

Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

Journal Pre-proof

Re: 'methodological evaluation of bias in observational COVID-19 studies on drug effectiveness' by Wolkewitz et al

Alessandro Cozzi-Lepri, Professor, Giovanni Guaraldi, Professor, Dr Marianna Meschiari, Cristina Mussini, Professor

PII: S1198-743X(21)00214-7

DOI: https://doi.org/10.1016/j.cmi.2021.04.026

Reference: CMI 2506

To appear in: Clinical Microbiology and Infection

Received Date: 13 April 2021

Accepted Date: 17 April 2021

Please cite this article as: Cozzi-Lepri A, Guaraldi G, Meschiari M, Mussini C, Re: 'methodological evaluation of bias in observational COVID-19 studies on drug effectiveness' by Wolkewitz et al, *Clinical Microbiology and Infection*, https://doi.org/10.1016/j.cmi.2021.04.026.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2021 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

Journal Pre-proof

Methodological evaluation of bias in observational COVID-19 studies on drug effectiveness' by Wolkewitz et al.

Dear Editor,

We read with interest the paper by Martinuka et al published on CMI (1). Although we agree with the general issue that making valid causal inferences from real-world observational data is a demanding task that requires high-quality data and adequate statistical methods as well as clinical knowledge and statistical expertise, a few points regarding specific criticisms to our TESEO study need to be pointed out (2). Indeed, the authors seemed to have misread both the design and statistical methods used in our study.

First, the study population was people with COVID-19 pneumonia admitted to a tertiary hospital, not people entering ICU as incorrectly reported in Table 1.

Immortal bias seems to be a non-issue in the setting of people hospitalised with COVID-19 pneumonia. Indeed, the probability of dying before starting any treatment in such target population is close to zero so immortal bias is unlikely to occur.

The second common misconception regards the presence of competing risks and how to control for these. Although we agree that people who are discharged before day 28 are no longer at risk of undergoing mechanical ventilation or dying and this was a competing risk in our analysis, our aim was to give an estimate of the average treatment effect equivalent to what could be estimated in the emulated randomised trial (3). Thus, the aim was to quantify the survival time distribution for the situation without the competing risk. Specifically, for unbiased estimation of the effect of the intervention, we had to assume that participants whose follow-up was censored due to the competing risk could be represented by the ones who remained in follow-up. This was achieved in the secondary analysis which correctly adjusted for informative censoring using inverse probability of censoring weights (not reported in Table 3). A competing risk analysis would have been appropriate if the aim was to quantify the risks after taking into account that participants could also experience an early discharge, not causal inference using a marginal model. The two paradigms are often confused (4).

We also agree that to treat the intervention as time-fixed and to control only for time-fixed confounding factors was a simplification. Nevertheless, again the amount of potential bias introduced by this simplification depends on specific settings. In our setting, treatment was initiated almost immediately after hospital admission (typically within 48h) and although some time-varying variables could change very rapidly (e.g. the PaO2/FiO2 ratio) the introduction of large bias by using

Journal Pre-proof

a time-fixed approach is likely to be negligible. In addition, to report that we ignored time-varying confounding is simply inaccurate (Table 2). Indeed, in our secondary analysis we did control for post-baseline varying confounding of starting other pharmaceutical interventions such as steroids.

Moreover, as an example, we report the results of another recent analysis of ours aiming to emulate the RECOVERY trial (comparing the risk of death in people who were randomised to remain on steroids alone or to add tocilizumab to steroids). We performed this analysis using a time-fixed intervention variable with time fixed confounding or, alternatively as recommended by Martinuka et al., using all time-varying factors. As shown in the Table, because events occurred very quickly after admission to hospital, all the approaches led to very similar results (a maximum difference of 10% in the estimated effect size of the intervention on risk of death, with no difference in the overall conclusions). Of note, using standard regression techniques to control for time-varying intervention in the presence of time-varying confounders affected by prior intervention led to the same amount of bias introduced by the time-fixed simplification (5). Thus, at least in our setting, to appropriately control for confounding appeared to be as crucial as the choice between a time-fixed vs. a timevarying intervention design.

Finally, an important way to evaluate the validity of the results of an observational study, not at all mentioned in the paper by Martinuka et al, is to compare its results with those of the reference randomised trial (6,7). In our case, the results of the TESEO study for the effect of tocilizumab vs. standard of care in people enrolled during the first wave (HR=0.61 95% CI:0.40-.92) were remarkably consistent with those of the reference REMAP-CAP trial conducted on a similar study population (HR=0.57, 95% CI:0.47-0.80) (3). Other RCTs showed conflicting results but were conducted in different target populations and effect measure modification is a key issue when evaluating the efficacy of tocilizumab (8).

Professor Alessandro Cozzi-Lepri Professor Giovanni Guaraldi Dr Marianna Meschiari Professor Cristina Mussini

Author contributions:

Alessandro Cozzi-Lepri: letter conceptualization, formal statistical analysis, data interpretation, writing and revising for intellectual content.

Cristina Mussini: letter conceptualization and revising for intellectual content.

Marianna Meschiari: data curation and revising for intellectual content.

Giovanni Guaraldi: data curation and revising for intellectual content. Alessandro Cozzi-Lepri has no conflicts of interest

No external funding was received for this work.

References

- Martinuka O, von Cube M, Wolkewitz M. Methodological evaluation of bias in observational COVID-19 studies on drug effectiveness. Clin Microbiol Infect. 2021 Apr 1:S1198-743X(21)00138-5.
- Guaraldi G, Meschiari M, Cozzi-Lepri A, et al. Tocilizumab in patients with severe COVID-19: a retrospective cohort study. Lancet Rheumatol. 2020 Aug;2(8):e474-e484. doi: 10.1016/S2665-9913(20)30173-9. Epub 2020 Jun 24. Erratum in: Lancet Rheumatol. 2020 Oct;2(10):e591.
- REMAP-CAP Investigators, Gordon AC, Mouncey PR, Al-Beidh F, et al. Interleukin-6 Receptor Antagonists in Critically III Patients with Covid-19. N Engl J Med. 2021 Feb 25:NEJMoa2100433.
- 4. Data Analysis with Competing Risks and Intermediate States By Ronald B. Geskus
- Hernán MA, Brumback B, Robins JM. Marginal structural models to estimate the causal effect of zidovudine on the survival of HIV-positive men. Epidemiology. 2000 Sep;11(5):561-70.
- 6. Dahabreh IJ, Sheldrick RC, Paulus JK, Chung M, Varvarigou V, Jafri H, Rassen JA, Trikalinos TA, Kitsios GD. Do observational studies using propensity score methods agree with randomized trials? A systematic comparison of studies on acute coronary syndromes. Eur Heart J. 2012 Aug;33(15):1893-901.
- Lodi S, Phillips A, Lundgren J, Logan R, Sharma S, Cole SR, Babiker A, Law M, Chu H, Byrne D, Horban A, Sterne JAC, Porter K, Sabin C, Costagliola D, Abgrall S, Gill J, Touloumi G, Pacheco AG, van Sighem A, Reiss P, Bucher HC, Montoliu Giménez A, Jarrin I, Wittkop L, Meyer L, Perez-Hoyos S, Justice A, Neaton JD, Hernán MA; INSIGHT START Study Group and the HIV-CAUSAL Collaboration. Effect Estimates in Randomized Trials and Observational Studies: Comparing Apples With Apples. Am J Epidemiol. 2019 Aug 1;188(8):1569-1577.
- Ascierto PA, Fu B, Wei H. IL-6 modulation for COVID-19: the right patients at the right time? *Journal for ImmunoTherapy of Cancer* 2021;9:e002285. doi: 10.1136/jitc-2020-002285

Table. Effect size of tocilizumab intensification in people treated with steroids in our observational cohort

	Hazard ratios of death (95% CI)	p-value
Unadjusted		
(time varying intervention)		
Never started Tocilizumab	1	
Intensified with Tocilizumab	0.56 (0.36, 0.87)	0.010
Adjusted ¹		
(time-fixed intervention)		
Never started Tocilizumab	1	
Intensified with Tocilizumab	0.48 (0.26, 0.87)	0.016
Adjusted for time-fixed covariates ²		
(time varying intervention)		
Never started Tocilizumab	1	
Intensified with Tocilizumab	0.53 (0.33, 0.86)	0.010
Adjusted for time-varying covariates ³		
(time varying intervention)		
Never started Tocilizumab	1	
Intensified with Tocilizumab	0.50 (0.31, 0.83)	0.007
Weighted ⁴		
(time varying intervention)		
Never started Tocilizumab	1	
Intensified with Tocilizumab	0.66 (0.41, 1.05)	0.081

¹weighted model adjusted for age, ethnicity, baseline CCI, baseline CRP and censoring using IPW

²standard Cox model adjusted forage, ethnicity, CCI, baseline CRP and PaO2-FiO2 ratio

³standard Cox model adjusted forage, ethnicity, CCI, baseline and time-varying PaO2-FiO2 ratio and CRP

⁴weighted Cox model controlled forage, ethnicity, CCI, baseline and time-varying PaO2-FiO2 ratio and CRP using IPW