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ABSTRACT

Galaxy models have long predicted that galactic bars slow down by losing angular momentum to their postulated dark haloes.
When the bar slows down, resonance sweeps radially outwards through the galactic disc while growing in volume, thereby
sequentially capturing new stars at its surface/separatrix. Since trapped stars conserve their action of libration, which measures
the relative distance to the resonance centre, the order of capturing is preserved: the surface of the resonance is dominated
by stars captured recently at large radius, while the core of the resonance is occupied by stars trapped early at small radius.
The slow down of the bar thus results in a rising mean metallicity of trapped stars from the surface towards the centre of the
resonance as the Galaxy’s metallicity declines towards large radii. This argument, when applied to Solar neighbourhood stars,
allows a novel precision measurement of the bar’s current pattern speed 2, = 35.5 £ 0.8 kms™! kpc™!, placing the corotation
radius at Rcg = 6.6 &= 0.2 kpc. With this pattern speed, the corotation resonance precisely fits the Hercules stream in agreement
with kinematics. Beyond corroborating the slow bar theory, this measurement manifests the deceleration of the bar of more than
24 per cent since its formation and thus the angular momentum transfer to the dark halo by dynamical friction. The measurement

therefore supports the existence of a standard dark-matter halo rather than alternative models of gravity.
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1 INTRODUCTION

Many spiral galaxies, including our Milky Way, host a rotating
bar at their centres. It has been predicted analytically (Tremaine
& Weinberg 1984; Weinberg 1985, 2004; Weinberg & Katz 2007)
and confirmed by simulations (e.g. Hernquist & Weinberg 1992; De-
battista & Sellwood 2000; Athanassoula 2003; Martinez- Valpuesta,
Shlosman & Heller 2006; Sellwood 2008) that these galactic bars
experience dynamical friction against the postulated dark matter in
the Galactic halo. This transfer of energy and angular momentum
leads to less cuspy halo profiles (Weinberg & Katz 2002), but also
slows the bar and allows it to grow (Athanassoula 1992).

The bar affects the stellar disc most effectively at resonances where
the bar’s pattern speed is in commensurable relation with the orbital
frequencies of stars. A well-known consequence of the non-linear
response near resonances is that orbits there could become trapped.
The trapped orbits occupy a distinct volume of phase space bounded
by the separatrix. When the bar decelerates, these resonant islands
sweep radially outwards through the stellar disc (Chiba, Friske &
Schonrich 2020). As resonances migrate outwards, their phase-space
volume generally grows, as we will demonstrate, so surrounding stars
are sequentially captured into the resonance from the separatrix.
Once in resonance, these trapped stars are dragged along with the
resonance while approximately conserving their action of libration
that characterizes the distance to the resonance centre. As a result,
stars trapped at the early epoch of bar formation remain confined to
the core of the resonance, while newly trapped stars fill in the phase
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space opened up by the expanding separatrix; the bar resonance
evolves analogously to the rings of a growing tree where new layers
of cells form at the bark and continuously record the climate condition
of that time. Since stars trapped later originate from larger radii with
typically lower metallicity, the deceleration history of the bar is
imprinted on the metallicity distribution inside the resonance.

The tree-ring structure of the bar resonance has a bi-directional
application: Once the current pattern speed of the bar and thus the
location of the resonance is known, we can read out the history of
bar evolution by looking at the variation of stellar metallicity with
distance to the resonance centre. Reversely, we can pin down the
current bar pattern speed by demanding the metallicity inside the
resonance to rise from the surface towards the core as expected from
the deceleration of the bar.

Recent studies consistently provide evidence for a slow bar,'
although the precise bar pattern speed has not yet clinched: Portail
et al. (2017) derived ©, = 39 = 3.5kpckms™! by adopting their
N-body model to density and kinematics of the red clump giants.
Their model was used by Pérez-Villegas et al. (2017) to explain the
Hercules stream in the Solar neighbourhood with the bar’s corotation
resonance (CR) and was further examined by Monari et al. (2019)
who showed that not only the Hercules but many of the prominent
structures in local velocity and action space are well reproduced by
the respective resonances of the bar, although they note that a slightly
lower pattern speed (or a lower Solar azimuthal velocity) will yield

'Here, ‘slow’ versus “fast’” does not refer to the ratio between corotation radius
and bar length as in studies of external galaxies, but exclusively describes
slow pattern speed Q, < 40km s~!kpc~! instead of the formerly favoured
fast models with @, 2 50km s~ kpe~!. See Section 4.4 for a discussion.
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better agreement with the data. Clarke et al. (2019) showed that
the integrated on-sky maps of the mean longitudinal proper motion
are consistent with models with €, = 37.5km s~! kpc’l. Sanders,
Smith & Evans (2019) used the continuity equation and derived
Q, =41 £3kms™! kpc™! from proper motions of stars in the near
side of the bar and , =31 + 1kms™! kpc~! when data on the far
side is also considered. A similar conclusion is reported by Bovy
et al. (2019) where they determined the pattern speed purely from
kinematic data. Binney (2020b) applied Jeans’ theorem to trapped
orbits in the Solar neighbourhood and showed that its violation is
minimized at , = 36 £ 1Gyr ' =35.2+ I kms~'kpc™".

Given the above uncertainties, in this paper, we take the second
approach: constraining the bar pattern speed from the metallicity
ordering inside the resonance. Using photometric metallicity derived
from Gaia DR2, we show that demanding a monotonic trend
in metallicity inside the CR of the bar narrowly constrains the
current pattern speed to Q, = 35.5+0.8kms™! kpc™! where the
CR perfectly fits the Hercules stream in agreement with kinematic
models (e.g. Pérez-Villegas et al. 2017; Monari et al. 2019; Binney
2020b; Chiba et al. 2020; D’Onghia & L. Aguerri 2020).

In the following section, we provide a brief description on resonant
dynamics that underlies our analysis. In Section 3, the method of
estimating metallicity from Gaia photometry is described and tested
with open clusters which the metallicity is measured independently
from spectroscopy. In Section 4, we present the mean metallicity
map in the local velocity/action plane and subsequently constrain
the bar pattern speed by evaluating the likelihood of monotonic
increase towards the resonance centre. Systematic errors due to
sample selection and uncertainties in model parameters are reported.
Section 5 sums up.

2 THEORETICAL BACKGROUND

2.1 Adiabatic invariants of resonantly trapped orbits

Just like Jupiter’s Trojans and Greeks, stars in the Galactic disc can
be trapped in CR with the bar. In the rotating frame of the bar, their
orbits slowly circulate around the stable Lagrange points L4 s along
the bar’s minor axis. To describe orbital motions, galactic dynamics
relies on ‘actions’ J, which are conserved under adiabatic (slow)
changes of the potential, and their canonically conjugate ‘angle’
variables @, which evolve linearly with time at constant rates €.
In axisymmetric potentials, there are three actions. One commonly
uses (Jg, Jy, J;): the radial action Jz encodes the size of radial
oscillations (and thus orbital eccentricity), the azimuthal action J,
is the angular momentum component along the rotation axis, and
the vertical action J,; quantifies oscillations perpendicular to the disc
plane. The kinematic substructures found in the Solar neighbourhood
weakly depend on J, (Friske & Schonrich 2019), so in the following
we describe the Galactic disc by a 2D model. In the presence of
a non-axisymmetric bar, J; and J, are no longer conserved but
fluctuate with amplitude increasing towards resonances, i.e. NgQp
+ N, (2, — ) = 0, where stars can be trapped. The dynamics near
resonance exhibits slow motion around the resonance and is dealt by
secular perturbation theory where the Hamiltonian is averaged over
the fast motions (Lichtenberg & Lieberman 1992). The resulting
Hamiltonian takes the form similar to that of a pendulum and the
slow dynamics of trapped orbits is described in the slow angle-action
plane (6, J) with one degree of freedom, where

J.
0y = Ngbr + N, (Qw—/dt Qp) and J; = Ni 1)
¢
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Figure 1. Phase-space volume of the bar’s CR characterized by the libration
action at the separatrix as a function of the decreasing pattern speed. The fast
action is fixed to Jy = 50 kpc km s~!. Models with different bar growth/decay
rate y are plotted. All models take the same current bar amplitude A = 0.02
at the current pattern speed 2, = 35km s~ kpc~!. The resonance volume
generally grows unless the bar amplitude decay rapidly (y < —2).

The phase space in (6, J;) is split by the separatrix into regimes
of libration (trapped orbits), and circulation (non-trapped orbits).
Trapped orbits have two approximate constants of motions: the fast
action J;y = Jg — (Ng/N,)J,, (J in the case of CR), and the action of
libration

1
=5 74 de, J,(6,), @)

which characterizes the amplitude of motion around the resonance
and takes maximal value at the separatrix. The conservation of J, is
subject to the adiabaticity condition that the libration period, which
diverges to infinity at the separatrix, is significantly smaller than the
migration time-scale of the resonance. J; is thus not conserved near
the separatrix, which allows orbits to enter or leave the resonance
there.

2.2 Increase in phase-space volume of resonance

The phase-space volume occupied by each resonance is described by
the libration action evaluated at the separatrix Jy s, (equation B4).
Fig. 1 shows Jy s, of the CR at J; = 50 kpc km s~ as a function
of the decreasing pattern speed. We present various bar models
(Appendix A) with their strength varying according to

Q)17

Alt) = Ay { ol )} ; 3)
Qp

such that it takes the current amplitude A; = 0.02 at the current

pattern speed 2, = 35kms™! kpc™'. The functional form of Q,(1)
is irrelevant here but, for instance, with €,(#) ! as assumed in
our simulations, the bar strength scales as A(f) o< . We show all
cases where A is constant (y = 0, black), decreases (y < 0, blue), or
increases (y > 0,red). The phase-space volume of the resonance Jy s
increases monotonically unless the bar weakens significantly (y <
—2) while slowing down. N-body simulations show that deceleration
of the bar is typically accompanied by an increase in bar amplitude
(e.g. Debattista & Sellwood 2000; Martinez-Valpuesta et al. 2006;
Ghafourian, Roshan & Abbassi 2020) except at the early buckling
phase, so we expect the resonance to grow and thus continuously
sweep up stars as it moves outwards. It can be trivially shown that
Josep scales as VA v2/Q, in the epicycle limit (Appendix B) which
explains why Jy s is approximately constant when y = —2.
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Figure 2. Trajectory of a test particle trapped and dragged by the CR of a
decelerating bar (Appendix A) where the colour indicates time. The black
curves represent the separatrix at the time of capture (dashed) and at the end
of the simulation (solid). The star streams along the separatrix at the moment
of capture but is then detached from the separatrix as the volume of resonance
Srows.

2.3 Tree-ring structure of resonance

When a resonance grows in volume, a fraction of stars outside the
resonance that are passed by the separatrix may be captured into the
resonance depending on their angular phase (see Appendix C for the
angle-averaged capture probability). Fig. 2 shows a typical stellar
trajectory captured into the sweeping resonance. The star initially
circulates at J; ~ 400 kpckms~' above the resonance, while the
separatrix approaches from below. The star then passes the separatrix,
becomes trapped in the resonant region and gets dragged towards
larger Js (and thus towards larger angular momentum J,) while
keeping its J, and Jg approximately constant. The black curves depict
the separatrix (calculated via perturbation theory, Appendix B) at the
time of trapping (dashed) and at the final time (solid).

The conservation of the libration action J, has an interesting
consequence: Since the phase-space volume of the resonance grows
as the bar slows down, which is directly visible in Fig. 2 as the
increase in volume occupied by the separatrix, the gap between the
separatrix and the trapped orbits grows. Due to Liouville’s theorem,
this interspace must be filled with newly trapped stars, and so the
resonance builds up layers of trapped stars like a tree grows rings at
its bark.

As demonstrated with our test particle simulation in the upper
panel of Fig. 3, this separates the final resonance into two regimes:
the core and the growth region. The initial core, marked by the
white curve mapping the original separatrix on to the current volume,
contains a relatively homogeneous population trapped initially from
further inside the disc at the formation of the bar. Measuring
the core can inform us about the initial size and location of the
resonance. Between the core and the current separatrix (solid black)
lies the growth region where the birth radius monotonically increases
towards the separatrix as the fresh layers accreted at later times and
thus at larger angular momentum.

Note that the initial formation of the bar (and also the subsequent
slow down) introduce a slight phase-space spiral inside the resonance.
Since the period at the separatrix is infinite, the number of wrappings
reflects the number of libration periods at the core of the resonance
since bar formation. The shape of the phase-space spiral could thus
be used to predict the long-term variation in libration period, which
is determined by the shape of the effective potential of the resonance,
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Figure 3. Test-particle simulation of the Galactic disc perturbed by a
decelerating bar. Upper panel: Mean birth guiding radius in the slow angle-
action plane at Jg = 10kpckms~!. The white line marks the contour of
constant libration action with a value equivalent to that at the separatrix of
the initial bar, while the black solid and dot—dashed curves mark the current
separatrix of the moving and resting resonance, respectively. Lower panel:
Mean birth guiding radius in local velocity space. The blue and black curves
are contours of constant Jz and jg.

and ultimately give an estimate on the age of the bar. However, at the
current level of Gaia data this pattern is not yet detectable.

The black dot—dashed curve shows the separatrix calculated at
fixed pattern speed, while the black solid curve takes into account
the contraction of the separatrix due to the deceleration (Appendix B).
Only stars within the latter are bound to the resonance, while stars
in between are either in transit between the circulating zones or are
becoming caught by the resonance.

To test this on observational data, we need to overcome two
observational challenges: (i) the Sun is far from the Lagrange points
and the available sample from Gaia only touches the outskirts of
the CR so currently we can only see stars of relatively large J, or
Jr that travel far enough from the Lagrange point to reach the Solar
neighbourhood. The lower panel of Fig. 3 shows how resonances
can be identified in the velocity plane of radial versus azimuthal
velocity at the Solar neighbourhood, again coloured by the original
guiding centre radii of stars. To guide the eye, we superposed
contours of constant J; in blue equally spaced by 30kpckms™!,
and J, normalized by the value at the separatrix (j[ = Jo/Jesep)
in black with 0.1 spacing. The outermost black curve corresponds
to the separatrix (as in the upper panel, dot—dashed for a resting
resonance and solid for a moving resonance). The dotted black arch
represents the location where the resonance condition is exactly
satisfied. Although the centre of the resonance cannot be observed,
we can see the mean birth radius decreasing towards the initial core of
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the resonance marked by the white curve. (ii) In practice, we cannot
measure the stellar position at trapping, so we employ the metallicity
gradient of the Galactic disc: the metallicity of stars increases towards
the Galactic centre, so metallicity is a proxy for radius at trapping
with one caveat: older stars tend to be more metal poor and have
more eccentric orbits/larger radial action, so we need to filter this out
when investigating the metallicity trends in J,.

3 METHOD OF METALLICITY ESTIMATION

The metallicity of main-sequence stars can be inferred from the
position across the main sequence in the colour—-magnitude diagram.
In general, stars in the main sequence with higher metallicity appear
redder. The reason of reddening is two-fold: (i) metals enhance the
internal opacity of the star that impedes radiative transport and hence
forces the star to swell up with a lower surface temperature. (ii)
Metals have most of their absorption lines in the UV-blue region. We
restrict our analysis to stars sufficiently low on the main sequence
so that their colours and magnitudes do not vary significantly with
stellar age. In this region, the colour—-magnitude position directly
encodes the metallicity of a star, with some contamination from
binaries and extinction (the extinction vector runs almost parallel to
the main sequence, limiting the impact of reddening uncertainties on
metallicity estimates).

3.1 Sample selection

We use stellar samples in the Solar neighbourhood (distance from
Sun s < 0.3 kpc) taken from the Gaia DR2 RV catalogue (Cropper
et al. 2018; Gaia Collaboration 2018; Sartoretti et al. 2018; Katz
et al. 2019) with parallax offset and distance estimation from
Schonrich, McMillan & Eyer (2019). We adopt the Solar Galac-
tocentric radius Ry = 8.2 kpc (Gravity Collaboration 2019), Solar
Galactocentric azimuth with respect to the bar major axis 30° (Wegg,
Gerhard & Portail 2015), Solar distance from the disc plane zg =
0.02kpc (Joshi 2007), and Solar velocity (vge, Voo — Ve, Vzo) =
(—11.1, 12.24,7.25)kms~" (Schonrich, Binney & Dehnen 2010).
We apply quality cuts on parallax p/o, > 10 and restrict samples
to those with Galactic latitude b > 10° to minimize the reddening
effect by interstellar extinction. As the resonance lines are expected
(and measured, see Friske & Schonrich 2019) to exert a mild drift
with vertical energy, we exclude stars having E. > 200km?*s—2
corresponding to a maximum vertical velocity of v. = 20kms™!
and a maximum vertical excursion from the Galactic plane of
z ~ 0.3 kpc. The vertical potential is evaluated using the Milky Way
model of McMillan (2017).

3.2 Colour-magnitude diagram

Fig. 4 shows the colour—magnitude diagram of the selected samples
superposed by stellar isochrones with (a) fixed age (4 Gyr, blue)
and (b) fixed metallicity ([M/H] = 0, red) constructed using
PARSEC version 1.2S (Bressan et al. 2012) (Gaia passbands taken
from Weiler 2018). As discussed at the beginning of this section,
an increase in metallicity shifts the isochrones redwards, while
age dependence only take an effect near the turn-off region, i.e.
on the blue/bright end. To estimate the metallicity of individual
stars, we generate isochrones with fixed age (4 Gyr by default)
for metallicities [M/H] between —1.0 and 0.5dex in 0.05dex
increments, and linearly interpolate them in magnitude G. When
evaluating the mean metallicity, we cut samples at G < 5 near
the main-sequence turnoff point. We also apply an upper limit in
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Figure 4. Colour—magnitude diagram of the selected stellar samples in the
Solar Neighbourhood. The upper panel overlays isochrones with different
metallicities at fixed age 4 Gyr, while the lower panel plots isochrones
with different age at fixed metallicity [M/H] = 0. The binary sequence is
visibly detached above the [M/H] = 0.5 isochrone, where we apply the upper
metallicity cut. The two black horizontal lines show our upper/lower limit in
magnitude G.

magnitude (G < 7) since the selection function in distance becomes
more skewed with increasing magnitude. Finally, we discard
samples with metallicity beyond [M/H] = 0.5 since they are most
likely to be binary/double stars mistaken for a bright single star.

3.3 Calibration of photometric metallicity

Due to the contamination by binary/double stars, the metallicity esti-
mated from photometry is generally biased towards high metallicity.
To quantify this bias, and to validate our method, we applied our tech-
nique to open clusters with metallicities known from spectroscopic
measurement. Fig. 5 compares our estimated metallicity [M/H] with
the literature values of [Fe/H] taken from Netopil et al. (2016). We
select Gaia samples within 20 mas from the cluster core and apply
narrow cuts in proper motions around the peak (Au ~ I masyr™!)
to extract members of the clusters. The black data show metallicity
inferred from stellar cluster with more than 100 sample stars, while
the blue data show those with less than 100 but more than 10 samples.
The metallicity estimated from Gaia photometry agrees well with
that from spectroscopic surveys over a wide range of metallicity up
to a constant offset? (0.091 & 0.017 dex) shown in green line (linear
fit). The result validates our method and demonstrates that we could
compare our results quantitatively with spectroscopic metallicity
[Fe/H] by subtracting the constant offset. We caution, however, that

2Some of the bias may originate from variations in « enhancement
(Casagrande et al. 2011).
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Figure 5. Metallicity of open clusters measured by our method compared
with literature values (Netopil et al. 2016). Data points without vertical error
bars are those lacking uncertainty reports in the reference. Open clusters with
more than 100 stellar samples are shown in black while those with less than
100 but more than 10 sample stars are shown in blue. The green line, linearly
fitted to the data, quantifies the offset 0.091 4= 0.017 dex of our metallicity
estimation due to contamination from binary/double stars.

the literature values contain uncertainties beyond the shown error
bars as evidenced by the scatter between different catalogues: e.g.
Messier 67 has a metallicity of 0.03 = 0.05 dex according to Netopil
et al. (2016) but Carrera et al. (2019) report 0.07 £ 0.03 dex while
Leaman (2012) reports —0.19 = 0.042 dex.

4 RESULTS

4.1 Mean metallicity map in local velocity/action space

The left-hand panel of Fig. 6 shows the density of stars in the local
velocity plane. As in Fig. 3, we overlay contours of constant Jg
(blue) and J; (black) at Q, = 35kms™! kpc_l. The stellar group
concentrated around (vg, v,) ~ (30, 190) km s is the ‘Hercules
stream’. Since the studies by Dehnen (1999, 2000), the origin of
the Hercules stream was suspected to be the non-resonant x, orbits
circulating below the outer Lindblad resonance (OLR) of a fast bar

(Qp 2 50kms™! kpc™!; e.g. Antoja et al. 2014; Fragkoudi et al.
2019). However, studies in the past few years have increasingly
favoured a slow bar (2, < 40km s™'kpc™") in agreement with
dynamical models fitted to the kinematics of inner gas (Sormani,
Binney & Magorrian 2015) and red clump stars in the bar/bulge
region (e.g. Portail et al. 2017; Clarke et al. 2019). In a slow bar
model, the Hercules stream consists of orbits trapped in the CR of the
bar (e.g. Pérez-Villegas etal. 2017; Monari et al. 2019; Binney 2020b;
D’Onghia & L. Aguerri 2020). This model has the problems that
the deformation in the velocity distribution predicted by a constantly
rotating bar is not strong enough and less asymmetric in vg compared
to observations. However, these problems are resolved by a slowing
bar where the CR contracts towards positive vg and brings stars at
high phase-space density from the inner disc (Chiba et al. 2020).
There are also models linking the Hercules with the 1:4 resonance of
the bar (e.g. Hunt & Bovy 2018; Asano et al. 2020) or with transient
spiral arms (e.g. Hunt et al. 2018), making the debate indecisive with
kinematics only. We will show, however, that the decelerating slow
bar model is singled out by the metallicity trend of Hercules stars.
For an extensive comparison between different bar models, see Trick
et al. (2021).

Fig. 6 right-hand panel colours the local velocity plane in mean
metallicity. A similar plot is given by Antoja et al. (2017) based
on spectroscopic metallicity obtained from the RAVE survey and
the Geneva—Copenhagen survey. The overall distribution displays
the anticipated trends: the decline of metallicity towards larger v,
(or respectively J, = v, Ry, where Ry is the Solar Galactocentric
radius), reflecting the negative metallicity gradient in Galactocentric
radius, and the lower metallicities at larger Jg, resulting from the
age—metallicity and age-dispersion relationships. However, the most
conspicuous feature is the high metallicity clump directly at the
position of the Hercules stream. This has already been reported as
early as Grenon (1972) from the Geneva photometry and Grenon
(1999) using the Hipparcos catalogues. Since Hercules is an in-
plane stellar stream and is not a dissolved cluster (Bovy & Hogg
2010) nor an accreted population (Kushniruk et al. 2020), the only
natural explanation for its high metallicity is that it originates from
the inner Galaxy. This is expected in a decelerating slow bar model
since stars trapped in the CR have been dragged from small radii
as the bar decelerates (Halle et al. 2018; Chiba et al. 2020). In
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Figure 6. Density (left-hand panel) and mean metallicity (right-hand panel) of Solar neighbourhood stars in local velocity plane. Superposed are the uniformly
spaced contours of constant Jg in blue and Jo= T /Je sep in black. The dotted black curve marks the location where the resonance condition is exactly satisfied.
The mean metallicity is calculated by fitting stellar isochrones to samples in each velocity cell of width 4kms~!. The Hercules moving group is relatively
metal rich indicating an origin at small radii. As we go around the blue contours of constant Jx (in particular the three innermost ellipses), the metallicity rises
as we cross the black curves towards small J, in agreement with expectation from a decelerating bar model. Note that the colour palette is chosen so that

metal-rich/poor stars appear with similar colour as small/large birth R, in Fig. 3.
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Figure 7. Density (left-hand panel) and mean metallicity (right-hand panel) of local stars in action space. The metal poor population appears at high J,, (stars
visiting the sun from the outer disc) and at high Jx (old stars). The dotted black lines are the CR (left) and the OLR (right) and the solid black lines mark the
maximum excursion achieved by trapped orbits librating along contours of constant J; (blue lines).

contrast, this observation is unexplainable with a fast bar model
where Hercules stars are identified as non-resonant orbits that cannot
have been dragged while the resonance swept. The metal-rich nature
of Hercules is thus a strong indication that it is composed of
resonantly trapped orbits rather than non-trapped orbits. Antoja et al.
(2017) proposed that, in the context of a non-decelerating fast bar
model, the high metallicity of Hercules may be explained by the
non-resonant x, orbits which has a slightly smaller mean radius
than orbits trapped in the OLR. However, as we show in Appendix E
using a simple age—metallicity-dispersion relation, a fast bar model is
incapable of reproducing the observed high metallicity at the position
of the Hercules as the difference in birth radii between trapped and
non-trapped orbits is too small (see Fig. E1). An analogous argument
applies to a non-decelerating slow bar model. Only the decelerating
slow bar model can bring the metal rich stars from far inside the disc
sufficient to achieve metallicity above 0.2 dex as in the data.

Fig. 7 shows the density and mean metallicity in local action space
where the general trend is best observed: the metallicity decreases
towards large angular momentum due to the increase in birth radius
but also towards large radial action due to the increase in age. There
is clearly additional substructure, which can, however, be explained
by resonances. Particularly, the metal-rich Hercules stream on the
left side of the plot is fitted well with the CR where the black
boundaries mark the maximum excursion of trapped orbits librating
along constant Jy = Jg (blue lines). At the predicted location of
OLR, there is a clear over density (left-hand panel) comprised of
metal poor stars (right-hand panel). The distance by which the stars
at the OLR can be dragged is limited by the observed radial action;
conservation of Jy = Jg — J,/2 implies that the stars acquire a fixed
amount of radial action per angular momentum gained, and so the
stars observed at e.g. Jg = 100kpckms~! have been dragged in J,
by no more than AJ, = 200kpckms~! and thus we do not expect
high metallicity. In fact, the orientation of resonant dragging in (Jg,
J,) space, which is determined by the resonant vector (Ng, N,,,),3 casts
strong limitation on the origin of the Hercules: any outer resonances
with N > 0 will inevitably pump stars up towards larger Jz while
dragging them towards the outer disc, so they cannot explain the
metal-rich Hercules stars that we observe even at low Jg. The only
resonance that can carry stars with high metallicity from the inner disc

3The direction of resonant dragging also depends on the sign of G =
3% Ho/dJ2 which is identical for resonances at Ng > 0 (Chiba et al. 2020).

without increasing their eccentricity is the CR (Ng = 0). Therefore,
the slow bar is the only model that can explain the metal-rich nature
of Hercules using resonantly trapped orbits.

‘We now map the metallicity on to the resonant actions of the CR to
conduct the tree-ring analysis. For this, we have to set parameters for
the bar which determine the mapping from (x, v) to (Jy, Jg) for each
star within the region of the CR. The resulting mean metallicity in the
(J¢, Jg) plane is shown in Fig. 8. The uncertainty of J, propagated
from the uncertainties in the Gaia data is at the percentage level
(see Appendix D) so it would not qualitatively affect the signal. The
contours of constant J, and Jr now form a rectilinear grid. Only
stars considered to be inside the resonance enter this plot, so the x-
axis ranges between 0 (the resonance centre) and 1 (the separatrix).
The parabola-like boundary on the left represents the minimum Jg
required for trapped orbits to reach the Solar neighbourhood; since
orbits with smaller J, are confined closer to the Lagrange point, a
larger minimum Jk, is required to visit us. In the velocity plane, this
boundary corresponds to points where the contours of J, and Jg
are tangential to each other. The mean metallicity increases towards
small J; (stars captured early at the inner disc) and small J; (young
stars), as indicated by the multicoloured arrows. To further clarify
the metallicity trend in J,, we show in the right-hand panel the
metallicity after subtracting the gradient in J; obtained by fitting
Fig. 7 right-hand panel with a plane which yields d]M/H]/dJz =
—0.00078 dex kpc ™' km~!s. We clearly see a monotonic increase
towards the resonance centre as predicted for a growing/sweeping
resonance, thus implying the slow down of the bar.

To get a quantitative grip on the observed [M/H] feature, we
project the 2D distribution on to 1D statistics in J,. Since the sample
distribution over (J;, Jg) is non-uniform and the [M/H] depends on
Jg, a naive averaging over Jg would cause a fatal bias. Therefore,
we instead calculate the gradient of [M/H] with respect to J, at each
fixed Jg and then average the gradient over Jg:

dMHD 7% wi (IM/HDS — (IM/HD),)  nfny
aj, AJ, ZZV/R w; Nt
@

where the superscript (£) denotes quantities associated with stars
in the bins jg (S [f(, fg + Afl] and jg (S [jg — Af(, fg] i’l,-i and
([M/H]),-i are the number of stars and the mean metallicity in the
ith Jr bin, respectively. The weights w; are necessary since each
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Figure 8. Mean metallicity of local stars trapped at the bar’s CR as a function of the resonant actions. Bar pattern speed set to Q, = 35km s~ kpc™!. Left-hand
panel: Metallicity map on resonant actions J; and Jg. The rectilinear grid corresponds to the contours of constant Jy and Jg drawn in the local velocity plane
(Fig. 6). Metallicity is predicted to increase in the directions indicated by the multicoloured arrows. Right-hand panel: Same plot after removing the metallicity
trend in Jg (d[M/H]/dJg = —0.00078 dex kpc ! km™! s) to highlight the metallicity trend in J;.

Jr bin contains a different number of stars. Once the metallicity
gradient with respect to J, is obtained, we reconstruct the metallicity
as a function solely of J, by integrating the gradient starting from
the separatrix. We accumulate the uncertainty of the reconstructed
metallicity while taking into account the correlated errors between
the metallicity gradients evaluated at adjacent points where they
use the same J} bin in between. Here, we set the bin widths to
AJ, =0.05 and AJz = 10kpckms™"' below which the results do
not change significantly.

The result for this is shown in Fig. 9. The left-hand panel shows
the change of mean metallicity with J, for a range of bar amplitudes
A at fixed pattern speed €2, = 35km s~'kpc~!'. The signal only
weakly depends on the bar strength, i.e. over the whole range of
reasonable bar amplitude, we see the same monotonic increase of
metallicity towards the resonance centre. As explicitly demonstrated
in Appendix E (see particularly Fig. E2) using pseudo-data generated
from test-particle simulations, this uptrend in metallicity is only
expected when the bar is slowing down. From the total increase
in metallicity inside the resonance, we can quantify a lower limit
for how much the bar has decelerated (this should turn into a
full estimate once Gaia can penetrate the core of the resonance).
In doing so, we must bear in mind that stars in the disc can be
randomly scattered by fluctuations in the gravitational field due
to external perturbations (e.g. mergers or satellite interactions) and
intrinsic noises (e.g. transient spiral arms or giant molecular clouds),
which will tend to weaken the observed metallicity gradient. With
this caveat, and given the metallicity gradient of the Galactic disc
—0.05 dex/kpc (Luck 2018), the maximum increase in the mean
metallicity (~0.08 dex) implies that the corotation radius has moved
at least ~1.6 kpc outward and thus the pattern speed has declined in
excess of ~24 per cent since the formation of the bar.

The right-hand panel of Fig. 9 shows the metallicity trend inside
the resonance for various bar pattern speeds at fixed bar strength
A = 0.02. In contrast to the variation in bar amplitude, the pattern
speed sensitively affects the metallicity structure: As we decrease
the pattern speed, the resonance in the velocity plane shifts towards
large v, so the metal rich Hercules stars are placed nearer to the
lower separatrix of the resonance. Consequently, the metal rich stars
become more concentrated at large J, and the metallicity wrongly
drops towards the inner region of the mis-placed resonance. Simi-
larly, for larger pattern speeds, the upper separatrix of the resonance
approaches the metal rich zone and hence the relative increase of

MNRAS 505, 2412-2426 (2021)

metallicity from the separatrix becomes small. A monotonic rise in
metallicity towards the core of the resonance is only observed with
pattern speed €2, = 35kms™' kpc~! where the CR fits the Hercules
stream. This result demonstrates that the slow bar theory is consistent
with and strongly favoured by prediction from a decelerating bar.

4.2 Estimation of bar pattern speed

In the last section, we have established the detailed metallicity
pattern. We now use its strong €2, dependence to measure the bar
pattern speed at high precision: The positioning of the resonant
actions is only correct with the true pattern speed, and thus the
reconstructed metallicity profile will come out of order if we get €2,
wrong. Since we do not expect the metallicity to undulate against
libration action, here we demand a monotonic increase of metallicity
towards lower libration action which we quantify by the likelihood
of the metallicity to increase at each point in J, starting from the
separatrix down to JAL min- We consider the metallicity change at each
point from the previous value

zi = ([M/H]); — (IM/H]);i— (&)

as a random variable distributed normally with its mean . and
uncertainty o, measured. The cumulative distribution function

X — [y
1+erf | — (6)
describes the probability of z; being smaller than x, so the likelihood
of z; being larger than zero is

1
Fi(x) = 2

1 — .
LA Qlpg. o) = 1—F0) =5 [1—ef [ 22 )| (D)
pll ) ﬁ%
The total likelihood of the metallicity to increase towards the
resonance centre is then

N
LA, Qln,, 00) = [ [ LA, lps, 02), ®)

where N = (1 — J},mm)/Afg is the number of evaluation points in
Jy. Since the number of samples drops towards small libration action,
the lower limit f(,min is fixed to 0.4 such that, for all bar parameters,
each bin in J, has more than 30 samples. We have confirmed that the
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Figure 9. Variation of mean metallicity with J; derived by integrating the metallicity gradient in J;. Left-hand panel: Dependence on bar amplitude A at
fixed pattern speed €2, = 35km s~ kpe~!. At all bar strength, the metallicity decreases monotonically from the centre of the resonance, indicating sequential
occupation of the resonance from the core by stars from ever larger radii and thus at lower metallicities. This is the signature of outward migration of the
resonance and thus the slow down of the bar. The coloured bands represent the uncertainties propagated from the 1 s.d. uncertainties of the mean metallicity
gradient in J;. Right-hand panel: Dependence on bar pattern speed ) (units given in km s~ kpe™1) at fixed bar strength A = 0.02. A monotonic trend is only
seen with , = 35km s~ kpc™! where the location of bar CR matches the Hercules stream.
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Figure 10. Likelihood (equation 8) of increase in mean metallicity towards
the centre of the bar’s CR plotted over bar pattern speed €2;, and bar strength
A. From the prior distribution in A (left-hand panel) inferred from SBM15,
we calculate the posterior distribution in €2, (bottom panel) which shows a
peak at around 2, = 35—-36km s Tkpe™!.

likelihood estimation of equation (8) is robust against the choice of
A J; smaller than 0.1.

Fig. 10 shows the log-likelihood function of the monotonic
increase. We observe an inclined peak which means that the faster the
rotation of the bar (and thus the lower the location of the resonance
in the velocity plane), the more strength (larger resonance size)
is required for the metallicity to increase towards the core of the
resonance. To have an intuitive understanding of why bar parameters
along this inclination are favoured in our analysis, we show in Fig. 11
the configuration of the resonance in local velocity space for three bar
parameters along the peak shown as white circles (a)—(c) in Fig. 10.
From top to bottom, both €2, and A increase, i.e. the resonance
shifts down but also inflates. Under such changes, the position of the
upper separatrix of the CR is kept fixed just above the metal rich
zone. As a consequence, for all three figures, the metallicity along
constant J approximately peaks at points where J, is the smallest, i.e.
points where contours of Ji and J, are tangent to one another, hence
resulting in an overall monotonic increase of metallicity towards

small J,. The results simply suggest that bar models with the upper
boundary of the CR placed just above the Hercules stream is favoured,
in agreement with prediction from kinematics.

From Fig. 10, we may constrain the bar pattern speed given
the priors for the bar amplitude. As in Chiba et al. (2020), we
infer the priors from the study of Sormani, Binney & Magorrian
(2015, hereafter SBM15). The hydrodynamic simulation by SBM15
suggests that the observed longitude—velocity diagrams of CO and
Hj are well reproduced with bar strengths in the range A € [0.4, 0.8]
in their notation which translates to A € [0.013, 0.026] in our model
if we fit our analytical bar model to their bar potential beyond half
of the corotation radius where the local kinematics are affected by
the bar. We assume a normal prior distribution in A with mean 4 =
0.0195, standard deviation o 4 = 0.0065, and a smooth cutoff given
at g £ 0oy;

exp(=x’/2) _ A—py
lepf 4D Y= o ©

P(A) x

where k is the cutoff rate set to k = 4 as default. P(A) is shown in
the left-hand panel of Fig. 10. The posterior distribution in €2, is
calculated by integrating P(A) and L(A, £2;) over A;

Amax
P(Q2,) = / dA P(A)L(A, Q). (10)
Anmin
Fig. 10 bottom panel shows P(£2,) which takes mean (2,) =
35.5kms~" kpc~!, median Qp =35.0kms~'kpc™!, and standard
deviation og, = 0.8km s"'kpc™'. This is in good agreement
with Binney (2020b) who derived €, = 36 & 1Gyrt=352+
1.0kms~'kpc™' by applying Jean’s theorem to trapped orbits
visiting the Sun. Since both studies reached the same conclusion
using independent statistics, €2, = 35—36kms™! kpc™! is reliably
the optimal pattern speed for the Hercules stream to be composed of
orbits trapped in the bar’s CR.

The pattern speed estimated in this work is slightly lower than re-
cent estimations from stellar kinematics in the bar: both Sanders et al.
(2019) and Bovy et al. (2019) estimated 2, = 41 £ 3km s7! kpc’1
using the continuity equation. With these intermediate pattern speeds,
the upper separatrix of the CR cuts or passes under the metal rich
population in the local velocity plane and thus an alternative explana-
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Figure 11. Mean metallicity in local velocity space superposed by contours
of constant Jg (blue) and Ji=J, /Je sep (black) for orbits trapped in the CR
of the bar. All three figures (a)—(c) assume bar parameters (marked on Fig. 10
in white) which yield monotonic increase of metallicity towards small J,
demanded from the slow down of the bar.

tion must be given to the metal rich population outside the bar’s CR.
Portail et al. (2017) derived Q, = 39 & 3.5kms™! kpc™! by fitting
their dynamical models of the bar region to the density and kinematics
of red clump giants using the made-to-measure method, and their
models were further used by Clarke et al. (2019) to reproduce the
integrated on-sky maps of the longitudinal proper motion which was
bestachieved at 2, = 37.5kms™' kpc™ in close agreement with our
estimation. We conjecture that the small discrepancy is partly due to
the uncertainty in the bar strength but more dominantly caused by
the difference in the underlying axisymmetric potential.

MNRAS 505, 2412-2426 (2021)

4.3 Quantifying systematic uncertainties

In the following, we discuss the systematic errors of our estimation:
Including faint stars by extending the upper limit in Gaia magnitude
from G = 7 to G = 8 has a negligible effect, unchanging the optimal
bar pattern speed within the reported precision. Changing the age of
the isochrone (default 4 Gyr) has a marginal impact: with age 6 Gyr
we obtain €, = 35.5+0.9kms™! kpc~!, while with age 2 Gyr we
have Q, = 35.4+0.7kms™! kpc~!. Throughout our analysis, we
have assumed the angle of bar major axis ¢, to be 30° ahead from
the sun (Wegg et al. 2015). By varying the bar angle ¢, we vary
the distance from the sun to the centre of the bar’s CR, i.e. the
stable Lagrange point. Therefore, varying the bar angle has an effect
on local kinematics similar to varying the bar amplitude. With bar
angle of ¢, = 35°, the optimal pattern speeds rise to £, = 35.8 &
0.9kms~!kpc~!. Conversely, decreasing the bar angle to ¢, = 25°
lowers the best pattern speed down to Q,, = 35.2 = 0.9 kms™' kpe™!.
We have also analysed the data using resonant actions evaluated in
a slowing bar with slowing rate n = 0.0036 as constrained by Chiba
etal. (2020). This yields Q, = 35.5 £+ 1.1 kms™' kpc™!. The mean is
unaffected since the deceleration does not change the location of the
resonance, but the uncertainty increases since the resonance contracts
reducing the effective sample size. Variation in the axisymmetric
potential from a flat circular speed to a slightly inclined one v.(R)
= (R/Ry) Pv.(Ry) has the largest impact changing the pattern speed
to Q, =345+ 1.1kms™! kpc™! with 8 = 0.1 and Q, =368+
0.8kms~'kpc! with g = —0.1.

Finally, uncertainties in Ry and v. cannot be treated separately
as our measurement to first order depends on the local angular
frequency ¢ = v./Ry which is constrained by the proper motion
of Sagittarius A*, jy o+ = (—6.411 £ 0.008) mas yr~! = (30.391 &
0.038)kms~ ' kpc~! (Reid & Brunthaler 2020) through the relation
Vg0 = Mea*Ro = ve + V and thus

Qo = MZ,A* - V@/R()
=28.90+0.10kms ™ kpc™! (11)

where we take Ry = 8.18 £ 0.02 kpc (Gravity Collaboration 2019)
and Vy = 12.24 +0.47kms~" (Schonrich et al. 2010). There is a
systematic uncertainty from wobbles of the black hole against the
Galactic centre (Batcheldor et al. 2010) and wobbles of the nuclear
region against the large-scale disc. These uncertainties amount to
a few kms~! peculiar motion of Sagittarius A* or vice versa a
couple per cent in s+ In this paper, we have assumed ) =
ve/Ry = 235kms~!/8.2kpc = 28.66kms~' kpc~!, so we may be
underestimating the pattern speed by a factor of 0.992 which e.g.
shifts our fiducial estimation up to Q, = 35.8 = 0.8 kms~! kpc'.

4.4 The relative pattern speed

Throughout the paper, we have referred to the Galactic bar as
‘slow’ in the sense that its pattern speed is €, < 40kms™! kpe™!
as opposed to a ‘fast’ bar with €, > 50kms~! kpc™'. This slow/fast
dichotomy based on the absolute pattern speed is not to be confused
with the slow/fast classification based on the dimensionless ratio
R = Rcr/an, where Rcr is the corotation radius and a, is the
apparent length of a bar in stellar density. When 1 < R < 1.4, the
bar is classified as ‘fast’ (Athanassoula 1992; Debattista & Sellwood
2000; Athanassoula 2014). Most barred galaxies are found to possess
a fast bar (Aguerri et al. 2015). Whether our Galactic bar is fast
or slow in the latter sense depends on the measurement of the
bar length. Wegg et al. (2015) fitted the observed red clump stars
in the bar region with a parametrized density model and derived
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ap = 5.0 = 0.2kpc. Adopting their upward revision of the bar length
together with our estimation Rcg = 6.2 £ 0.2 yields R = 1.3 £0.1
and thus makes our ‘slow’ pattern speed bar model a typical ‘fast
bar’ in this classification.

5 CONCLUSIONS

We have shown that the resonances of a slowing bar develop like the
rings on a growing tree: the distance of trapped orbits to the core of
the resonance is adiabatically invariant (i.e. the libration action J,)
and indicates the order of trapping. Since the volume of bar resonance
is shown to grow while it sweeps outwards through the disc, newly
trapped stars sequentially occupy the phase space near the expanding
separatrix. Due to the Galaxy’s negative radial metallicity gradient,
this pattern is directly observable as a monotonic increase of mean
stellar metallicity from the surface towards the core of the resonance.

Using photometric metallicities and stellar kinematics from Gaia
data, we have shown that the Hercules stream in the Solar Neighbour-
hood carries this signature. The data displays a highly significant and
clean metallicity ordering within the Hercules stream, which we can
only explain by identifying Hercules with the bar’s CR.

The metallicity ordering is only preserved with the correct current
bar pattern speed £2,: The mapping from phase space to the libration
action depends critically on €2,, and so the metallicity ordering
in J, gets lost at even small changes of 2,. We showed that this
tightly constrains the pattern speed to 2, = 35.5 = 0.8 kms™! kpe ™!
and thus Rcg = 6.6 £ 0.2 kpc, providing another key evidence for
the slow bar theory. We stress that a fast bar which associates
Hercules with the non-resonant orbits below the OLR is incompatible
with the data since there are no viable mechanism that makes
non-trapped orbits significantly metal rich. We further stress that
any outer resonances with Ng > 0 cannot explain the metal-rich
nature of Hercules since resonant dragging in angular momentum
will be accompanied by an increase in radial action while the
high metallicity stars of Hercules is observed even at low Jg. The
significant metallicity rise also demands a long sweep in radius,
which seems not feasible with a short-lived spiral pattern.

The overall increase in metallicity inside the resonance implies that
the corotation radius of the bar must have moved more than 1.6 kpc
outwards which corresponds to a decrease of pattern speed by at least
24 per cent since its formation. A more quantitative understanding on
the evolutionary history of the Galactic bar can be gained in the future
by fitting the full resonance structure with detailed chemo-dynamical
models. Owing to the Sun’s position far from the stable Lagrange
points, we currently see only the outer region of the resonance. By
performing the analysis at a spatial coordinate closer to the Lagrange
points, we could probe deeper into the inner region of the resonance,
where we may find traces of events that happened in the early epoch
of bar formation (e.g. vertical buckling), and also determine the size
of the initial core of the resonance which stems from the formation
of the bar. This will be possible in the future with extended data
covering the full range of resonance and a proper chemo-dynamical
model predicting the age-dependent effects, e.g. the flattening of
the radial metallicity gradient towards higher ages by inside-out
formation (e.g. Spagna et al. 2010; Schonrich & McMillan 2017).
We identify further caveats pertaining to diffusion processes. We
have not yet evaluated how precisely the structure of a bar-driven
resonance will be modified by diffusion processes in phase space
due to a variety of perturbations: spiral arms, giant molecular clouds,
dwarf galaxy impacts, etc. A naive expectation is that this weakens
the metallicity gradient along J,.
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Adding to our previous arguments for a slowing Galactic bar
purely based on kinematics, this work provides further evidence using
photometry. Hence, our works support the existence of a standard
dark-matter halo that has taken up angular momentum from the
slowing bar. Alternative theories of gravity are disfavoured since
they cannot explain the missing angular momentum (Ghafourian
et al. 2020). Exotic dark matter in the form of degenerate quantum
condensates (e.g. Goodman 2000; Hu, Barkana & Gruzinov 2000),
recently favoured by virtue of preventing the formation of density
cusps, must be tested for their degree of angular momentum exchange
with the baryonic bar. Thus, the discovery of the deceleration of the
bar provides a new testbed through which any successful dark-matter
model must pass. The bar slow down also paves the path to a new
class of constraints on the dark halo: The dynamical friction on the
bar depends on both the dark halo’s density and kinematics, and thus
in combination with standard maps of the gravitational potential,
gives us access to measuring the dynamical properties of the dark
halo (e.g. rotation).
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compute the Galactic potential from McMillan (2017) is available
at https://github.com/PaulMcMillan- Astro/GalPot. The codes used
to perform the test particle simulations, to compute the angle-action
coordinates, and to conduct the data analysis are available from the
corresponding author upon request.
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APPENDIX A: MODEL

We model the Galaxy as a Mestel disc perturbed by a decelerat-
ing/elongating bar described by a quadrupole term:

®(R, ¢, 1) = v21In(R) Ave [ R ’ b+1 ’
D= T R )] b+ R/Rar(0)

X cosm {(p —/ de’ Qp(t’)} , (A1)
0

where v, = 235km s~ is the circular speed (Reid et al. 2019). The
parameter A describes the strength of the bar (ratio between the
maximum azimuthal force by the bar and the radial force due to
the unperturbed potential at Rcgr), and b is the ratio of the bar scale
length to Rcr. The bar’s pattern speed £2,(#) is modelled to decrease
inversely proportional to time corresponding to a linear increase in the
corotationradius Rcg (7) = vc/€2,(1). The slowing rate of the bar is then
conveniently described by a constant, dimensionless parameter n =
—Qp / Qg = Rcgr/ve. Details on our model are described in Chiba
et al. (2020).

APPENDIX B: CALCULATION OF LIBRATION
ACTION

The motion of orbits trapped and dragged by a slowing bar is
described to first order by a differential equation that represents a
pendulum subject to a constant torque (Tremaine & Weinberg 1984;
Chiba et al. 2020):

b, + o (sin@s— %) =0, (B1)

where w? = -GV, G = 8; ﬂ", and VW is the Fourier coefficient of
the bar potential expanded in slow-fast angle variables (Chiba et al.
2020). Both G and W are evaluated at the centre of the moving
resonance J; rs(?). If the bar decelerates slowly such that the temporal
change in w(7) is negligibly slow compared to the evolution of 6, we

may write
1., 2 Ui
Ey=560+V(©), VO)=0 (— cos 6y — ZGS) ; (B2)

where 0, = GA and A = J, — Jsres- As in the analogous case
of a harmonic oscillator, E, is not conserved under adiabatic/slow
changes in w, while the associated action of libration is approximately
conserved:

do 1 do;
JZZ/?(A+_A—):7/7 2AE,— V@) (B3
c2m IGl Jc m

where A are the roots of the quadratic equation (B2) and the integral
C runs from —m to & wherever Ay is real. The maximum libration
action is given by the minimum E, necessary to reach the crest of
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the potential (i.e. @

=0):

Osep -

2W do,
J(.sep = s / — \/COS 05 — cos 6 sep + ﬁ (95 — 0 sep) (B4)
|Gl Je ’ A ’

where 0 sep = sin ~1(n/A), /2 < 0,ep < 7. In the limit of epicycle
approximation, W and G scaleas W ~ AvZand G ~ 1/RZ3y ~ Qg /v?
(see appendix of Chiba et al. 2020), so Jysep ~ \/Zvcz/ €2, which
qualitatively explains the behaviour presented in Fig. 1. As shown in
Fig. 3, equation (B4) successfully marks the phase-space boundary
of trapped orbits integrated numerically. We note, however, that this
closed curve is not strictly a separatrix. Since the parameter w of
the pendulum equation (B1) is time-dependent, the separatrix near
the saddle point 6 is in fact broken (not closed) allowing orbits
to enter or leave the resonance therefrom (Quinn & Rand 1995). In
this paper, we will nevertheless refer to the phase curve drawn by
equation (B4) as ‘separatrix’ since it marks the approximate phase-
space area of orbits currently trapped in resonance. The separatrix
of a resting resonance (n = 0, black dot—dashed) is also drawn in
Fig. 3 for comparison. The deceleration of the bar has two notable
consequences: the volume of resonant phase space shrinks, and the
centre of the resonance shifts towards positive 0; i.e. trapped orbits
are azimuthally tilted when seen in the bar’s rotating frame (Chiba
et al. 2020, fig. 16) which is simply the consequence of the Euler
force. Fortunately, the Sun is rotating ahead of the corotating orbits,
so the reduction of resonant volume in the Solar neighbourhood is
relatively small (Fig. 3 right-hand panel). Chiba et al. (2020) gave
estimates on the slowing rate as n = 0.0036 £ 0.0011 by quantifying
the asymmetry of the Hercules. In this paper, however, we use the
libration action evaluated in a fixed pattern speed as default since
the bar’s slowing rate contains large uncertainty propagated from the
uncertainty in the bar strength. The effect of bar deceleration on the
estimation of the pattern speed is examined and reported at the end
of Section 4.2. We also checked that the first and second-order terms
of the Taylor expansion of W around the resonance, which we have
neglected, barely affect the estimation of the pattern speed.

APPENDIX C: CAPTURE PROBABILITY

Here, we report on the capture rate of our slowing bar. Fig. C1 depicts
the evolution of the contracted resonance with time (from left to
right). As the resonance advances in J;, the area of resonance grows
(Section 2.2), so a fraction of stars above the resonance (region I) that
encounter the separatrix may either be captured into the resonance

(@) t=1

(b) t= t +At

A Sy

111

Figure C1. Schematic drawing of the evolution of a resonance. The phase
space is split into three regime: the upper circulation regime (I), the libration
regime (II), and the lower circulation regime (III). As time At passes (from
left-hand panel to right-hand panel), the resonance moves up by AJ; s and
grows by ASy = 2 AJyep. The time variation of the phase-space area of
the respective regions determines the capture rate (equation C1).
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Figure C2. Upper panel: The time evolution of the CR’s location Jg res
and its volume Jy sep. Lower panel: The angle-averaged capture probability
calculated analytically (black) and numerically (blue).

(region II) or transfer to the lower side (region III) depending on
their incident phase. If we assume that trapped orbits always remain
trapped as the resonance moves and grows [i.e. if the area enclosed
by the dotted curve in Fig. C1 (b) is comprised of stars that occupied
region II in Fig. C1 (a)], the capture probability Py averaged over
the phase can be calculated from the rate of change in the phase-
space area of each region (Henrard 1982; Collett, Dutta & Evans
1997; Binney & Tremaine 2008, problem 3.43):

@ dSm
P = %S] Pm= %S] Pou+ Pom=1, (cn
Cdr Cdr

where Sppm are the phase-space area of region I, II, and III,
respectively, which change according to

d 1d dJs res

% = Zn%, (C3)
and are conserved in total

S dSu | dSw _ (C5)

dr dr dr

The capture probability is determined by two factors: how fast the
resonance sweeps dJ; r.s/df and how fast it grows in volume dJ s.p/dt.
Fig. C2 top panel shows the time evolution of J s and Jy sp at the
CR of our slowing/elongating bar model. As in the simulation shown
in Fig. 3, the bar amplitude A is kept constant and the fast action
is Jf = 10 kpc km s~!. Since the corotation radius Rcg of our bar
is modelled to expand linearly with time (Appendix A), both J s
and J s are linear as they scale according to Jg res ~ Ve Rcr, Josep ™~
V|G| ~ +/AvcReg. Consequently, the capture probability, shown
in the bottom panel of Fig. C2 (black curve), is roughly constant
around 0.2. We also calculated the capture rate using test-particle
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simulation where we place 10* stars with identical initial actions
just above the resonance (Jq9 = {Jsres, ¢ > 1) but with random
angles, and judge capture if J; increase by a factor of more than
1.2 from the initial value (see Chiba et al. 2020 section 4.2 for
detail). It is self-evident that our measurement is affected by the
higher-order resonances which pass the stars before the CR. These
resonances take a comparably small phase-space volume that they
are still able to temporarily capture and sweep some stars as well as
they might bias the angle distribution of stars interacting with the CR.
We ascertained that the capture probability to the CR indeed depends
at the 20 per cent level on the chosen initial position parametrized
by ¢. Thus, we conduct the measurement with ¢ = 1.15, 1.20, 1.25,
1.30 and take the mean value. The numerical result (blue), which is
plotted at the time when the resonance passes Jy, is slightly lower
than the analytical estimation (black) but reassures the qualitatively
behaviour. The overestimation of our analytical approach is most
likely due to the assumption that all trapped stars remain trapped as
the resonance moves/grows which is invalid at the separatrix where
the libration period diverges and thus allows orbits to escape from
the moving resonance despite the growth in volume.

APPENDIX D: UNCERTAINTY IN LIBRATION
ACTION

It is important to check that the uncertainty of the libration action
Jo=J, /Jesep arising from the uncertainties in the Gaia data is
sufficiently smaller than the scale of jg at which we are looking. To
quantify the uncertainty in J,, we prescribe a Gaussian distribution
for Gaia parallax p, proper motions (i, 45, and line-of-sight velocity
Vjos using the reported errors, and estimate the uncertainty by Monte
Carlo method with 1000 realization for each star. Fig. D1 upper panel
plots the mean uncertainty of J, over the velocity space. Gaia’s
observational errors enter velocity space almost linearly, so the
uncertainty in Jy is largest where the gradient of J; in velocity space
is steepest. Since the contours of J, are calculated using the position

0.03

Vg [km s’l]

0.2 T T T

08 < Ji/Jgp €10 ——
0.16 f 0.6 < Jy/Jygep <08 —— ]
0.0 <Ji/Jygep S0.6 ——

0 0.02 0.04 0.06 0.08 0.1
o
J|/J\,sep

Figure D1. Upper panel: Mean uncertainty of J, measurement due to
Gaia errors. The uncertainty follows the gradient of J;. Lower panel: The
distribution of uncertainty in J;. For the majority of stars, the uncertainty is
of the order of 0.01 which is sufficiently smaller than the range of J, over
which we measure the metallicity trend.
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of the Sun, some local stars relatively far from the Sun (at most
0.3kpc) appear beyond the separatrix. Fig. D1 lower panel shows
the distribution of the uncertainty for three regions of the resonance:
the inner region (0 < J, < 0.6, light blue), the intermediate region
(0.6 < J, < 0.8, blue), and near the separatrix (0.8 < J, < 1, black).
The uncertainty becomes larger towards the separatrix, although for
the vast majority of stars it is only a few per cent, so more than an
order of magnitude smaller than the range in J, across which we
have shown the monotonic metallicity increase.

APPENDIX E: MODEL OF LOCAL
METALLICITY

Modelling the local metallicity distribution is an involved task re-
quiring a chemo-dynamical model that deals with the age-dispersion
relation, the variation of the radial metallicity gradient with age, and
radial mixing of stars, all of which is non-trivial and is thus beyond
the scope of this paper. Here, we just provide a rough guidance
on how the different bar models would translate into an observable
metallicity distribution.

As evident from the data, both the age-metallicity and the age—
velocity dispersion relationships combine into a negative metallicity
gradient towards larger radial action which is superpositioned to
the J, dependence resulting from the radial metallicity gradient.
We fit this metallicity-Jx relationship linearly to roughly cover this
effect: d[M/H]/dJz = —0.00078 dex kpc~' km~'s. This relation is
then applied to the original Jx of the test particles together with the
radial metallicity gradient —0.05 dex/kpc (Luck 2018) applied to the
birth R, (i.e. original L.).

Fig. E1 displays the birth guiding radius (left column) and
the corresponding metallicity (right column) of three different bar
models. The top panels show the previously favoured fast bar model
with pattern speed 2, = 53km s~' kpc™! (Dehnen 1999). The OLR
is located above the Hercules stream and the non-resonant x, orbits
below the OLR constitute the Hercules. The contours of J, are broken
at small Jg due to the failure of the pendulum formalism at the
Lindblad resonances where trapped stars are modeled to librate down
to negative Jg, although this problem could be resolved by appropri-
ate coordinate transformation (Binney 2020a). As demonstrated by
Antoja et al. (2017), the left-hand panel shows that the non-trapped
stars at the position of Hercules originate from smaller radii than
the OLR stars with similar v,,. Note that Antoja et al. (2017) plotted
the current mean radius of the stars whereas our plot depicts the
original guiding radius which is the relevant quantity for assessing
the metallicity gradient. As can be seen from our plots, the difference
in the original R, is too small such that, when the simple metallicity—
age-dispersion relation is applied, the metallicity at Hercules is only
0.05 dex larger than that at the LSR while the data show a difference
of more than A[M/H] > 0.2 dex (Fig. 6).

The middle panels show the slow bar model with constant pattern
speed. The Hercules is now associated with orbits trapped in the CR
that have a larger range of radial oscillation compared to non-trapped
orbits, resulting in a slightly higher metallicity than the fast bar
model. However, the predicted metallicity remains below the level
of the data. Note the stripes along the contours of libration action
arising from the incomplete phase mixing inside the resonance (even
though we have run the simulation for 12 Gyr).

The bottom panels show the decelerating slow bar model which
we have elaborated on in the main text (Section 2.3). The slow down
of the bar brings trapped stars from far inside the disc (~3 kpc) that
could potentially have metallicity as high as 0.2 dex in agreement
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(@) Constant fast bar (17 = 0, Q, = 53kms~ kpc™! = 1.85Q).
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(C) Decelerating slow bar (17 = 0.004, Qp = 35kms~" kpe™! = 1.22Q).

Figure E1. The birth guiding radius (left column) and the estimated local metallicity (right column) for three bar models. Top panels: a constant fast bar
(2p = 53km 5! kp(f1 = 1.850). Middle panels: a constant slow bar (2, = 35km g1 kpcf1 = 1.229p). Bottom panels: a decelerating slow bar.

with data. The metallicity-.J, relation of our models is shown in
Fig. E2. The slowing bar (black) exhibits a profound linear increase
in metallicity towards the resonance centre up to the initial core
(J, < 0.3) within which the metallicity is flat as expected. The steady
bar (blue) shows no significant rise in metallicity. The result thus
corroborates our argument that the observed uptrend in metallicity
manifests the deceleration of the bar. We stress though that this is a
mere order of magnitude estimation and that many important galactic

evolution processes have been ignored, in particular the change in
the radial metallicity gradient with time and position as a result of
inside-out formation (e.g. Spagna et al. 2010; Schonrich & McMillan
2017). Naively, this inside-out signature should flatten or even invert
the J,-metallicity relationship for old stars (large J) and thus reduce
the metallicity contrast between the CR and the surrounding non-
resonant stars at very large Jg. A quantitative prediction must await
a proper chemo-dynamical model that fully considers these effects.
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Figure E2. Prediction of mean metallicity [M/H] inside the resonance using
mock data generated from test-particle simulation. Increase in [M/H] towards
small J, exclusively happens in the slowing bar model, while there is no
appreciable rise in the corresponding model with a constant bar pattern speed.
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