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Abstract: The immunogenicity of the candidate tuberculosis (TB) vaccine MVA85A may be enhanced
by aerosol delivery. Intradermal administration was shown to be safe in adults with latent TB infection
(LTBI), but data are lacking for aerosol-delivered candidate TB vaccines in this population. We carried
out a Phase I trial to evaluate the safety and immunogenicity of MVA85A delivered by aerosol in
UK adults with LTBI (NCT02532036). Two volunteers were recruited, and the vaccine was well-
tolerated with no safety concerns. Aerosolised vaccination with MVA85A induced mycobacterium-
and vector-specific IFN-γ in blood and mycobacterium-specific Th1 cytokines in bronchoalveolar
lavage. We identified several important barriers that could hamper recruitment into clinical trials
in this patient population. The trial did not show any safety concerns in the aerosol delivery of a
candidate viral-vectored TB vaccine to two UK adults with Mycobacterium tuberculosis (M.tb) infection.
It also systemically and mucosally demonstrated inducible immune responses following aerosol
vaccination. A further trial in a country with higher incidence of LTBI would confirm these findings.

Keywords: aerosol vaccine; MVA85A; mycobacteria; latent TB infection

1. Introduction

Tuberculosis (TB) is the leading cause of death from a single infectious agent, with an
estimated 10 million new cases and 1.4 million deaths in 2018 [1]. The development of a
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safe and effective TB vaccine is a key component of pillar 1 of the End TB strategy, which
seeks to end the global TB epidemic [2].

The route of a Mycobacterium tuberculosis (M.tb) infection is by the inhalation of
aerosolised infectious droplets, leading to primary infection in the lung and the develop-
ment of a mucosal immune response [3,4]. In most people, this immune response contains
the primary infection and results in latent infection, which carries a 5–10% lifetime risk of
developing an active disease [1,5,6]. One-quarter of the global population is estimated to
have a latent M.tb infection (LTBI).

The only licensed vaccine, Bacille Calmette–Guérin (BCG), offers protection against
disseminated TB in childhood, but is less effective against pulmonary TB in many endemic
areas [7,8]. A more effective vaccine is urgently needed.

Vaccine delivery by aerosol has potential advantages, including the induction of
local immune responses at the site of infection and the practical advantage of needle-free
delivery [9–13].

Preclinical animal studies provided proof-of-concept for this aerosol vaccination
approach [14–17]. One candidate vaccine, modified Vaccinia virus Ankara expressing
mycobacterial antigen 85A (MVA85A), was shown to be safe and immunogenic as an
intradermal or intramuscular booster vaccine in BCG-primed subjects [18–24]; however,
immunogenicity was much weaker in South African infants, and a Phase IIb efficacy
trial reported no enhancement of BCG-induced protection [25]. Aerosol delivery may be
one way of enhancing immunogenicity. The tolerability and feasibility of administering
aerosol MVA85A to humans was evaluated in two Phase I safety trials. In both trials,
administering aerosol MVA85A as a boost to a BCG prime was well-tolerated and highly
immunogenic [26,27]. Before further evaluation of this route of administration in countries
with a high burden of TB, it is important to determine the safety of this approach in subjects
with LTBI. We previously demonstrated that intradermal MVA85A was well-tolerated and
immunogenic in subjects with LTBI [28–30].

Here, we present the results of a Phase I trial to evaluate the safety and immunogenicity
of MVA85A vaccination delivered by aerosol in UK adults with LTBI.

2. Materials and Methods
2.1. Trial Design

We conducted a Phase I open-label clinical trial in healthy UK adults with latent TB
infection (LTBI). All trial documents were approved by the Medicines and Healthcare
Regulatory Agency (MHRA, EudraCT 2015-001826-41) and the South Central—Oxford A
Research Ethics Committee (reference 15/SC/0370). It was registered with clinicaltrials.gov
prior to the start of the study (NCT02532036, 25/08/2015) and conducted according to the
principles of the Declaration of Helsinki and good clinical practice. The trial was originally
designed with the first 6 volunteers to receive 1 × 107 pfu aerosol-inhaled MVA85A, and
the next 24 subjects to be randomised to either 5 × 107 pfu aerosol-inhaled MVA85A with
IM saline placebo (Group A) or 5 × 107 pfu IM MVA85A with aerosol-inhaled saline
placebo (Group B), with 12 subjects in each group. Due to initial poor recruitment, Group
B was taken out of the trial design to ensure that the recruitment numbers would still be
sufficient for the primary objective of a safety assessment, and target recruitment for the
Starter 1 × 107 pfu group revised down to three volunteers. Group A was subsequently
also unable to enrol.

2.2. Participants

Participants were healthy adults aged 18–55 with LTBI (defined by positive screening
IFN-γ release assay response to ESAT-6 and CFP-10) who had a low risk of reactivation
due to a distant contact history, no clinical or radiological features to suggest active TB,
and who had not been treated for LTBI. Participants were recruited from TB contact clinics
at Oxford University Hospitals, Birmingham Heartlands Hospital, Royal Free Hospital,
King’s College Hospital, and St George’s University Hospital (the latter three sites were
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added after trial commencement due to poor recruitment). Informed consent was obtained
for all screened volunteers.

2.3. Vaccines

MVA85A was manufactured under good manufacturing practice conditions by IDT
Biologika GmbH, Dessau-Roßlau, Germany. The used dose of MVA85A was 1 × 107

plaque-forming units (pfu). In total, 120 µL of a 1:10 dilution of 8.4 × 108 pfu/mL (starting
concentration) using 0.9% sodium chloride was added to the nebuliser, with a further
880 µL of 0.9% sodium chloride added to achieve a final volume of 1 mL. The 1 mL aerosol
vaccine was delivered using an Omron MicroAir U22 ultrasonic mesh nebuliser (Omron
Healthcare UK, Ltd., Milton Keynes, UK). All vaccinations were performed at the Centre
for Vaccinology and Tropical Medicine (CCVTM), University of Oxford.

2.4. Clinical Interventions

Volunteers received 1 × 107 pfu MVA85A via aerosol inhalation. Blood was taken at
every trial visit (Days 0, 2, 7, 14, 28, and 84) for exploratory immunology; biochemical and
haematological parameters were measured at baseline, and Days 7 and 28. Volunteers were
followed up to Day 168 post vaccination. Fibreoptic bronchoscopy was performed on all
volunteers 7 days after vaccination. Bronchoalveolar lavage (BAL) was obtained from the
right-middle lobe using 100 mL of 0.9% sodium chloride. No biopsies were taken.

2.5. Objectives

The primary objective was to evaluate the safety of MVA85A vaccination by the aerosol-
inhaled route in healthy volunteers latently infected with Mycobacterium tuberculosis (M.tb).

Safety was assessed by the frequency and severity of adverse events (AEs) during
the trial period. Expected respiratory (cough, sore throat, wheeze, dyspnoea, sputum
production, haemoptysis, and chest pain) and systemic (fever, feverishness, fatigue, malaise,
headache, myalgia, arthralgia, and nausea) AEs were solicited using a diary card for 14 days
after vaccination and reviewed at every clinic visit. Volunteers were also asked to report
any other AEs experienced over the trial period. Blood biochemical and haematological
parameters were measured on Days 7 and 28. Volunteers were trained in the use of a digital
thermometer and a handheld spirometer (Micro Spirometer, CareFusion, Chatham, UK).
Daily home measurements of temperature, forced expiratory volume in 1 second (FEV1),
and forced vital capacity (FVC) were recorded for 14 days after vaccination. Vital signs,
including pulse oximetry, were taken, and spirometry was performed during clinic visits.
A computed-tomography (CT) chest scan was performed prior to enrolment and at day 28.
The day 28 scan was compared with the baseline scan by a consultant radiologist at Oxford
University Hospitals.

Secondary objectives were to evaluate the systemic and mucosal, cellular and humoral
immunogenicity induced by MVA85A. After removal of the intradermal group, this end-
point became descriptive only, with comparison of overall responses between this cohort
and data from previous trials.

2.6. Ex Vivo Enzyme-Linked ImmunoSpot (ELISpot)

Peripheral blood mononuclear cells (PBMCs) were isolated from the blood of vol-
unteers on day of screening, day of vaccination (D0), and Days 7, 14, 28, 84 and 168
post-MVA85A vaccination. An IFN-γ ELISpot assay was performed on the freshly isolated
PBMC as previously described [27]. Briefly, either 3 × 105 or 1 × 105 PBMCs in 80 µL
media were added to triplicate ELISpot wells with 20 µL antigen. Ag85A-specific responses
were measured using a single pool of Ag85A peptides (66 15mer peptides, overlapping
by 10 amino acids; Peptide Protein research, Bishops Waltham, UK). Antivector responses
were measured using separate pools of CD4 (27 14–21mer peptides) and CD8 (36 9mer
peptides) epitopes from Vaccinia and MVA (Peptide Protein research, Bishops Waltham,
UK; final concentration, 2 µg/mL). Responses to purified protein derivative (PPD) from
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M.tb (Statens Serum Institute, Copenhagen, Denmark; final concentration, 20 µg/mL)
and ESAT-6 (17 15mer peptides, overlapping by 10 amino acids) and CFP-10 (18 15mer
peptides, overlapping by 10 amino acids; Biomatik; final concentration, 10 µg/mL) were
also measured. Staphylococcal enterotoxin B (SEB; Sigma, Kanagawa, Japan; final concen-
tration, 10 µg/mL) was used as a positive control and unstimulated PBMCs as a measure
of background IFN-γ production. Results are presented as spot-forming cells (SFCs) per
million PBMC, calculated by subtracting the mean of the unstimulated wells from the mean
of the antigen-stimulated wells and correcting for the number of PBMCs in the well.

2.7. Enzyme-Linked-Immunosorbent-Assay (ELISA)

Immunoglobulin G (IgG) levels were measured in serum collected on day of vac-
cination and Days 7, 14, 28, 84, and 168 post vaccination, as previously described [27].
Briefly, ELISA plates (NUNC ImmunoPlates, Thermo Fisher Scientific, Renfrew, UK) were
coated overnight with 2 µg/mL r85A (Lionex, Braunschweig, Germany) in PBS. Samples
were diluted 1:10 in 1% casein in PBS (Fisher Scientific) and tested in triplicate. A pool of
IgG-positive sera was included in each plate. Wells including all reagents except serum
were used to measure the background. Bound serum IgG was detected by goat antihuman
γ-chain whole IgG alkaline phosphatase conjugate (Sigma), plates were developed for
30 mins in the dark using a diethanolamine/4-nitrophenylphosphate kit (Sigma) according
to the manufacturer’s instructions, and the reaction stopped with 3M NaOH. Absorbance
was measured at 405 nm, and mean background-subtracted optical-density (OD) values
are presented.

2.8. Intracellular Cytokine Staining (ICS) on BAL and Peripheral Blood Mononuclear
Cells (PBMCs)

BAL cells and PBMCs were isolated and stimulated at 1 × 106 cells/mL with Ag85A,
ESAT-6/CFP-10 peptides (2 µg/mL each), and PPD (20 µg/mL); unstimulated cells and
SEB-stimulated cells were used as negative and positive controls, respectively. Brefeldin A
(Sigma) was added to the cells 2 h after stimulation, and cells were incubated overnight at
37 ◦C and 5% CO2.

Harvested BAL cells and PBMCs were stained with the live/dead red viability marker
(Thermo Fisher) for the exclusion of dead cells, followed by surface staining with CD4-
Pacific Blue (Biolegend, San Diego, CA, USA), CD14, and CD19 on ECD (Beckman Coulter,
Brea, CA, USA). Cells were then permeabilised and stained with CD3-AF700 (Ebioscience,
San Diego, CA, USA), CD8-APC/H7 (BD), IFN-γ-PECY7 (Ebioscience) and TNF-α-AF-647
(Biolegend), IL-2 PE (Beckman Coulter), and IL-17-AF488 (Biolegend).

Cytokine-producing CD4+ and CD8+ T-cells were gated on CD3+, CD14−, CD19−
single T cells. Data were analysed using Flowjo (BD) and are presented as background-
subtracted antigen-specific responses.

2.9. Statistical Analysis

Clinical AEs were summarised by the frequency and severity of AEs. As only two
volunteers were enrolled, immunology results presented below are only descriptive, and
no statistical tests were applied.

3. Results

Enrolment is summarised in the CONSORT diagram below (Figure 1). Six volunteers
were screened for eligibility, and two were recruited into the trial; both completed all
scheduled trial visits and procedures. Neither volunteer had a history of BCG vaccination.
The trial ran from November 2015 until October 2018 and was terminated due to poor
recruitment (see Discussion).
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Figure 1. CONSORT flow diagram showing subject recruitment, follow-up, and reasons for exclusion.

3.1. Safety

There were no serious AEs during the trial; the vaccine was well-tolerated in both
volunteers with no symptomatic AEs related to the study product.

There were no clinically significant differences in FEV1 or FVC compared to baseline
following aerosol vaccination in either volunteer (defined as >15% drop from baseline),
except immediately following bronchoscopy. Spirometry returned to normal in both
volunteers within 48 h of the bronchoscopy and remained normal at the Day 14 follow-up
visit (data not shown).

For volunteer 002, a new cluster of airway-related nodules in the lateral basal segment
of the right lower lobe and the apical segment of the left lower lobe was detected on the Day
28 thoracic CT scan. Changes were reported as consistent with a new minor infection. The
volunteer was asymptomatic, with no intercurrent illness in the month from vaccination to
CT scan, and there was no evidence of active infection on examination.

As reactivation of tuberculosis could not be ruled out, the volunteer underwent a
second bronchoscopy 6 weeks following vaccination. BAL fluid was collected for mycobac-
terial culture, M.tb PCR, respiratory viral PCR (influenza A and B, and respiratory syncytial
virus), cytology, and flow cytometry. The bronchoscopy was macroscopically normal. BAL
fluid was negative for all culture and PCR, and cytology was normal. A repeat thoracic CT
scan 3 months later showed full resolution of the nodules. These radiological changes were
likely due to a transient vaccine response.

As per protocol, volunteers could start tuberculosis treatment one month after vac-
cination if advised by their treating clinician as part of their standard LTBI management.
Volunteer 301 commenced pyridoxine, rifampicin, and isoniazid 10 weeks (71 days) after
vaccination. This treatment plan was in place prior to commencing enrolment and was not
related to any trial procedures. Treatment was ongoing at the end of trial.
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3.2. Ex Vivo IFN-γ Enzyme-Linked Immunospot (ELIspot)

Both volunteers had high responses in PBMC to Ag85A, which peaked at D7. This
is similar to the median responses in healthy volunteers in a previous trial of aerosol
MVA85A in healthy UK adults (TB026) [27]; however, both latently infected volunteers
had lower peak responses at D7 than the median response of the healthy volunteers at this
time point was (Figure 2A). For Volunteer 002, responses to PPD followed the same trend
as that in Ag85A, but Volunteer 301 had a high baseline response to PPD, which declined
after vaccination (Figure 2B). Antivector responses to MVA CD4+ and MVA CD8+ T-cell
epitopes were similar to those seen in healthy volunteers from TB026 (Figures 2C and 3).
Responses to ESAT-6 and CFP-10 peptides were variable. Volunteer 002 only responded to
CFP-10 peptides, and responses did not change through the trial. Volunteer 301 responded
to both sets of peptides and appeared to have a decline in responses after vaccination,
similar to the trend seen in their PPD responses (Figure 3).
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Figure 2. IFNγ enzyme-linked immunospot (ELIspot) responses (A-C) or anti-r85A IgG levels (D). Frequency of antigen-

specific IFN-γ ELISpot responses to (A) Ag85A, (B) purified protein derivative (PPD), and (C) antivector MVA CD4; (D) 
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absorbance at 405 nm. Circles and squares represent individual readings for two latently infected volunteers in this study, 

Figure 2. IFNγ enzyme-linked immunospot (ELIspot) responses (A–C) or anti-r85A IgG levels (D). Frequency of antigen-
specific IFN-γ ELISpot responses to (A) Ag85A, (B) purified protein derivative (PPD), and (C) antivector MVA CD4; (D) IgG
levels against recombinant 85A in serum. x axis: time points in days; y axis: (A–C) spots per 1 × 106 PBMC, (D) absorbance
at 405 nm. Circles and squares represent individual readings for two latently infected volunteers in this study, and triangles
represent median readings for 10 healthy volunteers who received the same dose of aerosol MVA85A from our previous
TB026 study [27].
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3.3. Enzyme-Linked Immunosorbent Assay (ELISA)

Serum IgG levels against r85A did not increase from day of vaccination at any of the
time points measured in either of the volunteers (Figure 2D). This is consistent with our
previous trial of aerosol MVA85A (TB026) at the same dose in 10 healthy volunteers [27].
However, both latently infected volunteers had considerably higher OD values throughout
the time course than the median OD values in healthy volunteers.

3.4. BAL and PBMC Intracellular Cytokine Responses

Antigen-specific PBMC intracellular cytokine responses were detected at Days 0, 7,
14, 28, and 168. IFN-γ and TNF-α were detected in both CD4+ and CD8+ T cells, while
IL-2 and IL-17 were only detectable in CD4+ T cells (Figure 4). In BAL, 7 days following
vaccination, the frequencies of PPD-specific cytokine+ CD4+ T cells were higher than the
Ag85A-specific responses (Figure 5). CD4+ IFN-γ, TNF-α, and IL-2 were detected in both
volunteers, and IL-17 was detected in one volunteer. Low levels of PPD and Ag85A-specific
CD8+ T-cell cytokines were detected in one volunteer, as were mucosal ESAT-6/CFP-10-
specific CD4+ TNF-α, IL-2, and CD8+ TNF-α. For both volunteers, the PPD-specific CD4+
IFN-γ + response was higher in BAL compared to PBMC at the same time point (3.01% or
7.6% of total BAL CD4+ T cells compared to 0.045% or 0.052% of total PBMC CD4+ T cells;
Figures 4 and 5).
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Figure 5. Bronchoalveolar lavage (BAL) intracellular cytokine staining (ICS) 7 days after aerosol
MVA85A vaccination. BAL ICS antigen-specific responses in two latent Mycobacterium tuberculosis
(M.tb)- infected UK adults vaccinated with 1 × 107 pfu aerosol-inhaled MVA85A. Percentages
of CD4+ T cells producing IFN-γ, TNF-α, IL-2, IL-17, and CD8+ T cells producing IFN-γ and
TNF-α in response to (A) Ag85A, (B) PPD, and (C) ESAT-6/CFP-10. Individual values shown for
each volunteer.
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4. Discussion

The aerosol inhalation of low-dose (1 × 107 pfu) MVA85A in two volunteers with
LTBI was well-tolerated with no clinically significant adverse events (AEs). The only AEs
likely related to the vaccine were transient asymptomatic microbial negative (PCR and
culture) radiological changes to the lung on the Day 28 CT scan in one volunteer.

Delivering aerosol MVA85A to adults with LTBI induced mycobacterium- and vector-
specific IFN-γ, and mycobacterium-specific mucosal Th1 cytokines in the BAL and periph-
eral blood; however, no humoral response to Ag85A was detectable in either compartment
following this route of immunisation.

For Volunteer 301, anti-TB treatment was commenced at Day 71 post vaccination.
While the numbers are small, making it difficult to draw conclusions from the immune
data between the two volunteers, treatment at this time point did not make any obvious
difference to the trends seen in either local or systemic immune responses for Volunteer 301.

The trial was open for recruitment for 3 years in up to six sites. However, due to
significant challenges with recruitment at all UK sites, this study was closed before the
completion of any group. The lower dose of 1 × 107 pfu in this study was planned as a
starting dose for safety reasons, with the target dose of 5 × 107 pfu designed to provide
further information on safety and immunogenicity. Due to recruitment shortages, we
were unable to test our planned target dose of 5 × 107 pfu MVA85A. Doses of between
5 × 107 and 1 × 108 pfu have been established as an intradermal dose in healthy and LTBI
adults [28–30]. While 1 × 108 pfu aerosol MVA85A has been given to M.tb-naive UK adults,
doses between 1 × 107 and 5 × 107 pfu are preferred due to the high mucosal cellular
immune responses induced by this route [26,27]. Interestingly, in M.tb-naive UK adults,
there was no substantial difference in the strength of the immune response (ELIspot or ICS)
between the 1 × 107 and 5 × 107 pfu aerosol dose at 1 week (while acknowledging that
comparison is limited, as this was across two separate trials) [26,27]; hence, the lower dose
used here is still informative. Regardless, the low recruitment numbers mean that further
early-phase safety and immunogenicity testing is necessary in a TB-endemic area before
the wide-scale testing of this immunisation route can be undertaken.

Most potential volunteers were excluded prior to screening due to medical reasons,
particularly pregnancy, lactation, smoking, and respiratory disease. Another significant
barrier was language, with most potential volunteers having little to no English proficiency.
We recruited one Spanish speaker and provided interpreting services and document transla-
tion, but if volunteers spoke no English at all, they were excluded due to the rigorous study
requirements around safety and data quality. A further major barrier was the inability to
take time away from work commitments. Despite amendments to study visits to reduce
the time burden of trial participation, recruitment did not improve.

5. Conclusions

In this trial, we demonstrated that, in two latently M.tb-infected volunteers, the deliv-
ery of aerosolised MVA85A vaccine was well-tolerated with no safety concerns. The aerosol
delivery of this candidate viral-vectored TB vaccine systemically induced mycobacterium-
specific Th1 cytokines in the local mucosa, and mycobacterium- and vector-specific IFN-γ.
The trial highlights the difficulty in carrying out an interventional Phase I clinical trial in
healthy latently M.tb-infected subjects in the UK. A further trial, conducted in a country
with a high burden of TB, would support and extend the findings reported here.
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