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Abstract. Geographic profiling, a mathematical model originally developed in criminol-
ogy, is increasingly being used in ecology and epidemiology. Geographic profiling boasts a wide
range of applications, such as finding source populations of invasive species or breeding sites
of vectors of infectious disease. The model provides a cost-effective approach for prioritizing
search strategies for source locations and does so via simple data in the form of the positions
of each observation, such as individual sightings of invasive species or cases of a disease. In
doing so, however, classic geographic profiling approaches fail to make the distinction between
those areas containing observed absences and those areas where no data were recorded.
Absence data are generated via spatial sampling protocols but are often discarded during the
inference process. Here we construct a geographic profiling model that resolves these issues by
making inferences via count data, analyzing a set of discrete sentinel locations at which the
number of encounters has been recorded. Crucially, in our model this number can be zero. We
verify the ability of this new model to estimate source locations and other parameters of practi-
cal interest via a Bayesian power analysis. We also measure model performance via real-world
data in which the model infers breeding locations of mosquitoes in bromeliads in Miami-Dade
County, Florida, USA. In both cases, our novel model produces more efficient search strate-
gies by shifting focus from those areas containing observed absences to those with no data, an
improvement over existing models that treat these areas equally. Our model makes important
improvements upon classic geographic profiling methods, which will significantly enhance
real-world efforts to develop conservation management plans and targeted interventions.

Key words: Bayesian parameter estimation; Dirichlet process; epidemiology; finite mixture model;
mapping; mosquito.

INTRODUCTION

Geographic profiling is a tool originally used in crimi-
nology in cases of serial crime such as murder, rape, or
arson, to find the most likely area(s) for the offender’s
anchor point(s) (usually a home, but sometimes a work-
place or relative’s home), using as input the locations of
crimes associated with that offender (Rossmo 2000). It is
designed to deal with cases of information overload,
where there are insufficient resources to deal with the
large numbers of suspects typical in investigations of

serial crime (for example, the Yorkshire Ripper enquiry
in the UK generated 268,000 names and 5.4 million vehi-
cle registrations [Doney 1990]).
In criminology, geographic profiling uses the spatial

locations associated with the crimes (e.g., victim encoun-
ter sites, body dump sites, weapon dump sites) to pro-
duce a three-dimensional probability surface that can be
overlaid on a map of the study area to produce a geo-
graphic profile. Suspects are prioritized according to the
height of their anchor point(s) on the surface (Rossmo
2000). Geographic profiling is widely used by law
enforcement agencies around the world (Rossmo 2012),
but more recently has been applied to cases in ecology
and epidemiology where spatial locations are associated
with sightings of an invasive species or an instance of an
infectious disease (Table 1). Geographic profiling boasts
a variety of successful applications from invasion biology
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(Stevenson et al. 2012, Papini et al. 2013, Faulkner et al.
2016, Cerri et al. 2020, Heald et al. 2019) to animal
behavior (Le Comber et al. 2006, Martin et al. 2009,
Raine et al. 2009, Faulkner et al. 2015), human–wildlife
conflict (Faulkner et al. 2018, Struebig et al. 2018), and
epidemiology (Le Comber et al. 2011, Verity et al. 2014,
Smith et al. 2015).
There are a number of geographic profiling models,

from the Criminal Geographic Targeting (CGT) algo-
rithm used in criminology (Rossmo 1993, Rossmo et al.
2014, Butkovic et al. 2018) to explicitly Bayesian models
(O’Leary 2009, 2010, Mohler and Short 2012) and, more
recently, the Dirichlet Process Mixture (DPM) model
(Verity et al. 2014, Faulkner et al. 2016). However, all
these models have one thing in common in that they use
point-pattern data only: a finite collection of longitudi-
nal/latitudinal points each associated with a single
instance of crime or sighting of an invasive species etc.
By considering count data, we can make an important

distinction between evidence of absence and absence of
evidence. In an ecological context, this might relate to
areas where traps were set but failed to catch any animals
and areas where no traps were set; in criminology,
between areas where crimes could have been committed
but were not and areas where no information was
recorded (such as outside a jurisdictional boundary); and
in epidemiology, between areas where people were tested
and found negative, and areas where no one was tested.
There are existing models in ecology that can use count

data to infer parameters of biological interest. For exam-
ple, spatially explicit capture recapture models aim to esti-
mate the underlying population density in a study area
given the locations of discrete traps with associated counts
(Borchers and Efford 2008, Chandler and Royle 2013).
These models even go so far as to estimate an individual’s
“activity center” a latent variable synonymous to “source
location” or “anchor point” used throughout geographic
profiling literature. These models, however, assume each
individual from a species is associated with its own unique
activity center of which are estimated from the data. The
DPM model however, does not assume this and is built to
deal with the complex problem of partitioning individuals
into spatial clusters of which each cluster is governed by a
single “source location” (Verity et al. 2014).

In ecology, it is often common for count data to exhi-
bit over-dispersion, that is, data stray from the assumed
equal mean and variance, a standard to those modeling
count data via some underlying expectation for a Pois-
son density. This over-dispersion can be caused by a
range of factors such as sampling, aggregation, environ-
mental variability or a combination of the above (Lindén
and Mäntyniemi 2011). As an alternative, count data
can be modeled such that variance in counts is a linear
or quadratic function of the mean (Ver Hoef and Boveng
2007). Hence some consideration is needed for over-dis-
persion when building a geographic profiling model that
makes inferences via count data.
In this study, we address the gap in existing geographic

profiling models by developing a fully Bayesian geo-
graphic profiling model for analyzing count data. We do
this by calculating the likelihood of a particular number
of crimes (or captures, or positive tests) at a given loca-
tion, which can include zero. In addition to including
count data in the model’s likelihood, we will demon-
strate how this leads to, for the first time, an estimation
of the expected population size over a search area and
time period. This is a parameter of consistent interest
spanning disciplines, from criminology, in estimating the
number of prostitutes or migrating fugitives (Rossmo
and Routledge 1990), to ecology, in estimating the popu-
lation size of many avian species (Royle 2004).
The performance of the new model is tested first by a

Bayesian analogue of a power analysis of simulated data.
We then demonstrate how this model can be expanded
to deal with over-dispersed count data, and test such a
model on a real-world data set in which we infer breed-
ing site locations of the mosquito Aedes aegypti, one of
the primary transmitters of Zika virus across the globe
(Hayes 2009, Hennessey et al. 2016). We investigate
model behavior when each search for bromeliad source
locations given (1) the DPM model using repeat point-
pattern data of traps yielding mosquitoes and (2) the
negative binomial model using the full count data,
including those with no encounters. The model excelled
when making inferences based on simulated and real-
world data; search strategies based on count data shifted
attention from those areas containing zeros, to those
containing no information.

TABLE 1. Terminology used in geographic profiling and species distribution models alongside joint terms adopted in this study.

Discipline and examples Event Encounter No encounter Source location Sentinel site

Ecology
Faulkner et al. (2016) Invasive

species
Capture Empty trap Nesting

location
Trap

Chandler and Royle (2013) Animal Observed
individual

Nothing
observed

Activity center Trap: single, multi-level,
proximity

Epidemiology
Verity et al. (2014) Disease

host
Positive test
result

Negative test
result

Source of
outbreak

Patient postcode

Criminology
Rossmo et al. (2014) Criminal Crime No crime Anchor point Potential crime site
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METHODS

A Poisson geographic profiling model

The Poisson model begins by assuming K sources, with
locations μk = (μx, μy) for k in 1:K drawn from some suit-
able prior distribution, F. Here we follow (O’Leary 2010)
in assuming that F is defined over a two-dimensional grid
of cells, allowing the prior probability mass to be defined
separately for each cell (for example, we often want zero
probability over water bodies). Next, we assume there is
some expectation, λt, on the number of events, both
encountered and unencountered, in the study area, where λ
is the expected number of events over the search area per
unit time and t is the time interval with which data were
collected. From this expectation we make a Poisson draw
to obtain the total number of events, N, in the study area.
Explicitly, an event is the existence of an invasive species, a
host of a disease or a criminal in our search area.
Each event originates from a single source with equal

probability 1/K, and the source from which event i origi-
nates can be written as ci in 1:K. The spatial location of
event i, denoted xi, is drawn from a dispersal distribution
centered on its source. Here we assume a bivariate Nor-
mal distribution with mean μci and variance σ2ci, and zero
correlation between dimensions. This is consistent with
previous geographic profiling studies that recognize the
probability of encountering an event is defined over two-
dimensional space as opposed to spatial capture recap-
ture models that consider a univariate half-normal dis-
tribution between source and event (Efford 2004).
Unlike the DPM model, we do not assume that every

event is encountered. Instead we assume that there are m
sentinel sites, denoted s j for j in 1:m, within the study area
and that events are only encountered if they fall within a
distance ρ from one of these sites. A sentinel site could
take on many forms as shown in Table 1, biologically,
these could refer to camera traps, hair snares, or bioa-
coustics (Royle et al. 2018). In this study, sentinel sites
can encounter any non-negative integer of events akin to
multi-catch traps in ecology (Borchers 2012), leading us
to our count data. We make the model fully Bayesian by
placing suitable priors on the remaining unknown quanti-
ties of interest. The complete model can be written
Likelihood

ci ∼Categorical 1=Kð Þ, for i¼ 1 :N,

xi ∼Normal μci ,I2σ
2
ci

� �
, for i¼ 1 :N,

nj ¼ xijdE xi,s j
� �

<ρ
� �

, for j¼ 1 :m,

Priors

μci ∼F , for ci ¼ 1 :K ,

σci ∼Log�Normal γ,δð Þ, for ci ¼ 1 :K,

N ∼Poisson λtð Þ

λ∼Gamma ζ,ηð Þ, (1)

where I2 is the two-dimensional identity matrix, and
dE(xi, sj) the Euclidian distance between points xi and sj.
When performing inference, we only have access to the
final counts nj at each of the m sentinel sites, and not the
raw data xi for i in 1:N.
Now we need to calculate the probability of the

observed nj given the parameters fμcig, fσcig and λt (the
likelihood). The probability that an event is observed is
equal to the probability that it falls within a distance ρ
of a sentinel site, which can be obtained by integrating
the dispersal distribution over the ball Bρ(sj) of radius ρ
centered on sj. In general, this integral will not have a
simple analytical solution, but under certain conditions
we can approximate the volume of integration by a cylin-
der centered on sj with radius ρ and height equal to the
dispersal distribution at the central point

PrðdE xi,s j
� �

<ρjμ,σ,ciÞ¼ ∬
Bρ s jð Þ

f BNðx,yjμci ,I2σ
2
ci Þdxdy,

≈ πρ2 f BN s j jμci ,I2σ
2
ci

� �
(2)

where fBN (sj|μ, I2σ2ci ) is the density of the bivariate
normal distribution at sentinel site j with mean μci
and covariance matrix I2σ2ci . The validity of this
approximation is explored in detail in Appendix S1.
The total probability of being detected by sentinel site j
can be obtained by averaging over all sources, leading
to the following expression, which we define as θj for
convenience

θ j≡Pr dE xi,s j
� �

<ρj μci

� �
, σcif g� �

¼ πρ2

K
∑
K

ci¼1
f BN s j jμci ,I2σ

2
ci

� �
:

(3)

Given a Poisson prior with rate λt is applied to the
total number of events N and that every event has the
same independent probability of being detected given by
Eq. 3, it follows that the probability of detecting nj
events at sentinel site j is independently Poisson dis-
tributed with rate λtθj. The likelihood is obtained by
multiplying this Poisson probability over all sentinel sites

Pr njλt,θð Þ¼
Ym
j¼1

λtθ j
� �nj e�λtθ j

nj !
: (4)

Here we assume the unit of time is the interval in
which the data were collected and thus set t equal to 1.
To account for potential over-dispersion in count data

we can alter the likelihood in (4) as follows. We adopt a
re-parametrized negative binomial density and introduce
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a dispersion parameter α such that count nj is drawn
from this density with mean λtθj and variance λtθj + α(λ
tθj)2 (Lindén and Mäntyniemi 2011). Under a negative
binomial model, the likelihood in Eq. 4 switches to

Pr njλt,θ,rð Þ¼
Ym
j¼1

Γ rþnj
� �
nj !Γ rð Þ

r
rþλtθ j

� 	r λtθ j

rþλtθ j

� 	nj

(5)

where r is equal to 1/α. A suitable prior for α is given by
a log-normal distribution similarly to σci to ensure α is
strictly positive. Finally, in addition to estimating an
independent σci per source, it is possible to alter the
expectation λtθj to estimate an independent expected
number of events for each source, λci , where λ = Σ λci .
The expected number of events at site j becomes

tθ j ¼ tπρ2 ∑
K

ci¼1
λci � f BN s j jμci ,I2σ

2
ci

� �
: (6)

The likelihoods in Eqs. 4 and 5 can then be altered
accordingly to accommodate independent λci .
The silverblaze package (Stevens and Verity 2021; see

Data Availability) uses the likelihoods in Eqs. 4 and 5
combined with the priors in Eq. 1 to estimate the
unknown parameters {μci}, {σci} and {λci} (for ci in 1:K)
in addition to α, under a negative binomial model, via
MCMC methods using a combination of Metropolis-
Hastings and Gibbs sampling. Details of the MCMC
steps can be found in Appendix S2. A full list of model
parameters can be found in Table 2.

Power analysis and model settings

We performed a Bayesian analogue of a traditional
power analysis by simulating data from the Poisson
model described in Eq. 1 and exploring the ability of the
model to infer the true parameter values. For the valida-
tion of the Poisson model, we explored the parameter
space similarly to Verity et al. (2014).
Source locations were generated uniformly at random

from a longitudinal and latitudinal extent of −0.2 to 0.0
and 51.45 to 51.55 respectively. The spatial prior F was
defined over a 100 × 100 grid whose extent matched the
same values as the source locations plus a 25% margin at
each limit (−0.25 to −0.05 and 51.425 to 51.575). This
led to a spatial coverage of 345.53 km2. The number of
sources K ranged from one to five, the true value of σci
was set to 1.5 km and the number of events N was Pois-
son distributed with rates 100, 1,000, and 10,000. For
the power analysis, note that each source shared the
same σci and λci (i.e., σ1 = σ2 . . . = σk and λ1 = λ2
. . . = λk). This was chosen for simplicity given the study
focused on the model’s ability to estimate source loca-
tions in place of independent dispersal and expected
number of events. Finally, the number of sentinel sites
was set to 25, 100, or 400 and they were distributed over
space either uniformly at random or as a grid.

To determine the correct number of source locations,
the Poisson model ran seven times, in each case search-
ing from one up to seven sources to allow for cases where
the model overestimates K. The most suitable value of K
was then chosen via the deviance information criterion
(DIC; Spiegelhalter et al. 2014). The DIC is a metric for
model comparison, used here to determine the best-fit-
ting number of source locations. Parameter estimates for
{μci}, {σci}, and {λci} were then pulled for the value of K
chosen by the DIC. These settings lead to 360 parameter
combinations, each of which were repeated 100 times
and results were averaged.
The log-normal prior on the dispersal σci was set as

either tight (standard deviation of one) or wide (stan-
dard deviation of 100). The gamma prior on λ was set
such that the mean was equal to the true rates (100,
1,000, or 10,000) and the standard deviation was either
the true rate or 1/10th of the true rate.
The burn-in and sampling period for the MCMC

chains were set to 5 × 104 iterations. Convergence of the
MCMC chains during burn-in were determined by
Geweke’s metric for single MCMC chain convergence
(Cowles and Carlin 1996). This was tested at multiples
of 1 × 104 iterations during burn-in. To ensure healthy
MCMC mixing, the new model utilized a Metropolis-
Hastings coupling step (see Appendix S2; Atchadé et al.
2011).
The success of a geographic profiling model is mea-

sured via a source’s hit score. This is defined as the area
searched before finding a source divided by the total
search area. Here our search strategy is defined by
starting at the location with the highest value on the

TABLE 2. Parameters adopted in the methods sections.

Parameter Definition

K the true number of source locations
μci the spatial location of source ci in 1 to K
F the prior on source locations
N the number of events in a search area
λt the rate of events in a search area in time t
(ζ, η) the shape and rate of the gamma prior on λ
xci the spatial location of event i, originating from

source ci
σci (km) the bivariate normal’s standard deviation centered

on μci
(γ, δ) the mean and variance of the lognormal prior on

σci
m the number of sentinel sites
ρ (km) the sentinel site radius
s j the spatial location of sentinel site j
nj the number of events encountered at sentinel site j
θj the height of sentinel site j on the mixture of

normal
Bρ(s j) the ball of radius ρ centered on sentinel site s j

fBN the density of the bivariate normal
α the over-dispersion parameter governing count

variance
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geographic profile and working downwards. To summa-
rize each simulation’s hit scores we make use of the Gini
coefficient, a metric developed in economics to describe
the wealth distribution of a country across the popula-
tion. In this context, we used it to describe the propor-
tion of source locations discovered over area searched,
where a coefficient of 1 corresponded to a perfect search
strategy and 0.5 to a random search. Although we chose
to represent the model’s ability through the Gini coeffi-
cient, we could have equivalently represented this using
the AUC, a metric commonly used in ecology. The Gini
coefficient is calculated by scaling the AUC and was cho-
sen for a clearer scale of model success ranging from 0 to
1 compared to the AUC that measures from 0.5 to 1
(Marcot 2012).

Mosquito surveillance data

Trap surveillance data from (Wilke et al. 2019) of the
mosquito Aedes aegypti in Miami-Dade County, Florida
were used to test the negative binomial model’s ability to
find breeding sites in ornamental bromeliads. Data con-
sisted of 124 traps with encounters per trap ranging from
0 to 1033. A total of 94 traps contained Aedes aegypti
and 30 did not. The average distance between an empty
trap and its nearest positive trap was 55 m with a stan-
dard deviation of 77 m. There were 51 ornamental bro-
meliad patches that were checked for immature stages of
mosquitoes where 30 contained Aedes aegypti larvae
and 21 did not (Wilke et al. 2018). Here, we considered
trap data recorded during 2017 to match the time period
bromeliad patches were surveyed.
Model priors were set as follows. For source locations,

the DPM model used a bivariate normal centered on the
mean of the surveillance locations with standard devia-
tion equal to the maximum distance between the data
and mean (Verity et al. 2014). The final surface was then
manipulated post-hoc to exclude the possibility of
source locations in the sea using a shape file (Faulkner
et al. 2018; shape file available online).8 The negative
binomial model used the same shape file for its prior on
source locations where each cell’s probability mass was
uniform on land and zero in the sea. For the dispersal
parameter σci, a diffuse prior was set for the DPM (mean
of 2.5 and standard deviation of 10). The same hyperpa-
rameters were used for the negative binomial’s prior on
σci in addition to a tight prior (standard deviation of 1)
to explore model behavior under different priors. These
priors conform to previous studies placing Ae. Aegypti
dispersal somewhere between 0 and 5 km (Service and
Place 1997, Gorrochotegui-Escalante et al. 2000). For
the negative binomial model, tight and diffuse log-nor-
mal priors were set for the expected number of events λ
(means of 1 × 106 and standard deviations of 1 × 105

and 1 × 106). The prior on α was also log-normal with
mean 1 and standard deviation 100.
To estimate the number of sources K, the negative

binomial model was run 25 times, in each case searching
for that specific number of sources, where the DIC was
again utilized to pick the most suitable value of K to
explain the data (Spiegelhalter et al. 2014). The DPM
model used five sampling chains, each with a burn-in
period of 5 × 102 iterations and a sampling period of
1 × 104 iterations. The negative binomial model ran for
5 × 104 burn-in and sampling iterations with conver-
gence checked at each multiple of 1 × 104 iterations dur-
ing burn-in (Cowles and Carlin 1996).

Software and data

The DPM, Poisson, and negative binomial models
were developed in R and C++ and implemented in the
Rgeoprofile (Verity and Le Comber 2021) and Sil-
verblaze (Stevens and Verity 2021; see Data Availability)
packages. In both cases, extensive documentation is
available for installation and implementation. Further-
more, the R scripts used to run the analyses described in
this manuscript in addition to the mosquito trap surveil-
lance data and bromeliad breeding sites are available in
Data S1.

RESULTS

Gini coefficients

The results of the Bayesian power analysis can be seen
in Table 3. There was a consistent decrease in power as
we increased the number of sources but an increase in
power given more sampling locations. Of the 360 param-
eter combinations, 278 (77%) reached a Gini coefficient
of 0.9 or higher. Table 3 also shows that a uniform site
configuration yielded a higher Gini coefficient more
often than a random layout (134 of 180 cases). Addition-
ally, tight priors on σci and λ in place of wide priors
yielded higher Gini coefficients in 94 and 116 of 180
cases, respectively.

Parameter estimation

The new model was also tested on its ability to return
the true number of source locations K, the true dispersal
σci and finally, the expected number of events λ. The new
model correctly fitted the true value of K in 57% of
cases, it fitted within 1 of the true value in 76% of cases
and within 2 in 88%.
The true σci value was set to 1.5 km. The model’s

average estimate for σci was 1.68 km (standard deviation
of 0.94). The prior on σci , the prior on λ, the expected
number of events λ, sampling strategy, number of
sources, and number of sentinel sites all significantly
affected the fitted value (ANOVA: σci prior F1, 35,640 =
229.10, P < 2 × 10−16; λ prior F1, 35,640 = 7.20,

8https://gis-mdc.opendata.arcgis.com/datasets/south-florida-
region/
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P = 0.01; expected events F2, 35,640 = 2841.77, P < 2 ×
10−16; sampling strategy F1, 35,640 = 224.98, P < 2 ×
10−16; sources F4, 35,640 = 394.54, P < 2 × 10−16; sentinel
sites F2, 35,640 = 735.24, P < 2 × 10−16). Of all the inter-
actions, the true expected number of events remained the
strongest variable that affected the fitted value of σci.
True λ values were set to 100, 1,000, and 10,000. The

model’s average estimates for λ were 118, 1,094, and
10,501 (with standard deviations of 34, 274, and 1,856,
respectively). Of the same list of variables, all signifi-
cantly affected the fitted value for the expected number
of events, with the exception of the number of sentinel
sites (ANOVA: σci prior F1, 35,640 = 332.40, P < 2 × 10−16;
λ prior F1, 35,640 = 1105.00, P < 2 × 10−16; expected events
F2, 35,640 = 4.092 × 105, P < 2 × 10−16; sampling strategy
F1, 35,640 = 98.27, P < 2 × 10−16; sources F4, 35,640 = 18.72,
P = 2 × 10−15; sentinel sites F2, 35,640 = 268.70, P < 2 ×
10−16). In the case of interactions, the strongest variable
that affected the fitted expected number of events was the
true expected number of events.

Mosquito surveillance data

The mosquito surveillance data and bromeliad
patches can be seen alongside the geographic profiles
created by the negative binomial and DPM models in
Fig. 1a and b. The DPM model determined 91 clusters
best described the data. Within the negative binomial
model, the DIC determined varying cluster numbers (be-
tween 2 and 18) dependent on the choice of parameter
priors (Fig. 2). Hit score percentages for the DPM
model ranged from 0.13% to 41.64% with an average of
11.12%. The negative binomial model’s hit scores per-
centages ranged from 1.95% to 69.00% with an average
of 21.27%. Under informative priors the negative bino-
mial model returned a dispersal σci value between 1.41
and 7.03 km (95% credible interval) whereas under less
informative priors estimates reached up to 22 km. Com-
paratively, the DPM model estimated σci between 9 and
10 m. The total expected population density of Aedes
aegypti was estimated between 3.64 to 28.28 million for
2017. The over-dispersion parameter α was consistently
estimated between 2.40 and 4.35.

DISCUSSION

In this paper we have constructed and validated a new
geographic profiling model that can distinguish between
an absence of evidence and evidence of absence. This
was done by taking as input count data into the model’s
likelihood of which can consist of locations associated
with no encounters.
Accounting for different information can lead to dif-

ferent search strategies. Sentinel sites with no encounters
drew us away from common search practices such as
looking near the spatial mean of observed data, a
method that is only effective when searching for a single
source location (Stevenson et al. 2012, Verity et al.

2014). In addition, this new information drew search pri-
ority away from those areas containing no encounters to
those with no information at all, compared to the DPM
model, where these areas were treated equally. An
assumption when using the DPM model is that perfect

FIG. 1. The geographic profiles in Miami-Dade County,
Florida, USA created by (a) the negative binomial model via
the 2017 mosquito count data under informative priors
(K = 14) and (b) the DPM model via repeat point-pattern data
(K = 91). Locations of bromeliad breeding sites are marked
with a cross (Wilke et al. 2018, 2019). Given the proximity
between positive and empty traps, some positive traps are only
visible in Fig. 1b.
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observations are made, meaning all events that occur
will be seen. This assumption is valid in studies where
the exact locations of events are recorded (Faulkner
et al. 2015, Smith et al. 2015, Struebig et al. 2018) but is
less suitable in those that adopt a sampling strategy
using sentinel sites (Faulkner et al. 2016).
We have shown via a power analysis and real-world

case study that the new model can estimate a variety of
parameters common to geographic profiling in addition
to new ones. It accurately estimated source locations,
dispersal σci and the number of source locations, K, in
addition to the newly fitted expected number of events,
λ, and over-dispersion parameter, α. Finally, it allows for
cases where σci, and λ vary from source to source.

The new model was able to identify source locations
efficiently, as was reflected in consistently high Gini
coefficients across parameter combinations. Average
Gini coefficients never fell below 0.5, the value associ-
ated with a random search strategy.
Estimating the number of sources in the new model

was less straightforward than in the DPM model. A
major strength of the latter is that it did not require us
to specify the number of source locations in advance. In
the new model, we ran the algorithm many times and
used the deviance information criterion (DIC) to find
the most appropriate number of source locations. This
process produced accurate results for simulated data but
was shown to produce different results dependent on
prior choice in the real-world case study. Here, combina-
tions of diffuse and informative priors indicated suitable
K values at 2, 14, or 18 (Fig. 2). Although a K value of 2
corresponded to the best DIC value, estimates of σci in
this case were up to 22 km. For a K value of 14, esti-
mates were much more sensible. The DPM model esti-
mated σci between 9 and 10 m. In both cases, each
model’s estimate for σci contradicted our prior beliefs
built from our biological understanding of Ae. Aegypti
dispersal. We therefore suggest careful consideration be
taken when building priors and advice from field experts
and collaborators is sought.
It would be naı̈ve to assume the number of sources fit-

ted by either models or the known number of breeding
sites reflects the true number of sources, of which could
consist of any body of stagnant water (Ramasamy et al.
2011). Given the ground truth about the true number of
sources is unknown, there is no way of evaluating the hit
scores of these hypothetical locations. We therefore sug-
gest that the number of source locations fitted by either
model play the role of a lower bound on the true value
of K. We also suggest future work could focus on migrat-
ing the new model to a nonparametric framework, simi-
larly to the DPM model, in place of estimating K by
running the model multiple times.
In this new model, we derived an expectation for the

number of events at each sentinel site. This was depen-
dent on the site radius ρ, expected number of events in
our search area λ, time the sentinel is left open (suscepti-
ble to events), and the site’s spatial location with respect
to sources.
The sentinel site radius ρ was kept constant through-

out our analyses to ensure the approximation in Eq. 2
was not erroneous (see Appendix S1). In our model, an
event was encountered by a single sentinel site only. This
was based upon whether an event fell within a site’s
radius. Should an event be encountered by two sites,
then we must have observed it at two distinct points in
time. The effect of the site radius is like that of time; the
larger the radius the more events expected at each site.
Here, the effect of time was not explored, rather its units
were set to the time interval in which data were collected.
As suggested in many studies (Rossmo 2000, Raine et al.
2009, Santosuosso and Papini 2018), a more accurate

FIG. 2. The deviance information criterion (DIC) for each
negative binomial model searching for K source locations under
different priors. The most suitable number of source locations
based on prior combination are marked with a diamond. Full
DIC values are displayed in the top panel with a zoomed ver-
sion on the bottom.
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geographic profiling model is one that considers tempo-
ral variability in the data to draw its inferences.
A sentinel site that encounters at least one event is

indicative of the presence of, for example, an invasive
species. The opposite, however, is not necessarily true for
a site that encounters nothing. If a sentinel site yields no
encounters, then either an event is not present in that
area or, it is, but the sentinel site failed to observe it. In
this study if an event fell within a sentinel site’s radius
then it was immediately encountered by that site. Detec-
tion probabilities are not always one and future studies
may investigate relaxing this condition. Furthermore, we
could adapt the observation model so that encounters
are not governed by a site radius, such as in (Chandler
and Royle 2013).
Collecting count data is common in ecology, for exam-

ple in spatially explicit capture–recapture models and
site occupancy models (MacKenzie et al. 2002, Kéry
et al. 2011, Royle et al. 2011, Chandler and Royle 2013).
The primary purpose of these models is to estimate
abundance, rather than, as here, the location of sources.
Spatially explicit capture–recapture models do treat
these source locations (known as “activity centers”) as a
latent variable but make differing assumptions about
their numbers. Instead of assuming each encountered
event is associated with a unique source, geographic pro-
filing aims to partition the count data into clusters and
finds the source location associated with each cluster.
The aim of this study was to build a model that esti-
mated source locations using count data, so the architec-
ture of the new model was built from the point of view
of historical geographic profiling models that consis-
tently focus on estimating this parameter.
In addition to count data, it is entirely possible for the

new model to utilize pseudo-absences in its inference
process (Barbet-Massin et al. 2012). By replacing
unsampled locations with pseudo-absences we would
expect the model to focus search priority entirely on
locations with positive data. However, this could be
accomplished by a suitably informed Bayesian prior on
source locations, such as the Miami-Dade coastline
shape file that was used to ignore locations in the sea.
Comparing the utility between a Bayesian prior and a
set of pseudo-absences both derived from habitat suit-
ability was not tested here but could be explored in
future work. Geographic heterogeneities have been con-
sidered in previous geographic profiling models such as
(Mohler and Short 2012). This is however, the first time
we see such information accounted for in a geographic
profiling model that can also estimate multiple numbers
of sources.

CONCLUSIONS

Our analyses and results have shown that a geographic
profiling model that utilizes count data can alter search
strategies when intervening in cases of species invasion,
outbreak of infection or crime by making the distinction

between evidence of absences in data and an absence of
evidence. In doing so, search strategies produced move
priority away from those locations containing absences
to those containing no information at all; a substantial
change over existing models that treat these areas with
equal search priority. Additionally, the new model intro-
duces the ability to estimate spatial dispersal and
expected population size unique to each source location
as well as the flexibility to a user to implement any spa-
tial prior desired. Different models should be used in dif-
fering circumstances dependent on the type of data to
hand. The DPM model should be used when data are in
point-pattern form (each location is associated with a
single instance of crime, an invasive species, or disease)
and the new model should be chosen when we have a list
of sentinel site locations and associated counts (bioa-
coustics monitors, cameras, or pitfall traps).
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