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a b s t r a c t 

The assessment of the quality of synthesised/pseudo Computed Tomography (pCT) images is commonly 

measured by an intensity-wise similarity between the ground truth CT and the pCT. However, when using 

the pCT as an attenuation map ( μ-map) for PET reconstruction in Positron Emission Tomography Mag- 

netic Resonance Imaging (PET/MRI) minimising the error between pCT and CT neglects the main objective 

of predicting a pCT that when used as μ-map reconstructs a pseudo PET (pPET) which is as similar as 

possible to the gold standard CT-derived PET reconstruction. This observation motivated us to propose 

a novel multi-hypothesis deep learning framework explicitly aimed at PET reconstruction application. A 

convolutional neural network (CNN) synthesises pCTs by minimising a combination of the pixel-wise er- 

ror between pCT and CT and a novel metric-loss that itself is defined by a CNN and aims to minimise 

consequent PET residuals. Training is performed on a database of twenty 3D MR/CT/PET brain image pairs. 

Quantitative results on a fully independent dataset of twenty-three 3D MR/CT/PET image pairs show that 

the network is able to synthesise more accurate pCTs. The Mean Absolute Error on the pCT (110.98 HU ±
19.22 HU) compared to a baseline CNN (172.12 HU ± 19.61 HU) and a multi-atlas propagation approach 

(153.40 HU ± 18.68 HU), and subsequently lead to a significant improvement in the PET reconstruction 

error (4.74% ± 1.52% compared to baseline 13.72% ± 2.48% and multi-atlas propagation 6.68% ± 2.06%). 

© 2021 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

The combination of Positron Emission Tomography (PET) and 

agnetic Resonance Imaging (MRI) marked a significant event in 

he field of medical imaging, making it possible to simultaneously 
� This work was supported by an IMPACT studentship funded jointly by Siemens 

nd the EPSRC UCL CDT in Medical Imaging (EP/L016478/1). We gratefully ac- 

nowledge the support of NVIDIA Corporation with the donation of one Ti- 

an V. This project has received funding from Wellcome Flagship Programme 

WT213038/Z/18/Z), the Wellcome EPSRC CME (WT203148/Z/16/Z ), the NIHR GSTT 

iomedical Research Centre, and the NIHR UCLH Biomedical Research Centre. Tom 

ercauteren is supported by a Medtronic / Royal Academy of Engineering Research 

hair [RCSRF1819/7/4]. The project has further received funding from the Innovative 

edicines Initiative 2 Joint Undertaking under grant agreement no. 115952 (AMY- 

AD). This Joint Undertaking receives support from the European Union’s Horizon 

020 research and innovation programme and EFPIA h. 
∗ Corresponding author at: Department of Medical Physics & Biomedical Engi- 

eering, University College London, London WC1E 6BT, UK. 

E-mail address: kerstin.klaser.16@ucl.ac.uk (K. Kläser). 

h

p

d

t

T

a

u

2

P

t

a

r

ttps://doi.org/10.1016/j.media.2021.102079 

361-8415/© 2021 The Author(s). Published by Elsevier B.V. This is an open access article
xamine structural and functional characteristics of different tissue 

lasses ( Pichler et al., 2008 ) opening a way for many promising 

linical applications ( Torigian et al., 2013; Mader et al., 2020 ). In 

rder to perform accurate regional quantification, it is essential to 

orrect for photon attenuation of the whole imaging object (part of 

uman body), i.e. the surrounding hardware (patient bed and sup- 

lementary coils) included, during the PET reconstruction. In stan- 

alone PET scanners this information is usually obtained from a 

ransmission scan ( Meikle et al., 1995 ). 

In hybrid imaging systems that combine PET with Computed 

omography (CT), it is possible to determine the tissue attenu- 

tion coefficients ( μ) directly from the CT image as Hounsfield 

nits (HU) by using a bi-linear scaling method ( Burger et al., 

002 ). However, such direct mapping is particularly challenging in 

ET/MRI due to the missing correlation between MR image intensi- 

ies that are related to proton density and attenuation coefficients 

s opposed to the case when a CT image is available. While CT 

emains the clinically accepted gold-standard for PET/MR attenua- 
under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

https://doi.org/10.1016/j.media.2021.102079
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2021.102079&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.13039/100010661
mailto:kerstin.klaser.16@ucl.ac.uk
https://doi.org/10.1016/j.media.2021.102079
http://creativecommons.org/licenses/by/4.0/


K. Kläser, T. Varsavsky, P. Markiewicz et al. Medical Image Analysis 71 (2021) 102079 

t

o

o

o

H

n

d

t

t

t

o

m

t  

H

o

t

t  

e

s

o

2

M  

p

s

t

a

P

t  

t

m

p

t

b

t

q

M

H

t

C

t

n

t

s

i

s

t

m

t

e

m

i

H

t

m

a

C

s

t

t

i

 

a

s

Fig. 1. Top row: Ground truth CT, T1-weighted MRI, T2-weighted MRI. Bottom row: 

pseudo CT, absolute error between ground-truth and pseudo CT, and absolute error 

between PETs reconstructed using the ground-truth CT and pseudo CT for attenu- 

ation correction. Small and very localised difference in the CT lead to large errors 

in the PET image. We argue that algorithms should be optimising for PET residuals 

and not only for CT residuals when used for PET attenuation correction. 
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ion correction, it is desirable to generate accurate μ-maps with- 

ut the need of an additional CT acquisition. Hence, the concept 

f synthesising pseudo CT (pCT) images from MRs has gained a lot 

f attention in the field of PET/MR attenuation correction (MRAC). 

ofmann et al. pioneered in this field by combining pattern recog- 

ition and atlas registration methods and were the first to intro- 

uce the synonym pCT ( Hofmann et al., 2008 ). They later showed 

hat the combination of atlas registration and pattern recogni- 

ion resulted in better PET quantification compared to segmenta- 

ion based MRAC approaches ( Hofmann et al., 2011 ). The majority 

f PET/MR scanners currently employ segmentation-based MRAC 

ethods where pre-defined attenuation coefficients are assigned 

o different tissue classes ( Berker et al., 2012; Yang et al., 2017 ).

owever, this can be particularly challenging due to the difficulty 

f separating bone from air. Thus, one field of MRAC focuses on 

he development of special MR sequences that use ultra short echo 

ime (UTE) or zero echo time (ZTE) ( Roy et al., 2014; 2017; Delso

t al., 2017; 2018; Su et al., 2019 ). 

Recently, a multi-centre study ( Ladefoged et al., 2017 ) has 

hown that multi-atlas propagation methods ( Burgos et al., 2014 ) 

utperform methods that exploit emission data ( Salomon et al., 

010; Rezaei et al., 2012 ) or use assigned tissue classes ( Martinez- 

öller et al., 2009; Catana et al., 2010 ) in order to correct for

hoton attenuation. Multi-atlas approaches estimate tissue den- 

ity maps on a continuous scale by deforming an anatomical atlas 

hat consists of paired MR and CT images to match the subject’s 

natomy by using non-rigid registration. 

Since then, there has been a shift of emphasis in the field of 

ET/MR attenuation correction towards deep learning approaches 

hat have proved to be a powerful tool in the MR to CT image

ranslation task, outperforming state-of-the-art multi-atlas-based 

ethods ( Burgos et al., 2014 ). Many deep learning methods em- 

loy convolutional neural networks (CNN) that are able to cap- 

ure the contextual information between two image domains (as 

etween MR and CT) in order to translate one possible represen- 

ation of an image into another. Supervised learning settings re- 

uire a training dataset that comprises sets of input images (i.e. 

R) along with their corresponding target images (i.e. CT). In 2017, 

an presented a 2D Deep CNN that directly learns a mapping func- 

ion to translate a 2D MR image slice into its corresponding 2D 

T image slice ( Han, 2017 ) closely following the U-Net architec- 

ure, which has gained recognition in the deep learning commu- 

ity due to its strong performance in the field of image segmen- 

ation ( Ronneberger et al., 2015 ). More recently, Kläser et al. pre- 

ented a fully 3D deep CNN that generates pCT images recursively 

ntroducing a corrective network with shared parameters and deep 

upervision loss that reduces the residuals of an initial pCT predic- 

ion ( Kläser et al., 2018 ). 

These previous works make use of a popular method to opti- 

ise image translation networks by minimising the error between 

he predicted pCT and the corresponding ground-truth CT, which is 

quivalent to minimising the L 2 -loss. L 2 -losses are a sensible loss 

etric when the optimal pCT for PET reconstruction is the one that 

s in terms of intensity the closest to the target ground truth CT. 

owever, L 2 -losses do not recognise that the main aim of CT syn- 

hesis is to generate a synthetic CT that, when used as attenuation 

ap for PET reconstruction, makes the reconstructed PET as close 

s possible to the gold standard PET reconstructed with the true 

T. Also, due to their risk-minimising nature L 2 -losses ignore that 

mall local differences between the predicted pCT and the ground- 

ruth CT can significantly impact the reconstructed PET. An illustra- 

ion of this downstream impact in PET reconstruction can be seen 

n Fig. 1 . 

With the emergence of the cycleGAN in 2017 ( Zhu et al., 2017 ),

 lot of work has been done in the field of unsupervised pCT 

ynthesis. Unsupervised learning scenarios disregard the need of 
2 
aired data and the L 2 -loss. Wolterink et al. (2017) presented a 

NN in their work that minimises an adversarial loss to learn a 

apping fuction between MR and CT. This adversarial loss encour- 

ges the pCT to be indistinguishable from the ground-truth CT. 

n additional CNN aims to assure that the pCT corresponds to 

he actual input MR image. However, using a cycleGAN alone for 

CT synthesis does not automatically ensure that pCT and ground- 

ruth CT are structurally consistent. That means, that the recon- 

tructed MR image is almost identical to the input MR, however, 

he pCT is significantly different from the ground-truth CT. There- 

ore Yang et al. (2020) proposed a cycleGAN containing structural 

onstrains by minimising an additional structural consistency loss. 

n 2019, Jin et al. (2019) presented a method that tries to over- 

ome the lack of structural consistency of the cycleGAN by com- 

ining paired and unpaired data in order to reduce the errors in- 

roduced during the registration process of paired data. Hiasa et al. 

dapt the original cycleGAN approach to include a gradient consis- 

ency loss particularly aiming at improving the accuracy at bound- 

ries ( Hiasa et al., 2018 ). The original cycleGAN was used on 2D 

mages only, neglecting the axial spatial context. Gong et al. ex- 

ended the framework to work fully in 3D ( Gong et al., 2020 ). Tao

t al. propose to use a generative network that further contains 

esidual blocks and is trained in a conditional setting to assist the 

R-based AC process ( Tao et al., 2020 ). However, none of these 

ethods incorporated the information available in PET images. 

In contrast to synthesising pCT images as an interim step 

o correct for photon attenuation in PET images, attempts have 

een made to directly synthesise PET images from CT images. 

i et al. (2017) proposed an approach that produces pseudo 

ET (pPET) images by using a multi-channel generative adver- 

arial network. Their model utilises information from both man- 

ally annotated labels and CT images in order to directly syn- 

hesise pPETs with high uptake regions. These regions are con- 

trained by anatomical information derived by the CT. In 2018, 

en-Cohen et al. (2019) presented a model that combines a fully 
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onvolution network (FCN) and a conditional GAN that refines the 

PET generated by the FCN. Unlike previous methods, this method 

s fully automated and does not require manual annotation to syn- 

hesise PET images. However, thus far direct PET synthesis has only 

een performed from CT images with the aim of lesion or tu- 

or detection. Sikka et al. adapt the original 3D U-Net architec- 

ure to a global and non-linear cross-modal approach that esti- 

ates PETs from MR images directly ( Sikka et al., 2018 ). Hwang 

t al. combine the traditional maximum-likelihood reconstruction 

f activity and attenuation (MLAA) method ( Rezaei et al., 2012 ) 

ith deep learning in order to overcome the limitations of MLAA 

 Hwang et al., 2018 ). Yaakub et al. propose a method to synthe-

ise pseudo-normal PET images from MR images in a generative 

anner in order to identify regions of hypometabolism in PET im- 

ges of epilepsy patients ( Yaakub et al., 2019 ). The approach pre- 

ented by Dong et al. learns a pCT from a non-attenuation cor- 

ected PET image that is then used for PET/MR AC ( Dong et al.,

019 ). Arabi et al. attempt to perform direct attenuation and scat- 

er correction in image space on four different PET radiotracers. 

heir method attempts to imitate the PET reconstruction process 

y learning the relation between PET images attenuation corrected 

ith CT-derived AC maps and non-attenuation corrected PET im- 

ges, thus not requiring anatomical images ( Arabi et al., 2020; 

rabi and Zaidi, 2020 ). 

Other recent works such as ( Chartsias et al., 2018; 2019 ) at- 

empt to factorize images into spatial anatomical and non-spatial 

epresentations. They demonstrate that their method can not only 

e used to translate images but also for other medical image anal- 

sis tasks such as segmentation and regression. Joyce et al. also 

sed a factorized representation learning setting, which does not 

ely on labeled images anymore ( Joyce and Kozerke, 2019 ). 

To the best of our knowledge, all CT synthesis methods concen- 

rate on minimising the residuals of the predicted pCT. However, 

CT synthesis only represents an interim stage when intended to 

orrect for photon attenuation in PET/MR and thus creating an ad- 

itional space for likely introduced errors. The aim of this work is 

o directly minimise the PET residuals. This is achieved by intro- 

ucing a novel MR to CT synthesis framework that is composed 

f two separate CNNs. The first CNN synthesises multiple valid 

T predictions using Multi-Hypothesis Learning instead of a single 

CT only ( Rupprecht et al., 2017 ). An oracle determines the pre- 

ictor that generates the most correct pCT and only updates the 

eights with regards to the winning mode. This enables the first 

NN to specialise in predicting pCTs with distinct features (e.g. 

kull thickness, bone density). A second CNN then uses imitation 

earning in order to predict the residuals between ground-truth 

ETs and PETs reconstructed with each valid pCT. In this setting, 

he second CNN acts as a metric that predicts the pPET residuals. 

y minimising this metric loss, the network learns to synthesise 

CTs that will ultimately result in pPETs with lower residual error. 

This paper is an extension of our preliminary work 

 Kläser et al., 2019 ). We extend the framework to work in 

D, perform a five-fold cross-validation and add an additional 

alidation on a completely independent dataset. 

. Methods 

.1. Multi-hypothesis learning 

Given a set of input MR images x ∈ X and a set of output CT

mages y ∈ Y, the proposed image synthesis approach aims to find 

 mapping function f φ between the two image domains X and Y

f φ : X → Y with φ ∈ R 

n . (1) 

In a supervised learning scenario with a set of N paired train- 

ng tuples (x i , y i ) , i = 1 , . . . , N, we try to find the predictor f φ that
3 
inimises the error 

1 

N 

N ∑ 

i =1 

L ( f φ(x i ) , y i ) . (2) 

L can be any desired loss, such as the classical L 2 -loss. In the

roposed multi-hypothesis scenario, the network provides multiple 

redictions of valid pCT realisations: 

f j 
φ
(x ) ∈ ( f 1 φ(x ) , . . . , f M 

φ (x )) with M ∈ N . (3)

s in the original work for multi-hypothesis learning 

 Rupprecht et al., 2017 ), only the loss of the best predictor 

f 
j 

φ
(x ) will be used during training following a Winner-Takes-All 

WTA) strategy, i.e. 

 ( f φ(x i ) , y i ) = min j∈ [1 ,M] L ( f j 
φ
(x i ) , y i ) . (4)

his way the network learns M modes to generate pCTs, where 

ach mode specialises on specific features. 

.2. Imitation learning 

Following the hypothesis that the L 2 -loss is not optimal as a 

oss metric for pCT synthesis when used to correct for attenuation 

n PET/MR because of its risk minimising nature (e.g., the sinus re- 

ion which is dark in T1-weighted MRI can be mapped to air or 

o bone but not to any value in between Cardoso et al., 2015 ), we

ropose to train a second CNN aiming to minimise subsequent PET 

esiduals. This network approximates the function 

 ψ 

: Y, ˜ Y → Z with ψ ∈ R 

n , (5) 

y taking ground truth CTs ( y i ) and pCTs ( f 
j 

φ
(x i ) ∈ 

˜ Y ) as inputs.

ere, Z is a set of error maps between the ground truth PET and 

he pPET that was reconstructed (as in Section 3.4 ) with each of 

he M pCT realisations as μ-maps. In other words, this second CNN 

earns to predict the PET reconstruction error from an input CT- 

CT pair, thus imitating, or approximating, the PET reconstruction 

rocess. This imitation CNN is trained by minimising the L 2 -loss 

etween the true PET uptake error z and the predicted error ˜ z , i.e. 

 2 = || z − ˜ z || 2 . (6) 

Lastly, we use this second CNN as a new loss function for the 

rst CNN and minimise the Root Mean Squared Error (RMSE), as 

t provides an approximate and differentiable estimate of the PET 

esidual loss. Thus, the loss minimised by the first CNN is defined 

s 

L ( f φ(x i ) , y i , z i ) = min j∈ [1 ,M] L ( f j 
φ
(x i ) , y i ) 

+ min j∈ [1 ,M] [ g ψ 

( f j 
φ
(x i ) , y i ) , z i ] . 

(7) 

.3. Proposed network architecture 

The proposed network architecture presented in Fig. 2 is trained 

n three distinct phases. In the first stage, a HighRes3DNet ( Li et al.,

017 ) with multiple hypothesis outputs is trained minimising an 

 2 -WTA loss in order to generate different pCT realisations ( Fig. 2 

ellow solid box). In the second stage, the weights of the first net- 

ork are frozen and a second instance ( Fig. 2 purple dashed box) 

f HighRes3DNet is trained. This second network learns to pre- 

ict the residual between the PET reconstructed with the true CT- 

erived μ-map and the pPET that was reconstructed using the μ- 

ap derived from each pCT to correct for attenuation. This way the 

etwork learns the mapping between pCT residual and subsequent 

PET reconstruction error. Note, that the network was trained on 

econstructed PET images (see Section 3.4 ). In the final stage, the 

rst network is retrained with a combination of the CT L 2 -loss and 

he proposed metric loss in equal proportions. Thus the network 

inimises both the CT residual and the pPET reconstruction error. 



K. Kläser, T. Varsavsky, P. Markiewicz et al. Medical Image Analysis 71 (2021) 102079 

Fig. 2. Yellow solid box: semantic regression. A first CNN ( Net 1 ) with MR images as inputs predicts multiple valid pCT realisations by minimising a combination of the 

L 2 -loss between true CT and pCT ( L 2 -loss CT) and a learned metric loss ( L 2 -loss IL). In the first training stage only L 2 -loss CT is considered and L 2 -loss IL is weighted to 

zero. Purple dashed box: imitation network. A second CNN ( Net 2 ) with pCTs and corresponding CTs as input predicts the residuals between PET reconstructed with true 

CT-derived μ-map and pPET reconstructed with pCT as μ-map by minimising L 2 -loss PET. The training of semantic regression and imitation network is performed in three 

separate stages. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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.4. Implementation details 

During the training stage subvolumes of size 56 × 56 ×
6 pixels were randomly sampled from the input data (T1- and T2- 

eighted multi-channel input) due to a limited GPU memory bud- 

et. Those patches were augmented by randomly rotating each of 

he three orthogonal planes on the fly by an angle in the interval of 

10 ◦, 10 ◦]. Further augmentations on the MR data included random 

caling by a factor between 0.9 and 1.1, random bias field augmen- 

ation of all three planes and random noise in a range between 

0 SNR and 25 SNR. We performed a five-fold cross-validation, 

here for each fold the data were split into 70% training, 10% val- 

dation and 20% testing data. All training phases were performed 

n a Titan V GPU with Adam optimiser ( Kingma and Ba, 2014 ).

ithin the first training stage a model was trained for 50k iter- 

tions with a learning rate of 0.001. The network of the second 

raining stage learning to minimise the pPET reconstruction er- 

or was trained for 500k iterations with a learning rate of 0.001. 

ithin the final training stage a complete model was trained for 

00k iterations minimising a combination of the proposed losses 

ith a learning rate of 0.001 before decreasing the learning rate by 

 factor of 10 and resuming training until convergence. The frame- 

ork was implemented in NiftyNet, an open-source TensorFlow- 

ased CNN platform for research in the medical image analysis do- 

ain ( Gibson et al., 2017 ). 

. Experimental datasets and materials 

.1. Training dataset 

The experimental dataset used for training and cross-validation 

onsisted of twenty pairs of brain MR, CT and 

18 F-FDG PET im- 

ges. All 20 subjects were scanned on a 3T Siemens Magneton Trio 

canner and T1-weighted (3.0 T; TE/TR/TI,2.9 ms/2200 ms/900 ms; 

ip angle 10 ◦; voxel size 1 . 1 × 1 . 1 × 1 . 1 mm 

3 ) and T2-weighted

3.0 T; TE/TR, 401 ms/3200 ms; flip angle 120 ◦; voxel size 1 . 1 ×
 . 1 × 1 . 1 mm 

3 ) volumetric scans were acquired. PET/CT imag-

ng was performed on a GE Discovery ST PET/CT scanner provid- 

ng CT images (voxel size 0 . 586 × 0 . 586 × 2 . 5 mm 

3 , 120 kVp,
4 
00 mA) and reconstructed PET images (voxel size 1 . 95 × 1 . 95 ×
 . 27 mm 

3 ). 

.2. Independent validation dataset 

In order to validate the proposed method on a completely in- 

ependent dataset twenty-three subjects were scanned on a GE 

iscovery 710 PET/CT scanner providing CT images (voxel size 

 . 367 × 1 . 367 × 3 . 27 mm 

3 , 140 kVp, 10 mA) and recon-

tructed 

18 F-FDG PET images ( 1 . 0 × 1 . 0 × 3 . 27 mm 

3 ). The

3 subjects were then scanned on a Siemens Biograph mMR 

ET/MR immediately after. T1-weighted images were acquired us- 

ng a three-dimensional magnetisation-prepared rapid gradient- 

cho (MP RAGE) sequence ( Brant-Zawadzki et al., 1992 ) (3.0 T; 

E/TR/TI,2.63 ms/170 0 ms/90 0 ms; flip angle 9 ◦; voxel size 1 . 1 ×
 . 1 × 1 . 1 mm 

3 ). Three-dimensional isotropic T2-weighted images 

ere acquired with a fast/turbo spin-echo sequence (SPACE) (3.0 T; 

E/TR, 383 ms/2700 ms; flip angle 120 ◦; voxel size 1 . 3 × 1 . 3 ×
 . 3 mm 

3 ). 

.3. Database processing 

For each subject in the training database, MRs and CTs were 

ffinely aligned using a symmetric approach ( Modat et al., 2014 ) 

ased on Ourselin et al. (2001) followed by a fully affine reg- 

stration in order to compensate for possible gradient drift in 

he MR images. We then performed a very low degree of free- 

om non-rigid deformation in order to compensate for different 

eck positioning before implementing a second non-linear regis- 

ration, using a cubic B-spline with normalised mutual informa- 

ion ( Modat et al., 2010 ). For the purpose of this work, the data

ere resampled to the original Siemens Biograph mMR PET res- 

lution of 344 × 344 × 127 voxels with a voxel size of approxi- 

ately 2 × 2 × 2 mm 

3 . We extracted two masks for evaluation 

urposes, a head mask from the CT and a brain mask from the T1- 

eighted MR image. The head mask was generated by threshold- 

ng the CT at 500 HU thus excluding the background from the per- 

ormance metric analysis. The additional brain mask was extracted 

rom the T1-weighted MR image to exploit the radionuclide uptake 
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Fig. 3. PET simulation: a PET forward projection is applied on the μ-map trans- 

formed CT to obtain attenuation factor sinograms. Similar forward projection is ap- 

plied to the original PET to obtain simulated emission sinograms. Final pPETs are 

reconstructed from simulated emission sinograms using pCT derived attenuation 

maps. 
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n the brain region only. We reconstructed three PETs with each of 

he multi-hypothesis pCTs (here denoted as pPET) in order to train 

he imitation CNN, resulting in a total of 60 pCT/pPET pairs. CT 

nd MR images within both datasets were linearly rescaled to be 

etween 0 and 1 as it has been found to increase stability during 

raining. PET images were used in their original intensity range. 

.4. PET reconstruction 

3D PET images were reconstructed using NiftyPET, an open- 

ource package for high-throughput PET image reconstruction 

 Markiewicz et al., 2018 ). We did not have access to the raw PET

ata and therefore the following simulation was performed (see 

ig. 3 ): attenuation factor sinograms were generated by forward 

rojecting the μ-map transformed versions of each pCTs. Simu- 

ated emission sinograms were acquired using a similar forward 

rojection applied to the original PET images. The simulated emis- 

ion sinograms are then attenuated through element-wise multi- 

lication with the attenuation factor sinograms. We then recon- 

tructed the resulting sinograms with the original CT-based μ-map 

n order to obtain a reference image. In the same manner, recon- 

truction was performed using the μ-maps derived from each pCT. 

. Validation and results 

In a first experiment, we evaluated the use of two sampling 

chemes to synthesise multiple pCT realisations: test-time Monte- 

arlo (MC) dropout ( Gal and Ghahramani, 2016 ) versus multi- 

ypothesis learning. The results are demonstrated in Fig. 4 . The in- 

ensities of pPETs reconstructed with a μ-map from the pCTs gen- 

rated with MC dropout show an artificially low variance, whereas 

he intensities of pPETs reconstructed with the pCTs synthesised 

ith the proposed multi-hypothesis model provide a wider dis- 

ribution. In order to investigate the accuracy of the predictions, 

e calculated the Z -score of the ground-truth PET with regards 

o each sampling scheme to demonstrate the relationship between 

he mean data distribution and the ground truth PET. Fig. 4 -Right 

resents the per pixel Z -score defined as 

PET − μ( pPET 

M ) 

σ ( pPET 

M ) 
, (8) 

here μ( pPET M ) and σ ( pPET M ) are the per-pixel average and per 

ixel variance over M pPET samples respectively. Results show 

hat a significantly lower Z -score can be found in the brain region 
5 
or the multi-hypothesis model compared to when MC dropout is 

sed. This means that the multi-hypothesis-based PET uncertainty 

oes encompass the true PET intensity more often than the com- 

eting MC dropout method. 

Following the results of the first experiment, we trained a fully 

D model on the first dataset (see Section 3.1 ) and performed a 

ve-fold cross-validation. Qualitative results are presented in Fig. 5 . 

he first column shows the true CT image (top), a pCT synthesised 

ith the HighRes3DNet chosen as baseline method (middle) and 

 pCT synthesised using the proposed imitation learning (bottom). 

ext to the CTs (2nd column) the corresponding residuals between 

CT and true CT are illustrated. In the third column the ground 

ruth PET (top), baseline pPET (middle) and the imitation learning 

PET (bottom) are shown followed by the resulting pPET residuals 

n the last column. For quantification purposes, we calculated the 

ean Absolute Error (MAE) defined as 

AE = 

∑ | pC T − C T | 
V 

(9) 

f the pCTs only in the number of voxels in a region of interest 

 V ), here head and brain only region. We validated the advantages 

f the proposed imitation learning model on the remaining 20% of 

he dataset hold out for testing (see Table 1 ). The proposed method 

eads to a lower MAE on the CT (79.04 HU ± 3.57 HU) compared 

o the simple feed forward model (92.77 HU ± 8.57 HU), the Mean 

bsolute Percentage Error (MAPE) in the resulting pPET is signif- 

cantly lower (paired t-test, p < 0 . 05 ) for the proposed method 

4.04% ± 0.50% for brain region; 5.62% ± 0.21% for whole head) 

hen compared to the baseline model (5.60% ± 1.25% for brain re- 

ion; 7.26% ± 0.92% for whole head). 

In order to validate the previously trained fully 3D model on 

 completely independent dataset, the performance of the pro- 

osed method was compared against ground truth data of 23 

ubjects. The method was further compared to the chosen base- 

ine method (HighRes3DNet only) and a multi-atlas propagation 

ethod that is routinely used in clinical practice and clinical trial 

etting ( Burgos et al., 2014 ). The quantitative validation was per- 

ormed in two steps: 

1. Pseudo CTs were synthesised from all 23 subject’s MR im- 

ages using the proposed method, the baseline method and the 

multi-atlas propagation approach. All generated pCTs were then 

compared to the subject’s ground truth CT to validate the accu- 

racy of the synthesis. 

2. Pseudo PET images were reconstructed following the simulation 

described in Section 3.4 using μ-maps generated with pCTs 

from proposed, baseline and multi-atlas method. All pPETs were 

then compared to the ground truth PET that was reconstructed 

using the μ-map extracted from the original CT in order to val- 

idate the accuracy of the PET attenuation correction. 

Fig. 5 shows the ground truth CT and pCTs synthesised with 

he proposed imitation learning and the baseline model and the 

orresponding residuals as well as predicted pPET images and pPET 

esiduals. 

The results of the independent validation are shown in Table 2 . 

he MAE over all 23 subjects in the CT for the proposed method 

s 110.98 HU ± 19.22 HU compared to the baseline 172.12 HU ±
9.61 HU and a multi-atlas propagation method 153.40 HU ± 18.68 

U. Subsequently, the average MAPE of all reconstructed PET im- 

ges within the brain for the proposed method is around 3 times 

ower than the MAPE of the baseline (4.74% ± 1.52% compared to 

3.72% ± 2.48%) in the brain region and 2.4 times lower in the 

hole head region (9.05% ± 1.93% compared to 21.51% ± 3.14%). 

urther, the proposed imitation learning method achieves an ap- 

roximately 1.4 times lower average MAPE of all reconstructed PET 

mages in both the head and the brain region compared to PET 



K. Kläser, T. Varsavsky, P. Markiewicz et al. Medical Image Analysis 71 (2021) 102079 

Fig. 4. PET values (first column), variance (middle column) and Z -score (right column) of ground truth PET (top row) compared to pPET values reconstructed with pCTs from 

Monte Carlo (MC) dropout sampling (middle row) and pCTs from multi-hypothesis sampling (bottom row). The multi-hypothesis model captures true PET values better than 

MC dropout method. 

Table 1 

Mean Absolute Error (MAE) in pCT generated with HighRes3DNet and imitation learning pCTs and corresponding MAE in pPET 

in the brain region only and in the whole head for all five folds. 

Fold MAE CT (in HU) MAPE PET brain (in %) MAPE PET head (in %) 

Baseline Imitation learning Baseline Imitation learning Baseline Imitation learning 

1 103 . 93 ± 14 . 46 79 . 97 ± 10 . 19 7 . 45 ± 1 . 55 4 . 11 ± 0 . 71 8 . 62 ± 1 . 88 5 . 51 ± 0 . 80 

2 99 . 70 ± 15 . 65 82 . 32 ± 7 . 91 6 . 24 ± 0 . 94 4 . 70 ± 1 . 28 7 . 74 ± 1 . 24 5 . 59 ± 0 . 86 

3 89 . 17 ± 10 . 49 81 . 44 ± 7 . 49 4 . 60 ± 1 . 51 3 . 63 ± 0 . 77 6 . 62 ± 1 . 42 5 . 91 ± 0 . 55 

4 86 . 71 ± 10 . 99 78 . 17 ± 0 . 22 5 . 21 ± 1 . 04 3 . 48 ± 0 . 33 6 . 91 ± 0 . 96 5 . 72 ± 0 . 62 

5 84 . 33 ± 7 . 19 73 . 30 ± 2 . 26 4 . 48 ± 0 . 97 4 . 28 ± 0 . 63 6 . 40 ± 0 . 88 5 . 37 ± 0 . 56 

Average 92 . 77 ± 8 . 57 79 . 04 ± 3 . 57 5 . 60 ± 1 . 25 4 . 04 ± 0 . 50 7 . 26 ± 0 . 92 5 . 62 ± 0 . 21 

Table 2 

Mean Absolute Error (MAE) in pCT generated with HighRes3DNet, multi-atlas propagation and imitation learning pCTs and corresponding MAE in pPET in the brain 

and head region only on independent dataset. 

MAE CT (in HU) MAPE PET brain (in %) MAPE PET head (in %) 

Baseline Multi-atlas Imitation learning Baseline Multi-atlas Imitation learning Baseline Multi-atlas Imitation learning 

172 . 12 ± 19 . 61 153 . 40 ± 18 . 68 110 . 98 ± 19 . 22 13 . 72 ± 2 . 48 6 . 68 ± 2 . 06 4 . 74 ± 1 . 52 21 . 51 ± 3 . 14 12 . 00 ± 2 . 11 9 . 05 ± 1 . 93 
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mages reconstructed with the pCT generated with the multi-atlas 

ropagation method (6.68% ± 2.06% in brain region, 12.00% ± 2.11% 

n head region). 

Example images of T1-, T2-weighted, CT, pCT synthesised with 

aseline method, multi-atlas propagated pCT and pCT generated 

ith proposed method and corresponding reconstructed PET im- 

ges are presented in Fig. 6 for three subjects whose pPET showed 

he lowest, the average, and the highest MAPE. 

Lastly, both the pCT images and the pPET images were mapped 

o a common space following a CT-based groupwise registration 

ethod ( Rohlfing et al., 2001 ). This groupwise registration method 

s a repeated application of an intensity-based non-rigid registra- 
6 
ion algorithm based on third-order 3D B-splines. It was intro- 

uced to generate an average atlas from 3D images. We performed 

ve affine registration loops followed by ten non-rigid registration 

oops with B-spline spacing of five voxels. This registration was not 

irectly performed on the pCT residuals rather on the original CT 

mages. The voxelwise transformation was then applied to the pCT 

esiduals in order to propagate them into a common space. We 

hen computed the average across all subjects of the absolute pCT 

rror map and the absolute pPET error map ( Fig. 7 top). We note

hat the average error in the pCT for all three methods is centered 

n the skull region and only shows small improvement for the pCT 

enerated with the proposed imitation learning. However, looking 
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Fig. 5. Qualitative results. From top to bottom: Ground-truth, baseline (HighRes3DNet) and imitation learning alongside input MR images. From left to right: CT, pCT-CT 

residuals, PET, pPET-PET residuals. The error in the pCT generated with the proposed imitation learning is lower than the baseline pCT residuals. The error in the pPET 

reconstructed with the proposed method is significantly lower than the pPET error for the baseline method. 

Fig. 6. From left to right: the acquired T1-, T2-weighted MRI, CT, and ground truth 18 F-FDG PET, the pCT and pPET generated with the baseline (HighRes3DNet only), the 

pCT and pPET generated with the multi-atlas propagation, and the pCT, and pPET generated with the proposed imitation learning for the subjects within the independent 

validation dataset that obtained the lowest (top row), average (middle row), and highest (bottom row) MAPE in the pPET, which was consistent among all methods. 

Fig. 7. Groupwise average over 23 subjects (top) and standard deviation (bottom) of the pCT absolute residuals (in HU) of baseline, multi-atlas propagation and imitation 

learning (column 1–3) and pPET absolute residuals (in arbitrary unit (a.u.)) between gold-standard PET and pPETs reconstructed with baseline pCT, multi-atlas propagation 

pCT and imitation learning pCT (column 4–6). 

7 
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t the absolute difference of the pPET and the gold standard PET, 

e note that the average uptake error in the pPET reconstructed 

ith the baseline pCT is significantly higher than in the pPET re- 

onstructed with the pCT synthesised with the proposed imitation 

earning. Further, we observe that small intensity differences in the 

kull region in the pCT generated with the multi-atlas propaga- 

ion method cause a significantly higher uptake error in the pPET 

hen this pCT is used for pPET reconstruction. The bottom row 

f Fig. 7 shows the standard deviation across all 23 subjects of 

CT and pPET difference maps. We observe that the standard de- 

iation in the average pCT error map is smaller for the proposed 

ethod compared to the baseline and the multi-atlas propagation 

ethod. Furthermore, the standard deviation of the groupwise av- 

rage pPET error is significantly higher for the pPET difference map 

hat was computed between the pPET reconstructed with the base- 

ine method and the gold standard PET compared to the pPET dif- 

erence map that was generated between the pPET reconstructed 

ith the proposed imitation learning method and the gold stan- 

ard PET. 

. Discussion 

Following the hypothesis that the classical L 2 -loss is not nec- 

ssarily the optimal minimisation metric for CT synthesis, the pre- 

ented multi-stage imitation learning framework minimises a com- 

ination (as in Eq. (7) ) of the pixel-wise error between pCT and CT

nd a proposed metric-loss that itself is represented by a CNN ex- 

licitly aiming at PET reconstruction application. 

Two separate datasets were used in this work; one for training 

nd cross-validation and another completely independent dataset 

o evaluate the performance of the proposed method on input 

mages that were acquired with a different imaging protocol. We 

ompared the performance of our imitation learning framework 

o a feed forward network for pCT synthesis that minimises the 

lassical L 2 -loss. The results of the five-fold cross-validation in 

able 1 demonstrate that the mean absolute error between the 

enerated pCT and the acquired ground-truth CT is significantly 

ower compared to the baseline method for each fold. We hypoth- 

sise that this is likely due to the regularising nature of the im- 

tation learning loss as all networks were trained until conver- 

ence. We further note that the standard deviation for the pro- 

osed method is generally lower than the standard deviation of the 

aseline method. The lower error in the pCT images subsequently 

esults in a lower error in the reconstructed pPET image when the 

CT is used as attenuation map for the PET reconstruction. The 

APE in the whole head region and in the brain region only is sig- 

ificantly lower for the pPET reconstructed with the proposed pCT 

ompared to the baseline pCT. Difference images in Fig. 5 reveal 

hat the errors in the pCT are concentrated in the skull area, espe- 

ially in areas with air/bone and soft-tissue/bone boundaries like 

he nasal cavities. The wrongly predicted intensities in the skull re- 

ion lead to wrong attenuation maps that in turn lead to an overall 

nderestimation of radionuclide uptake in the reconstructed pPET 

mages as shown in Fig. 5 . 

Quantitative results on a completely independent validation 

ataset are presented in Table 2 and confirm the improved per- 

ormance of the proposed imitation learning network. We ex- 

ended the validation on the independent dataset by an ad- 

itional comparison to a multi-atlas propagation method from 

urgos et al. (2014) that is robust to image domain shifts. Re- 

ults show that the error of the proposed pCT lies around 111 HU 

hereas the baseline pCT error is around 172 HU, which shows 

n improvement of approximately 35%. Even though a smaller pCT 

rror was not necessarily the aim of this work, the introduction 

f the imitation learning method has resulted in a better optima 

nd more generalisable model. Comparing the performance of our 
8 
ovel deep learning framework exploiting a combined pixel-wise 

nd metric loss to the multi-atlas propagation method that is rou- 

inely used in clinical practice and clinical trial settings, the pro- 

osed method improves the pCT synthesis performance by approx- 

mately 28%. The impact of the synthesis error in the pCT on the 

PET is particularly present on the independent dataset that con- 

isted of T1- and T2-weighted images that were acquired with a 

ifferent imaging protocol than the training input MR data. The 

APE in the pPET reconstructed with the baseline is approximately 

 times higher and 1.4 times higher for the pPET reconstructed 

ith the multi-atlas propagated pCT compared to the pPET recon- 

tructed with the proposed imitation learning pCT (13.72% ± 2.48% 

ompared to 6.68% ± 2.06% and 4.74% ± 1.52%). Qualitative re- 

ults in Fig. 6 illustrate the pCTs and corresponding pPETs of the 

ndependent validation and emphasise the underestimation of the 

kull in the baseline method and its missing ability to generate 

ir/bone boundaries properly whereas pCTs generated with the 

roposed method seem sharper than the ground-truth CT images 

eading to pPET images that reconstruct the radionuclide uptake 

ore accurately. The pCTs generated with the multi-atlas propa- 

ation method look visually sharper than the pCT generated with 

he imitation learning method, however, the density of the bone is 

verestimated which leads to an inaccurately radionuclide uptake 

n the reconstructed pPET. 

Analysing the groupwise average difference and standard devi- 

tion across all 23 subjects of the independent dataset shows a 

imilar performance on the pCT synthesis for baseline, multi-atlas 

ropagation and proposed imitation learning method as demon- 

trated in Fig. 7 . However, when exploiting the average error 

ap of the reconstructed radionuclide uptake the baseline method 

hows a significantly higher uptake error particularly in the brain 

egion compared to the other two methods. The higher average dif- 

erence in the skull region of the pCT generated with the multi- 

tlas propagation method leads to a higher average error in the 

esulting pPET image especially close to the skull. All three atten- 

ation correction methods introduce a bias but the variance of the 

ias is lower when the pPET is corrected with the attenuation map 

erived from the imitation learning pCT. 

The results of the validation on the independent dataset show 

 common problem of deep learning methods: image domain shift. 

ften methods are developed to serve a problem specific purpose 

aking them less generalisable, i.e. testing on images that are from 

 slightly different domain (here different MR acquisition proto- 

ols) than the training data fails. Multi-atlas propagation methods 

re robust to this problem since they rely on structural similari- 

ies in the image rather than voxel-wise intensity similarities. The 

roposed method shows to have good extrapolation properties due 

o a more realistic metric, which leads to less domain shift issues 

nd an improved performance. Structural similarities could be in- 

luded in the proposed network in the future in order to mitigate 

he domain shift issue. This could for example be implemented 

s a structural similarity map applied to the loss function during 

raining. 

In this work we provide a proof of concept showing that min- 

mising a combined loss that consists partly of the classical L 2 - 

oss and partly of a learned metric loss that itself minimises the 

rror in the reconstructed pPET when the pCT is used as attenua- 

ion map can indeed significantly improve the PET reconstruction 

ccuracy compared to using an L 2 -loss only. Effects in PET images 

re non-linearly related to the CT, which is compensated by the 

ovel imitation loss. The proposed concept of a combined L 2 -loss 

nd learned metric loss can be applied to other networks such as 

-Net or Deep Boosted Regression that have shown promising re- 

ults in the MR to CT image translation task. 

As a consequence of the newly introduced imitation learning 

oss, we were further able to improve the performance of the pCT 
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ynthesis on an image-based level when optimising our network 

ot only for the pCT but also the pPET error. Since we are opti-

ising over a high-dimensional model in a deep learning scenar- 

os the introduction of the imitation loss appears to regularise the 

ptimisation function landscape better. 

However, supervised deep learning based methods for pCT syn- 

hesis for the purpose of MR attenuation correction also have lim- 

tations relying on a co-registered database that represents a wide 

ange of the population’s anatomy. Small inaccuracies in the reg- 

stration quality of the MR/CT database can have an influence on 

he training success. But, when validating on a database of images 

cquired with a different imaging protocol, the proposed method 

s robust to local registration inaccuracies and acquisition protocol 

hanges generating pCT images that are significantly better than 

ethods used in clinical practice. After all, accurately aligning CT 

nd MR images is inevitable in order to validate the pixel-wise per- 

ormance of any image synthesis algorithm until other appropri- 

te methods have been developed that allow to validate on non- 

egistered data. 

Current limitations of the method are due to limited anatomi- 

al information in CT and MR images such as tumours as well as 

he tracer specificity of the proposed model. A larger database con- 

aining subjects with anatomical abnormalities could improve the 

obustness of the model. An uncertainty measure of the pCT pre- 

iction could be integrated in the network providing a means of 

afety checking in order to make the method robust for clinical 

se by declining predictions that are highly uncertain if any ex- 

reme abnormalities in the input MR image are present that could 

ause the model to fail. 

The focus of this paper is on MR-derived attenuation correc- 

ion for brain applications and requires further experiments to de- 

ermine its suitability for other regions of the body. In theory, the 

roposed network could be applied to any body part assuming that 

he registration between MRI and CT is sufficiently accurate and 

orphological variability within the database is present. 

. Conclusion 

In this work we proposed a novel deep learning framework for 

CT synthesis in 3D for the purpose of PET/MR attenuation cor- 

ection. Compared to state-of-the-art image synthesis CNNs, the 

roposed method does not assume the L 2 -loss, that is commonly 

sed as a minimisation metric in CT synthesis methods, as optimal 

hen the ultimate aim is a low error in the corresponding pPET 

hen used as μ-map. Quantitative analysis on an out-of distribu- 

ion dataset shows that minimising a more suitable metric that 

ndeed optimises for PET residuals (from CTs and pCTs) can im- 

rove the process of CT synthesis for PET/MR attenuation correc- 

ion. We were further able to show that the proposed method is 

obust to changes in the imaging protocol of the input T1- and T2- 

eighted MR images. Overall the proposed method provides a sig- 

ificant improvement in PET reconstruction accuracy when com- 

ared to a simple feed forward network and a multi-atlas propa- 

ation approach. 
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