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Objectives: Survival extrapolation of trial outcomes is required for health economic evaluation. Generally, all-cause mortality
(ACM) is modeled using standard parametric distributions, often without distinguishing disease-specific/excess mortality and
general population background mortality (GPM). Recent National Institute for Health and Care Excellence guidance (Technical
Support Document 21) recommends adding GPM hazards to disease-specific/excess mortality hazards in the log-likelihood
function (“internal additive hazards”). This article compares alternative extrapolation approaches with and without GPM
adjustment.

Methods: Survival extrapolations using the internal additive hazards approach (1) are compared to no GPM adjustment (2),
applying GPM hazards once ACM hazards drop below GPM hazards (3), adding GPM hazards to ACM hazards (4), and pro-
portional hazards for ACM versus GPM hazards (5). The fit, face validity, mean predicted life-years, and corresponding
uncertainty measures are assessed for the active versus control arms of immature and mature (30- and 75-month follow-
up) multiple myeloma data and mature (64-month follow-up) breast cancer data.

Results: The 5 approaches yielded considerably different outcomes. Incremental mean predicted life-years vary most in the
immature multiple myeloma data set. The lognormal distribution (best statistical fit for approaches 1-4) produces survival
increments of 3.5 (95% credible interval: 1.4-5.3), 8.5 (3.1-13.0), 3.5 (1.3-5.4), 2.9 (1.1-4.5), and 1.6 (0.4-2.8) years for
approaches 1 to 5, respectively. Approach 1 had the highest face validity for all data sets. Uncertainty over parametric
distributions was comparable for GPM-adjusted approaches 1, 3, and 4, and much larger for approach 2.

Conclusion: This study highlights the importance of GPM adjustment, and particularly of incorporating GPM hazards in the
log-likelihood function of standard parametric distributions.
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Cost-effectiveness analyses for health economic evaluations
require estimating the difference in mean survival between
competing interventions. Nevertheless, because data from ran-
domized clinical trials (RCTs) are often immature at the time of the
economic evaluation (eg, for both arms median survival is not
reached), mean survival can only be estimated by extrapolating
survival beyond the follow-up of the trial."> Guidance by local
health authorities such as National Institute for Health and Care
Excellence (NICE), Pharmaceutical Benefits Advisory Committee,
and Canadian Agency for Drugs and Technologies in Health rec-
ommends extrapolating survival by fitting standard parametric
distributions to patient-level data.' It is important that the
considered distributions capture the hazard profile accurately,

within both the observed trial follow-up period and the long-term
extrapolation period. Therefore, recent NICE guidance (technical
support document [TSD] 21, November 2020) recommends
incorporating general population background mortality (GPM) in
survival models or using general population survival data to
examine the face validity of survival extrapolations.’
Incorporating GPM in survival models is especially important
beyond the observed follow-up period of the clinical trial. During
the trial, mortality is often predominantly disease-driven. There-
fore, standard parametric extrapolations of clinical trial data will
likely be disease-driven as well. During the extrapolation period,
there is an increase in GPM hazards as patients become older.
Therefore, GPM may explain a larger part of mortality than the
disease itself in the long term. Standard parametric distributions
based solely on the trial data may produce biased extrapolations
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and poor cost-effectiveness estimates. This bias is most apparent
among older populations, where the GPM hazards will rise owing
to age-related mortality, and in the study of diseases or treatments
with a large fraction of cured patients or long-term survivors,
where disease-specific hazards captured by the standard para-
metric models may decrease to zero. Extrapolations that are
purely trial-based are also problematic where the data are
immature, in which case the hazard produced by standard para-
metric models may drop below the GPM hazard, either in the trial
follow-up or in the extrapolation period.

To address these issues, Andersson et al® and the latest NICE
TSD (TSD21)° propose decomposing all-cause mortality (ACM)
into disease-specific/excess mortality (DSM) and GPM by adding
GPM hazards in the log-likelihood function of a parametric dis-
tribution. This approach has been referred to as “relative survival
modeling” or “excess mortality modeling.”>® We describe it as
modeling additive hazards “internally” and refer to it as “internal
additive hazards.” Within the extended likelihood function, mor-
tality unrelated to the disease is captured by GPM hazards and the
parametric function hazards capture DSM. To our knowledge, so
far, this method has not been applied in health technology
assessments.”

Additional extrapolation adjustments that explicitly account
for GPM are categorized by Jackson et al.” In the “converging
hazards” approach, patients have a higher initial mortality
compared to the general population, but this decreases until, at
some point, the mortality rate of the patient population converges
to GPM.”"'® In the additive hazards approach, GPM hazards are
added to the trial mortality hazards, implying that the disease-
specific patient population has a constant additive excess hazard
compared to the general population.”'>-?? Finally, in the propor-
tional hazards approach (also labeled as “standardized mortality
risk”), the hazard ratio between the patient and general pop-
ulations is constant over time.”?3-2°

All these approaches can be used to estimate mean survival
and are likely to produce different results. This is important for the
computation of the incremental cost-effectiveness ratio (ICER),
and thus for health technology assessment in general. The
objective of this article is to compare the outcomes from different
approaches, with and without GPM adjustment, to assess the
importance of adjusting for GPM. We investigate whether the
methodologies are appropriate for extrapolating survival in trials
with different levels of data maturity, patient populations (older
versus younger), and types of cancer (hematologic versus solid
tumor). In line with NICE TSD21 recommendations for future
research, we use a Bayesian modeling framework and incorporate
external GPM information to the analysis of RCT data.’ Five ap-
proaches are compared. Survival extrapolations under each
approach are assessed by comparing predicted mean (incremen-
tal) life-years and corresponding uncertainty, statistical fit, face
validity, and uncertainty over the use of different parametric
distributions.

We consider 2 published data cuts of an RCT in multiple
myeloma and 1 data cut of an RCT in patients with breast can-
cer.’%%8 These illustrate distinct types of scenarios, representing
different cancer types (hematologic versus solid tumor) and
different levels of data maturity. RCT data were used, because
this is typically submitted to health technology assessment
agencies.
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For the multiple myeloma data set, 2 overall survival data cuts
were available (30 and 75 months of follow-up), representing
immature (70%-80% alive at end of follow-up) and mature (30%-
40% alive at end of follow-up) data.>®?” In the multiple myeloma
phase 3 trial, 682 previously untreated patients, who were ineli-
gible for high-dose therapy plus stem-cell transplantation, were
randomized to receive melphalan and prednisone with or without
bortezomib. Median survival was not reached at 30 months (first
data cut) and was 56.4 in the bortezomib group versus 43.1
months in the control group at the 75-month data cut. The median
age was 71 years (range: 48-91), and approximately 50% of the
patients were male.

For the breast cancer data set, a mature progression-free sur-
vival data cut (64 months of follow-up with 10%-20% progression-
free at the end of follow-up) was available.?® In the breast cancer
trial, 808 patients with human epidermal growth factor receptor
2-positive metastatic breast cancer were randomized to receive
pertuzumab plus trastuzumab and docetaxel (pertuzumab group)
or placebo plus trastuzumab and docetaxel (control group). The
median age of the patients in the breast cancer trial was 54 years.

As individual patient-level data were unavailable for both of
these trials, survival data were reconstructed by digitizing the
published Kaplan-Meier curves using Engauge Digitizer.?° Subse-
quently, individual patient-level data were generated in R based
on the validated algorithm of Guyot et al.>° Figure 1 presents the
reconstructed Kaplan-Meier data for both trials. In Appendix
Figure 1 (see Appendix Fig. 1 in Supplemental Materials found at
https://doi.org/10.1016/j.jval.2021.03.008), the corresponding cu-
mulative hazards plots are presented.

In our analysis, GPM data were sourced from life tables of the
United States, which present the annual mortality rates observed
within the general population of the country.®! Appendix Figure 1
(in Supplemental Materials found at https://doi.org/10.1016/j.
jval.2021.03.008) presents the trial-specific GPM hazards, based
on the median age and the proportion of men and women within
the multiple myeloma and breast cancer trials.

The internal additive hazards approach®® (approach 1), which
decomposes ACM hazards into DSM and GPM hazards within the
log-likelihood function of the parametric model, is compared with
the use of parametric distributions; (2) without GPM adjustment;
(3) adjusted for GPM once the fitted parametric ACM hazards drop
below the GPM hazards (converging hazards);”"'® (4) where GPM
hazards are added to the fitted parametric ACM hazards (external
additive hazards);”'°-*? and (5) assuming proportional hazards for
ACM versus GPM (proportional hazards).”*>%

Table 1 presents the underlying hazard functions of the 5 ap-
proaches with and without GPM adjustment. The no GPM
adjustment approach does not consider GPM mortality, and
exclusively relies on the parameters of the standard parametric
distributions fitted to the patient-level trial data. The converging
hazards approach’'® has the following interpretation: patients
are modeled as “cured,” subject only to GPM, from the point at
which the fitted parametric ACM hazards drop below the GPM
hazards. The external additive hazards approach”'*-**> assumes
that the GPM hazards are negligible during the trial follow-up
period. In the extrapolation period, GPM hazards increase and
therefore only the extrapolation is based on the sum of GPM and
the fitted parametric ACM hazards. When the patient population
is older and GPM hazards are not negligible, this approach will
overestimate the probability of an event during the trial follow-up
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(A) Kaplan-Meier curves of the multiple myeloma data set (30-month data cut, overall survival). (B) Kaplan-Meier curves of the
multiple myeloma data set (75-month data cut, overall survival). (C) Kaplan-Meier curves of the breast cancer data set (progression-free

survival).
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period. In the proportional hazards approach,”**>*>° a hazard ratio

is estimated by comparing the ACM hazards of patients versus the
GPM hazards. In this approach, survival is extrapolated over a
lifetime horizon by applying the estimated hazard ratio to the
GPM hazards. This proportional hazards assumption requires
validation in different cancers and might not always be
appropriate.

For each of the tested approaches, 5 parametric distributions
are considered: the exponential, Weibull, log-logistic, lognormal,
and Gompertz distributions. These are widely used in survival
analysis and health economic evaluations and present diverse
hazard profiles. Specifically, they capture constant (exponential),
monotonic (Weibull and Gompertz), and unimodal (log-logistic
and lognormal) hazards over time.! The different hazard profiles
are expected to predict a diverse range of (incremental) mean life-
years.

The underlying hazard and survival functions of the parametric
distributions are specified in Table 2.

All survival analyses have been conducted from a Bayesian
perspective, in line with the NICE TSD21 recommendations for
future research.” All models were fitted using Hamiltonian Monte
Carlo in rstan®? (an R package that interfaces with the software

Stan®?), because Hamiltonian Monte Carlo is generally more effi-
cient for Bayesian modeling of time to event in the presence of
censoring.>* Specifically, we used 3 Markov chains, each with
5000 warm-up iterations and 10 000 total iterations for posterior
inference. On all modeled parameters, treatment coefficients were
added in the hazard functions to avoid proportionality re-
strictions. For all parameters, a priori noninformative normal
distributions with a mean of 0 and a standard deviation of 5 on the
natural logarithm of the parameter were applied (see Table 2).

The tested approaches were compared based on predicted
(incremental) mean survival and corresponding uncertainty
measures over a lifetime horizon (corresponding to 35 and 50
years for the multiple myeloma and breast cancer data sets,
respectively), statistical fit, face validity of the predictions, and
uncertainty over different parametric distributions. Additionally,
the survival extrapolations based on the 30-month multiple
myeloma data cut were superposed on the observed Kaplan-Meier
curve for the 75-month cut to evaluate the accuracy of each
extrapolation method.

The statistical fits to the observed data were compared based
on the Watanabe-Akaike information criterion (WAIC)>°> The
WAIC can be interpreted in the same way as the standard Akaike
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Hazard functions of the compared approaches.

1. Internal additive hazards®
t = time

hpsm(t) = parametric hazard (DSM)

hi(t) = hepm(t)+hpsm(t)

hepm(t) = GPM hazard

2. No GPM adjustment parametric
hazards”

ha(t) = hacm(t)
t = time

hacu(t) = parametric hazard (ACM)

3. Converging hazards®
t = time

hy(t) = parametric hazard rates (ACM)

hs(t) = IF[(hepm(t) > ha(t)), hopm(t), ha(t)]

hepm(t) = GPM hazard

4. External additive hazards®
t = time

hy(t) = parametric hazard rates (ACM)

h4(f) = hcp)\/l(t) +hy (t)

hepm(t) = GPM hazard

5. Proportional hazards®
t = time
HR = hazard ratio

hs(t) = hepm(t) X HR

hcp[vl(f) = GPM hazard

W 2021

The hazards (hy(t)) are the sum of the GPM
hazards (hgpy(t)) and DSM hazards
estimated by a parametric distribution
(hpsm(t))-

The survival extrapolations rely purely on
the hazards (h,(t)) derived from the
parametric distribution fitted on the trial
data.

The hazards (hy(t)) derived from the
parametric distribution fitted on the trial
data are applied until the GPM hazards
(hepm (t)) become higher than the estimated
hazards (hy(t)). From that point in time
onward, the GPM hazards are applied for the
survival extrapolations.

The hazards predicted by this approach
(h4(t)) consist of GPM hazards (hgpu(t))
added to the hazards (h;(t)) derived from the
parametric distribution fitted on the trial
data.

The hazards predicted by this approach
(hs(t)) are the GPM hazards (hcpm(t))
multiplied by a hazard ratio that represents
the excess mortality in the RCT versus the
general population.

ACM indicates all-cause mortality; DSM, disease-specific mortality; GPM, general population mortality; HR, hazard ratio; RCT, randomized controlled trial.

information criterion and the deviance information criterion (ie,
lower scores represent better goodness of fit to the data). All of
these criteria assess the fit over the observed period of the trial,
and do not help in establishing the accuracy of the extrapolation.
Because the WAIC is regarded as an improvement and preferred
alternative versus the deviance information criterion,>®° this
article is restricted to WAIC.

Face validity is defined in 2 ways: (1) in terms of the visual fit
of the survival models to the observed data; and (2) whether the
hazards predicted over time are in line with the expected long-
term survival of the disease under study, given background clin-
ical knowledge. Uncertainty is quantified by the 95% credible in-
terval of the predicted incremental life-years. Finally, the variation

in incremental survival over the different parametric distributions
(exponential, Weibull, lognormal, log-logistic, and Gompertz) is
assessed.

For each data set, the mean incremental life-years, the corre-
sponding interval estimates, and the WAIC values of the tested
approaches are presented in Table 3. In the supplementary ma-
terials, we present the visual fit (see Appendix Figs. 2-4 in Sup-
plemental Materials found at https://doi.org/10.1016/j.jval.2021.
03.008), long-term extrapolations (see Appendix Figs. 5-7 in

Parameterization of the exponential, Weibull, log-logistic, lognormal and Gompertz distributions.

Exponential S(t) = exp( — At) A A: rate A Mean=0,SD =5

t: time
Weibull B\ a4 o: shape «: Mean =0,SD =5
S(t) = exf’( - (3) > i 8: scale 8: Mean =0, SD = 5

t: time
Log-logistic S(t) = 1 . (5/‘1)({/0‘)‘1* a: scale a: Mean=0,SD =5
t g 6: shape B: Mean=0,SD =5

1+( = 1+(t/a) o

@ t: time
Lognormal log(t) @: standard normal u: Mean =0,SD =5
log(t) - ¢< ”) distribution o. Mean=0,SD =5

S(t) =1 @(M> Toa (i u: mean
at|1—® 0g(t) — g. standard deviation

c t: time
Gompertz «: shape «: Mean =0, SD =5
P S(t) = exp( - §<e"p<“t> - 1) f exp(at) 8: ate. 8: Mean =0, SD =5

t: time
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Mean incremental life-years of the compared approaches.

1 Internal
additive
hazards

Multiple
myeloma
(30
months)

1399.6 2.2 (0.5-3.8) 1399.6 4.3 (1.4-6.5)

2 No GPM
adjustment

1403.0 2.9 (0.6-5.6)

3 Converging
hazards

2.6 (0.6-4.6) 5.4 (1.6-7.7)

4 External
additive
hazards

1.7 (0.4-3.0) 3.4 (1.0-5.4)

5 Proportional No distribution: 1387.7 / 1.6 (0.4-2.8)

hazards

1 Internal 4029.6
additive

hazards

Multiple
myeloma
(75
months)

1.7 (0.8-2.6) 4029.8 1.6 (0.7-2.6)

2 No GPM
adjustment

4038.5 1.8 (0.7-3.1) 4038.0 1.7 (0.6-3.1)

3 Converging
hazards

1.7 (0.6-2.8) 1.7 (0.6-2.9)

4 External
additive
hazards

1.1 (0.4-1.9) 1.1 (0.4-1.9)

5 Proportional No distribution: 4013.4 / 1.2 (0.5-1.9)

hazards

1 Internal
additive
hazards

Breast
cancer
(64
months)

5155.6 0.9 (0.5-1.2) 5159.1 0.9 (0.5-1.3)

2 No GPM
adjustment

5155.9 0.9 (0.5-1.3) 5159.4 0.9 (0.5-1.3)

3 Converging
hazards

0.9 (0.5-1.3) 0.9 (0.5-1.3)

4 External
additive
hazards

5 Proportional No distribution: 5139.3 / 0.6 (0.4-0.9)
hazards

0.9 (0.5-1.2) 0.9 (0.5-1.3)

1403.1 7.6 (1.9-13.5) 1401.5 7.8 (2.7-12.5) 1397.6 8.5 (3.1-13.0)

1398.4 3.6 (1.3-5.5) 1395.0 3.5(1.4-5.3) 1401.7 7.3(0.5-9.4)

1404.8 20.3 (—3.1-24.9)

4.0 (1.6-6.0) 3.5(1.3-5.4) 7.1 (0.2 t0 9.3)
3.0 (1.1-4.6) 2.9 (1.1-4.5) 6.2 (—0.4 to 8.4)
4044.6 1.8 (0.8-2.7) 4068.6 2.1(1.0-3.2) 4020.3 0.9 (0.1-1.4)
4061.5 2.6 (1.0-4.4) 4094.7 3.4(1.5-5.5) 4028.6 0.8 (—0.1to 1.8)
1.9 (0.8-3.0) 2.1 (0.9-3.3) 0.8 (0.1 to 1.8)
1.3 (0.5-2.1) 1.5(0.6-2.3) 0.7 (0.1-1.4)
5095.6 1.3(0.7-2.0) 5120.0 1.3(0.7-2.0) 5141.1 1.2(-0.3to 3.0)
5095.4 1.6 (0.9-2.4) 51214 1.6(0.8-24) 51415 1.4(—1.4to 5.0)
1.5(0.8-2.2) 1.5(0.8-2.3) 1.3 (0.4 to 3.3)
1.3 (0.7-1.9) 1.3 (0.7-2.0) 1.2 (-0.3 to 2.9)

Bold values represent the best-fitting distributions (lowest WAIC scores) for each data set.
Crl indicates credible interval; GPM, general population mortality; WAIC, Watanabe-Akaike information criterion.

Supplemental Materials found at https://doi.org/10.1016/j.jval.2
021.03.008), and predicted hazards over time (Appendix Figs. 8
and 9 in Supplemental Materials found at https://doi.org/10.1
016/j.jval.2021.03.008) for each data set (see Appendix in Sup-
plemental Materials found at https://doi.org/10.1016/j.jval.2021.
03.008). Appendix Figure 10 displays extrapolations of the 30-
month multiple myeloma survival data superposed on the
Kaplan-Meier curve of the 75-month data cut (see Appendix
Fig. 10 in Supplemental Materials found at https://doi.org/10.1
016/j.jval.2021.03.008).

When comparing the 5 different parametric distributions, the
immature (30 month) multiple myeloma data set is best fitted by

the lognormal distribution in terms of WAIC. For the mature (75
months) multiple myeloma and breast cancer (64 months) data
sets, the best-fitting distributions are the Gompertz and log-
logistic, respectively.

Table 3 shows that, overall and for each of the survival distri-
butions individually, the incremental mean survival varies the
most for the immature multiple myeloma data set. For this data
set, the best-fitting lognormal distribution has an incremental
survival of 3.5 years (95% credible interval: 1.4-5.3) for the internal
additive hazards approach, 8.5 (3.1-13.0) for the no GPM adjust-
ment approach, 3.5 (1.3-5.4) for the converging hazards approach,
2.9 (1.1-4.5) for the external additive hazards approach, and 1.6
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(0.4-2.8) for the proportional hazards approach. Absolute life-
years are the highest for the no GPM adjustment approach (18.2
and 9.8 years for the active and control arms, respectively), fol-
lowed by the converging hazards approach (11.3 and 7.8 years),
internal additive hazards approach (9.9 and 6.5 years), external
additive hazards approach (8.9 and 6.0 years), and proportional
hazards approach (5.5 and 3.9 years) (see Appendix Fig. 5 in
Supplemental Materials found at https://doi.org/10.1016/j.jval.2
021.03.008).

Regarding face validity in terms of the fit to the observed data,
most approaches and distributions fit the data well. One exception
is the external additive hazards approach, which assumes GPM-
related mortality during the trial is negligible. As this is unlikely
in the 71-year old multiple myeloma data set, the approach un-
derestimates the observed Kaplan-Meier survival data of the 2
data cuts (see Appendix Figs. 2 and 3 in Supplemental Materials
found at https://doi.org/10.1016/j.jval.2021.03.008). In the breast
cancer data set, the underestimation is less appreciable, as the
patient population is younger (see Appendix Fig. 4 in Supple-
mental Materials found at https://doi.org/10.1016/j.jval.2021.03.
008). The other exception is the visual fit of the proportional
hazards approach to the breast cancer data set (see Appendix
Fig. 4 in Supplemental Materials found at https://doi.org/10.1
016/j.jval.2021.03.008), which suggests that the proportional
hazards assumption is not valid in this scenario.

Regarding the face validity of the predicted hazards beyond the
trial period, all predicted hazards are higher than those of the
general population for the internal additive hazards, the external
additive hazards, and the proportional hazards approaches (see
Appendix Figs. 8 and 9 in Supplemental Materials found at https://
doi.org/10.1016/j.jval.2021.03.008). The no GPM adjustment
approach is only considered face valid if the predicted hazards
remain above those of the general population. This is only the case
for the Gompertz distribution, when it models increasing hazards
for the control arm in both multiple myeloma data cuts and the
active arm in the 75-month data cut (see Appendix Figs. 8 and 9 in
Supplemental Materials found at https://doi.org/10.1016/j.jval.2
021.03.008). When the converging hazards approach was
applied to the immature 30-month multiple myeloma data set, the
lognormal hazards were set equal to the GPM hazard from a
certain point (6.0 and 11.0 years in the active and control arms,
respectively) (see Appendix Fig. 4 in Supplemental Materials
found at https://doi.org/10.1016/j.jval.2021.03.008). This induces a
sudden change from decreasing to increasing hazards (see
Appendix Figs. 8 and 9 in Supplemental Materials found at https://
doi.org/10.1016/j.jval.2021.03.008). This approach is not consid-
ered face valid in the multiple myeloma data set, because it im-
plies that extrapolated trial hazards fall below GPM hazards and
that patients could be considered cured. However, multiple
myeloma is still considered an incurable disease.*”

The predictions of the internal additive hazards approach are
face valid for each data set, both in terms of fit to the observed
data and predicted hazards beyond the trial period.

As expected, the uncertainty over the 5 different modeling ap-
proaches and the 5 parametric distributions varies the most in the
immature multiple myeloma data set (Table 3). For the lognormal
distribution, the incremental life-years’ credible interval has ranges
0f3.9,9.9,4.1, 34, and 2.4 years with the internal additive hazards,
no GPM adjustment, converging hazards, external additive hazards,
and proportional hazards approaches, respectively.

The uncertainty over different distributions is assessed by the
range of mean incremental life-years of the exponential, Weibull,
log-logistic, lognormal, and Gompertz distributions in Table 3. The
incremental life-years over the immature multiple myeloma data
set range from 2.2 to 73 for the internal additive hazards
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approach, from 2.9 to 20.3 for the no GPM adjustment approach,
from 2.6 to 7.1 for the converging hazards approach, and from 1.7
to 6.2 years for the external additive hazards approach. As the
proportional hazards approach is exclusively based on semi-
parametric Cox modeling, uncertainty over the different para-
metric distributions (eg, exponential, Weibull, etc.) is not assessed.

In Appendix Figure 10 (see Supplemental Materials found at
https://doi.org/10.1016/j.jval.2021.03.008), we superpose the 30-
month multiple myeloma survival extrapolations on the Kaplan-
Meier curve corresponding to the 75-month data cut. Visually,
the extrapolation produced by the proportional hazards approach
provides the best fit.

The results for the 5 tested approaches show that it is impor-
tant to adjust for GPM. The no GPM adjustment approach often
predicts survival exceeding that of the general population. As
expected, GPM adjustment is more crucial for extrapolations of
immature data than for those of more mature data. For the less
mature multiple myeloma data cut, the internal additive hazards,
no GPM adjustment, converging hazards, external additive haz-
ards, and proportional hazards approaches largely vary in out-
comes. As data are often immature at the time of health economic
evaluations, the variation in outcomes is likely to lead to large
variations in ICER and may influence reimbursement decisions.
Therefore, it is crucial to evaluate the robustness of outcomes
under different GPM modeling approaches.

This study assesses the outcomes, face validity, and uncertainty
quantification of different approaches, with and without GPM
adjustment, to decide which methodology to apply. No GPM
adjustment is only plausible when the extrapolated trial mortality
hazards are above the GPM hazards at all times. This may be the
case for cancers with increasing mortality hazards over time, in
which case there will be less fluctuation in the results of the tested
approaches.

On the contrary, survival outcomes will be more dissimilar for
indications with decreasing hazards over time. The converging
hazards approach is only appropriate if cure is clinically plausible
within an indication. If cure is plausible, mixture cure or non-
mixture cure models should be preferred.” The converging haz-
ards approach was applied in the health technology assessment
submission of liposomal cytarabine and daunorubicin for un-
treated acute myeloid leukemia, but the NICE committee recom-
mended the use of cure models instead.?

The external additive hazards approach is applicable in younger
populations, where the GPM hazard is low. Otherwise, the pre-
dicted survival of this approach will likely lie below the observed
trial overall survival. The methodology has been previously used
and accepted in the NICE health technology assessment submission
of blinatumomab in relapsed/refractory acute lymphoblastic leu-
kemia.' The patient population for this submission was relatively
young, 41 years old on average. Therefore, the external additive
hazards approach did not underestimate the observed trial mor-
tality and, simultaneously, corrected the long-term mortality ex-
trapolations for GPM. Alternatively, GPM hazards could also be
added beyond the trial period, but in older patient populations this
will then result in a sudden increase in the hazard and therefore an
instantaneous drop in the overall survival after the trial period.

Finally, the proportional hazards approach is only valid if the
proportional hazards assumption for ACM versus GPM holds and/
or is clinically plausible. This appears to be the case for the mul-
tiple myeloma data but not for the breast cancer data set, where
the provided extrapolations are not accurate. Therefore, it is
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crucial to validate whether the proportional hazards assumption is
clinically plausible. The proportional hazards approach may be
valid outside oncology, for instance in cardiovascular diseases.

The internal additive hazards approach is considered valid
for all data sets. In terms of the uncertainty quantification of
predicted life-years and the variation of results under different
parametric distributions, the performance of this methodology is
comparable to that of the other tested approaches.

In future research, the 4 approaches that adjust for GPM can be
applied to additional data sets to further investigate the general-
izability of our findings. The internal additive hazards approach
can also be extended to parametric survival network analyses*!;
other parametric distributions such as the generalized gamma;
and other, more advanced survival modeling methods such as
fractional polynomials, mixture models, piecewise models, and
spline-based models. Another potential extension of the internal
additive hazards approach involves applying stronger priors
informed by external information to improve the face validity of
long-term survival extrapolations.*> This is especially of interest
when the RCT data are very immature, for example, the median
survival time has not been reached for the standard-of-care arm.
Finally, in future research, the 5 approaches can be tested using a
simulation study with known disease-specific and general popu-
lation mortality.

In conclusion, different approaches for the inclusion of GPM
result in different estimates of (incremental) survival and uncer-
tainty. These findings are important as (incremental) survival is a
major driver of the ICER, which is the basis of many reimburse-
ment decisions. The internal additive hazards approach is
considered face valid for each data set and a potential new stan-
dard for survival extrapolations, albeit it may provide similar in-
cremental survival results than other GPM adjustment approaches
in some cases.

Supplementary data associated with this article can be found in the
online version at https://doi.org/10.1016/j.jval.2021.03.008.
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