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Abstract
Background. Diffuse intrinsic pontine gliomas (DIPGs) are lethal pediatric brain tumors. Presently, MRI is the main-
stay of disease diagnosis and surveillance. We identify clinically significant computational features from MRI and 
create a prognostic machine learning model.
Methods. We isolated tumor volumes of T1-post-contrast (T1) and T2-weighted (T2) MRIs from 177 treatment-naïve 
DIPG patients from an international cohort for model training and testing. The Quantitative Image Feature Pipeline 
and PyRadiomics was used for feature extraction. Ten-fold cross-validation of least absolute shrinkage and selec-
tion operator Cox regression selected optimal features to predict overall survival in the training dataset and tested 

MRI-based radiomics for prognosis of pediatric diffuse 
intrinsic pontine glioma: an international study
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in the independent testing dataset. We analyzed model performance using clinical variables (age at diag-
nosis and sex) only, radiomics only, and radiomics plus clinical variables.
Results. All selected features were intensity and texture-based on the wavelet-filtered images (3 T1 gray-
level co-occurrence matrix (GLCM) texture features, T2 GLCM texture feature, and T2 first-order mean). This 
multivariable Cox model demonstrated a concordance of 0.68 (95% CI: 0.61–0.74) in the training dataset, 
significantly outperforming the clinical-only model (C = 0.57 [95% CI: 0.49–0.64]). Adding clinical features 
to radiomics slightly improved performance (C = 0.70 [95% CI: 0.64–0.77]). The combined radiomics and 
clinical model was validated in the independent testing dataset (C = 0.59 [95% CI: 0.51–0.67], Noether’s test 
P = .02).
Conclusions. In this international study, we demonstrate the use of radiomic signatures to create a machine 
learning model for DIPG prognostication. Standardized, quantitative approaches that objectively measure 
DIPG changes, including computational MRI evaluation, could offer new approaches to assessing tumor 
phenotype and serve a future role for optimizing clinical trial eligibility and tumor surveillance.

Key Points

• This is the first discovery-driven, 3D MRI machine learning study to prognosticate 
DIPG.

• Radiomics-based heterogeneous tumor intensity and texture features on MRI 
confer a better prognosis.

• We identify features that are significant and preserved across multiple institutions 
to examine clinical applicability.

Diffuse intrinsic pontine gliomas (DIPGs) are lethal brain 
tumors that predominantly affect children. With a median 
survival of 11 months, the prognosis remains dismal.1,2 The 
presence of the H3 K27M mutation in approximately 80% 
of patients has led to the World Health Organization (WHO) 
classification of “diffuse midline glioma, H3 K27M-mutant” 
(DMG).3,4 However, the term “DIPG” remains clinically rel-
evant given the unique clinical characteristics of pontine 
DMG, the need to include H3 wildtype tumors in the defi-
nition, and the practical consideration that H3 K27M status 
may be unknown for many unbiopsied tumors. At present, 
MRI is the mainstay for tumor diagnosis, evaluation of 
tumor extent, presurgical biopsy planning, and therapy 
response.5

Previous studies have reported that MRI features such as 
tumor size or contrast enhancement correlate with tumor 
progression, radiation effects, and/or tumor necrosis.6–8 
Studies have also applied different MRI techniques to de-
scribe tumor physiology,5,9 chemical signatures,10 or tissue 

microstructure11,12 that might confer prognostic informa-
tion. However, clinical translatability of these imaging 
tools may be limited by differences in imaging techniques 
and protocols, as well as the labor and cost of image 
post-processing.

With current and new clinical trials underway for DIPG, 
including immune-based therapies, there is a need for 
noninvasive prognostic imaging biomarkers that can 
more precisely stratify tumor risk factors and thereby as-
sist clinical trial eligibility and therapy planning. A recent 
International DIPG Registry study of 357 patients reported 
that age and distant disease best predicted length of sur-
vival, while there was excessive discordance among ex-
pert human readers regarding MRI features.9

Advances in computer vision have shown potential for 
image-based oncologic evaluation, including machine 
learning for prognostic modeling.13–17 While human visual 
inspection offers information regarding macroscopic 
tumor environment such as tumor location, size, contrast 

Importance of the Study

With new clinical trials underway for DIPG, including 
immune-based therapies, there is a need for quantita-
tive prognostic biomarkers that can more objectively 
assess tumor risk factors and assist clinical trial eligi-
bility and therapy planning. In this international study, 
we highlight the potential use of radiomics and machine 

learning to better prognosticate outcomes for patients 
with DIPG than clinical variables alone. Our pilot re-
sults highlight the potential for radiomics and machine 
learning to contribute to precision in neuro-oncology 
and potentially augment clinical decision making for 
this devastating group of tumors.
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enhancement, hemorrhage, or diffusion changes, com-
putational approaches could uncover clinically significant 
high-dimensional image features that elude visual inspec-
tion. Radiomics algorithms can extract mineable high-
dimensional, quantitative image features, which can then 
be used to create machine learning models predictive of 
clinical outcomes.18–20 Standardized analyses allow clini-
cian investigators to test the reproducibility and replica-
bility of these models.21 Furthermore, a machine-based 
quantitative model that generalizes, despite heteroge-
neous data acquired from different centers, could reduce 
human interobserver differences even among experts. 
For this purpose, we assembled an international cohort of 
children with DIPG tumors and investigated radiomics ap-
proaches to identify important computational features for 
DIPG prognosis.

Materials and Methods

Study Cohort

For this multicenter, retrospective study, institutional 
review board approval was obtained at all participating 
institutions. Stanford Children’s Hospital served as the 
host institution and data use agreements were obtained 
at all participating sites: Seattle Children’s Hospital (SC—
Seattle, Washington), Primary Children’s Hospital (UT—
Salt Lake City, Utah), Children’s Hospital Orange County 
(CH—Orange County, California), Dayton Children’s 
Hospital (DY—Dayton, Ohio), Indiana University Riley 
Hospital for Children (IN—Indianapolis, Indiana), Great 
Ormand Street Hospital (GO—London, United Kingdom), 
Centre International Carthage Médical (TM—Monastir, 
Tunisia), Lurie Children’s Hospital of Chicago (CG—
Chicago, Illinois), NYU Langone Medical Center (NY—
New York City, New York), and Tepecik Health Sciences 
(TK—Izmir, Turkey). We included all DIPG patients 
younger than 19  years old with a baseline brain MRI 
prior to therapy. Diagnosis was made based on MRI eval-
uation and consensus between 2 neuroradiology fac-
ulty. Exclusion criteria were nondiagnostic MRI due to 
motion or extensive metal artifacts, lack of follow-up in-
formation, patients who refused standard radiotherapy, 
and given that distant disease outside of brainstem is 
a known predictor of poor outcome,9 patients known to 
have metastatic disease at presentation. Patients who 
were alive were censored at the time of the last known 
follow-up.

MRI Acquisition

MRI brain scans were acquired at either 1.5 and 3 T magnet 
using the following vendors across the centers: GE 
Healthcare, Siemens AG, Philips Healthcare, and Toshiba 
Canon Medical Systems USA Inc. The T2-weighted MRI 
(T2-MRI) scans were T2 TSE clear/sense, T2 FSE, T2 pro-
peller, T2 blade, T2 drive sense (TR/TE 2475.6-9622.24/80-
146.048); slice thickness 1–5  mm with 0.5 or 1  mm skip; 
matrix ranges of 224-1024  × 256-1024. T1-weighted post-
gadolinium MRI (T1-MRI) scans included T1 MPRAGE, 

T1 BRAVO, T1 FSPGR, T1 SPGR, and T1 SE; slice thickness 
0.8–1.2  mm; matrix (256-512) × (256-512). To ensure con-
sistency across sites, all images were collected in DICOM 
image format.

Tumor Volume

Manual delineation of tumor boundaries was performed 
independently on T2-MRI and over the corresponding 
tumor boundary on T1-MRI regardless of enhancement 
using Osirix software (Switzerland; Figure 1). The tumor 
boundary was determined by consensus review among 
experts (K.W.Y., R.M.L., S.H.C.). Segmentation output 
served to generate tumor volumes, which were then used 
for radiomics feature extraction.

Radiomics Feature Extraction

Radiomic features were extracted from within the seg-
mented tumor boundaries using the open-source 
PyRadiomics software (version 2.2.0.post7+gac7458e) 
using the configuration file shown in Supplementary 
Appendix S1 and implemented in the Quantitative Image 
Feature Pipeline.21,22 Prior to feature extraction, images 
were normalized (normalize scale  =  100) and resampled 
to isotropic 1 mm voxels. A total of 900 features were ex-
tracted on each T2-MRI and T1-MRI. Extracted features in-
cluded size, shape, first-order, and texture-based features 
computed on original, wavelet, and Laplacian of Gaussian 
filtered images. Wavelet images were filtered with a high 
band-pass (H) or low band-pass filter (L) in the x, y, and z 
directions resulting in 8 different combinations of decom-
positions. A bin width of 10 was used for gray-level discret-
ization in both normalized MR images.

Model Development

The complete dataset was randomly divided into training 
(60%, n = 106) and test (40%, n = 71) sets. The training set 
was used to select the optimal features to predict overall 
survival (OS) and build the Cox regression model. The 
model was then locked and evaluated on the holdout test 
set. All radiomic features were standardized prior to model 
development. We evaluated the utility of clinical features 
alone (age at diagnosis and sex), radiomic features alone, 
and the combination of clinical and radiomic features. All 
model development and evaluation were performed using 
RStudio (version 1.3.959)23 with a priori statistical signifi-
cance of α less than 0.05.

The glmnet package (version 4.0-2)24 was used to select 
the most important features to predict OS in the training 
dataset. We performed 100 repetitions of 10-fold cross-
validation to fit a Cox regression model based on the 
least absolute shrinkage and selection operator regular-
ization (α  =  1). The optimal features were chosen based 
on the lambda value with the minimum cross-validated 
error across the 100 repetitions. The optimal features 
were then used to build a Cox proportional hazards model 
in the training dataset. This model was then locked and 

https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdab042#supplementary-data
https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdab042#supplementary-data
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evaluated in the testing dataset using the concordance 
index. Noether’s test was used to determine the signif-
icance of the concordance index compared to random 
chance (concordance  =  0.5). The concordance indices of 
different models were compared using the Student’s t-test 
for dependent samples in the survcomp package (version 
1.34.0).25  We also performed Kaplan–Meier analyses to 
risk-stratify patients based on the median risk score from 
the Cox model in the training set, with significance deter-
mined by the log-rank test.

Results

Demographics and Clinical Information

One hundred seventy-seven patients (85 males, median 
age 6.7 [range 1.6–19] years) were included for analysis. 
OS was available for 147 patients (median survival 11 
[range 1–74] months). Thirty patients were alive at the 
time of analysis (median follow-up of 6  [range 1–164]). 
Clinical information including patient demographics 
is summarized in Table 1. While all patients received 
standard focal radiation therapy of approximately 54 Gy, 
therapy after radiation varied from no further therapy, 
to an early-phase clinical trial, to a conventional chemo-
therapy regimen.26,27

MRI-Based Radiomics

Model development

Since T1- and T2-MRI are standard of care imaging, we 
sought to build an initial model using both sets of radiomic 
features. Since not all patients in our dataset had both 
T1- and T2-MRI available for analysis, we built the model 
on the 95 patients (90%) in the training dataset which 
had radiomic features on both T1- and T2-MRI. Image ex-
amples from these patients are shown in Supplementary 
Figure S1. This training dataset was used to perform fea-
ture selection. The lambda value with the minimum cross-
validated error across the 100 repetitions resulted in a total 
of 5 features with non-zero coefficients. This included 3 
features from T1-MRI and 2 features from T2-MRI. All fea-
tures were intensity and texture-based on the wavelet-
filtered images. The T1-MRI features included wavelet (LLH) 
gray-level co-occurrence matrix (GLCM) inverse differ-
ence normalized (IDN), wavelet (LHH) GLCM informational 
measure of correlation 2 (IMC2), and wavelet (HHH) GLCM 
IMC2. The T2-MRI features were wavelet (LLH) GLCM IDN 
and wavelet (HHH) first-order mean.

This multivariable Cox model demonstrated a con-
cordance of 0.68 (95% CI: 0.61–0.74) in the training 
dataset. This model outperformed the clinical model 
that used sex and age at diagnosis as variables, which 
had a concordance of 0.57 (95% CI: 0.49–0.64), P =  .017. 

  

Figure 1. Examples of tumor regions of interest over the tumor. Tumor segmentation was performed over abnormal signals on T2-weighted 
MRI (top) and corresponding gadolinium-enhanced T1-weighted MRI (bottom) to generate tumor volume.
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When clinical features were combined with radiomics, 
the model performance increased to a concordance of 
0.70 (95% CI: 0.64–0.77), but this was not an improve-
ment over radiomic features alone (P = .05). Neither clin-
ical feature contributed significantly to the model (Table 
2) nor was there any correlation between the clinical or 
radiomic features, as shown in Supplementary Figure S2. 
A qualitative example of imaging characteristics seen in 
2 patients is shown in Figure 2.

Independent evaluation

The Cox proportional hazard model using both T1 and T2 
features was locked based on the training dataset and in-
dependently evaluated in the holdout test set (n  =  58). 
During testing, the clinical-only (0.51 [95% CI: 0.42–0.59]) 
and radiomics-only models (0.55 [95% CI: 0.48–0.62]) per-
formed similarly (P = .21).

In comparison, the combined radiomics and clinical 
model was validated in the independent testing dataset 
(0.59 [95% CI: 0.51–0.67], Noether’s test P = .02). In the inde-
pendent test dataset, the combined model outperformed 
the clinical-only (P = .04) and the radiomics-only (P = .003) 
models. The combined model also risk-stratified patients 
based on the median risk score determined in the training 

dataset (Figure 3). A summary of all concordance indices is 
shown in Table 3.

Performance of individual T1 contrast and T2 features

To investigate the utility of T1 and T2 imaging features 
alone, we evaluated the performance of the three T1 fea-
tures on all patients with gadolinium-enhanced T1-MRI 
available. Likewise, the two T2 features were evaluated on 
all patients who had T2-MRI available. The results are given 
in Supplementary Table S1. The performance of individual 
sequences was lower compared to the combination of 
T1 and T2 MRI radiomic features, and none of the models 
were validated in the testing dataset.

Discussion

Using high-dimensional feature analysis of a large pooled 
international MRI dataset of DIPG patients, a combined 
model incorporating clinical variables (age and sex) and 
radiomics features was able to predict OS better than clin-
ical variables alone. While DIPG remains highly lethal, 
age is a known prognostic factor for DIPG, with longer 
survival reported for older children.6 Based on radiologist 
qualitative and quantitative evaluations of variable im-
aging features, several studies have reported that various 
baseline MRI features correlate with survival, but with in-
consistent associations.6,8,28–31 This likely relates to small 
cohort sizes, heterogeneous imaging protocols, human 
interobserver differences, and differences in criteria used 
for tumor descriptors. In a recent study of 357 pediatric 
DIPG, image features, such as extrapontine tumor, larger 
size, enhancement, necrosis, reduced diffusion, and dis-
tant (outside of the brainstem) tumor spread correlated 
with shorter OS in a univariate analysis. However, only 
age and distant disease were significant predictors in 
multivariate analysis.9 Importantly, due to significant dis-
cordance among human readers—depending on the spe-
cific image features analyzed—the study recommended 
a central review or consensus expert opinion if clinical 
trials are considered.

  
Table 1. Patient Demographics

Sex n (% of total)

 Male 85 (48)

 Female 92 (52)

 Total 177

Age Average (range), months

 80 (19–229)

Institution n (% of total)

 CG 10 (6)

 CH 4 (2)

 DY 5 (3)

 GO 12 (7)

 IN 19 (11)

 NY 13 (7)

 SC 37 (21)

 ST 60 (34)

 TK 4 (2)

 TU 2 (1)

 UT 11 (6)

Imaging n (% of total)

 T1 only 18 (10)

 T2 only 6 (3)

 T1 and T2 153 (86)

Overall survivala Average (range), months

 11 (11–164)

aOverall survival is calculated from the date of diagnosis and date of 
death or the last known follow-up.

  

  
Table 2. Multivariable Cox Model for Combined Radiomic and 
Clinical Features Model

Feature Hazard Ratio (95% CI) P

T1 wavelet (LLH) GLCM IDN 1.31 (0.99–1.73) .06

T1 wavelet (LHH) GLCM IMC2 0.97 (0.72–1.30) .83

T1 wavelet (HHH) GLCM IMC2 0.68 (0.50–0.92) .01*

T2 wavelet (LLH) GLCM IDN 1.33 (1.04–1.71) .02*

T2 wavelet (HHH) first-order 
mean

1.36 (1.02–1.82) .04*

Sex 1.47 (0.90–2.41) .13

Age 1.00 (1.00–1.01) .25

*Indicates statistical significance (ie, p < .05)

  

https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdab042#supplementary-data
https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdab042#supplementary-data


 6 Tam et al. MRI-based radiomics for prognosis of pediatric DIPG

Machine learning has shown success in uncovering clin-
ically significant high-dimensional image features that 
could assist precision in oncologic evaluation.13–17 Using 
high-throughput feature extraction from tumor image 
volume, radiomics enables the mining of quantitative 
image features relevant to tumor diagnosis, prognosis, or 
genomics.32,33 In the evaluation of adult glioblastoma, for 
example, studies have identified several significant com-
putational image features predictive of clinical outcomes 
and underlying genomic signatures.34–37 In children, ma-
chine learning has shown promise in characterizing dif-
ferent tumor pathologies using texture-features38; for 
example, in medulloblastoma, tumor edge sharpness 
features were found to correlate with Sonic Hedgehog or 
Group 4 tumors.39

In this study, we developed an MRI-based machine 
learning model predictive of OS, which performs better 
than clinical variables alone, such as age or sex. We used 
the publicly available, open-source PyRadiomics21 ap-
proach to compute features and thereby enable future 
reproducibility and replicability of feature extraction. 
To capture diversity in data that relate to imaging proto-
cols and vendor-dependent MRI hardware, and to de-
velop a model that is generalizable across centers, we 
pooled data across international sites. The radiomics-only 

model outperformed clinical features of age or sex in our 
training cohort. On an independent test dataset, combined 
radiomics and clinical model outperformed the clinical and 
radiomics models alone and was able to risk-stratify pa-
tients based on the median risk score determined in the 
training dataset.

To our knowledge, this study represents the first MRI-
based machine learning approach for DIPG prognosis. 
Using a software for MRI-based texture analysis on a 
single 2D image slice of DIPG tumors, one study of 32 pa-
tients suggested “homogeneous” texture may have worse 
outcome.40 In this study, we conducted a 3D image anal-
ysis and applied a discovery-driven approach in search of 
significant computational features to create a prognostic 
machine learning model. Combined gadolinium-enhanced 
T1-MRI and T2-MRI outperformed either MRI sequence 
alone. Of the 900 features extracted on each image series, 
feature selection identified 5 intensity- and texture-based 
features from wavelet-filtered images. Applying a filter to 
the image prior to calculating radiomic features allows 
for identifying patterns or highlighting additional details 
within the image, including both fine and coarse textures. 
A  wavelet filter therefore allows us to further enhance 
textures that might be present in an image but difficult 
to appreciate with the human eye. Many of the features 
also represented GLCM quantitative features that com-
pute different pixel combinations of gray levels within a 
tumor volume.

Although they are difficult to translate using traditional 
image descriptors and radiology lexicon, our results sug-
gest that heterogeneous tumor pixel intensity or texture 
confer a better prognosis. For example, tumors with more 
heterogenous gray-level distribution (or high T2 wavelet 
[LLH] GLCM IDN, T1 wavelet [LLH] GLCM IDN, T1 wavelet 
[LHH] GLCM IMC2 scores) or more complex texture (T1 
wavelet [HHH] GLCM IMC2) were found to have longer 
survival. There were no size or shape features selected 
in this study, suggesting the importance of image tex-
ture appearance—beyond that which can be appreciated 
by the human eye in predicting prognosis. It is worth 
noting that first-order features on the original T1 contrast-
enhanced image were calculated and would be reflective 
of any enhancement that may be present within the tumor. 
Similarly, the volume and diameter of the tumor were also 
included as radiomic features; however, none of these 
were selected for the final model. Although underlying bi-
ologic correlate of T2 heterogeneous intensities remains 
to be investigated. It is possible these regions reflect re-
gions of heterogeneous tumor cell density, heterogeneous 
immune cell infiltrates, heterogeneity of extracellular ma-
trix composition, and/or variable vasculature proliferation. 
Future postmortem histological studies would be needed 
to further clarify the histological correlates to these im-
aging findings.

DIPG is currently treated with radiotherapy, which pro-
vides temporary stabilization of symptoms and extends 
OS by an average of 3  months.41 Unfortunately, over 
time, the tumor inevitably progresses. Using machine 
learning approaches, we describe computationally de-
rived prognostic image features from routine MRI, such as 
T2- and gadolinium-enhanced T1-weighted imaging. More 

  
A

B

Figure 2. A visual example of MRI radiomics. Example axial T2 
(left) and T1 (right) MRI for 2 children. T2-weighted MR images of 
a patient who survived 20  months (A) and a patient who survived 
only 3  months (B) show heterogeneous or coarse intensity dis-
tribution with punctate foci of dark signal interspersed within T2 
hyperintensities in the patient (A) compared to (B), where more con-
fluent intensities are seen with a more localized T2 hyperintense 
soft tissue abnormality in right anterior pons (arrow). The T1 post-
contrast MRI demonstrates limited qualitative characteristics of the 
tumor.
  



7Tam et al. MRI-based radiomics for prognosis of pediatric DIPG
N

eu
ro-O

n
colog

y 
A

d
van

ces

sophisticated methods for image analytics have never been 

more important due to both current treatments and the 
next wave of clinical trials.42 Many patients are dosed with 
bevacizumab that affects local edema26,43,44 and often com-
plicates assessments of tumor progression. Considering 
the failure of hundreds of chemotherapy regimens,45 a new 
wave of immunotherapy clinical trials ranges from immu-
notherapy options such as IDO inhibitors (NCT02502708), 
vaccines (NCT02960230), or CAR T cells (NCT04185038 and 
NCT04196413).

Despite iRANO working group guidelines for monitoring 
CNS tumor immunotherapy patients,46 patients receiving 
immunotherapy regularly face critical moments of distin-
guishing true progression from pseudo-progression.47–50 
Standardized, quantitative approaches to neuroimaging 
evaluation that objectively measures DIPG changes, in-
cluding computational-based evaluation using digital 
tumor image data, could contribute to optimizing these 
trials and potentially offer new approaches to evaluating 
changes in tumor phenotype that relate to different 
therapies.

Our study was retrospective in nature and involved mul-
tiple institutions including international centers. Inevitably, 

there was heterogeneity in imaging protocols (eg, 1.5 vs 
3.0 T) and scanner vendors. However, by using multicenter 
data, we sought to identify prognostic features that were 
preserved despite heterogeneity in image data, such as 
gray-scale contrast, dynamic range, intensity values, and 
others, and were therefore generalizable across centers. 
We did not investigate diffusion tensor or perfusion MRI, 
but specifically focused on routine conventional MRI. If bio-
markers identifiable on routine MRI were found clinically 
significant despite heterogeneity in imaging protocols, the 
ubiquity of these features could more easily facilitate clin-
ical translation across centers. Stratification by treatment 
was not possible due to the large sample size and hetero-
geneous clinical centers, which is a limitation in our find-
ings. Although therapy after radiation varied, all patients 
received standard radiotherapy approximately 54 Gy to 
the brainstem. Future studies may warrant the considera-
tion of prospectively evaluating these radiographic param-
eters in patients with uniform treatment. Incorporation of 
parameters may be critical as patient numbers are small 
and outliers in survival can significantly alter the interpre-
tation of study results. With a more systematic, stratified 
review of exceptional responders, such an approach would 
allow a more critical review of their course and evaluate if 
they may inherently have had a less aggressive form of the 
disease.

Using conventional MRI, we identified prognostic fea-
tures from wavelet-filtered images, which would not be 
visible to the human eye, highlighting a unique role for 
computational-based feature analysis. We evaluated 
manual delineations of the regions of interest based on 
consensus review. However, tumor segmentations may 
still be subject to inter- and intraobserver variability. Future 
studies should evaluate the impact of the radiomic fea-
tures on segmentation variability and semiautomated 
methods for tumor volume extraction should be investi-
gated. Although we had an independent testing dataset, it 
was relatively small; and this model should be validated on 
a larger dataset, ideally with uniform treatment.
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Figure 3. Kaplan–Meier curves for the Cox regression model including radiomics and clinical features in (A) the training dataset (n = 95, log-rank  
P < .0001) and (B) the testing dataset (n = 58, log-rank P = .04). Patients were stratified on the basis of the median risk value in the training dataset 
and the shaded regions represent the 95% confidence intervals.
  

  
Table 3. Concordance (95% CI) Metrics for All Models Using Both T1 
and T2 MRI Features in the Training and Testing Datasets

Model Training (n = 95) Testing (n = 58)

Clinical features 0.57 (0.49–0.64) 0.51 (0.42–0.59)

Radiomic features 0.68 (0.61–0.74)a 0.55 (0.48–0.62)

Clinical + 
Radiomic features

0.70 (0.64–0.77)a 0.59 (0.51–0.67)a

aIndicates significance based on Noether’s test to determine signifi-
cance from random (concordance = 0.5).
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While molecular subgroups do have small but statistically 
significant differences in survival, in practical clinical terms 
all DIPGs carry the same fatal prognosis and there is no con-
sensus on the degree of granularity in sub-classifying these 
tumors, as beyond mutations in the genes encoding his-
tone 3, other mutations can occur in other significant genes.4 
Furthermore, preclinical studies have often found that even 
epigenetically targeted agents such as HDAC inhibitors are still 
efficacious against histone wildtype DIPG, supporting some 
inherent similarities despite molecular distinctions.51,52 While, 
it would be desirable to identify radiomic features unique to 
the H3 K27M-mutant subgroup, this was not feasible due to 
lack of biopsy in the majority of the cases. As biopsy becomes 
more common, prospective associations between artificial 
intelligence-based imaging and genomics may provide further 
insight. However, as the majority of children worldwide with 
DIPG do not undergo biopsy and, therefore, cannot be clas-
sified as DMG as per the WHO classification, there remains 
an inherent benefit in studies such as this that evaluate all pa-
tients with “DIPG.” Despite these limitations, we demonstrate 
the potential of an MRI-based machine learning approach to 
DIPG prognostication. When used in conjunction with current 
clinical diagnostic methods, radiomics can be a noninvasive 
way to stratify tumors and predict survival using readily avail-
able, standard of care MR images.

Conclusions

In this multi-institutional study, we highlight the potential 
of using radiomics and machine learning to better prog-
nosticate outcomes for patients with DIPG than clinical 
variables alone. Imaging-based radiomic signatures could 
be used as a noninvasive biomarker that could potentially 
augment the clinical management and decision making for 
this devastating group of tumors.

Supplementary Material

Supplementary material is available at Neuro-Oncology 
Advances online.
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