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The need for dynamic risk prediction in
MRI-based AS

The use of multiparametric magnetic resonance imaging
(mpMRI) for the active surveillance (AS) of localised
prostate cancers is increasing, and evidence suggests that
mpMRI facilitates the selection of AS candidates while
minimising the need for follow-up biopsies [1]. As the
natural history of prostate cancer is not entirely defined, it is
unsurprising that that many AS schedules remain pre-
scriptive [2]. Regular, protocol-based biopsies condition
participants on sampling scheme, allowing less biased
inferences regarding the relationship between risk factors
and disease progression in ways reminiscent of clinical trial
design.

However, although this more rigid approach is reassuring
to clinicians, it is antithetical to the principles of persona-
lised medicine, where decisions on follow up or treatment
should be dynamically informed by the unique longitudinal
trajectory of each patient. In MRI-based AS this conflict can
be demonstrated for prostate-specific antigen (PSA) or PSA
density (PSAD): although both have been associated with
progression or treatment, existing studies predominantly
focus on baseline PSA or PSAD values rather than long-
itudinal trends, which are more clinically relevant over
surveillance periods that often span several years. In part,
this shortfall can be attributed to methodological limita-
tions; standard logistic regression is not ideal for dealing
with longitudinal measurements, whereas extended Cox
models assume piecewise-constant, measurement error-free
trajectories for time-varying covariates and are not optimal
for modelling endogenous biomarkers such as PSAD [3–5].

Dynamic risk prediction methods could address this
need. A good example is joint longitudinal-survival models:
these have a distinct advantage over traditional survival
analyses, as they consider all longitudinal measurements of
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a predictor (e.g. PSAD) and account for variability at the
level of the individual when predicting an event, which
could be very useful in AS settings. 1To prove this concept,
we visualised MRI-calculated PSAD trends and examined
their association with event-free survival (EFS) under a
joint longitudinal-survival analysis framework in a recently
described AS cohort where regular biopsies were omitted in
favour of MRI-led monitoring [6].

Joint modelling of PSAD and outcome in an
imaging-based AS cohort

The University College London Hospital AS cohort (n=
672) includes men with a baseline mpMRI, Gleason 3+ 3
or 3+ 4 prostate cancer, and PSA < 20 ng/mL. The mon-
itoring protocol has been described elsewhere [6]. In brief,
all men have mpMRI at baseline and 12 months; those with
MRI-visible disease (i.e. Likert 4–5 or well-defined lesion)
undergo an additional scan at 24 months. Beyond these time
points, mpMRI is performed in cases of clinical suspicion or
unexplained PSA fluctuations. PSAD values were obtained
at baseline and with each follow-up mpMRI (up-to-date
PSA divided by the prostate volume, estimated by the
ellipsoid formula on MRI; Supplementary Table 1). The
primary outcome was EFS, with “event” defined as any
prostate cancer treatment, upgrading to Gleason ≥4+ 3 on
follow-up biopsy, transition to watchful waiting or death.
We used a linear mixed-effects longitudinal model with
random intercepts for individuals and a random non-linear
time effect using natural cubic splines to describe log2P-
SAD over time (months after baseline mpMRI). This was
integrated into a Cox regression component with baseline
Gleason and MRI visibility as predictors, in order to con-
struct a joint model. Inference was carried out using both
Bayesian and maximum likelihood-based estimation
approaches [3, 4]. All analyses were performed in R (R
Foundation for Statistical Computing, https://www.R-
project.org/) and p values, where obtained, were con-
sidered significant at the 0.05 level.

As previously reported, median follow up for the cohort
was 58 months (IQR: 37–82), whereas for censored men
median follow up was 63 months (IQR: 44–88). In total,
250 events were recorded, the vast majority being treat-
ments or upgrading to Gleason ≥4+ 3 on follow-up

biopsies. As expected, prostate volume and PSA increased
over time (Fig. 1a, b). Men with Gleason 3+ 4 and higher
PSAD at baseline had shorter EFS compared to men with
3+ 3 and lower PSAD, regardless of disease visibility on
MRI (p < 0.01, log-rank test; Supplementary Fig. 1). Within
Gleason groups, there were no EFS differences attributable
to baseline PSAD (pairwise log-rank comparisons).

Interestingly, there was a non-linear PSAD trend over
time, with PSAD being consistently higher throughout AS
in men with Gleason 3+ 4 or visible disease (Fig. 1c, d)
and men who ultimately experienced an event (Fig. 1e).
Baseline Gleason grade and MRI visibility were significant
predictors of EFS in a joint survival-longitudinal model
incorporating the log2PSAD longitudinal component, with
hazard ratios (HR) of 2.32 (95% CI: 1.75–3.08) and 1.93
(95% CI: 1.49–2.50) for Gleason 3+ 4/MR-visible disease,
respectively. The HR for the log2PSAD association para-
meter (i.e. the Cox coefficient associated with longitudinal
log2PSAD) was 1.77 (95% CI: 1.48–2.11), suggesting that
each PSAD doubling is associated with a 1.77× risk
increase. The value of this point estimate was invariant to
the inferential method used (likelihood or Bayesian).

Concluding remarks

Our findings formally describe the association of PSAD
with clinical outcome in imaging-led AS and support the
use of dynamic risk estimation for individualising the tim-
ing of follow-up tests or radical treatment. In addition, our
results corroborate those of other authors who report higher
rates of upgrading in men with MRI-visible Gleason 3+ 3
disease and high PSAD at baseline [7, 8]. The limitations
inherent to our cohort have been described, principally its
retrospective, single-centre nature and the avoidance of
scheduled biopsies in favour of a personalised, risk-adjusted
biopsy approach. Also, strictly speaking, transition to
watchful waiting and non-prostate cancer-related death
occurring before other events should not necessarily be
considered as failure but as “AS graduation”. However, the
overwhelming majority of events were treatment or
upgrading-related (86.4%), and competing risk approaches
were beyond the scope of this work. For the time being, we
note that joint longitudinal-survival modelling can feasibly
offer a dynamic risk estimation framework that should be
considered in AS settings, where follow up is long and risk
is constantly updated by new clinical, laboratory or imaging
information. We observe that PSAD change prompts further
assessments through imaging or biopsy and is, therefore,
associated with outcome. Future research should expand on
these considerations and explore the potential of multi-
variable models with additional longitudinal predictors
beyond PSAD [9, 10].

1 The traditional Cox regression equation is hi (t)= h0 (t) exp{γ
T wi},

where h0(t) is the baseline hazard and γT wi is a linear combination of
predictors and their coefficients. By comparison, a joint model in its
simplest form is expressed by hi (t│Mi(t))= h0(t) exp{γ

T wi+ αmi(t)};
the additional terms are mi(t), the longitudinal history of the endo-
genous biomarker, and α, the association parameter expressing the
strength of the relationship between mi(t) and the event of interest (e.g.
exit from AS).
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Fig. 1 MRI-calculated prostate volume and PSAD trends over
time. a Prostate volume. Volumes were calculated using the ellipsoid
formula. There was a steady increase in mean prostate volume over
time (spline curve shown), at an approximate average rate of 3.3 mL/
year. b PSA. There was a steady increase in mean PSA (spline curve
shown). c, d PSAD trends stratified by Gleason and MRI visibility.
PSAD was higher at baseline and throughout surveillance in men with

Gleason 3+ 4 and MRI-visible disease. e PSAD trends stratified by
censoring status. PSAD in men who ultimately experienced an event
was consistently elevated throughout AS compared to men who were
censored. The downward trend in the latter years is likely due to
the drop-out of men with higher PSAD who experience events as time
progresses.
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