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ABSTRACT 

Background: It is known that certain cardiovascular diseases (CVD) are associated, like 

atrial fibrillation (AF) and stroke. However, for other CVDs, the links and temporal trends are 

less studied. In this longitudinal study, we have investigated temporal epidemiological and 

genetic associations between different CVDs. 

Methods: The ULSAM study (2322 men aged 50 years) has been followed for 40 years 

regarding 4 major CVDs (incident myocardial infarction (MI), ischemic stroke, heart failure 

(HF) and AF). For the genetic analyses, publicly available data were used.  

Results: Using multi-state modelling, significant relationships were seen between pairs of all 

of the four investigated CVDs. However, the risk of obtaining one additional CVD differed 

substantially both between different CVDs and between their temporal order. The relationship 

between HF and AF showed a high risk ratio (RRs 24-26) regardless of the temporal order. A 

consistent association was seen also for MI and AF, but with a lower relative risk (RRs 4-5). 

In contrast, the risk of receiving a diagnosis of HF following a MI was almost twice as high as 

for the reverse temporal order (RRs 16 vs 9). Genetic loci linked to traditional risk factors 

could partly explain the observed associations between the CVDs, but pathway analyses 

disclosed also other pathophysiological links. 

Conclusions: During 40 years, all of the four investigated CVDs were pairwise associated 

with each other regardless of the temporal order of occurrence, but the risk magnitude 

differed between different CVDs and their temporal order. Genetic analyses disclosed new 

pathophysiological links between CVDs. 



3

Key Words: myocardial infarction, stroke, heart failure, atrial fibrillation, longitudinal study 

genetics 

Non-standard Abbreviations and Acronyms: 

AF = Atrial fibrillation 

CHD = Coronary heart disease 

CI = Confidence interval 

CVD = Cardiovascular disease 

CV = Cardiovascular 

FDR = False discovery rate 

GTEx = Genotype – tissue expression project 

GWAS = genome-wide association studies 

HF = Heart failure 

IVW = Inverse-variance weighted 

MI = Myocardial infarction 

MR = Mendelian randomization 

OR = Odds ratio 

RR = Risk ratio 

SNP = Single nucleotide polymorphism 

SCF = Stem cell factor 

ULSAM = Uppsala Longitudinal Study of Adult Men 
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INTRODUCTION 

It is well known that the presence of some cardiovascular diseases (CVD) will increase 

the risk for other CVDs. Examples of such well-established relationships are that atrial 

fibrillation is a powerful risk factor for both stroke1 and heart failure,2 and that a myocardial 

infarction is a strong risk factor for future heart failure.2 It is also known that prior CVD 

(except stroke) is associated with an increased risk of stroke,3 and that heart failure and 

myocardial infarction are related to incident atrial fibrillation.4 Other links between the major 

CVDs, myocardial infarction, stroke, heart failure and atrial fibrillation are less well-known 

and the strength of associations between those CVDs are not well established. 

Since the major common CVDs share many traditional risk factors, such as hypertension, 

hyperlipidemia, obesity, diabetes and smoking, the links between pairs of these common 

CVDs might mainly be due to shared risk factors. It might also be that other 

pathophysiological pathways could be of importance. 

The aim of the present study is two-fold. Firstly, to describe the temporal associations of 

the major CVDs; myocardial infarction, stroke, heart failure and atrial fibrillation. Secondly, 

to investigate shared genetics in order to investigate potential mechanisms linking these 

common diseases. Improved knowledge on the relationships between CVDs and mechanisms 

linking these common diseases might be useful in the secondary prevention following a first 

CVD. 

For the first aim, we used data from the ULSAM study in which we have followed the 

development of these four major CVDs during 40 years in a population-based sample of 

middle-aged males.5 We investigated the life course temporal co-morbidity between the major 

CVDs, myocardial infarction, stroke, heart failure and atrial fibrillation, by multi-state 

modeling to calculate the risks of obtaining specific major CVDs given that the individual 

previously had experienced another specific major CVD.  
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For the second aim, we used the Mendelian randomization framework to study the 

genetic relationships between these four major CVDs using genetic data from already 

published genome-wide association studies (GWAS). We also evaluated the genetic overlap 

between the major CVDs in terms of pathway analysis of the genetic loci overlapping 

between CVDs.  

METHODS 

The complete methods section is given in the beginning of the Supplementary material. 

The study was approved by the Ethical Committee of Uppsala University, and each 

participant in ULSAM gave their informed consent. 

The data that support the findings of this study are available from the corresponding 

author upon reasonable request. 

RESULTS 

Pairs of CVD 

The incidence of the four investigated CVDs during the follow-up period were in the 

range from 340 (ischemic stroke) to 565 (atrial fibrillation) (Table 1 and Figure 1).  

Ignoring the temporal order of the CVDs, all of the four investigated CVDs were 

pairwise significantly associated with each other, except myocardial infarction and atrial 

fibrillation (P=0.09).  As could be seen in Table 1, the ORs ranged from 1.21 for myocardial 

infarction vs atrial fibrillation to 3.86 for atrial fibrillation vs heart failure in the unadjusted 

analysis. No major difference in the strength of relationships were seen when adjusting for 

traditional cardiovascular risk factors (Figure 2).  

When related to the other three CV diseases, myocardial infarction occurred before all of 

the other three diseases in the majority of cases. This could clearly be seen in Figure 1 and in 
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Table 1. This pattern was most pronounced for heart failure, since it was quite uncommon that 

an individual received a diagnosis of heart failure before a diagnosis of myocardial infarction. 

Atrial fibrillation usually occurred before heart failure, while there was no clear temporal 

trend for stroke vs heart failure, or stroke vs atrial fibrillation (Table 1).  

Multistate results 

The flow of transitions from the healthy state to one of the four diseases to further other 

cardiovascular diseases are shown in Figure 3 for the total follow-up period. No cases were 

censored due to withdrawal from study or loss of follow-up. No subject was censored because of 

death due to non-CVD causes before the first CVD diagnosis occurred in the sample. Of the 

individuals who had received a first CVD diagnosis, 395 were censored due to death from non-

CVD causes before receiving a second CVD diagnosis. The analysis performed above, and in 

this step, only constitutes the first (from CVD healthy to first CVD) and second (form first 

CVD to second CVD) transition, since the number of subjects in further transitions is too 

limited for meaningful statistical evaluation. However, the total flow of transitions from one 

of the four diseases to combinations of the other CVDs over the 40 years are shown in Figure 

3. It could be noted that 13 subjects received a diagnosis of all four disorders. 

In the multi-state modelling, taking the temporal order into account, significant relationships 

were seen between pairs of all of the four investigated CVDs regardless of the temporal order 

of the CVDs within each pair (Table 2). However, the relative risk of obtaining one CVD 

following another CVD differed substantially both between different CVDs and between the 

temporal order. For example, the relationship between heart failure and atrial fibrillation 

showed a very high risk ratio (RRs 24 and 26) regardless of which of the conditions that 

appeared first. Also for the relationship between myocardial infarction and atrial fibrillation, 

the risk was not dependent on the temporal order to a major extent, but in this case the relative 
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risks (RRs 4 to 5) were not as high as compared to the heart failure and atrial fibrillation 

relationship. In contrast, the risk of receiving a diagnosis of heart failure following a MI was 

almost double that compared to the reverse temporal order (RR 16 vs 9). The 95%CIs are 

given in Table 2.

When we, as a supplementary analysis, included only non-lethal CVD events (see 

Supplementary Table 1), the results were essentially the same as in the main analysis when 

also lethal CVD were included (Table 2). 

Less than 1% of all transitions between the first and second CVD events occurred within 

7 days, meaning that the few cases when a second event was taking place very soon after the 

first event were exceptions not contributing in any major degree to the multi-stage model 

results.

Mendelian randomization

In the Mendelian randomization part of the study, the IVW method used as the primary 

analysis was highly significant (P<0.001) for all pairwise comparisons between the four 

CVDs regardless of the temporal order, except for AF (atrial fibrillation)->CHD (coronary 

heart disease) (P=0.31) when all SNP instruments were used (Table 3).  

Similar results were obtained in the sensitivity analysis using the weighted median 

method, except for stroke-> AF (P=0.43). Using the MR Egger method, significant 

relationships were only seen for CHD -> HF (heart failure), AF ->stroke, AF-> HF, but for 

CHD-> stroke, CHD->AF, HF->CHD, and HF-> stroke, the estimate was similar for MR 

Egger compared to when using IVW and weighted median.  
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When only SNPs showing P>5 x 10-8 vs traditional risk factors were used as instruments, 

the estimates were fairly similar for the three pairwise relationships where atrial fibrillation 

was the exposure (Supplementary Table 2, Supplementary Figure 1). Regarding the three 

comparisons where coronary heart disease was the exposure, a slight reduction in the estimate 

was seen when SNPs being related to risk factors were removed, but in all the three cases the 

P-value was still <0.05. When heart failure was the exposure, a great reduction in the estimate 

was seen for HF->CHD and HF->AF, but not for HF->stroke. When stroke was used as the 

exposure, reductions in the estimate was seen for stroke->CHD and stoke->HF, but not for 

stroke->AF. 

Shared genetic loci 

Using already published GWAS data regarding the four major CVDs, no locus showed an 

association vs all four traits at P<5 x 10-8 or FDR<0.05. Three loci were related to three out of 

the four CVDs at P<5 x 10-8 (ABO and ATXN2 for the triplet CHD, stroke and atrial 

fibrillation and RP11-119H12.3 for the triplet heart failure, stroke and atrial fibrillation). 

Another loci were related to heart failure, stroke and atrial fibrillation using FDR<0.05 

(CDKN1A). 

Eight loci were related to two out of the four CVDs using P<5 x 10-8, and another 14 

using the more liberal FDR<0.05 (Figure 4 and Table 4).  

The pathway enrichment analysis highlighted blood group synthesis and glucose 

metabolism for the genes related to the triplet CHD, stroke and atrial fibrillation, and cell 

cycle regulation and cellular senescence for genes related to the triplet heart failure, stroke 

and atrial fibrillation (Supplementary Table 2).  

For genes related to both CHD and stroke, cholesterol metabolism and bile acid 

metabolism were the top ranked pathways, but also neuronal differentiation, actin dynamics, 
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notch signaling and stem cell factor (SCF) signaling were enriched pathways for these two 

CVDs. For genes related to both coronary heart disease and atrial fibrillation, mitogen-

activated protein kinase activation and interleukin signaling were the top ranked enriched 

pathways, while for genes related to both coronary heart disease and heart failure, mainly 

lipid metabolism pathways were enriched. Other combinations of two coronary heart diseases 

did not show any significant enriched pathways. 

DISCUSSION 

Principal findings 

During four decades of follow-up, all of the four investigated CVDs were associated with 

each other regardless of the temporal order of occurrence, but the risk magnitude differed 

between different CVDs and their temporal order. Genetic analyses disclosed new 

pathophysiological links between CVDs. 

Pairs of CVD 

Significant relationships were seen between pairs of all of the four investigated CVDs 

when ignoring the temporal order, except for atrial fibrillation and myocardial infarction. It 

could clearly be seen that myocardial infarction most often is the first CVD to occur (Figure 

1).  

All of the four investigated CVDs share the traditional risk factors, although the impact 

of the different risk factors varied between the diseases.5 Thus, the most likely explanation for 

the relationships between the four CVDs would be these shared risk factors. However, the 

strength of the relationships between the CVDs was only marginally affected by including the 

traditional risk factors as confounders in the observational part of the study (Figure 3). 
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Multistate results 

It is well known that atrial fibrillation is a major risk factor for heart failure and stroke,1, 2

and that heart failure often is preceded by a myocardial infarction.2 However, the temporal 

order of other pairs of CVDs has not previously been extensively studied. In this study, it was 

clearly seen that the risk of obtaining one CVD following another differed substantially both 

between different CVDs and between their temporal order.  

A myocardial infarction as a complication following an acute ischemic stroke has been 

estimated to occur in around 2% of stroke cases.6, 7 Also stroke as a complication to acute 

myocardial infarction has been reported to be in the range of 2%.8, 9 In the present study, not 

only events occurring during the acute phase of a disease were studied, but events occurring 

over four decades, and therefore the number of events reported in the present study were 

substantially higher. 

Mendelian randomization

Also the genetic analyses performed within the Mendelian randomization framework 

showed relationships between most pairs of CVDs. This was also seen following removal of 

SNPs linked to traditional risk factors. The exception from this was the attenuation found for 

the relationship between heart failure and later coronary heart disease or atrial fibrillation and 

stroke and later CVD following removal of SNPs. It must however be noticed that these 

relationships still showed P<0.05 also following removal of risk factor associated SNPs 

(Figure 4).  

The Mendelian randomization approach showed relationships for pairs of CVDs both 

when one disease was used as the exposure and the other as outcome, as well when this order 

was reversed. This is in accordance with the observational data, and could be interpreted in 

two ways. Either is this due to etiological factors that are related to both the genetic 
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instrument and the outcome, as for the pair of coronary heart disease and stroke could be 

atherosclerosis. Or it could be due to the fact that different mechanisms are involved 

depending on the temporal order between the CVDs. For example, atrial fibrillation could 

attenuate the pumping capacity of the left ventricle leading to heart failure, while heart failure 

with increased filling pressures could dilate the heart, including the left atrium, which might 

trigger atrial fibrillation. Therefore, it is in this study hard to tell if a significant estimate in 

Mendelian randomization in the present setting should be interpreted as causal or not.  

Shared genetic loci 

Analysis of shared genetic loci between these disorders showed that most such loci were 

linked to common traditional risk factors, but also shared genetic loci with other functions 

were disclosed. 

When using summary data from already published GWAS for the four major CVDs, no 

loci was related to all four CVDs, using either P<5 x 10-8 or the more liberal FDR<0.05. Four 

loci were related to three out of the four CVDs, and 22 loci were associated with two of the 

four traits using the more liberal limit of significance. Generally, most of the identified loci 

have previously been associated with traditional risk factors for CVD, such as hypertension, 

hyperlipidemia, diabetes or obesity (Table 4). This finding possibly represents that these four 

CVDs share the traditional risk factors, but for some loci no such known relationships vs

traditional risk factors were found.  

The SNP rs17042076, being intergenic with the nearest gene RP11-119H12.3, was 

related to heart failure, stroke, and atrial fibrillation, but has not been found in the GWASs vs

traditional risk factors. Very little is known about the function of this locus, except that RP11-

119H12.3 is expressed in the brain, heart and testis (according to GTEx, 

https://gtexportal.org/home/).  
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Also rs3176326 in the intron of CDKN1A was related to the same triplet of CVDs, but 

not to traditional risk factors. In this case, however, other loci within this gene have been 

linked to hyperlipidemia and high blood pressure. Also for some of the loci being related to 

pairs of CVDs, associations vs traditional risk factors were not found between the SNP given 

in Table 4, but other SNPs within the gene show such relationships. This was however not 

found for PLPP3, LRCH1, and BCAP29, so it would be interesting to explore the functions of 

these genes more in detail to see if they could shed new light on the pathogenesis of CVDs. 

For IL6R and ZFP57, no SNPs in the gene were related to traditional risk factors, but 

links have been published vs proinflammatory markers in blood as well as inflammatory 

diseases, possibly highlighting the role of inflammation in CVD.10, 11

Pathway enrichment analyses performed for the genes being related to pairs or triplet of 

the CVDs (Figure 4) highlighted also other pathways that might be of pathophysiological 

importance. For example, for loci being related to both coronary heart disease and stroke, bile 

acid metabolism was amongst the top ranked pathways, but also neuronal differentiation, 

actin dynamics, notch signaling and SCF signaling were enriched pathways for these two 

CVDs. Thus, while the pathway analysis brought up pathways being related to traditional risk 

factors, mainly lipids, also pathways not well-known for CVDs were disclosed. 

Clinical implications 

While connections between some CVDs, like atrial fibrillation and later stroke or heart 

failure is well-known for the clinician, the present study disclosed that also other CVDs are 

associated and the fact that one individual has a CVD diagnosis leads to an increased risk for 

also other CVDs. Thus, careful control of common traditional risk factors would not only 

lower the risk for a recurrent event, but possibly also other CVDs, although shared risk factors 

only explained a part of the covariation of CVDs. The remaining part of the covariation was 



13

due to other pathophysiological mechanisms and some of those were disclosed in the present 

pathway analysis, which might serve as a basis for future drug discovery efforts. 

Strength and limitations 

The major strength of the study is the long follow-up period from 50 to 90 years of age in 

the population-based sample, allowing us to capture most of the CVDs that occur during a 

lifetime. Another strength is that we performed a longitudinal observational study and genetic 

studies in parallel. The obvious limitation is that we only have men of European descent in 

our sample, and therefore the results have to be confirmed in women, as well as in other 

ethnic groups. The study sample was also too small to study the transitions from two to three 

or four CVDs in terms of relative risk, and therefore only the transition from the first to the 

second CVD could be properly evaluated.  

It should also be pointed out that the diagnostic criteria for the CVDs, especially 

myocardial infarction, has changed during the four decades of follow-up, something that 

might have been affecting the results. This is however unavoidable during long follow-up 

periods. 

Another limitation is that the number of SNPs that was used as instrumental variables for 

heart failure and stroke were small after removal of SNPs linked to risk factors, so those 

estimates might not be precise and likely underpowered. However, the largest GWASs to date 

published for stroke and heart failure were used to select the instrumental variables. 

      A significant interaction with time was seen in the multi-state models meaning that the 

relative risks for a transition from one certain CVD to another do vary depending on the age 

of the subjects. Unfortunately, the sample is too small to be stratified into different age-

groups, so the risk ratios presented should be regarded as “average” risk ratios over a four 
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decade follow-up period. Further studies in far larger samples have to be conducted in order 

to produce age-specific risk ratios for the transitions given in Table 2.

Table 4 gives the overlap of the loci being related to 3 or 2 of the 4 CVDs. Also, the 

nearest gene is given for each locus and, based on those genes, pathway analyses were 

conducted. It must however be acknowledged that a locus is not always associated with the 

expression of the nearest gene. However, many of the loci presented in Table 4 are not a 

significant eQTL, or are associated with expression of different genes. Therefore, we have for 

the sake of simplicity used the nearest gene to describe the genetic region of interest, being 

fully aware that the nearest gene not always is the gene of interest. 

Conclusion 

During 40 years, all of the four investigated CVDs were pairwise associated with each 

other regardless of the temporal order of occurrence, but the risk magnitude differed between 

different CVDs and their temporal order. Genetic analyses disclosed new pathophysiological 

links between CVDs. 
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FIGURE LEGENDS 

Figure 1. Cumulative incidence of the four major cardiovascular diseases, myocardial 

infarction (MI), ischemic stroke (Stroke), heart failure (HF) and atrial fibrillation (AF) from 

age 50 to 90 years. 

Figure 2. Relationships between the four major cardiovascular diseases during 40 years of 

follow-up in the longitudinal ULSAM study given as odds ratios (OR) and 95%CI (hi/lo). No 

attention is paid to the temporal order of occurrence of the diseases in this evaluation. ORs are 

given for both an unadjusted analysis and an analysis adjusted for traditional cardiovascular 

risk factors at age 50. HF, heart failure; MI, myocardial infarction; AF, atrial fibrillation; 

Stroke, ischemic stroke. 

Figure 3. Flow chart of transitions from the healthy state (E) to a first event of atrial 

fibrillation (AF), myocardial infarction (MI), heart failure (HF) or ischemic stroke (Stroke). 

Thereafter follows the transitions to two, three and four of these diseases. The thickness of the 

“flow” is proportional to the number of subjects.  

Figure 4. Venn diagram showing an overview of the genetic overlapping associations 

between three or two of the four cardiovascular disease traits when FDR<0.05 was used as 

cut-off for associations vs each trait. In addition, loci in or near RP11-119H12.3 and CDKN1A

were related to the triplet heart failure, stroke, and atrial fibrillation. See Table 4 for further 

details. 
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Table 1. Pairwise relationships between four major cardiovascular diseases.  

Total 

N 

Overlapping with 

ischemic stroke,  

OR (95%CI), 

P-value, 

before/after stroke 

Overlapping with 

heart failure,  

OR (95%CI), 

P-value, 

before/after HF 

Overlapping with        

atrial fibrillation,  

OR (95%CI), 

P-value, 

before/after AF 

Myocardial 

infarction 

539 n = 101 

OR 1.77 (1.38-2.27)   

P=4.7e-06  

69/32     

n = 151 

OR 3.78 (3.01-4.73)   

P=9.1e-31      

124/27 

n = 142 

OR 1.21 (0.97-1.50)    

P=0.09       

94/48 

Ischemic 

stroke 

340 n = 68 

OR 1.63 (1.24-2.14)     

P=4.4e-04      

44/24 

n = 131 

OR 2.45 (1.93-3.11)   

P=2.0e-13 

62/69 

Heart failure 415 n = 180 

OR 3.86 (3.08-4.83)   

P=9.2e-32 

71/109 

Atrial 

fibrillation 

565 

In the second column from the left the total number of cases that occurred during a 48-year 

follow-up are given. In the following columns, the number of cases overlapping between the 

diseases are given together with odds ratio (OR), 95%CI, P-value and how many of the 

overlapping cases that occurred before or after the other cardiovascular disease in the 

respective pair. No adjustment for cardiovascular risk factors were performed in the analyses. 

Stroke, ischemic stroke; HF, heart failure; AF, atrial fibrillation. 
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Table 2. Multi-stage modeling of cardiovascular outcomes that are followed by another 

cardiovascular disease (CVD). The analysis only includes non-lethal cases.

Second CVD 

outcome Prior CVD RR  

95% CI 

lower limit 

95% CI 

upper limit 

HF MI 16.15 12.46 20.93 

AF 26.08 19.88 34.22 

Stroke 5.86 3.00 10.74 

MI HF 8.82 5.35 14.55 

AF 4.52 3.06 6.68 

Stroke 5.80 3.66 9.21 

AF HF 24.78 17.95 34.10 

MI 5.46 4.12 7.24 

Stroke 12.74 9.15 17.74 

Stroke HF 5.57 2.36 13.99 

MI 9.14 6.66 12.56 

AF 11.54 7.97 16.72 

The risk ratios (RR) are calculated as those who experience the outcome with a prior CVD vs 

those with the same outcome but without any prior CVD. All relationships showed P<0.0001. 

HF, heart failure; MI, myocardial infarction; AF, atrial fibrillation; Stroke, ischemic stroke. 
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Table 3. Bidirectional two-sample Mendelian randomization studies for pairwise 

relationships between the four major cardiovascular diseases. 

CHD vs stroke (n = 41)

Test Estimate 95%CI lower 95%CI higher P-value 

MR Egger 1.10 0.87 1.37 0.41 

IVW 1.19 1.14 1.23 2.2e-15 

Weighted median 1.17 1.07 1.26 0.00025 

Heterogeneity Q-test = 213 <0.0001 

Pleiotropy 0.0075 -0.0142 0.029 0.49 

CHD vs AF (n = 39)

Test Estimate 95%CI lower 95%CI higher P-value 

MR Egger 1.04 0.90 1.19 0.57 

IVW 1.05 1.03 1.09 0.00023 

Weighted median 1.05 1.004 1.11 0.032 

Heterogeneity Q-test = 145 <0.0001 

Pleiotropy 0.0017 -0.0113 0.015 0.79 

CHD vs HF (n = 41)

Test Estimate 95%CI lower 95%CI higher P-value 

MR Egger 1.39 1.24 1.57 5.5e-08 

IVW 1.34 1.30 1.39 <1.0e-25 

Weighted median 1.37 1.29 1.45 <1.0e-25 

Heterogeneity Q-test = 154 <0.0001 

Pleiotropy -0.0039 -0.0151 0.007 0.50 

AF vs stroke (n = 113)

Test Estimate 95%CI lower 95%CI higher P-value 

MR Egger 1.23 1.08 1.40 0.0014 

IVW 1.24 1.19 1.29 1.1e-24 

Weighted median 1.21 1.14 1.29 1.7e-09 

Heterogeneity Q-test = 152 0.0053 

Pleiotropy 0.0004 -0.007 0.008 0.92 

AF vs HF (n = 113) 

Test Estimate 95%CI lower 95%CI higher P-value 

MR Egger 1.22 1.11 1.34 0.000059 

IVW 1.22 1.18 1.26 <1.0e-25 

Weighted median 1.19 1.13 1.25 3.00e-12 

Heterogeneity Q-test = 152 0.0066 

Pleiotropy -0.0001 -0.0056 0.005 0.98 

AF vs CHD (n=113) 

Test Estimate 95%CI lower 95%CI higher P-value 

MR Egger 0.90 0.78 1.03 0.11 

IVW 1.02 0.98 1.06 0.31 
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Weighted median 0.99 0.93 1.05 0.76 

Heterogeneity Q-test = 190 <0.0001 

Pleiotropy 0.0077 0.0001 0.015 0.046 

Stroke vs HF (n = 10)

Test Estimate 95%CI lower 95%CI higher P-value 

MR Egger 0.72 0.20 2.52 0.60 

IVW 1.30 1.19 1.42 5.7e-09 

Weighted median 1.27 1.11 1.46 0.00059 

Heterogeneity Q-test = 35 0.0001 

Pleiotropy 0.040 -0.044 0.12 0.34 

Stroke vs CHD (n = 10) 

Test Estimate 95%CI lower 95%CI higher P-value 

MR Egger 4.39 0.98 19.7 0.052 

IVW 1.51 1.36 1.67 <1.0e-25 

Weighted median 1.31 1.10 1.57 0.0022 

Heterogeneity Q-test = 36 0.0001 

Pleiotropy -0.073 -0.17 0.029 0.15 

Stroke vs AF (n = 9) 

Test Estimate 95%CI lower 95%CI higher P-value 

MR Egger 1.02 0.28 3.67 0.98 

IVW 1.14 1.04 1.23 0.0045 

Weighted median 1.05 0.93 1.20 0.43 

Heterogeneity Q-test = 30 <0.0001 

Pleiotropy 0.0078 -0.081 0.097 0.86 

HF vs CHD (n = 9) 

Test Estimate 95%CI lower 95%CI higher P-value 

MR Egger 4.33 0.82 23.00 0.085 

IVW 2.11 1.83 2.43 <1.0e-25 

Weighted median 1.76 1.22 2.53 0.0024 

Heterogeneity Q-test =78 <0.0001 

Pleiotropy -0.041 -0.13 0.051 0.38 

HF vs AF (n = 9) 

Test Estimate 95%CI lower 95%CI higher P-value 

MR Egger 1.98 0.58 6.65 0.26 

IVW 1.58 1.42 1.76 <1.0e-25 

Weighted median 1.52 1.28 1.81 1.96e-06 

Heterogeneity Q-test = 928 <0.0001 

Pleiotropy -0.012 -0.078 0.053 0.70 

HF vs stroke (n = 9) 

Test Estimate 95%CI lower 95%CI higher P-value 

MR Egger 1.63 0.56 4.69 0.36 

IVW 1.66 1.43 1.93 2.9e-11 
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Weighted median 1.64 1.28 2.08 0.000062 

Heterogeneity Q-test = 23 0.0018 

Pleiotropy 0.0011 -0.057 0.060 0.96 

The number of SNPs used in the analysis as instrumental variable for the exposure is given as 

n. In this analysis, all available SNPs were used as instruments. Pleiotropy is given by the MR 

Egger intercept. HF, heart failure; CHD, coronary heart disease; AF, atrial fibrillation; Stroke, 

ischemic stroke; IVW, inverse-variance weighted meta-analysis. 
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Table 4. Genetic loci being shared for two or three of the four cardiovascular traits; coronary heart disease, stroke, heart failure or atrial 

fibrillation, at the FDR<0.05 level.

rs-number Position (hg19) EAF  Effective 

/Other 

allele 

Nearest gene Traits Relations to CV risk 

factors according to 

Phenoscanner 

Three traits 

rs17042076* chr4:111652338 0.1551 T/C RP11-119H12.3 

(intergenic) 

HF, Stroke,  

AF 

- 

rs532436* chr9:136149830 0.1859 A/G ABO 

(intron) 

CHD, Stroke,  

AF 

Lipids, blood pressure, 

diabetes, trunk fat 

rs4766578* chr12:111904371 0.5229 A/T ATXN2 

(intron) 

CHD, Stroke,  

AF 

Lipids, blood pressure, 

BMI, smoking 

rs3176326 chr6:36647289 0.1730 A/G CDKN1A 

(intron) 

HF, Stroke,  

AF 

- 

Two traits 

rs660240* chr1:109817838 0.1988 T/C CELSR2 

(3’-UTR) 

CHD, HF Lipids, BMI 

rs10908838* chr1:154397984 0.5567 G/T IL6R 

(intron) 

CHD, AF - 

rs11745324* chr5:137012171 0.2296 A/G KLHL3 

(intron) 

HF, AF Blood pressure, pulse rate 

rs55730499* chr6:161005610 0.9245 C/T LPA 

(intron) 

CHD, HF Lipids 

rs2107595* chr7:19049388 0.8320 G/A HDAC9 

(intergenic) 

CHD, Stroke Blood pressure, trunk fat 
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rs1333043* chr9:22106731 0.5070 A/T CDKN2B-AS1 

(intron) 

CHD, HF Lipids 

rs60212594* chr10:75414344 0.1372 C/G SYNPO2L 

(intron) 

AF, Stroke Blood pressure, pulse rate 

rs10774624* chr12:111833788 0.5298 A/G RP3-473L9.4 

(intron) 

CHD, Stroke Blood pressure, weight, 

smoking 

rs17035646 chr1:10796547 0.3529 A/G CASZ1 

(intron) 

AF, Stroke Hypertension 

rs2404716 chr1:56979076 0.2714 A/G PLPP3 

(intron) 

CHD, HF - 

rs4076834 chr2:44081627 0.9245 T/G ABCG8 

(intron) 

CHD, Stroke Lipids 

rs3820888 chr2:201180023 0.6223 T/C SPATS2L 

(intron) 

AF, HF Pulse rate 

rs12509595 chr4:81182554 0.2674 C/T RP11-576N17.4 

(Intergenic) 

CHD, AF Hypertension, lipids 

rs6909574 chr6:22606773 0.6362 A/G ZFP57 

(Intergenic) 

CHD, AF - 

rs7769954 chr6:134196381 0.7097 A/G TARID 

(intron) 

CHD, AF Pulse rate, hypertension 

rs68170813 chr7:107259721 0.2117 C/T BCAP29 

(3’-UTR) 

CHD, AF - 

rs2980858 chr8:126501177 0.3231 T/C RP11-136O12.2 

(intron) 

CHD, HF Lipids, trunk fat 

rs11000775 chr10:75539010 0.1342 C/T CHCHD1 

(upstream) 

AF, HF Blood pressure, pulse rate 

rs72841270 chr10:104642237 0.1441 G/T AS3MT 

(Intron) 

CHD, AF Blood pressure, BMI 
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rs4284534 chr13:47267033 0.7624 A/G LRCH1 

(intron) 

AF, Stroke - 

rs35346340 chr15:91427872 0.3250 C/G FES  

(splice region) 

CHD, Stroke Blood pressure 

rs10405536 chr19:10756432 0.5974 A/G SLC44A2 

(downstream) 

CHD, Stroke - 

*P<5e-8. EAF, effective allele frequency; CV, cardiovascular; HF, heart failure; CHD, coronary heart disease; AF, atrial fibrillation; Stroke, 

ischemic stroke; BMI, body mass index. 
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SUPPLEMENTARY METHODS 

Sample 

Between 1970-1974, all men aged 50 years living in the City of Uppsala, Sweden, were 

invited to a Health screening program for cardiometabolic risk factors (the Uppsala 

Longitudinal Study of Adult Men, ULSAM). The participation rate was 82 % resulting in a 

sample of 2322 investigated individuals. The study was approved by the Ethics Committee of 

Uppsala University and each participant gave their informed consent. This cohort has been 

followed for four decades and physically re-investigated at 60, 70, 77, 82, 88 and 92 years of 

age.  

Traditional risk factors 

The examination at age 50 has been described in detail previously.1 Blood samples for 

fasting concentrations were drawn in the morning after an overnight fast. Cholesterol and 

triglyceride concentrations in serum, and high density lipoprotein (HDL) were assayed by 

enzymatic techniques. Low density lipoprotein (LDL)-cholesterol was calculated by 

Fiedewald’s formula. Fasting blood glucose was determined by an oxidase method. Supine 

systolic and diastolic blood pressures were measured twice in the right arm after 10 minutes 

rest, and means were calculated. Information on current smoking was collected by a 

questionnaire.  

CVD diagnosis 

Date and cause of death were obtained from the Swedish Cause of Death Register. Date 

and cause of hospitalization were obtained from the Swedish Hospital Discharge Register in 

all individuals. We evaluated four major cardiovascular diseases; acute myocardial infarction  
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 (International Classification of Diseases [ICD-8] code 410, ICD- 9 code 410, or ICD-10 code 

I20), ischemic stroke (ICD-8 codes 431, 433-436, ICD-9 code 431, 433-436, ICD-10 code 

I63-I66), heart failure (ICD-8 codes 427.00, 427.10, 428.99, ICD-9, 428 and ICD-10 code I50 

as well as hypertensive heart disease with heart failure (I11.0 [ICD-10]), and atrial fibrillation 

(ICD-8 code 427.9, ICD-9 427D and ICD-10 I48). In addition, we noted if atrial fibrillation 

was present at ECG at the physical re-examinations. Regarding myocardial infarction, stroke 

and atrial fibrillation these diagnoses have been evaluated as accurate in the Swedish 

registers,2 while the diagnosis of heart failure is less valid.3 Therefore, all cases of heart 

failure were validated by use of medical records by an experienced clinician (L.L.). Data on 

CVD diagnosis and mortality were available in all subjects during the follow-up period. 

Statistics

The calculations for the first aim was performed in two steps. In step one, a pair-wise 

cross-tabulation was performed for the four CVDs and it was noted which of the diseases 

within each pair that occurred first. An odds ratio (OR) was calculated by logistic regression 

for the covariation of the CVDs. This was done both unadjusted and adjusted for the 

traditional risk factors, systolic blood pressure, body mass index (BMI), diabetes, HDL and 

LDL-cholesterol and smoking.  

In step two, a multi-state model was set up according to Figure 3. Only non-lethal cases were 

used in the following analysis. The states were not distinguished by order of subsequent CVDs, 

i.e. an individual experiencing a myocardial infarction first and then a stroke ends up in the 

same combined state as an individual who first experience a stroke and then an myocardial 

infarction. Transition rates between the states were modeled with Poisson regression on time-

split data, where age was used as the time scale and follow-up was divided into one year 

intervals in which the rates were assumed to be constant. Details of this approach is described 
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elsewhere.4 A time gap of at least one day between the first and second CVD events was 

demanded, and that these two events should take place during separate hospitalization periods. 

The rate ratios given are based on a comparison of estimated rates of experiencing a second 

CVD vs estimated rates of experiencing the same CVD but without a prior CVD. The multi-

state analyses were made using R (version 3.6.1; R Foundation for Statistical Computing, 

Vienna, Austria) and the Epi package. The calculations for the second aim was also 

performed in two steps. The R code used for the calculation in the multi-state models are 

given at the end of the supplementary material.

In step three, bidirectional, two-sample Mendelian randomization (MR) studies were 

performed using already published GWASs for the four major CVDs 

(CARDIoGRAMplusC4D for coronary heart disease,5 HERMES for heart failure,6

METASTROKE for ischemic stroke,7 and the recent large GWAS on atrial fibrillation by 

Roselli et al8).  

As instrument for the exposure, only independent genetic variants (SNPs) with  

P<5 x 10-8 were used. Independency of these variants was evaluated by the clump command 

in the package MRbase in R (3.6.1). Thereafter, the causal estimate was calculated by both 

inverse-variance weighted meta-analysis (IVW) and MR Egger, as well as the weighted-

median method. Outlier genetic instruments with an IVW estimate greater than twice of the 

next best/worst instruments were removed from the analysis if the P-value for heterogeneity 

was less than 0.0001. 

To investigate the impact of known shared risk factors, first an MR analysis with all 

available independent SNP instruments was performed and thereafter SNPs showing P<5 x 

10-8 for association with traditional risk factors (blood pressure, diabetes, obesity, LDL- and 

HDL-cholesterol, triglycerides and smoking) were removed following an evaluation of the 

published GWAS studies from DIAGRAM,9 GIANT,10 Global Lipids Consortium,11 as well 



5 

as GWAS analyses of UK biobank from Neal Lab (http://www.nealelab.is/uk-biobank), as 

well as own analyses.12 In the MR analyses, IVW was regarded as the primary analysis, 

whereas MR Egger and the weighted median method were used as sensitivity analyses.

In step four, we used the already published GWAS data for the four major CVDs to 

search for overlapping genetic associations. First, only independent genetic loci with P<5 x 

10-8 were evaluated regarding overlap between the traits. Independency (LD<0.001) of these 

variants was evaluated by the clump command in the package MRbase in R (3.6.1). Secondly, 

in a predefined step also associations with FDR<0.05 (the Benjamani-Hochberg method) 

were investigated. The overlapping loci (nearest gene) were subjected to pathway enrichment 

analysis using the Reactome software (https://reactome.org/PathwayBrowser/), which 

performs a hypergeometric distribution test producing a probability score corrected for FDR. 

Step one, three and four used STATA14 (Stata inc, College Station, TX, USA) for 

calculations if not stated otherwise. 

R-code used for the calculations of the multi-stage models. 

The following multi-state model was used to analyse the study data. It is assumed that the 

data are structured so that each row corresponds to one individual being in exactly one state as 

well as the entry and exit times. In our data, the entry and exit times are named ”start” and 

“stop”, respectively. We also have each individual’s birth date (bdate) and use age as the time 

scale. The state an individual has entered at each row is contained in the variable ”starts” and 

“states” holds the state to which an individual exits to. 
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First we load the Epi package and create a Lexis object: 

We then split the follow-up time for each individual into one-year intervals and stack the time-
split data:  

We model age using regression splines and set the knots at the 5th, 35th, 65th and 95th percentiles 
of the distribution of ages at which an event occurred: 

We then fit the Poisson model: 

The Rate Ratios for the transitions of interest could be obtained in many ways. One of them is 
to use the multcomp package:

fit <- glm(cbind(lex.Fail, lex.dur) ~ -1 + Ns(age, knots = a.kn) + lex.Tr, 

family = poisreg, data = lc_stack)

library("Epi")

lc <- Lexis(entry = list(age = start - bdate),  
exit = list(age = stop - bdate),  
entry.status = starts,
exit.status =  states,  
id =  pat, data = data)

lc_split <- splitLexis(lc, breaks = 40:100)  

lc_stack <- stack.Lexis(lc_split)

 a.kn <- with(subset(lc_stack, lex.Fail),
quantile(age + lex.dur, c(0.05, 0.35, 0.65, 0.95)))
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ci contains the log-RR with corresponding confidence intervals. 

library("multcomp")

## Set up the contrast matrix

L  <- matrix(rep(0,  12  *  length(coef(fit))),  ncol  =  length(coef(fit)))  

colnames(L) <- names(coef(fit))

L[1,  "lex.TrMI->HF+MI"]  <- 1

L[1,  "lex.TrE->HF"]  <- -1

L[2,  "lex.TrAF->AF+HF"]  <- 1

L[2,  "lex.TrE->HF"]  <- -1

L[3,  "lex.TrStroke->HF+Stroke"]  <- 1  

L[3,  "lex.TrE->HF"]  <- -1

L[4,  "lex.TrHF->HF+MI"]  <- 1

L[4,  "lex.TrE->MI"]  <- -1

L[5,  "lex.TrAF->AF+MI"]  <- 1

L[5,  "lex.TrE->MI"]  <- -1

L[6,  "lex.TrStroke->MI+Stroke"]  <- 1  

L[6,  "lex.TrE->MI"]  <- -1

L[7,  "lex.TrHF->AF+HF"]  <- 1

L[7,  "lex.TrE->AF"]  <- -1

L[8,  "lex.TrMI->AF+MI"]  <- 1

L[8,  "lex.TrE->AF"]  <- -1

L[9,  "lex.TrStroke->AF+Stroke"]  <- 1  

L[9,  "lex.TrE->AF"]  <- -1

L[10,  "lex.TrHF->HF+Stroke"]  <-

1  

L[10,  "lex.TrE->Stroke"]  <- -1  

L[11,  "lex.TrMI->MI+Stroke"]  <-

1  

L[11,  "lex.TrE->Stroke"]  <- -1  

L[12,  "lex.TrAF->AF+Stroke"]  <-

1  

L[12,  "lex.TrE->Stroke"]  <- -1

rownames(L)  <- c("MI_HF",  "AF_HF",  "Stroke_HF",
"HF_MI",  "AF_MI",  "Stroke_MI",

g <- glht(fit, linfct = L)
ci <- confint(g, calpha = univariate_calpha())
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Supplementary Table 1. Bidirectional two-sample Mendelian randomization studies for 

pairwise relationships between the four major cardiovascular diseases.

CHD vs Stroke (n=27)

Test Estimate 95%CI lower 95%CI higher P-value 

MR Egger 1.10 0.86 1.39 0.44 

IVW 1.09 1.04 1.15 0.00090 

Weighted median 1.16 1.05 1.28 0.0036 

Heterogeneity Q-test=81 <0.0001 

Pleiotropy -0.0007 -0.022 0.021 0.94 

CHD vs AFib (n=27)

Test Estimate 95%CI lower 95%CI higher P-value 

MR Egger 0.95 0.78 1.15 0.61 

IVW 1.05 1.01 1.09 0.015 

Weighted median 1.05 0.99 1.11 0.11 

Heterogeneity Q-test=95 <0.0001 

Pleiotropy 0.0093 -0.0082 0.027 0.29 

CHD vs HF (n=27)

Test Estimate 95%CI lower 95%CI higher P-value 

MR Egger 1.32 1.16 1.50 0.000031 

IVW 1.29 1.24 1.34 <1.0e-25 

Weighted median 1.36 1.28 1.45 <1.0e-25 

Heterogeneity Q-test=38 0.048 

Pleiotropy -0.0021 -0.0137 0.009 0.72 

AFib vs Stroke (n=107)

Test Estimate 95%CI lower 95%CI higher P-value 

MR Egger 0.21 0.075 0.34 0.0020 

IVW 1.24 1.19 1.29 0 

Weighted median 0.19 0.13 0.26 2.48e-09 

Heterogeneity Q-test=150 0.0039 

Pleiotropy 0.0005 -0.0069 0.008 0.89 

AFib vs HF (n=107) 

Test Estimate 95%CI lower 95%CI higher P-value 

MR Egger 0.20 0.10 0.30 0.000074 

IVW 1.21 1.18 1.25 0 

Weighted median 0.17 0.12 0.23 2.68e-11 

Heterogeneity Q-test=149 0.0050 

Pleiotropy -0.0002 -0.0059 0.005 0.92 

AFib vs CHD (n=107)

Test Estimate 95%CI lower 95%CI higher P-value 

MR Egger 0.90 0.79 1.03 0.13 

IVW 1.02 0.98 1.06 0.44 
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Weighted median 0.99 0.92 1.05 0.71 

Heterogeneity Q-test=180 0.0001 

Pleiotropy 0.0072 -0.0004 0.015 0.062 

Stroke vs HF (n=7)

Test Estimate 95%CI lower 95%CI higher P-value 

MR Egger 0.40 0.10 1.64 0.20 

IVW 1.19 1.07 1.32 0.0014 

Weighted median 1.12 0.95 1.32 0.17 

Heterogeneity Q-test=15 0.0077 

Pleiotropy 0.073 -0.020 0.16 0.12 

Stroke vs CHD (n=7) 

Test Estimate 95%CI lower 95%CI higher P-value 

MR Egger 1.52 0.56 4.22 0.40 

IVW 1.20 1.06 1.36 0.0045 

Weighted median 1.17 0.98 1.39 0.080 

Heterogeneity Q-test=3.3 0.64 

Pleiotropy -0.016 -0.083 0.051 0.63 

Stroke vs AFib (n=6) 

Test Estimate 95%CI lower 95%CI higher P-value 

MR Egger 0.81 0.14 4.69 0.81 

IVW 1.19 1.06 1.34 0.0029 

Weighted median 1.06 0.90 1.24 0.48 

Heterogeneity Q-test=15 0.0016 

Pleiotropy 0.026 -0.093 0.14 0.66 

HF vs CHD (n=4) 

Test Estimate 95%CI lower 95%CI higher P-value 

MR Egger No convergence  

IVW 1.18 0.93 1.51 0.16 

Weighted median 1.22 0.84 1.78 0.30 

Heterogeneity No convergence 

Pleiotropy No convergence 

HF vs AFib (n=5) 

Test Estimate 95%CI lower 95%CI higher P-value 

MR Egger No convergence  

IVW 1.18 0.99 1.42 0.068 

Weighted median 1.04 0.79 1.36 0.77 

Heterogeneity No convergence 

Pleiotropy No convergence 

HF vs Stroke (n=4) 

Test Estimate 95%CI lower 95%CI higher P-value 

MR Egger 1.42 0.01 272 0.89 

IVW 1.66 1.32 2.07 7.63e-06 
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Weighted median 1.82 1.32 2.51 0.00025 

Heterogeneity Q-test=13 0.0012 

Pleiotropy 0.0079 -0.25 0.27 0.95 

The number of SNPs used in the analysis as instrumental variable for the exposure is given as n. In 

this analysis, SNPs being related to traditional CV risk factors have been removed. CHD, coronary 

heart disease; AFib; atrial fibrillation; HF, heart failure; Stroke, ischemic stroke; MR Egger, 

Mendelian randomization Egger; IVW, inverse-variance weighted meta-analysis. 
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Supplementary Figure 1. Bidirectional Mendelian randomization analysis of the four 

major cardiovascular diseases. The first disease in the X-Y notation is the exposure. Odds 

ratio and 95%CI are shown. All SNPs denotes when all available SNPs are used as the genetic 

instrument for the exposure. Reduced is used when all SNPs related to the traditional 

cardiovascular risk factors were removed. Afib, atrial fibrillation; CHD, coronary heart 

disease; HF, heart failure; Stroke, ischemic stroke. 
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