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Abstract 

Three dimensional (3D) geometric models of buildings are foundational for urban 

building energy modeling. A complete 3D geometric model contains building-relevant 

information like building footprint, height and Window-to-Wall Ratio (WWR). Existing 

methods creating these models have certain limitations, such as unavailability of 

Geographic Information System (GIS) databases and Light Detection and Ranging 

(LiDAR) data for many cities, and restricted flying space for Unmanned Aerial Vehicles 



2 

 

(UAV). To tackle these issues, this study has developed a systematic method developing 

3D geometric models, with 1) building footprint acquired from combination of two 

internet maps, namely Baidu Map and OpenStreetMap; 2) building height estimated 

from the number of storeys for residential buildings and determined using the building 

vertical edge method for non-residential buildings, and 3) building WWR calculated 

from buildings’ elevation images using an Artificial Intelligence (AI). The validation 

work revealed that more than 85% of acquired building footprints had absolute relative 

errors less than 10%, and this percentage was 87%, 74% and 75%, for height of 

residential buildings, height of non-residential buildings and WWR, respectively. To 

demonstrate the application of the method, a newly developed urban district in Nanjing, 

China was used as a case study. 

 

Keywords: Urban building energy models, 3D models, geometric data, open-access 

data, GIS. 

 

1. Introduction 

Along with the rapid growth of both social population and economy, expansion of 

urban areas contributes greatly to global energy shortage and environmental 

deterioration [1-2]. It has been widely acknowledged that cities account for over 75% 

of the total energy consumption and carbon emissions of our society [3]. Due to this 

significant impact, in many major cities around the world, government has developed 
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long-term targets for energy conservation and Green House Gas (GHG) emission 

reduction. For example, San Francisco in the USA has set a target of reducing GHG 

emissions by 40% by 2025, comparing with the level in 1990 [4]. London in the UK is 

by 2025 aiming to reduce GHG emissions by 60% below the level in 1990 [5]. Both 

Beijing [6] and Shanghai [7] in China have set ambitions to reduce GHG emissions by 

20.5% by 2020, compared with the level in 2015. To achieve these goals, city managers 

need to optimize local energy policies at urban levels, aided by planning tools providing 

both spatial and temporal energy data [8], especially for buildings, which are major 

energy consumers in cities [9-10]. 

To optimize urban energy usage, Urban Building Energy Models (UBEMs) have 

been developed to effectively calculate urban energy consumption and assist city 

managers to make decisions [11]. As a bottom-up, physical simulation model of heat 

and mass flows in and around groups of buildings, UBEMs are able to predict the 

energy consumption contributed by buildings within the urban level, as well as their 

indoor and local outdoor environmental conditions [8]. In addition to these, the models 

also help to explore opportunities for Energy Conservation Measures (ECMs) of a large 

group of buildings [12]. For example, Cerezo Davila et al. [13] have employed an 

UBEM approach to evaluate the energy efficiency of different scenarios in 172 houses 

in a city in Kuwait. In a case study carried out in San Francisco, Chen et al. [14] applied 

the UBEM in analyzing the energy and cost savings of five different ECMs for 940 

office and retail buildings. A project targeting 3259 buildings in Lisbon was proposed 

by Monteiro et al. [15] to tap potential urban energy saving using UBEMs. 
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The development of UBEMs depends on the construction of a three dimensional 

(3D) geometry model for all individual building within the urban area under 

investigation, with information about their construction assemblies, occupancy, 

equipment and local climate [8]. A 3D model requires a large number of data to define 

the geometry of buildings, and these data can be categorized into three main groups, 

namely building footprint, building height and Window-to-Wall Ratio (WWR) [12]. 

CityGML 1  defines a 3D model representing at four Levels of Details (LODs), 

including (from LoD1 to LoD4): a box shape, adding slope roofs, adding exterior 

texture (like shades, windows and doors), and full details of interior layout and zoning 

[16]. A model LoD1 is derived from building footprints and heights. Owing to its 

simplicity and practicability [17], this kind of model has been widely used in 

developing UBEMs for many cities in the world, such as Boston [11], San Francisco 

[14], Cambridge [18], Amsterdam [19] and Gothenburg [20]. 

When constructing 3D geometry models for UBEMs, the most straightforward 

approach is to use the CityGML data. As reported by CityGML official [16], some cities, 

like Berlin, Rotterdam, Montreal and New York, have already open this kind of data to 

the public. However, it is either difficult to access or unavailable in most cities in other 

countries, which limits the development of local UBEMs. 

Since a model LoD1 is composed of building footprints and heights, existing 

Geographic Information Systems (GIS) databases, which contain useful data for many 

 
1 CityGML, an international Open Geospatial Consortium (OGC) standard that provides an open 

data model to represent and exchange digital 3D models of cities and landscapes. 
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buildings in terms of their footprint, height, number of storeys, year of construction and 

type, can also be used to construct 3D models [20-21]. However, as these GIS databases 

are mainly owned by local governments, their availability may be restricted by data 

privacy and relevant data policies. 

The Light Detection and Ranging (LiDAR) technology is another method usable 

for constructing 3D geometry models. It typically utilizes laser light projected onto 

object surfaces and captures the reflected backscattering to generate 3D point clouds 

[22]. Upon 3D point clouds, a Digital Surface Model (DSM) representing the highest 

feature elevations, and a Digital Terrain Model (DTM) representing the bare-ground 

surface can be generated. Then, a normalized Digital Surface Model (nDSM), which 

provides a representation of the heights of above ground features, can be formed by 

subtracting the DTM from the DSM [23-24]. With the acquired nDSM, building 

footprints [25] and building heights [26] are capable of being extracted. To effectively 

use this method, it is essential to acquire reliable LiDAR data. Some agencies have 

provided these data for the public free of charge, however, their low resolution affects 

3D models’ accuracy [26]. Additionally, though some LiDAR data have high resolution 

[27], their availability and cost still need some concerns. 

The last method that has been used to generate 3D geometry models for cities is 

the oblique photogrammetric technology, which employs Unmanned Aerial Vehicles 

(UAVs) to generate colored point clouds with a number of aligned aerial images and 

then processes the generated point clouds into textured building models [28-30]. 

Innovative technology though it is, this method is somewhat limited in the application 
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of generating 3D geometry models for cities due to several reasons. The first is the high 

cost of equipment required. In addition, flying UAVs may be restricted due to airspace 

regulations varying from country to country. In some countries like China, it is 

challenging and even impossible for researchers without a specific permission to fly 

UAVs over an entire city district to take oblique photographs. Lastly, the limited 

controlling range of UAVs is a hindrance as well. 

The WWR data is also significant to 3D geometry models [8], however, its 

accurate determination is not an easy task. Since existing GIS databases hardly contain 

actual WWRs, researchers have to define WWR for all buildings under investigation, 

based on their knowledge, experience and judgement [11]. This practice may bring 

significant difference to exact conditions in terms of both solar heat gain and heat 

transfer loss [17]. 

As discussed above, existing methods creating 3D geometry models for UBEMs 

all have their limitations. To tackle these challenges, this study has developed a 

systematic approach acquiring building-relevant geometric data, namely building 

footprint, building height and WWR. The approach takes advantage of open-access data 

and Artificial Intelligence (AI) and does not require expensive equipment. Therefore, 

it provides researchers and practitioners with an innovative and effective method to 

create 3D geometry models for urban energy analysis using UBEMs.  

The structure of this paper is as follows: Section 2 describes the developed 

approach acquiring relevant geometric data of individual buildings; Section 3 evaluates 

the performance of the developed approach in terms of its accuracy; Section 4 
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demonstrates the use of the newly developed approach using on an actual urban district; 

Section 5 offers appropriate and critical discussions on the investigated subject, and 

finally, Section 6 summarizes the main findings from this study. 

2. Approach Development 

2.1.Building footprint determination 

High Resolution Remote Sensing (HRRS) images have been popularly to extract 

building footprint through clustering algorithms [31] and deep learning techniques [32-

33]. Although the method provides adequate accuracy and completeness, it is still 

hindered from broad application due to the high cost of acquiring HRRS images. 

In this study, two open data sources, namely Baidu Map (BDM) and 

OpenStreetMap (OSM), were used to determine footprints of buildings, following the 

process shown in Fig. 1, which includes three steps: 1) footprint extraction from BDM; 

2) footprint extraction from OSM, and 3) combination of BDM and OSM building 

footprints. In this process, the use of OSM is to supplement missing components from 

the BDM, which are mainly big shopping centers as they are shown in BDM as indoor 

scenes which are not downloadable for geometry determination [34]. 
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Fig. 1. Flowchart of building footprint determination. 

2.1.1. Footprint extraction from BDM 

BDM is a virtual map and geographical information program developed by Baidu 

Ltd, a major Internet company in China. In April 2010, Baidu announced that the API 

(Application Programming Interface) of BDM were open to the public for free. To use 

the API, users need to apply for one key in advance at [35]. The API creates maps based 

on URL parameters sent through a standard HTTP request and returns the maps as an 

image. Using the API, the “style” parameter, which defines the presentation of specific 

features, like roads, grasslands, rivers and building footprints, can be changed 

optionally within the map. Through a set of “style” operations to select the user-needed 

features, a styled map can be generated. Therefore, building footprints can be retrieved 

from styled maps by the API [36]. 

The building footprints were finally acquired in PNG format and BD-09MC2 

coordinate system through the API. Since the most commonly used format and 

coordinate system in geo-processing are SHP and WGS-843, respectively, it is necessary 

to conduct image vectorization and coordinate transformation. Image vectorization was 

realized through a series of automatic operations in ArcMap, a commonly used program 

to display and explore GIS data [37], including “Resample”, “Reclassification”, 

 
2 BD-09MC, or BD-09 Mercator, is a projected coordinate system which was produced by Baidu 

in 2009, mainly serving for Baidu Map. 

3 WGS-84, the abbreviation of World Geodetic System 84, is a universal geographic coordinate 

system which was defined in 1984. It is famous for the application of Global Positioning System 

(GPS). 
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“ArcScan” and “Simplify Polygon”. Among, “Resample” and “Reclassification” were 

the preparation for image vectorization, which were used to change the spatial 

resolution of input raster images and conduct binary processing, respectively. “ArcScan” 

was the key issue of this process that converted raster images into vector-based feature 

layers. “Simplify Polygon” was employed to remove redundant polylines and made 

vectored building footprints more simplified. Coordinate transformation was achieved 

by adjusting the coordinate system of vertices of building footprints, from BD-09MC 

to BD-094, then GCJ-025 and finally WGS-84. Fig. 2a displays the extracted building 

footprints in the WGS-84 coordinate system and SHP format, ready for further 

processing. 

2.1.2. Footprint extraction from OSM 

OSM is a free and editable digital map of the world. It is created, maintained and 

updated by a group of volunteers [38-39]. OSM is globally popular for its high shape 

accuracy and data update frequency [40]. However, its completeness varies 

significantly not only among countries, but also within countries [41]. The OSM digital 

map can be directly downloaded from its official website [42]. Then, the downloaded 

map in OSM format was transformed into SHP format through the website [43]. 

In OSM, there are four data layers, i.e., points, lines, multilinestrings and 

 
4 BD-09 is the corresponding geographic coordinate system of BD-09MC. It was adjusted from 

GCJ-02. 

5 GCJ-02 is a kind of geographic coordinate system which was adjusted from WGS-84 by National 

Administration of Surveying, Mapping and Geo-information of China in 2002. 
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multipolygons, with the Points layer referring to bus and train stations, the Lines and 

multilinestrings layers representing to highway and bus routes, respectively, and the 

Multipolygons layer denoting buildings and lands. To distinguish buildings from lands, 

three tags in multipolygons, namely building, office and shop, could be further specified. 

Therefore, if an object was linked with one of these three tags, it could be determined 

as a building. The building footprint extracted from OSM was in the WGS-84 

coordinate system, awaiting further geo-analysis. Fig. 2b illustrates a sample of 

building footprint extracted from OSM. 

2.1.3. The combination of BDM and OSM building footprints 

Comparing the image of BDM building footprints (Fig. 2a) with that of OSM (Fig. 

2b), it could be found that although most building footprints in the two images can 

match each other, there do exist some discrepancies (blue shows unique buildings 

produced from BDM; red shows unique buildings produced from OSM; green shows 

those buildings produced from both methods). Therefore, combining the information 

presented in both Fig. 2a and Fig. 2b would help to provide a more complete building 

footprint. Due to the characteristic of giving better completeness in building footprint 

[34], BDM was chosen as the base map, to which the extracted building footprints 

merely existing in OSM were added for final combination, as shown in Fig. 2c. This 

method can provide a good accuracy and this will be shown and discussed in Section 

3.1.  
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Fig. 2. Building footprint determination process (a: extracted building footprints from BDM; 

b: extracted building footprints from OSM; c: combination of a and b). 

2.2.Building height determination 

In this part, a systematic method with flexibility and low cost has been proposed 

for both residential and non-residential buildings. It follows the process shown in Fig. 

3. 
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 Fig. 3. Flowchart of building height determination. 

2.2.1. Deciding building types 

The height of residential buildings can be easily calculated by multiplying the 

number of storeys and the floor to floor height, as their floor to floor height is relatively 

fixed [44]. However, this phenomenon does not happen often for non-residential 

buildings. Therefore, it is of significance to distinguish residential buildings from non-

residential buildings, before deciding the building height. 

It is generally believed that the buildings within the boundary lines of residential 

communities are defined as residential buildings. Thus, as the precondition of 

determining residential buildings, it is necessary to acquire corresponding boundary 

lines. They can be acquired from BDM by the API in the BD-09MC coordinate system, 

which is of necessity to be transformed into the WGS-84 coordinate system for further 

use. Fig. 4a shows an example of residential buildings enclosed by corresponding 

boundary lines of residential communities. 

For those residential buildings not located in any residential communities, their 

identification was through Points of Interests (POIs), which were formed by 
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downloading the information of names, the number of storeys, longitude and latitude 

from commercial rental websites [34], and then generating points in ArcMap through 

“Display XY data”. The POIs were acquired in the BD-09 coordinate system, which 

would then be transformed to the WGS-84 coordinate system. As shown in Fig. 4b, the 

locations of acquired POIs could be divided into two: 1) those inside the boundary lines 

of residential communities, and 2) those outside boundary lines but linked with a 

building. These buildings (highlighted in green in Fig. 4b) are also residential buildings. 

Except all residential buildings highlighted in Fig. 4b, all remaining buildings are 

considered as non-residential buildings. 

 

Fig. 4. A sample of residential buildings determination (a: determination through boundary 

lines; b: determination through POIs). 

2.2.2. Height determination for residential buildings 

(1) Capturing storey numbers from POIs 

As discussed above, the information about the storey number was stored in POIs, 

which has been proven to have high accuracy [34]. The following step would capture 
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this information from POIs, and link them with building footprints. As the locations of 

POIs were divided into two kinds (inside and outside residential communities), and 

those buildings inside might have consistent storey number or not, the capturing method 

was developed into three types accordingly. 

• For those inside residential communities and have consistent storey number (POIs 

have only one kind of storey number), the boundary lines were used to form 

boundary polygons firstly in the ArcMap through “Feature to Polygon”. Then, the 

storey number was captured from POIs, transferred to boundary polygons and 

building footprints in communities sequentially using “Spatial Join”. Because it is 

an automatic process, it saves time for acquiring storey numbers. 

• For those inside residential communities with varying storey numbers (POIs have 

more than one kind of storey number), all buildings were checked manually to 

determine their storey numbers, based on the images from Baidu panoramic map 

[45], as shown in Fig. 5. Through the Baidu panoramic map, only a few buildings 

need to be visited on-site, hence reducing overall working time. 

• For those outside residential communities, the information was captured from POIs 

and then directly linked to their building footprints, because they are individual 

buildings. 
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Fig. 5. Example building images from the Baidu panoramic map. 

(2) Estimating floor to floor height 

In China, there are two main kinds of residential buildings, i.e. houses and 

apartments. Generally, the storey number for houses is no more than five floors, with 

floor to floor height between 3.5m and 4.0m. For apartments, the minimum storey 

number is usually six, with floor to floor height between 2.8m and 3.0m. According to 

this, a building’s floor to floor height (h in m) was determined by its storey number (N), 

acquired in the above session, using a tier-based algorithm with threshold set as five 

storeys, as defined in Eq. 1, 

ℎ = {
3.5,   1 ≤ 𝑁 ≤ 5

3.0，     𝑁 ≥ 6
                         (1) 

(3) Calculating height 

According to the floor to floor height and the number of storeys of each building, 

the i-th building’s height was finally calculated by Eq. 2, 

            𝐻𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡𝑖𝑎𝑙,𝑖 = ℎ𝑖 × 𝑁𝑖 = {
3.5 × 𝑁𝑖 ,   1 ≤ 𝑁𝑖 ≤ 5

3.0 × 𝑁𝑖 ,       𝑁𝑖 ≥ 6
              (2) 
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2.2.3. Height determination for non-residential buildings 

The storey number of non-residential buildings can be acquired through manual 

counting in the Baidu panoramic map as well. However, as their floor to floor heights 

are usually unfixed, the method developed in Section 2.2.2 cannot be used. On this 

occasion, another approach called building vertical edge method [46] was employed to 

estimate the heights of non-residential buildings. The method relies on Satellite Remote 

Sensing (SRS) images, and the building height equals to its vertical edge length in one 

SRS image (Fig. 6) multiplied by a ratio, as defined in Eq. 3 - 5. 

𝐻𝑛𝑜𝑛−𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡𝑖𝑎𝑙,𝑖 = 𝑅𝐻𝑆 × 𝐿𝑖                         (3) 

𝑅𝐻𝑆 =
1

𝑛
∙ ∑ 𝑅𝐻𝑆,𝑖

𝑛
𝑖=1                             (4) 

𝑅𝐻𝑆,𝑖 = 𝐻𝑖
∗ 𝐿𝑖

∗⁄                                (5) 

where Hnon-residential,i is the height of the i-th non-residential building (in m); Li is the 

vertical edge length of the i-th non-residential building (in m);RHS is the mean value 

of RHS,i; RHS,i is the ratio of the i-th representative building; Hi
 is the height of the i-th 

representative building (in m), and Li
 is the vertical edge length of the i-th 

representative building (in m). 

An advantage of this method is that in SRS images, building vertical edges are 

unlikely to overlap even in high-density urban areas containing many high-rise 

buildings. The SRS images can be acquired from the Google Earth free of charge, in 

the WGS-84 coordinate system [46]. However, as the Google Earth is not available in 

China, a free map integration software called LocaSpace Viewer (LSV) [47] has been 



17 

 

employed to call the Google Earth. The vertical edge lengths of both target and 

representative buildings were manually measured from SRS images using the function 

of “Measurement” in ArcMap. The heights of representative buildings, which could be 

either residential or non-residential, were obtained from relevant records, such as 

Information websites and government reports. Furthermore, it should be noted that the 

dimension of SRS images should be less than 50km, in both east to west direction and 

south to north direction, so that the RHS could be considered as a constant value [46]. 

Otherwise, a new RHS should be calculated. 

 

Fig. 6. Example building vertical edges in SRS images. 

2.3.WWR determination 

Accurate WWRs are usually difficult to acquire, especially at urban scale [11]. To 

quickly determine WWR for a large number of urban buildings with adequate accuracy, 
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an AI has been developed and trained, as shown in Fig. 7. 

 

Fig. 7. Flowchart of WWR determination. 

2.3.1. Algorithm of the AI 

The algorithm employed by the AI is the U-net, which was originally developed 

for medical imaging processing [48]. Its architecture consists of two parts, namely a 

contracting path and an expensive path. The contracting path follows the typical 

architecture of a convolutional network and is used for semantic segmentation [49], that 

is extracting a group of image pixels belonging to a distinct object or category. The 

expansive path is used for restoring corresponding image pixels. The U-net has very 

good performance on image segmentation applications, and it is suitable for small 

sample models, with reasonable training time [48]. 

2.3.2. Functional modules of the AI 

The AI consists of three main functional modules, namely RESIZE, SPLIT and 

CRF (Conditional Random Fields). RESIZE is for recognizing exterior walls in images 

containing a building elevation. SPLIT is for distinguishing windows from opaque parts 
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of walls. CRF is for repairing missing parts of either walls or windows caused by 

blocking obstacles, such as trees. The former two modules run for every building 

elevation image while the latter one only runs when a blocking obstacle is identified in 

the image. 

2.3.3. Training the AI 

After setting up the AI using the U-net framework, the next step was to train it to 

be able to recognize opaque walls and transparent windows in building elevation 

images. The training set was built with certain number of images containing various 

building elevations. The image selection was based on the following criteria: 

• Covering a broad range of building types and ages, wall types and window types; 

• Avoiding block from objects like trees, vehicles and other buildings. 

The chosen images for training the AI algorithm were then marked with pixel-

level precision, that is manually marking the walls and windows in the images as shapes 

containing a certain number of pixels. Although this operation seems to be time-

consuming and labor-intensive, it can be done speedily by an image mark-up software, 

called Colabeler [50]. Since the U-net framework requires identical format and size of 

input images, all images used for training were compressed or resized to 512x512 pixels. 

2.3.4. Predicting WWR  

After training, the AI was able to recognize all walls and windows from one 

building elevation image. Fig. 8 illustrates a building elevation image (8a) and the 

recognized wall (8b) and all windows (8c) by the AI algorithm. The area of walls and 
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windows were automatically calculated by the AI, and WWRs could then be acquired. 

   

(a)                       (b)                      (c) 

Fig. 8. Image recognition by the AI algorithm (a: original image; b: recognized wall; c: 

recognized windows). 

The images needed for all target buildings within a district or urban were collected 

by two different methods. One method was taken directly from the Baidu panoramic 

map – this work can be combined with the storey number counting for certain 

residential buildings and non-residential buildings, and another was taken manually on-

site, especially for those unavailable in the Baidu panoramic map. 

3. Evaluation and Analysis 

To test the approach developed in this study, the Nanjing City in China has been 

selected. It is the capital city of Jiangsu Province in China, and has over 8 million people, 

located in the Yangtze River Delta region. The administrative area of Nanjing is 

6,587km2, with urban built-up area of 1,399km2 in 2017 compared with 513km2 in 2005 

[51], representing its rapid urbanization. According to China’s climatic zoning [52], the 

local climate of Nanjing is categorized as ‘hot summer and cold winter’. In addition, 
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two Central Business Districts (CBDs) in the city, namely Xinjiekou CBD6 and Hexi 

CBD7, were employed for benchmarking building footprints in Section 3.1 and a case 

study in Section 4, respectively. Fig. 9 illustrates the geographic locations of Nanjing 

in China and the two CBDs in Nanjing. 

 

Fig. 9. The geographic location of (a: Nanjing; b: Xinjiekou CBD; c: Hexi CBD). 

To quantify the accuracy of the developed method, four error metrics were 

employed, namely Error (E), Relative Error (RE), Mean Absolute Error (MAE) and 

Root Mean Square Error (RMSE), which could be calculated as Eq. 6 - 9. 

𝐸(𝑋, ℎ) = ℎ(𝑥𝑖) − 𝑦𝑖                          (6) 

 
6 Xinjiekou CBD is one of the most famous business districts in China, with a history of more than 

one hundred years. It covers an area of 5.6 km2 and contains large numbers of banks and shopping 

malls. 

7  Hexi CBD has been an important national financial agglomeration area since 2008, which 

undertakes the function of finance, exhibition, culture and commerce. In addition, it is also the 

second largest CBD in East China. 
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𝑅𝐸(𝑋, ℎ) = (ℎ(𝑥𝑖) − 𝑦𝑖) 𝑦𝑖⁄                         (7) 

𝑀𝐴𝐸(𝑋, ℎ) =
1

𝑚
∙ ∑ |ℎ(𝑥𝑖) − 𝑦𝑖|𝑚

𝑖=1                      (8) 

𝑅𝑀𝑆𝐸(𝑋, ℎ) = √
1

𝑚
∙ ∑ (ℎ(𝑥𝑖) − 𝑦𝑖)2𝑚

𝑖=1                    (9) 

where h(xi) represents the acquired value, and yi denotes the true value. 

3.1.Building footprint 

To test the performance of predicting building footprint, the Xinjiekou CBD has 

been used, as it has a High Resolution Surveying Map (HRSM) produced in 2018 by a 

commercial mapping service corporation, so can be used as benchmark. Fig. 10 

illustrates the footprints of all buildings in the Xinjiekou CBD, both acquired from the 

HRSM and predicted by the method presented in Section 2.1. The following sections 

will analyze from completeness and shape accuracy, respectively.  

 

Fig. 10. Building footprints of the Xinjiekou CBD of Nanjing acquired from HRSM and those 

using the developed method, together with their comparison. 

(1) Completeness 
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The HRSM in Fig. 10 contained a total of 2,370 building footprints, and this 

number dropped to 2,334 when predicted by the method presented in Section 2.1, with 

a difference of 1.52% only, reflecting a high level of completeness. 

(2) Shape accuracy 

The two zoomed in images in Fig. 10 visually reflected that the method developed 

in this study could accurately reproduce the shapes of building footprints, as comparing 

with those from the HRSM. To quantitatively describe their accuracy, Fig. 11 and Fig. 

12 illustrate the distribution of errors of both building footprint area and perimeter.  

As shown in Fig. 11a, the top three errors of area were in the range of -60m2 and 

40m2, and the MAE and the RMSE were 28.47m2 and 40.05m2, respectively. From Fig. 

11b, it could be found that 54% (33% + 21%) of the acquired building footprints had 

relative errors of area between -5% and +5%. Additionally, 86% (33% + 21% + 23% + 

9%) of acquired building footprints showed relative errors of area between -10% and 

+10%. Overall, less than 15% of acquired building footprints had relative errors of the 

area, in terms of its absolute value, larger than 10%. 

When doing an error analysis for perimeter, the errors for most samples were 

between -10m and 5m (Fig. 12a). Moreover, both MAE (4.57m) and RMSE (6.90m) 

were thought acceptable, as the mean perimeter in this region was 162.95m, which was 

calculated by the ArcMap. As shown in Fig. 12b, more than 90% (94%: 16% + 55% + 

21% + 2%) of building footprints had them less than 10%, in terms of the absolute value. 

In conclusion, the acquired building footprints can well match the benchmark values 

from the HRSM, in terms of both area and perimeter. 



24 

 

 

(a)                                  (b)                        

Fig. 11. The error analysis of area of the acquired building footprints (a: the distribution of 

errors, as well as MAE and RMSE; b: the distribution of relative errors). 

  

(a)                                  (b)                        

Fig. 12. The error analysis of perimeter of the acquired building footprints (a: the distribution 

of errors, as well as MAE and RMSE; b: the distribution of relative errors). 

3.2.Building height 

To evaluate the accuracy of the building height determined by the method 

presented in Section 2.2, Energy efficiency evaluation reports of civil buildings in 

Jiangsu Province8 were employed, as they contain actual number of storeys, height 

 
8  Collected from multiple agencies in Jiangsu Province, i.e. government departments and 

architectural design institutes. 
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and WWR of some buildings (both residential and non-residential) in Nanjing. 

(1) Residential buildings 

In this test, one hundred residential buildings in Nanjing were randomly selected 

to estimate the accuracy of the method developed in Section 2.2.2, for acquiring height 

of residential buildings. Similar to the footprint, four error metrics were employed to 

quantify its accuracy. 

As shown in Fig. 13a, the errors of height were within a range of -6m and 5m, and 

most errors were between -2m and 2m. The MAE (1.77m) was low and the RMSE 

(2.61m) indicated that there was no significant exception in the acquisition process. 

From Fig. 13b, 58% (29% + 29%) of acquired building heights showed very low 

relative errors between -5% and 5%, and 87% (29% + 29% + 22% + 7%) of acquired 

building heights showed low relative errors, with absolute values less than 10%, 

indicating good prediction performance. 

 

(a)                                   (b)                       

Fig. 13. The error analysis of the acquired building heights for residential buildings (a: the 

distribution of errors, as well as MAE and RMSE; b: the distribution of relative errors). 
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(2) Non-residential buildings 

In Nanjing, 34 non-residential buildings, distributed within a region with a 

distance from east to west of 6.5km and a span from north to south of 8km, were 

selected to evaluate the performance of the method of acquiring height of non-

residential buildings developed in Section 2.2.3. The selection of the region meets the 

distance requirement of less than 50km for using building vertical edge method [46]. 

Firstly, four buildings in this region were selected as representative buildings to 

calculate theRHS, based on Eq. 4 - 5. The results are shown in Table 1. 

Table 1. The RHS andRHS of representative buildings.  

ID H (m) L (m) RHS RHS 

1 42.00 4.41 9.52 9.56 

2 195.40 20.39 9.58  

3 58.80 6.15 9.56  

4 144.80 15.12 9.58  

The heights were acquired from Energy efficiency evaluation reports of civil buildings in Jiangsu Province. 

Then, the vertical edge length of other 30 non-residential buildings were measured 

in a SRS image from the Google Earth, using the LSV, and their building heights were 

calculated by Eq. 3. 

Fig. 14a demonstrates the distribution of errors for acquired heights, showing that 

most non-residential buildings had errors between -4m and 8m, with the MAE of 5.06m 

and the RMSE of 7.09m. From Fig. 14b, over half predictions (53%: 40% + 13%) had 

very low relative error within the range of -5% and 5%, and 74% (40% + 13% + 13% 

+ 8%) of predicted building heights had low relative errors that were less than 10% in 
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terms of their absolute values. 

  

(a)                                  (b)                         

Fig. 14. The error analysis of the acquired building heights for non-residential buildings (a: 

the distribution of errors, as well as MAE and RMSE; b: the distribution of relative errors). 

3.3.WWR 

To decide WWRs, the AI algorithm mentioned in Section 2.3 was firstly trained 

with 150 elevation images collected in Nanjing city. Another 60 elevation images with 

accurate WWRs acquired from Energy efficiency evaluation reports of civil buildings 

in Jiangsu Province were then selected to validate the accuracy of the AI algorithm. 

Fig. 15a illustrates the distribution of errors, as well as the MAE (0.07) and the 

RMSE (0.09). It shows that most acquired WWRs were within the range of 0 and 0.05, 

followed by the range of -0.05 and 0, and the range of -0.1 and -0.05. When considering 

the relative errors (Fig.15b), it could be observed that 75% (18% + 22% + 25% + 10%) 

of acquired WWRs had moderate relative errors between -10% and +10%, with 47 % 

(25% + 22%) within the band of 5%. 
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(a)                                (b)                          

Fig. 15. The error analysis of the acquired WWRs (a: the distribution of errors, as well as 

MAE and RMSE; b: the distribution of relative errors). 

4. Case study 

Section 3 has well justified the usability and accuracy of the approach developed 

in this study. To demonstrate how to use it, the approach has been applied to the Hexi 

CBD (as shown in Fig. 9c), which is a newly developed urban district with an overall 

area of 4.5km2, and this section introduces some major results.  

From this practice, the geometric information of 400 buildings within the district 

was obtained, and Table 2 has listed the results of 10 typical buildings, including their 

footprint, height and the WWRs of different facades. 

Based on the geometric information collected by the approach, a 3D model of the 



29 

 

Hexi CBD was built up in Grasshopper, a plugin to the CAD environment Rhinoceros 

3D [18], as shown in Fig. 16a. In the model, 272 buildings were categorized as 

residential buildings, with the remaining 128 buildings categorized as non-residential 

buildings (Fig. 16b). 

 

Table 2. The geometric information of 10 typical buildings. 

ID 
Building 

footprint (m2) 

Building 

height (m) 
WWR_E WWR_W WWR_S WWR_N 

1 775.43 33 0.16 0.16 0.27 0.27 

2 485.43 17.5 0.17 0.17 0.38 0.38 

3 923.04 54 0.29 0.29 0.50 0.47 

4 982.86 21 0.18 0.18 0.36 0.36 

5 16217.12 16 0.25 0.16 0 0 

6 1295.52 144 0.88 0.88 0.88 0.88 

7 1880.80 54.7 0.61 0.58 0.69 0.60 

8 1434.89 175 1 1 1 1 

9 4008.93 122.7 0.39 0.55 0.66 0.70 

10 2611.70 176 1 1 1 1 

WWR_E, WWR in the East; WWR_W, WWR in the West; WWR_S, WWR in the South; WWR_N, WWR in the 

North. 
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Fig. 16. The 3D model and energy prediction results for the Hexi CBD (a: urban 3D 

modeling; b: type determination; c: energy simulation). 

Table 3 lists some statistical parameters for the 400 buildings in the Hexi CBD. 

From the Table, it could be observed that in the area under investigation, the mean 

building footprint area was 765.9m2 for residential buildings, and this value was smaller 

than the 2972.75m2 for non-residential buildings. The average building height was 

bigger than 40m (approximately 13 floors) for both residential and non-residential 

buildings, with a maximum value bigger than 120m (approximately 40 floors) for very 

tall buildings. Residential buildings showed bigger WWRs in south and north facades, 

comparing with the other two facades. This phenomenon, however, was not applicable 

to non-residential buildings, which had similar WWRs among facades. Because some 

non-residential buildings use glass curtain walls, their identified WWRs could reach 1. 

Table 3. Statistical parameters for the 400 buildings in the Hexi CBD. 
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 Residential buildings Non-residential buildings 

 Mean Max Min Mean Max Min 

Building footprint (m2) 765.90 4643.83 239.40 2972.75 32579.38 145.06 

Building height (m) 40.97 129 10.50 49.08 204 5 

WWR_E 0.18 0.51 0.01 0.49 1 0 

WWR_W 0.18 0.51 0.01 0.48 1 0 

WWR_S 0.39 0.86 0.18 0.48 1 0 

WWR_N 0.38 0.86 0.18 0.50 1 0 

WWR_E, WWR in the East; WWR_W, WWR in the West; WWR_S, WWR in the South; WWR_N, WWR in the 

North. 

The established 3D model can then be used for predicting building energy 

consumption at urban levels, using EnergyPlus, which is a global acknowledged 

simulation engine for building performance [53]. In fact, for accurate prediction of 

building performance, a 3D model, non-geometric data and weather data are all needed 

of being defined accurately [8]. However, in this study, the main purpose of this 

demonstration is to show how the established 3D model can help to do building 

performance simulation, but not producing accurate prediction results. Therefore, 

residential and non-residential buildings were merely set up using existing templates 

from ASHARE, for Apartment and Open Office, respectively [54]. And climate 

conditions were defined in the Typical Meteorological Year (TMY) file 

CHN_Jiangsu.Nanjing.582380_CSWD.  

Fig. 16c has depicted grouped buildings based on their simulated energy 

consumption levels. According to the simulation results, the total annual energy 

consumption within this district was found to be 3.15×108 kW·h, for heating and 
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cooling the buildings inside. This value can be used by energy-policy makers to decide 

the energy efficiency of the district [55-56]. Additionally, grouping of buildings 

according to their energy levels may guide development of district energy distribution 

solutions and optimization [57]. Thirdly, the predicted energy consumption levels of 

individual buildings could be compared with benchmark values provided by 

government, e.g. 50 kW·h/(m2·a) for residential buildings and 100 kW·h/(m2·a) for 

office buildings [58], to identify those buildings need energy improvement. According 

to the predicted results in Fig. 16c, the residential buildings in yellow, orange and red, 

and the non-residential buildings in orange and red need special attentions on energy 

renovation. 

According to existing studies, the 3D model developed here can also be used in 

other applications, such as Urban Heat Island (UHI) [59-61], zone ventilation [62-64], 

landscape planning [65-67] and flood prevention [68-69]. 

5. Discussions 

5.1.Applicability to large scale districts  

The approach introduced in this paper can be used for modeling hundreds or 

thousands of buildings, such as the cases of the Hexi CBD and the Xinjiekou CBD. 

However, it is still challenging of building up large-scale models targeting tens of 

thousands of buildings or even more. Main barriers include counting of storey number 

for residential buildings, measurement of vertical edge length for non-residential 

buildings, and image collection for WWR prediction, as all these tasks require some 
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manual efforts, which can be significant when the number of buildings under 

investigation is large. 

Fortunately, the urban 3D modeling is a one-time task. Once the model is 

established, it can serve a variety of purposes. Therefore, spending time, labor and 

resources to establish a complete 3D geometric model is worthwhile. Another 

observation is that many UBEMs reported merely employ hundreds or thousands of 

buildings [13-15], a scale that the proposed method is capable of handling. 

5.2.Applicability to world-wide cities 

BDM is confirmed to offer a fairly accurate and complete building footprint 

dataset in China. However, its applicability to cities outside of China has not been tested 

yet. Google Map is reported to have abilities to extract building footprints in some other 

countries [26]. Therefore, a mode of “Google Map + OSM” may work in the future. 

The method to acquire building heights for residential buildings has been tested in 

other parts of China and the results have suggested its usability, due to the availability 

of both community boundaries and POIs. However, the availability of these data may 

be different in other countries, due to factors like government policies and culture, and 

this has to be confirmed before the method is used in other countries. In addition, the 

sources, like Google Map and local websites, may be suitable replacements in these 

countries. Unlike residential buildings, the method developed for non-residential 

buildings is believed to be more applicable to world-wide cities. One of the reasons is 

that satellite images are nowadays widely available for most major cities in the world. 
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One can easily access these images via Google Earth and other similar service providers. 

For the method predicting building’s WWRs, it is independent on the city and 

country under investigation as long as building elevation images can be collected. 

5.3.Time and cost 

It does not take much time to acquire building footprints since downloading maps 

from the OSM and the BDM is fast (for thousands of buildings, no more than 15 

minutes). Some manual efforts are needed in the process such as coordinating 

transformation and image vectorization. However, even with this extra time needed, the 

overall process of acquiring building footprints is still fairly efficient. 

The time required for deciding the height of residential buildings is shared by two 

tasks. Task 1 is acquisition of boundary lines and POIs. For a model with thousands of 

residential buildings, this task although takes several hours to complete, but most work 

can be completed automatically. Task 2 is the manual counting of storey number, with 

an efficiency around 60 ~ 120 buildings/(hour·person). 

To decide the height of non-residential buildings, the measurement of the vertical 

edge length is relatively slow, as each building was measured three times to ensure their 

accuracy. The efficiency is tested as 30 ~ 60 buildings/(hour·person). 

A longer time is devoted to collecting images for predicting WWR. In one field 

practice, a team of five people completed on-site image collection for about 400 

buildings within 2 days (8 working hours a day). Thus, the efficiency is estimated as 10 

buildings/(hour·person). On this basis, we believe that the efficiency can still be 

improved in cases where some building elevation images are expected to be acquired 
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from the Baidu panoramic map. 

Regarding to cost, the proposed approach relies on openly accessible datasets. No 

special equipment and skills are needed, except computers and cameras. 

5.4.Accuracy and further improvements 

Although the accuracy of this approach has been justified in Section 3, there are 

still further possible improvements that can make the approach more accurate, 

summarized as followings:  

• It should be acknowledged that some residential buildings may be classified as non-

residential buildings mistakenly, as they belong to no residential communities or 

contain no POIs. Therefore, a method that can identify these residential buildings is 

needed in the future to improve the identification accuracy. 

• For height determination of residential buildings, year of construction can be 

employed as another variable in Eq. 1, as this value may be updated along with the 

development of relevant building design standards [70]. 

• Subjective determination of vertical edge length by human eyes may cause errors, 

and this process requires certain manual labour. Therefore, it is of great significance 

to employ AI technics to automatically extract the vertical edge length. In addition, 

as a test showed that the building vertical edge method also had good accuracy on 

residential buildings (20 samples, MAE: 1.51, RMSE: 3.33), the improved method 

that uses the AI may be applied to all building types. 

• For WWR determination, it is worthy of trying other AI algorithms to see the 

possibility of promoting accuracy on recognizing walls and windows, as well as 
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repairing those missing parts in elevation images.  

6. Conclusions 

3D models of buildings are fundamental for urban building energy modeling. 

However, in many countries, its establishment is limited to the existence of GIS 

databases or the access of existing GIS databases. Additionally, its establishment is also 

prevented by the availability of reliable LiDAR data, and the restricted use of flying 

UAVs. To tackle these issues, an innovative and convenient approach has been proposed 

in this study, which can acquire accurate geometric data about buildings, including their 

footprints, heights and WWRs.  

• The determination of building footprints is achieved based on data collected from 

two online platforms, namely, the BDM and the OSM. The former platform is used 

as the basis and the latter platform is used to provide missing buildings in the former 

one, especially shopping centers. The accuracy of this method has been validated 

and the validation results showed that the MAE and the RMSE for the area were 

28.47m2 and 40.05m2, respectively, and the values were 4.57m and 6.90m for the 

perimeter. In addition, more than 85% of acquired building footprints had absolute 

relative errors less than 10%. 

• The determination of building height is achieved for residential buildings and non-

residential buildings, separately. For residential buildings, the height is calculated 

by multiplying number of storeys and floor to floor height, with the number of 

storeys acquired from commercial rental websites and the floor to floor height 
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estimated according to the obtained number of storeys. For non-residential 

buildings, the building vertical edge measured on SRS images is employed to 

determine building height, based on the calculatedRHS of representative buildings. 

The accuracy of this method has been validated and the validation results showed 

that the MAE was 1.77m and 5.06m, and the RMSE was 2.61m and 7.09m for 

residential and non-residential buildings, respectively. Besides, 87% (residential) 

and 74% (non-residential) of acquired building heights had absolute relative errors 

less than 10%. 

• The determination of WWRs is automatically carried out by an AI algorithm 

consisting of three main functional modules, namely RESIZE, SPLIT and CRF, 

based on elevation images taken either onsite or from the Baidu panoramic map. 

The accuracy of this method has been validated and the validation results showed 

that 75% of acquired WWRs had absolute relative errors less than 10%, with the 

MAE of 0.07 and the RMSE of 0.09. 

To demonstrate the use of this method in real applications, a case study has been 

carried out for a newly developed CBD in Nanjing, with a total area of 4.5km2. Using 

the approach introduced here, a 3D geometric urban model has been developed for the 

district, with easily identified residential and non-residential buildings from all 400 

buildings. Additionally, the use of building energy simulation to all these buildings 

provided useful information about the energy demand from all buildings within the 

district to help policy makers optimize district energy performance. 

Lastly, possible future work directions from this study may include: 
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• Confirming the usability of some resources, such as Google Map and local rental 

websites, in other countries, as some resources used in this study are only available 

in China. 

• Developing the AI algorithm to automatically extract building vertical edge length 

to avoid potential errors by human eyes, as well as speeding up the process of 

measurement.  

• Developing more advanced algorithms for predicting WWR with better accuracy, 

and testing its usability in more cities. 
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