changing the immunization
sequence would cause a comparable neutralizing effect, trying to counteract the viral
variants by replacing the original SARS-CoV-2 immunizing sequence with the 501Y.V2
sequences (i.e., Moderna) [107]. Therefore, these variants might be especially challenging
in patients with cardiovascular diseases based on recent observations on animals [108].

Based on experience on vaccine production against other Coronaviruses some key
points need further consideration [86]. Namely, hypersensitivity reactions driven by the
high Th2 type response with eosinophil infiltration and abnormal antibody responses
triggering the potential systemic breakdown are of particular importance [86]. How-
ever, it is still unknown if SARS-CoV-2 vaccines could have the same effects. To date,
all studies of SARS-CoV-2 vaccines guarantee previously reported efficacy on specific
age groups (16–55 years old BNT162b2; 18–65 years old mRNA-1273; 18–55 years old
AZD1222) [90–92]. Furthermore, trials evaluating BNT162b2, mRNA-1273 and AZD1222
on elder individuals suggest that they are as safe as younger groups with the same antibody
and cell response [91,109,110].

9. Conclusions

The intimate crosstalk between SARS-CoV-2 and ACE2 is even more complex than
solely virus-receptor interaction. In fact, many pre-existing comorbidities originate from
RAS misbalance causing higher susceptibility to virus or an increase of mortality risk after
infection. Of note, it seems that death happens more frequently in case of cardiovascular
injury. In fact, after SARS-CoV-2 infection, the virus mediates the worsening of clinical
conditions because of its cytotoxicity, uncontrolled inflammatory response and RAS home-
ostasis loss. In this particular scenario, therapeutic approaches need close evaluation to
avoid even more harmful effects. Contextually, ACEi/ARB is suggested as safe pharma-
cological therapy. In light of the recent vaccination campaign, further studies regarding
the side effects of vaccines on pharmaceutical therapies and on ACE2 expression and
physiological presence are also necessary. To date, ACEi/ARB treatment interruption in
patients with chronic comorbidities appears unjustified. The rollout of COVID-19 vaccines
provides opportunities to study their side effects and specific protective effects on ACE2
also in patients on treatment with ACEi/ARB.
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ACE2 Angiotensin-converting enzyme 2
ACEi Angiotensin-converting enzyme inhibitors
AIFA Italian Medicine Agency
ARB Angiotensin receptor blockers
ADAM17 ADAM metalloproteinase domain 17
Ang 1-7 Angiotensin 1-7
Ang 1-9 Angiotensin 1-9
Ang I Angiotensin I
Ang II Angiotensin II
ARDS Acute respiratory distress syndrome
AT1R Angiotensin type 1 receptor
AT2R Angiotensin type 2 receptor
COVID-19 Coronavirus disease 2019
CVDs Cardiovascular diseases
EGFR Epidermal Growth Factor Receptor
EMA European Medicine Agency
IL-6 Interleukin-6ICD Intracellular domain
MasR Mas receptor
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RAS Renin-angiotensin system
RLRs RIG-like receptors
sACE2 Soluble ACE2 fragment
SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2
TLRs Toll-like receptors
TMPRSS2 Type II transmembrane serine protease
TNF-α Tumor necrosis factor alpha References
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