
Structures for Sophisticated Behaviour:
Feudal Hierarchies and World Models

Sanjeevan Ahilan

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

of

University College London.

Gatsby Computational Neuroscience Unit

University College London

December 22, 2020

2

I, Sanjeevan Ahilan, confirm that the work presented in this thesis is my own.

Where information has been derived from other sources, I confirm that this has been

indicated in the work.

Abstract

This thesis explores structured, reward-based behaviour in artificial agents and in

animals. In Part I we investigate how reinforcement learning agents can learn to co-

operate. Drawing inspiration from the hierarchical organisation of human societies,

we propose the framework of Feudal Multi-agent Hierarchies (FMH), in which co-

ordination of many agents is facilitated by a manager agent. We outline the struc-

ture of FMH and demonstrate its potential for decentralised learning and control.

We show that, given an adequate set of subgoals from which to choose, FMH per-

forms, and particularly scales, substantially better than cooperative approaches that

use shared rewards.

We next investigate training FMH in simulation to solve a complex information

gathering task. Our approach introduces a ‘Centralised Policy Actor-Critic’ (CPAC)

and an alteration to the conventional multi-agent policy gradient, which allows one

multi-agent system to advise the training of another. We further exploit this idea for

communicating agents with shared rewards and demonstrate its efficacy.

In Part II we examine how animals discover and exploit underlying statisti-

cal structure in their environments, even when such structure is difficult to learn and

use. By analysing behavioural data from an extended experiment with rats, we show

that such hidden structure can indeed be learned, but also that subjects suffer from

imperfections in their ability to infer their current state. We account for their be-

haviour using a Hidden Markov Model, in which recent observations are integrated

imperfectly with evidence from the past. We find that over the course of training,

subjects learn to track their progress through the task more accurately, a change that

our model largely attributes to the more reliable integration of past evidence.

Impact Statement
The field of reinforcement learning seeks to develop and understand systems which

can solve tasks by learning from experience. Recent work has demonstrated the po-

tential for such systems to perform effectively in complex video game environments

(Mnih et al., 2013; Vinyals et al., 2019) and on the ancient Chinese game of Go (Sil-

ver et al., 2016), where super-human performance was achieved. Applications in a

variety of economically important domains is being actively explored, including

autonomous driving (Sallab et al., 2017), resource management (Mao et al., 2016),

finance (Moody and Saffell, 2001) and robotics (Kober et al., 2013).

In Part I of this thesis we propose a general method for learning in systems

involving many reinforcement learning agents. Whilst our work is applied in ab-

stract domains, it has influenced subsequent academic work which has applied this

for traffic signal control (Ma and Wu, 2020) and fleet-management for ride shar-

ing platforms (Jin et al., 2019) in simulation. In the future, similar methods may

also be applied to other important problems, such as optimising cellular networks,

smart grids and the allocation of computational resources. If such systems could

be developed for real world use, they could greatly increase efficiency, reducing

cost and providing better service to users, with considerable economic and societal

advantages.

In Part II of this thesis we shed light on the decision making of animals by

uncovering their use of a world model which reflects the nature of the task they are

engaged in. Researchers in this field are actively investigating the flexibility with

which such models can be learned in different situations (Behrens et al., 2018), and

our findings provide a useful insight into this learning. Our results take the form of

a computational model, which can account for animal behaviour in an interpretable

way. Our results are useful not only to those seeking to model decision-making1, but

also for neuroscientists who seek to relate our results to the underlying activity of

neural networks, and artificial intelligence researchers hoping to better understand

the complex systems which they have developed.

1for example in humans, with associated economic consequences

4

Acknowledgements

Two roads diverged in a yellow wood,

And sorry I could not travel both

And be one traveler, long I stood

And looked down one as far as I could

To where it bent in the undergrowth

— Robert Frost, The Road Not Taken

First and foremost I would like to thank Peter Dayan. I was but a lowly serf,

feudally2 learning at his command. Over the course of my PhD I have unwisely

diverged from his general supervisory direction many times, but despite this Peter

has never stopped providing me with prompt, useful and occasionally brilliant feed-

back. I have enjoyed discussing and exploring so many topics with him over the

years and am truly grateful for his patience throughout.

To my examiners, thank you for taking the time out of your no doubt busy

schedules to read this thesis. I hope it is of interest to you, and I look forward to

hearing your thoughts in the viva.

I am also thankful for my exceptional collaborators in the Shizgal lab at Con-

cordia University. Peter Shizgal and the rest of the lab were very kind and welcom-

ing when I visited, and without Rebecca Solomon’s fine experimentation Part II of

this thesis would not exist.

The Gatsby Unit has been a home to me these past few years and I am very

lucky to have have been exposed to such a range of interesting people and ideas, and

made some wonderful friends along the way. In particular I would like to mention

2or should I say ‘futilely’?

Acknowledgements 6

Wenliang Li, Wenkai Xu, Heishiro Kanagawa, Alex Antrobus, Elena Zamfir, Ross

Harper, Ricardo Monti, Jorge A. Menendez, Gopal Kotecha, Jesse Geerts, Virginia

Rutten and Mehdi Keramati. I would also like to thank Wittawat Jitkrittum, without

whom this thesis would have been completed two years earlier.

I am also glad to have made friends with others in the RL community, in-

cluding those who I met on my internship as well as talented former masters stu-

dents, including Rylan Schaeffer, Julius Kunze, Louis Kirsch and Danijar Hafner.

Conferences also provided an opportunity to meet incredible people, and I would

particularly like to thank Tian and Fernando from Rich Sutton’s lab, who made my

experience of RLDM 2017 so phenomenal. If I am ever asked if I travelled down the

right road by starting a PhD, I will simply explain that I was once called ‘Ratman’

by Rich Sutton himself – and that has made all the difference.

I am also extremely grateful for my friends outside academia, in particular

Deming Qin, Chris Gossage, Charmaine Law, Atchuthan Gopalan, Emily Olson,

Ivan Seifert, Sonali Nundoochan, Neel Purmah, Krishna ‘Nanthan’ Jayanthiraa, Ni-

malan Kirubakaran and Bijoy Saha. They have kept my spirits high throughout and

I hope to catch up with them more often in the future.

My wider family has also provided much support and affection, including my

cousins, my uncles, my aunts, and my grandad Kanthappoo Paramothayan. Sadly,

not all are still alive today and so I would like to dedicate this thesis to my grand-

mother, Ivy Kamala Pathmasundari Paramothayan, and my cousin Jegatheesan Ra-

jarajan, whose life was tragically cut short by pancreatic cancer. I am thankful that

he was able to show me his own PhD thesis before he passed – I know it meant a

lot to him.

Finally, I would like to thank my immediate family, including my brother Ar-

junan, my sister-in-law Ahalya, Ammah and Appah. They have done so much for

me not only during my PhD but throughout my life, and are a constant source of

inspiration. I cannot express my appreciation in words; suffice to say I am eternally

grateful.

Contents

Prologue 15

1 Background 18

1.1 Fundamentals . 18

1.1.1 The RL paradigm . 18

1.1.2 Agent and environment . 19

1.1.3 Observability . 20

1.1.4 Markov processes and Markov reward processes 20

1.1.5 Markov decision processes 20

1.1.6 Policies, values and models 21

1.1.7 Dynamic programming . 23

1.2 Model-free approaches . 25

1.2.1 Prediction . 25

1.2.2 Control with action-value functions 27

1.2.3 Value function approximation 28

1.2.4 Policy gradient methods 30

1.2.5 Baselines . 32

1.2.6 Compatible function approximation 32

1.2.7 Deterministic policy gradients 33

1.3 Deep reinforcement learning . 34

1.3.1 Experience replay . 34

1.3.2 Target networks . 35

1.3.3 Deep deterministic policy gradients 35

Contents 8

1.3.4 Re-parameterisation with Gumbel softmax 36

1.4 Latent variables and partial observability 37

1.4.1 Latent variable models . 37

1.4.2 Hidden Markov models . 38

1.4.3 Partially observable Markov decision processes 39

I Feudal Hierarchies 40

2 Introduction 42

2.1 Multi-agent RL . 46

2.1.1 Definitions . 46

2.1.2 Interaction concepts . 48

2.1.3 Solution concepts . 51

2.2 Hierarchical RL . 54

2.2.1 Feudal RL . 55

2.2.2 Options . 56

2.2.3 Feudal networks . 57

2.2.4 Off-policy HRL . 60

2.2.5 Multi-agent connections 62

3 Feudal multi-agent hierarchies 64

3.1 Introduction . 64

3.1.1 Hierarchies . 65

3.1.2 Communication as goals 66

3.1.3 Communication as control 67

3.1.4 Coordination . 68

3.2 Methods . 70

3.2.1 Discrete actions with Gumbel-Softmax and DDPG 70

3.2.2 Goal-setting . 70

3.2.3 Pretraining and temporally-extended subgoals 71

3.2.4 Parameter sharing . 72

Contents 9

3.3 Experimental results . 72

3.3.1 Cooperative communication 72

3.3.2 Scaling to many agents . 78

3.3.3 Cooperative coordination 79

3.3.4 Exploiting diversity . 82

3.3.5 Conclusion . 83

4 Centralised policy actor-critic 84

4.1 Introduction . 84

4.2 Methods . 87

4.2.1 Feudal MADDPG . 87

4.2.2 Single-agent CPAC . 87

4.2.3 Feudal CPAC . 89

4.3 Results . 91

4.3.1 Feudal MADDPG . 92

4.3.2 Feudal CPAC . 92

4.3.3 Single-agent CPAC . 94

4.3.4 Conclusion . 95

5 Discussion and future work 96

5.1 Hierarchical reinforcement learning 96

5.2 Multi-agent interactions . 100

5.3 Combined approaches . 102

5.4 Centralisation . 103

5.5 Shaping . 106

5.6 Learning hierarchies . 107

II World Models 110

6 Introduction 112

6.1 Adapting to a structured world . 112

Contents 10

6.2 World models and partial observability 116

7 Experiments and model 118

7.1 Task and experiment . 118

7.2 Results and model . 121

7.2.1 Subjects learn the task transition structure 121

7.2.2 Misleading evidence leads to mistaken state inference . . . 123

7.2.3 Modelling the inference process 127

7.2.4 Inference improves with experience 131

8 Discussion 136

8.1 Findings and Limitations . 136

8.2 Future work . 139

8.2.1 Model learning . 139

8.2.2 Adaptive integration of past evidence 139

8.2.3 Neural underpinnings . 140

Epilogue 141

Appendices 143

A Appendix for Part I 143

A.1 Experimental results . 143

A.1.1 Parameter settings for FMH 143

A.1.2 Parameter sharing . 143

A.1.3 Further details on Table 1 144

A.1.4 Cooperative communication with 3 landmarks 145

A.1.5 Differences in DDPG and MADDPG implementations . . . 145

A.2 Environments . 147

A.2.1 Cooperative communication 147

A.2.2 Cooperative coordination 147

A.2.3 Search and cooperative communication 147

A.2.4 Algorithm Specifics . 148

Contents 11

B Appendix for Part II 149

B.1 Analysis . 149

B.2 Statistical tests . 150

B.3 Null hypotheses and p-values . 151

B.4 Model comparison . 152

B.5 Comparison of model parameters across tertiles 153

Bibliography 154

List of Figures

2.1 Cooperative Communication . 44

3.1 The structure of FMH . 68

3.2 Feudal rewards can be used to achieve coordination 69

3.3 Cooperative Communication . 73

3.4 Training on Cooperative Communication 74

3.5 Analysing Cooperative Communication 75

3.6 Entropy (base 2) of managerial communication 76

3.7 Pretraining in FMH . 76

3.8 Extended communication in FMH 77

3.9 Extended communication in MADDPG 78

3.10 Scaling Cooperative Communication 79

3.11 Cooperative Coordination . 80

3.12 Training on Cooperative Coordination 81

3.13 Evaluating Cooperative Coordination 81

3.14 Mobile Manager . 82

3.15 Two-Near, One-Far task . 83

4.1 Single-agent Centralised Policy Actor-Critic 88

4.2 Feudal MADDPG for Cooperative Communication 91

4.3 Search and Cooperative Communication 92

4.4 FMH CPAC on Search and Cooperative Communication 93

4.5 Single-agent CPAC on Search and Cooperative Communication v2 . 94

5.1 Different HRL rewards . 98

List of Figures 13

7.1 The structure of the experiment . 119

7.2 Frequency-price . 121

7.3 Subjects learn to predict oncoming trials 122

7.4 Short IRTs on comparatively worthless trail trials as mistaken infer-

ences . 124

7.5 Filtering reduces EP for trail trials 125

7.6 Subjects use multiple sources of evidence from the preceding test

trial to determine a response on the trail trial 127

7.7 Modelling the inference process 128

7.8 Determining the likelihood of responses given a posterior state. . . . 130

7.9 Simulated responses capture the process of mistaken inference . . . 132

7.10 Mistaken inference becomes less likely with experience, as subjects

learn to use past evidence . 133

7.11 Estimates of the parameters γ and σ are moderately anticorrelated . 135

A.1 Parameter sharing . 144

A.2 Cooperative Communication with Tensorflow 145

A.3 Cooperative Communication with Pytorch 146

List of Tables

3.1 Cooperative Communication with varying conditions 77

7.1 Relative increase in BIC score for alternative models 132

A.1 Centralisation of all algorithms. Here P1 and P2 stand for Phases I

and II. 148

A.2 Feudal algorithms. Note, only FMH-DDPG uses pretraining and

extended communication. 148

B.1 Frequencies and prices used for lead and trail trials and for bound-

aries of regions α , β and λ . 150

B.2 P-values for null hypotheses . 152

Prologue

Chaos is merely order waiting to be deciphered

— José Saramago, The Double

Throughout human and animal history, organisms emerging into the world

have frequently faced complexity and danger to bewildering degrees. Despite this,

many go on to survive and even thrive, as they come to better understand, predict

and control their environment.

How is such learning possible? One answer is that environments, whilst appar-

ently chaotic on first encounter, are in fact highly structured in ways which can be

exploited. This is true not only because natural laws are inherently simple, but also

because humans and other animals have a tendency to seek order, imposing it on

their lives in the face of uncertainty. Structures therefore are not only analytic, be-

ing inferred from direct experience, but also synthetic, being constructed to support

future learning.

One source of structure is present in an animal’s immediate environment. For

example, streams always flow downhill according to gravity, predators are usually

waiting at the nearby waterhole and the birds will begin singing just as the sun

rises. The ability to flexibly learn and use models of how the world behaves is one

of the most interesting aspects of animal intelligence. Models allow animals to infer

relevant states of the world and make predictions about the future over a range of

timescales. The model itself need not be veridical but merely useful for the animal

deciding on what to do next.

Once a decision has been made, the resulting behaviours themselves may

utilise recurring motifs, in deference to the recurring structures present in the envi-

List of Tables 16

ronment. This has been of substantial interest to reinforcement learning researchers,

studying how such flexible problem solving capabilities may be imbued into artifi-

cial systems by composing behavioural units flexibly to solve larger problems.

The problems themselves take place on a stage which is ever changing, as

agents interact and learn from their interactions. No agent is an island, and despite

the complexity of social interaction, most can benefit from collaboration – if organ-

ised the right way. Structure can therefore be used to foster cooperation, making

interactions more predictable and coordinated.

In this thesis we explore two different topics which share the unifying theme

of structure and its influence on learning. The structures involved are disparate in

both cases and we in general consider these topics separately, dividing the thesis

into two parts before reviewing the sum total of our findings.

In Part I we consider artificial learning agents interacting in a multi-agent sys-

tem, and organise their interactions by invoking a managerial hierarchy. Our ap-

proach, which we call ‘Feudal Multi-agent Hierarchies’ draws inspiration from the

field of hierarchical reinforcement learning, which seeks to learn effective decom-

positions of problems and behaviours. We train our system on problems which

require cooperation and coordination, and show that our method can scale to many

agents. We also explore situations in which the information for decision making is

not immediately available and must be communicated, introducing a ‘Centralised

Policy Actor-Critic’ which resolves this difficulty.

In Part II, we investigate the behaviour of rats seeking reward in a self-

stimulation task with a hidden transition structure. We examine the resulting ‘world

model’ they learn and illuminate cases where their inferences are imperfect due to

partial observability. By modelling their model of the task, we show how, with ex-

perience, subjects can adaptively learn to integrate past evidence to achieve more

accurate predictions.

Overall, we hope this tale of two topics provides insight into their respective

fields as well as the varied influences and roles structure can play in natural and

artificial systems. The intersection of animal behaviour and artificial intelligence is

List of Tables 17

a fascinating one, and we hope our findings will be illuminating to readers from a

variety of perspectives.

Chapter 1

Background

In this chapter we introduce and review the fundamentals of single-agent reinforce-

ment learning (RL)1. We then describe model-free RL and introduce ‘deep’ RL

models which use artificial neural networks as function approximators. Finally, we

introduce latent variable models and the problem of partial observability.

1.1 Fundamentals

1.1.1 The RL paradigm

The beginning of an animal’s life is often characterised by weakness, a lack of skill

and, in many cases, reliance on parents to provide sustenance. Given time and re-

peated interactions with their environment, however, animals will generally acquire

the necessary skills for survival, whether this be hunting prey or navigating complex

terrain. The field of reinforcement learning (RL) (Sutton and Barto, 2018) concerns

itself with the computational principles underlying this kind of goal-directed learn-

ing through interaction. Rather than directly theorising about how people or animals

learn, it explores idealised learning situations and evaluates the performance of var-

ious learning methods.

Reinforcement learning has a rich history spanning multiple fields. In psy-

chology it can be used to model classical (Pavlovian) and operant (instrumental)

conditioning. In neuroscience it has been used to model the dopamine system of the

1our review draws from David Silver’s UCL course available at http://www0.cs.ucl.
ac.uk/staff/d.silver/web/Teaching.html and Sutton and Barto’s textbook (Sutton
and Barto, 2018)

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

1.1. Fundamentals 19

brain. Modelling decision-making is also highly relevant to economics, in partic-

ular fields such as bounded rationality, and in engineering it has extensive overlap

with the field of optimal control. In mathematics, investigation has continued under

the guise of operations research and of course much research into RL is explored by

those in computer science. The plethora of perspectives ensures that RL continues

to be an exciting and extraordinarily interdisciplinary field.

1.1.2 Agent and environment

RL problems typically draw a separation between the agent and the environment.

The agent receives observation ot and scalar reward rt from the environment and

emits action at , where t indicates the time step. The environment receives action

at from the agent and then emits a reward rt+1 and an observation ot+1. The cycle

then begins again with the agent emitting its next action.

How the environment responds to the agent’s action is determined by the envi-

ronment state st , which is updated at every time step. The conditional distribution

for the next environment state depends only on the present state and action and

therefore satisfies the Markov property:

P(st+1|st ,at) = P(st+1|s1, . . . ,st ,a1, . . . ,at) (1.1)

The environment state is in general private from the agent, which only receives

observations and rewards. The conditional distribution for the next observation

given the current observation is not in general Markov, and so it may be beneficial

for an agent to construct its own notion of state sα
t , which it uses to determine its

next action. This can be defined as sα
t = f (ht), where ht is the history of the agent’s

sequence of observations, actions and rewards:

ht = a1,o1,r1, . . . ,at ,ot ,rt (1.2)

1.1. Fundamentals 20

1.1.3 Observability

A special case exists when the observation received by the agent ot is identical to

the environment state st (such that there is no need to distinguish between the two).

This is the assumption underlying the formalism of Markov decision processes cov-

ered in the next section. An environment is partially observable if the agent cannot

observe the full environment state, meaning that the conditional distribution for its

next observation given its current observation does not satisfy the Markov property.

This assumption underlies the formalism of a partially observable Markov decision

process which we describe in Section 1.4.3.

1.1.4 Markov processes and Markov reward processes

A Markov process (or Markov chain) is a sequence of random states with the

Markov property. It is defined in terms of the tuple 〈S,P〉 where S is a finite set of

states and P : S ×S → [0,1] is the state transition probability kernel.

A Markov Reward Process (MRP) 〈S,P,r,γ〉 extends the Markov process by

including a reward function r : S ×S → R for each state transition and a discount

factor γ . The immediate expected reward in a given state is defined as: r(s) =

∑s′P(s,s′)r(s,s′).

The discount factor γ ∈ [0,1] is used to determine the present value of future

rewards. Conventionally, a reward received k steps into the future is of worth γk

times what it would be worth if received immediately. As we will shortly see,

the cumulative sum of discounted rewards is a quantity RL agents often seek to

maximise, and so γ < 1 ensures that this sum is bounded (assuming r is bounded).

1.1.5 Markov decision processes

Single-agent RL can be formalised in terms of Markov decision processes (MDPs).

The idea of an MDP is to capture the key components available to the learning agent;

the agent’s sensation of the state of its environment, the actions it takes which can

affect the state, and the rewards associated with states and actions. An MDP extends

the formalism of an MRP to include a finite set of actions on which both P and r

depend. Discrete-time, infinite-horizon MDPs are described in terms of the 5-tuple

1.1. Fundamentals 21

〈S ,A, P , r, γ〉 where S is the set of states,A is the set of actions, P : S×A×S →

[0,1] is the state transition probability kernel, r : S ×A×S → R is the immediate

reward function and γ ∈ [0,1) is the discount factor. The expected immediate reward

for a given state and action is defined as r(s,a) = ∑s′P(s,a,s′)r(s,a,s′), which we

use for convenience subsequently.

1.1.6 Policies, values and models

Common components of a reinforcement learning agent are a policy, value function

and a model. The policy π : S ×A→ [0,1] is the agent’s behaviour function which

denotes the probability of taking action a in state s. Agents may also act according

to a deterministic policy µ : S → A. We will assume that policies are stochastic

unless otherwise noted.

Given an MDP and a policy π , the observed state sequence is a Markov process

〈S,Pπ〉. Similarly, the state and reward sequence is a MRP 〈S,Pπ ,rπ ,γ〉 in which:

Pπ(s,s′) = ∑
a∈A

π(s,a)P(s,a,s′) (1.3)

rπ(s) = ∑
a∈A

π(s,a)r(s,a) (1.4)

Starting from any particular state s at time step t = 0, the value function vπ(s)

is a prediction of the expected discounted future reward given that the agent starts

in state s and follows policy π:

vπ(s) = Eπ

[
∞

∑
t=0

γ
trt+1|s0 = s

]
(1.5)

where rt+1 = r(st ,at ,st+1)

which is the solution of an associated Bellman expectation equation:

vπ(s) = ∑
a∈A

π(s,a)

[
r(s,a)+ γ ∑

s′∈S
P(s,a,s′)vπ(s′)

]
(1.6)

In matrix form the Bellman expectation equation can be expressed in terms of

the induced MRP:

1.1. Fundamentals 22

vvvπ = rrrπ + γPπvvvπ = (I − γPπ)−1rrrπ (1.7)

where vvvπ ∈R|S| and rrrπ ∈R|S| are the vector of values and expected immediate

rewards respectively for each state under policy π . We can also define a Bellman

expectation backup operator:

T π(vvv) = rrrπ + γPπvvv (1.8)

which has a fixed point of vvvπ .

An action-value for a policy π can also be defined, which is the expected dis-

counted future reward for executing action a and subsequently following policy π .

qπ(s,a) = r(s,a)+ γ ∑
s′∈S
P(s,a,s′)vπ(s′)

= r(s,a)+ γ ∑
s′∈S
P(s,a,s′) ∑

a′∈A
π(s′,a′)qπ(s′,a′)

(1.9)

The process of estimating vπ or qπ is known as policy evaluation. Policies

can be evaluated without directly knowing or estimating a model, using instead the

directly sampled experience of the environment, an approach which is known as

‘model-free’. However a ‘model-based’ approach is also possible in which a model

is used to predict what the environment will do next. A key component of a model

is an estimate of P(s,a,s′), the probability of the next state given the current state

and action. Another is an estimate of r(s,a), the expected immediate reward.

Policy evaluation enables a value function to be learned for a given policy.

However, in reality we wish to learn the best possible policy. The value function for

this is known as the optimal value function and corresponds to the maximum value

function over all policies:

v∗(s) = max
π

vπ(s) (1.10)

The definition of the optimal action-value function (which evaluates the imme-

diate action a in state s) is similarly:

1.1. Fundamentals 23

q∗(s,a) = max
π

qπ(s,a) (1.11)

A partial ordering over policies can be defined according to:

π ≥ π
′ if vπ(s)≥ vπ ′(s),∀s (1.12)

For any MDP there exists an optimal policy π∗ that is better than or equal

to all other policies. All optimal policies achieve the optimal value function and

optimal action-value function and there is always a deterministic optimal policy for

any MDP. The latter is achieved by selecting:

a = argmax
a∈A

q∗(s,a) (1.13)

If there are many possible actions which satisfy this, any of these may be cho-

sen to constitute an optimal policy (of which there may be many). The optimal

value and state-value functions satisfy Bellman optimality equations:

v∗(s) = max
a∈A

q∗(s,a)

v∗(s) = max
a∈A

[
r(s,a)+ γ ∑

s′∈S
P(s,a,s′)v∗(s′)

]
q∗(s,a) = r(s,a)+ γ ∑

s′∈S
P(s,a,s′)max

a′
q∗(s′,a′)

(1.14)

The Bellman optimality equation is non-linear with no closed form solution (in

general). Solving it therefore requires iterative solution methods.

1.1.7 Dynamic programming

Dynamic programming (DP) (Bertsekas et al., 1995) refers to a collection of algo-

rithms that can be used to compute optimal policies given a perfect model of the

environment as an MDP. In general, DP solves complex problems by breaking them

down into subproblems and then combining the solutions. It is particularly use-

ful for overlapping subproblems, the solutions to which reoccur many times when

solving the overall problem, making it more computationally efficient to cache and

1.1. Fundamentals 24

reuse them.

When applied to MDPs, the recursive decomposition of DP corresponds to the

Bellman equation and the cached solution to the value function. DP assumes that

the MDP is fully known and therefore does not address the full RL problem but

instead addresses the problem of planning. By planning, the prediction problem

can be addressed by finding the value function vπ of a given policy π . This can

be evaluated by iterative application of the Bellman Expectation Backup (Equation

1.8).

This leads to convergence to a unique fixed point vπ , which can be shown using

the contraction mapping theorem (also known as the Banach fixed-point theorem)

(Banach, 1922). When a Bellman expectation backup operator T π is applied to two

value functions uuu and vvv over states, we find that it is a γ-contraction:

||T π(uuu)−T π(vvv)||∞ = ||(rπ + γPπuuu)− (rπ + γPπvvv)||∞

= ||γPπ(uuu− vvv)||∞

≤ ||γPπ111||uuu− vvv||∞||∞

≤ γ||uuu− vvv||∞

(1.15)

where 111 is a vector of ones and the infinity norm of a vector aaa is denoted ||aaa||∞
and is defined as the maximum value of its components. This contraction ensures

that both uuu and vvv converge to the unique fixed point of T π which is vvvπ .

For control, DP can be used to find the optimal value function v∗ and in turn

the optimal policy π∗. One possibility is policy iteration in which the current policy

π is first evaluated as described and then subsequently improved to π ′ such that:

π
′(s) = argmax

a∈A
qπ(s,a) (1.16)

This improves the value from any state s over one step:

qπ(s,π ′(s)) = max
a∈A

qπ(s,a)≥ ∑
a∈A

π(s,a)qπ(s,a) = vπ(s) (1.17)

It can be shown that this improves the value function such that that vπ ′(s) ≥

1.2. Model-free approaches 25

vπ(s) (Silver, 2015). This process is then repeated, with improvements ending when

the Bellman optimality equation (1.14) has been satisfied and convergence to π∗

achieved. A generalisation of policy iteration is also possible in which, instead of

waiting for policy evaluation to converge, only n steps of evaluation are taken before

policy improvement occurs and the process is repeated. If n = 1 this is known

as value iteration, as the policy is no longer explicit (being a direct consequence

of the value function). Like policy iteration, value iteration is also guaranteed to

converge to the optimal value function and policy. This can be demonstrated using

the contraction mapping theorem.

1.2 Model-free approaches

1.2.1 Prediction

As has been outlined, dynamic programming can be used to solve known MDPs

enabling optimal value functions and policies to be found. However, in many cases

the MDP is not directly known - instead an agent taking actions in the MDP must

learn directly from its experiences, as it transitions from state to state and receives

rewards accordingly. One approach, known as ‘model-free’, seeks to solve MDPs

without learning transitions or rewards. For prediction, a key quantity to estimate

in this setting is the expected discounted future reward. A sampled estimate of this,

starting from state st , is known as the return:

Rt = rt+1 + γrt+2 + γ
2rt+3 + ...=

∞

∑
k=0

γ
krt+k+1 (1.18)

which depends on the actions sampled from the policy, and states from transi-

tions.

Monte-Carlo (MC) methods seek to estimate this directly using complete

episodes of experience. Introducing a learning rate αt , the agent’s value function

can therefore be updated according to2:

v(st)← v(st)+αt
[
Rt− v(st)

]
(1.19)

2assuming a table-based representation rather than use of a function approximator

1.2. Model-free approaches 26

The value function updated in this way will converge to a solution with min-

imum mean-square error (best fit to the observed returns), assuming a suitable se-

quential decrease in the learning rate.

Temporal-difference (TD) learning methods learn from incomplete episodes by

bootstrapping. For example, if learning occurs after a single step, this is known as

TD(0), which has the following update:

v(st)← v(st)+αt
[
rt+1 + γv(st+1)− v(st)

]
(1.20)

where rt+1+γv(st+1) is known as the target. This approximates the full-width Bell-

man expectation backup (Equation 1.8) in which every successor state and action

is considered, with experiences instead being sampled. TD(0) will converge to the

solution of the maximum likelihood Markov model which best fits the data (again

assuming a suitable sequential decrease in the learning rate). This solution may be

different from the minimum mean-square error solution of MC methods, which do

not assume the Markov property.

Unlike MC methods, TD methods introduce bias into the estimated return as

the currently estimated value function may be different from the true value function.

However, they generally have reduced variance relative to MC methods, as in MC

the estimated return depends on a potentially long sequence of random actions,

transitions and rewards.

The distinction between MC and TD methods can be blurred by considering

multi-step TD methods (rather than only TD(0)), in which rewards are sampled for

a number of steps before the value function is used to compute an estimate of future

rewards. The n-step return is defined as:

R(n)
t = rt+1 + γrt+2 + ...+ γ

n−1rt+n + γ
nv(st+n) (1.21)

As n→ ∞ it tends towards the unbiased MC return. An algorithm may seek to

find a good bias-variance tradeoff by estimating a weighted combination of n-step

returns; one popular method to do this is known as TD(λ):

1.2. Model-free approaches 27

Rλ
t = (1−λ)

∞

∑
n=1

λ
n−1R(n)

t (1.22)

where λ ∈ [0,1].

1.2.2 Control with action-value functions

Model free control concerns itself with optimising rather than evaluating the RL

objective. Policies may be evaluated according to various objectives. In the case

of continuing environments, the objective can be the average value or the average

reward per time-step. We however focus on episodic environments, assuming an

initial distribution over starting states p0(s) : S → [0,1]. The objective is thus:

J(π) = Eπ

[
∞

∑
t=0

γ
trt+1|p0(s)

]
(1.23)

Note that if the domain of the starting state distribution is only over a single

starting state, the objective is simply the value function (Equation 1.5) in that start-

ing state. This objective can equivalently be expressed as:

J(π) = Es∼ρπ ,a∼π [r(s,a)] (1.24)

where:

ρ
π(s) := ∑

s′

∞

∑
t=0

γ
t p(st = s|s′,π)p0(s′) (1.25)

is the improper discounted state distribution induced by policy π starting from an

initial state distribution p0(s′). We will later describe policy gradient methods which

seek to optimise this objective directly.

However, we first consider model-free approaches which rely on an action-

value function q(s,a) to achieve control (a value function v(s) alone is insufficient

for model-free control). The optimal action-value function q∗(s,a) must be learned,

with MC and TD methods both viable. Once it has been learned, an optimal policy

may be achieved by selecting the best action in each state (Equation 1.13).

However, unlike dynamic programming, full-width backups are not used and

1.2. Model-free approaches 28

so if actions are selected greedily (meaning those with highest action-values are

always chosen) then certain states and actions may never be correctly evaluated.

Model-free RL methods must therefore allow for enough exploration during learn-

ing before ultimately exploiting this learning to achieve near-optimal cumulative

reward.

One simple approach, known as ε-greedy is to take a random action with prob-

ability ε but otherwise act greedily according to the current estimate of the action-

value function. The value of ε can be decreased with the number of episodes. This

can satisfy a condition known as greedy in the limit of infinite exploration in which

all state-action pairs are explored infinitely many times and the policy converges to

the greedy policy.

One popular algorithm for model-free control is known as Q-learning, which

seeks to learn the optimal action-value function whilst using a policy which also

takes exploratory actions (such as epsilon greedy). This learning is termed off-

policy as the policy used to sample experience is different from the policy being

learned (the optimal policy). The resulting update is:

q(st ,at)← q(st ,at)+α
[
rt+1 + γmax

a′∈A
q(st+1,a′)−q(st ,at)

]
(1.26)

An alternative to off-policy Q-learning is on-policy SARSA. This uses the sam-

pled sampled state st , action at , reward rt+1, next state st+1, and next action at+1 for

updates3:

q(st ,at)← q(st ,at)+α(rt+1 + γq(st+1,at+1)−q(st ,at)) (1.27)

1.2.3 Value function approximation

So far we have assumed a tabular representation of states and actions such that each

state is separately updated. However, in practice we would like value functions

and policies to generalise to new states and actions, and so it is beneficial to use

3and also gives SARSA its name

1.2. Model-free approaches 29

function approximators such as deep neural networks. A common approach is to

approximate the value function or action-value function:

vw(s) = v̂(s;w)≈ vπ(s)

qw(s,a) = q̂(s,a;w)≈ qπ(s,a)
(1.28)

where w are the parameters we wish to learn. If we start by assuming we know the

true value function vπ , we can define a mean square error between the approximate

value function and the true function:

L(w) = Eπ [(vπ(s)− vw(s))2] (1.29)

Given a distribution of states s∼ p(s)4, we can minimise this iteratively using

stochastic gradient descent:

w← w+α(vπ(st)− vw(st))∇wvw(st) (1.30)

In reality we can only use a better estimate of vπ provided by the sampled

reward(s). For example, if we use the TD(0) target the update is:

w← w+α(rt+1 + γvw(st+1)− vw(st))∇wvw(st) (1.31)

Updates like this are known as ‘semi-gradient’ as the gradient of the value

function used to define the target is ignored.

If we use a linear function approximator vw(s) = x(s)T w (where features x(s)

and w are vectors), then we find:

w← w+α(rt+1 + γvw(st+1)− vw(st))x(st) (1.32)

indicating that the linear weights are updated in proportion to the activity of

their corresponding features. Non-linear function approximators can also be used,

but typically have weaker convergence guarantees than linear function approxima-

4we later discuss a method for sampling states

1.2. Model-free approaches 30

tors. Nevertheless, due to their flexibility such approximators have enabled impres-

sive performance in a number of challenging domains, such as Atari games and

Go.

1.2.4 Policy gradient methods

Parameterised stochastic policies πθ may be improved using the policy gradient

theorem (Sutton et al., 2000). This can be derived for any of the common RL ob-

jectives. To demonstrate a derivation of this result we use a starting state objective

J(θ) = vπθ
(s0) with a single starting state s0:

∇θ J(θ) = ∇θ vπ(s0)

= ∇θ ∑
a

π(s0,a)qπ(s0,a)

= ∑
a

∇θ π(s0,a)qπ(s0,a)+π(s0,a)∇θ qπ(s0,a)

= ∑
a

∇θ π(s0,a)qπ(s0,a)+π(s0,a)∇θ

[
r(s0,a)+∑

s′
γP(s0,a,s′)vπ(s′)

]
= ∑

a
∇θ π(s0,a)qπ(s0,a)+π(s0,a)∑

s′
γP(s0,a,s′)∇θ vπ(s′)

(1.33)

We note that we could continue to unroll ∇θ vπ(s′) on the R.H.S in the same way as

we have already done. Considering now transitions from starting state s0 to arbitrary

state s we therefore find:

∇θ vπ(s0) = ∑
s

∞

∑
t=0

γ
t p(st = s|s0,π)∑

a
∇θ π(s,a)qπ(s,a) (1.34)

where ∑
∞
t=0 γ t p(st = s|s0,π) is the discounted state distribution ρπ(s) from a

fixed starting state s0 (Equation 1.25). This derivation holds even when there is a

distribution over starting states, and gives us the policy gradient theorem:

∇θ J(θ) = ∑
s

ρ
π(s)∑

a
∇θ π(s,a)qπ(s,a) (1.35)

Using the likelihood ratio trick:

1.2. Model-free approaches 31

∇θ π(s,a) = π(s,a)
∇θ π(s,a)

π(s,a)

= π(s,a)∇θ logπ(s,a)
(1.36)

this can be equivalently expressed as:

∇θ J(θ) = ∑
s

ρ
π(s)∑

a
π(s,a)qπ(s,a)∇θ logπ(s,a)

= Eπ [qπ(s,a)∇θ logπ(s,a)]
(1.37)

The policy gradient theorem result enables model-free learning as gradients

need only be determined for the policy rather than for properties of the environ-

ment. There are a variety of approaches for determining qπ . If qπ is approximated

using the sample return (Equation 1.18), this leads to the algorithm known as RE-

INFORCE (Williams, 1992):

θ ← θ +αRt∇θ logπ(st ,at) (1.38)

As there is no bootstrapping here, this is also known as MC policy gradient.

An alternative approach is to separately approximate qπ with a ‘critic’ qw giving

rise to what are commonly known as ‘actor-critic’ methods. These introduce two

sets of parameter updates; the critic parameters w are updated to approximate qπ ,

and the policy (actor) parameters θ are updated according to the policy gradient as

indicated by the critic. The critic itself can be updated according to the TD error.

An example of this approach is SARSA actor-critic:

w← w+α1(rt+1 + γqw(st+1,at+1)−qw(st ,at))∇wqw(st ,at)

θ ← θ +α2qw(st ,at)∇θ logπ(st ,at)
(1.39)

where different learning rates α1 and α2 may be used for the actor and the

critic.

1.2. Model-free approaches 32

1.2.5 Baselines

Whether we use REINFORCE or an actor-critic based approach to policy gradients,

it is possible to reduce the variance further by the introduction of baselines. If this

baseline depends only on the state s, then we find it introduces no bias:

∑
s

ρ
π(s)∑

a
∇θ π(s,a)b(s) = ∑

s
ρ

π(s)b(s)∇θ ∑
a

π(s,a)

= ∑
s

ρ
π(s)b(s)∇θ 1

= 0

(1.40)

A natural choice for the state-dependent baseline is the value function:

∇θ J(θ) = Eπ [(qπ(s,a)− vπ(s))∇θ logπ(s,a)]

= Eπ [Aπ(s,a)∇θ logπ(s,a)]
(1.41)

where Aπ is known as the advantage, which may in some algorithms be approxi-

mated directly (rather than approximating both qπ and vπ).

1.2.6 Compatible function approximation

In the general case, our choice to approximate qπ with qw introduces bias such that

there are no guarantees of convergence to a local optimum. However, in the special

case of a compatible function approximator we can introduce no bias and take steps

in the direction of the true policy gradient. This becomes possible when the critic’s

function approximator reaches a minimum in the mean-squared error:

0 = Eπ [∇w(qπ(s,a)−qw(s,a))2]

= Eπ [(qπ(s,a)−qw(s,a))∇wqw(s,a)]
(1.42)

If we choose qw(s,a) such that ∇wqw(s,a) = ∇θ logπ(s,a) we find:

Eπ [qπ(s,a)∇θ logπ(s,a)] = Eπ [qw(s,a)∇θ logπ(s,a)] (1.43)

1.2. Model-free approaches 33

where the L.H.S is equal to the true policy gradient and so our function approxima-

tion has introduced no bias. For example, if the policy is a Boltzmann policy with

a linear combination of features, then a compatible value function must be linear in

the same features as the policy except normalised to zero mean for each state using

a subtractive baseline (Sutton et al., 2000).

1.2.7 Deterministic policy gradients

Deterministic policy gradients (DPG) is a frequently used single-agent algorithm

for continuous control using model-free RL (Silver et al., 2014). It is an actor-critic

method which uses deterministic policies µθ : S →A. The parameters of the policy,

θ , are adjusted in an off-policy fashion using an exploratory behavioural policy

to perform stochastic gradient ascent on an objective J(θ) = Es∼ρµ ,a∼µθ
[r(s,a)],

where ρµ is the discounted state distribution induced by policy µ starting from an

initial state distribution with density p0.

The DPG algorithm builds off the deterministic policy gradient theorem:

∇θ J(θ) = Es∼ρµ [∇θ µθ (s)∇aqµ(s,a)|a=µθ (s)]. (1.44)

approximating qµ by the critic qw, which is differentiable in the action and updated

using Q-learning:

δt = rt+1 + γqw(st+1,µθ (st+1))−qw(st ,at)

w← w+α1δt∇wqw(st ,at)

The parameters of the policy are then updated according to:

θ ← θ +α2∇θ µθ (st)∇aqw(st ,at)|a=µθ (st) (1.45)

One advantage of DPG over stochastic off-policy actor-critic methods is that

the integral over actions is removed. This allows DPG to avoid importance sam-

pling in the actor, which can result in better sample efficiency. To explore actions

stochastically with its behavioural policy, DPG uses a noisy version of its determin-

1.3. Deep reinforcement learning 34

istic policy, for example by adding Gaussian noise.

1.3 Deep reinforcement learning
The policies and value functions used in reinforcement learning can be learned us-

ing artificial neural network function approximators. When such networks have

many layers they are conventionally denoted as ‘deep’, and are typically trained on

large amounts of data using stochastic gradient descent (LeCun et al., 2015). The

application of deep networks in model-free reinforcement learning garnered exten-

sive attention when they were successfully used to learn a variety of Atari games

from scratch (Mnih et al., 2013). For the particular problem of learning from pixels

a convolutional neural network architecture was used (LeCun et al., 1998), which

are highly effective at extracting useful features from images. They have been ex-

tensively used on supervised image classification tasks due to their ability to scale

to large and complex datasets (LeCun et al., 2015).

The application of deep reinforcement learning (DRL) required the overcom-

ing of major technical challenges. These include the high degree of correlation

between states encountered by an RL agent and the non-stationarity of the data dis-

tribution as the agent learns. Two approaches to address these issues are ‘experience

replay’ and ‘target networks’, which we describe in this section. We then explain a

DRL algorithm we frequently use in this thesis, known as deep deterministic policy

gradients (DDPG), and an approach which can be used to generate differentiable

samples from a categorical distribution known as Gumbel Softmax, which we later

use with DRL policies.

1.3.1 Experience replay

As an agent interacts with its environment it receives experiences that can be used

for learning. However, rather than using those experiences immediately, it is pos-

sible to store such experience in a ‘replay buffer’ and sample them at a later point

in time for learning. The benefits of such an approach were introduced by Mnih

et al. (2013) for their ‘deep Q-learning’ algorithm. At each timestep, this method

stores experiences et = (st ,at ,rt+1,st+1) in a replay buffer over many episodes. Af-

1.3. Deep reinforcement learning 35

ter sufficient experience has been collected, Q-learning updates are then applied to

randomly sampled experiences from the buffer. This breaks the correlation between

samples, reducing the variance of updates and the potential to overfit to recent ex-

perience.

1.3.2 Target networks

When using temporal difference learning with deep function approximators a com-

mon challenge is stability of learning. A source of instability arises when the same

function approximator is used to evaluate both the value of the current state and the

value of the target state for the temporal difference update. After such updates, the

approximated value of both current and target state change (unlike tabular meth-

ods), which can lead to a runaway target. To address this, deep RL algorithms often

make use of a separate target network that remains stable even whilst the standard

network is updated. As it is not desirable for the target network to diverge too far

from the standard network’s improved predictions, at fixed intervals the parameters

of the standard network can be copied to the target network. Alternatively, this

transition is made more slowly using Polyak averaging:

φtarg← ρφtarg +(1−ρ)φ (1.46)

where φ are the parameters of the standard network and ρ is a hyperparameter

typically close to 1.

1.3.3 Deep deterministic policy gradients

Deep deterministic policy gradients (DDPG) (Lillicrap et al., 2015) is a variant

of DPG with policy µθ and critic qw being represented by deep neural networks.

DDPG built off the success off DQN (Mnih et al., 2015), which succeeded in sta-

bilising training through use of a replay buffer and target networks.

In addition to this, their implementation of DDPG also utilised batch normal-

isation (Ioffe and Szegedy, 2015) (a method for re-centering and re-scaling input

layers in deep networks) and exploration using noise generated by an Ornstein-

Uhlenbeck process (although later implementations often found equal success with

1.3. Deep reinforcement learning 36

Gaussian noise).

1.3.4 Re-parameterisation with Gumbel softmax

Deep networks are commonly used to parameterise probabilistic models, which can

be used to generate samples. For example, a deep network can be used as a function

approximator for an RL agent’s stochastic policy whose samples correspond to ac-

tions. In this setting, it is sometimes the case that we wish to compute the gradient

of a sample from the model with respect to model parameters. Re-parameterisation

refers to approaches which achieve this by rewriting the probabilistic model as a de-

terministic function plus a random noise term (Glasserman and Ho, 1991; Kingma

and Welling, 2013). Samples are generated by first sampling random noise and

then computing the deterministic transformation specified by the model, enabling

gradients to be backpropagated.

An example of a reparameterisation is the Gumbel Softmax estimator, which

provides a general solution to obtaining gradients from samples of the categorical

distribution (Jang et al., 2016; Maddison et al., 2016). The Gumbel Softmax builds

on the Gumbel-Max trick (Gumbel, 1954) which, given a categorical distribution

with class probabilites π , allows one to draw samples z from it by taking:

z = one hot(argmax
i

[gi + logπi]) (1.47)

where gi are samples drawn from Gumbel(0,1)5.

For the Gumbel softmax, the one-hot argmax operation is replaced by a soft-

max approximation with a temperature parameter τ , to generate k-dimensional sam-

ple vectors y ∈ ∆n−1 on the simplex, where:

yi =
exp((gi + logπi)/τ)

∑
k
j=1 exp((g j + logπ j)/τ)

(1.48)

for i = 1, . . . ,k.

When the temperature is zero, samples from the Gumbel softmax distribution

become one-hot and the Gumbel softmax distribution becomes identical to the cat-
5using the procedure u∼ Uniform(0,1) and computing g =− log(− log(u)))

1.4. Latent variables and partial observability 37

egorical distribution. For temperatures above zero, samples are no longer one-hot

and have a well defined gradient ∂y
∂π

, enabling backpropagation to be used to com-

pute gradients for weight updates.

The so-called Straight-Through Gumbel Estimator applies the Gumbel-Max

trick (with argmax) on the forward pass to generate a discrete sample, but uses

the continuous approximation to it, the Gumbel Softmax, on the backward pass, to

compute a biased estimate of the gradients. This is useful if the problem only allows

for discrete samples (even during training). The temperature can be optimised as a

hyperparameter; the higher the temperature used the greater the bias, but the lower

the variance of the estimated gradient.

1.4 Latent variables and partial observability

1.4.1 Latent variable models

Hidden or ‘latent’ variables correspond to variables which are not directly observed

but nevertheless influence observed variables and thus may be inferred from ob-

servation. In reinforcement learning, it can be beneficial for agents to infer latent

variables as these often provide a simpler and more parsimonious description of the

world, enabling better predictions of future states and thus more effective control.

Latent variable models are common in the field of unsupervised learning.

Given data p(x) we may describe a probability distribution over x according to:

p(x;θx|z,θz) =
∫

dz p(x|z;θx|z)p(z;θz) (1.49)

where θx|z parameterises the conditional distribution x|z and θz parameterises

the distribution over z.

Key aims in unsupervised learning include capturing high-dimensional corre-

lations with fewer parameters (as in probabilistic principal components analysis),

generating samples from a data distribution, describing an underlying generative

process z which describes causes of x, and flexibly modelling complex distributions

even when the underlying components are simple (e.g. belonging to an exponential

family).

1.4. Latent variables and partial observability 38

1.4.2 Hidden Markov models

Hidden Markov models (HMMs) are an example of a discrete latent variable model

for time series. In an HMM, a probability distribution over sequences of observa-

tions ooo = {o1, . . . ,ot ,,oT} is defined by invoking a corresponding sequence of

latent discrete state variables sss = {s1, . . . ,st ,,sT}. The sequence of hidden states

has Markov dynamics - i.e. given st , sτ is independent of sρ for all ρ < t < τ .

The HMM is defined by two sets of parameters, the transition matrix P(s′|s)

and an emission distribution Ω(o|s), which defines the probability of an observation

given the underlying state6. Given a sequence of random variables o1:T , the joint

probability factorises according to:

p(o1:T ,s1:T) = p(s1)Ω(o1|s1)
T

∏
t=2
P(st |st−1)Ω(ot |st) (1.50)

where st corresponds to the discrete latent state at time t. This factorisation high-

lights the Markov structure of latent variables in the HMM. Crucially however, the

observed variables need not be Markov, and may be either continuous or discrete.

A common method for estimating the parameters which define P and Ω in-

volves first taking an expectation over the posterior probability of hidden state se-

quences. As the length of a time series increases the number of possible latent states

s1:T grows exponentially, which makes naive approaches to inference costly. For-

tunately, the Markov structure of latent variables in the HMM nevertheless allows

efficient inference using the forward-backward algorithm, which is based on the

principle of dynamic programming.

Once hidden states have been inferred using the current setting of the parame-

ters, the parameters themselves can be optimised. The alternating process of infer-

ring hidden states given observations and the current setting of the parameters, and

then optimising parameters given the inferred posterior is known as the Expectation

Maximisation (EM) algorithm (Dempster et al., 1977), which for the special case

of HMMs is known as the Baum-Welch algorithm.

6These may additionally be conditioned on the action, in which case they are known as input-
output HMMs.

1.4. Latent variables and partial observability 39

1.4.3 Partially observable Markov decision processes

A partially observable Markov decision process (POMDP) (Kaelbling et al., 1998)

is a generalisation of an MDP in which the agent cannot directly observe the true

state of the system, the dynamics of which is determined by an MDP. Formally,

a POMDP is a 7-tuple 〈S, A, P , r, O, Ω, γ〉 where S is the set of states, A is

the set of actions, P : S ×A×S → [0,1] is the state transition probability kernel,

r : S×A×S →R is the reward function, O is the set of observations, Ω : S×A×

O→ [0,1] is the observation probability kernel and γ ∈ [0,1) is the discount factor.

As with MDPs, agents in POMDPs seek to learn a policy π(sa
t) which maximises

some notion of cumulative reward, commonly Eπ [∑
∞
t=0 γ trt+1]. This policy depends

on the agent’s representation of state sa
t = f (ht), which is a function of its history.

One approach to solving POMDPs is by maintaining a belief state over the

underlying state of the world - as in an HMM, this underlying state is Markovian.

Thus maintaining a belief over states only requires knowledge of the previous belief

state, the action taken and the current observation. Beliefs may then be updated

according to:

b′(s′) = ηΩ(o′|s′,a) ∑
s∈S
P(s′|s,a)b(s) (1.51)

where η = 1/∑s′Ω(o′|s′,a)∑s∈SP(s′|s,a)b(s) is a normalising constant.

However, in practice, maintaining belief states in POMDPs will be computa-

tionally intractable for any reasonably sized problem. In order to address this, ap-

proximate solutions may be used. Alternatively, methods which use recurrent neural

networks can enable agents to construct their own state representations, which may

in turn enable relevant aspects of the state to be approximately Markov.

Part I

Feudal Hierarchies

40

41

If at first you don’t succeed, try management

Chapter 2

Introduction

An important challenge in the field of artificial intelligence is understanding how

interacting agents in a shared environment can collectively learn to optimise a task

objective. Such problems can correspond to a wide range of relevant situations, such

as agents in a warehouse collaborating to manufacture as many goods as possible,

or driverless cars negotiating a busy intersection such that no individual car is left

waiting too long. Ideally we would like to develop systems which can solve multi-

agent tasks such as these simply by learning from experience, rather than requiring

precise specification of behaviours, which is likely impossible for most non-trivial

tasks.

An appropriate formalism is that of multi-agent reinforcement learning

(MARL) (Busoniu et al., 2008), which operates at the intersection of reinforce-

ment learning (RL) and multi-agent systems research. This treats each agent in the

system as a reinforcement learning agent, responsible for its own actions separate

from other agents acting in the environment. This can be contrasted with problems

which involve only one agent, or those which involve a centralised controller which

chooses the actions of all agents. Learning in the MARL setting introduces its own

set of difficulties, as well as advantages, which has spurred much research in the

field.

One of the critical considerations in MARL is the non-stationarity of the en-

vironment from the perspective of any one agent. Unlike the case where there is

only one RL agent, this occurs even when the physical or simulated environment is

43

fixed, because the learning of other agents causes them to change the actions they

take. This affects the distribution of state transitions and rewards perceived by each

agent, which cannot ordinarily observe the actions of other agents.

In addition to partial observability of actions, MARL problems often involve

partial observability of state. Each agent may have different observations which

inform them about different aspects of the environment but which are individually

insufficient for success on a particular task. One way of resolving the difficulties of

distributed state can involve agents communicating with each other, but the appro-

priate strategy to achieve this must be learned.

We also would like our systems to learn even when the number of agents is

large – a problem of scalability. MARL’s assumption that actions are controlled

by separated learning agents rather than a single centralised controller is potentially

advantageous in this situation, as the joint action space of all agents grows exponen-

tially. However, when addressing a single task objective, increasing the number of

agents makes credit-assignment difficult, as the overall reward becomes an increas-

ingly noisy reflection of a given agent’s contributions (Wolpert and Tumer, 2002;

Chang et al., 2004).

In Part I we seek to address these challenges by introducing a new framework

for multi-agent learning termed Feudal Multi-Agent Hierarchies (FMH). Our idea

is inspired by the structure of real-life managerial hierarchies, in which different

tasks are assigned to workers, which agree to toil towards them for the benefit of

the collective. In such a setting, multiplicity is often seen as a blessing rather than a

curse – the potential to achieve more collectively than would otherwise be possible.

However, in order for chaos not to simply ensue, the manager must learn to assign

tasks and coordinate its workers to optimise overall task performance.

In the following chapters, we describe FMH in detail and demonstrate its appli-

cation. Our framework concerns itself mainly with alterations of reward and state,

and can in principle be combined with a variety of multi-agent algorithms. To test

our idea, we utilise the DDPG algorithm (Section 1.3.3) and the MADDPG algo-

rithm (which we later describe), and conduct experiments in the multi-agent particle

44

Figure 2.1: Cooperative Communication. From Figure 2, Lowe et al. (2017). The immo-
bile Speaker sees the colour of the target landmark (green in this case). It com-
municates a discrete message to the Listener at every time step. Both agents
receive reward proportional to the negative distance of the Listener from the
target.

environment (MPE)1. The MPE is a simple world with a continuous observation and

discrete action space, along with some basic simulated physics. It allows for many

agents to interact simultaneously in a shared environment but with different per-

spectives. To navigate, each agent must learn a non-trivial control policy, and to

aid cooperation, each agent may send and receive discrete costless communication

messages.

We focus in particular on problems involving partial observability, such as

those where an agent cannot observe the information it needs to solve a task but

where this information is available to another agent which can communicate with it.

An example of such a problem, introduced by Lowe et al. (2017), is known as Coop-

erative Communication (Figure 2.1), in which there are two cooperative agents, one

called the ‘Speaker’ and the other called the ‘Listener’, placed in an environment

with three landmarks of differing colours. On each episode, the Listener must nav-

igate to a randomly selected landmark; and both agents obtain reward proportional

to its negative distance from this target. However, whilst the Listener observes its

relative position from each of the differently coloured landmarks, it does not know

which landmark is the target. Instead, the colour of the target landmark can be

1https://github.com/openai/multiagent-particle-envs

45

seen by the Speaker, which cannot observe the Listener and is unable to move. The

Speaker can however communicate to the Listener at every time step, and so suc-

cessful performance on the task corresponds to it helping the Listener to reach the

correct target. An interesting aspect of this problem is that the communication pol-

icy of the Speaker is likely to change over time, as it learns to communicate, and

this non-stationarity can make learning difficult for the Listener, which must learn

to act based on the messages it receives.

An approach which can prove effective for the Cooperative Communication

problem was introduced by Lowe et al. (2017) which involved a method known as

‘centralised training’. This is a method for MARL training in simulation which uses

the observations and actions of other agents to help each agent learn. It has become

an important paradigm for training MARL systems in simulation, and we describe

it in detail later in this chapter.

Our method of FMH can be applied in both a decentralised and centralised

context. In Chapter 3 we explore the idea of FMH in a decentralised setting whereas

in Chapter 4 we investigate the centralised case. The structure of Part I is therefore

a follows:

• In Chapter 3 we describe our new framework of Feudal Multi-agent Hi-

erarchies and demonstrate how it can be used in the decentralised setting.

We show how our method can be used to address the challenges of non-

stationarity and coordination, enabling it to scale to large numbers of agents.

• In Chapter 4 we investigate applications of centralised training. We develop

a new method which involves a centralised policy actor-critic (CPAC) and a

modification to the conventional multi-agent policy gradient. We apply our

method to information-gathering tasks and demonstrate the potential of our

general strategy when applied in both the fully cooperative setting and for

FMH.

• In Chapter 5 we describe how our work relates to other work in the field, and

its limitations. We also discuss future research directions.

2.1. Multi-agent RL 46

The remainder of the current chapter is a review of relevant research in this

field. We divide this into two sections; multi-agent RL, which is our domain of

application, and hierarchical RL, a field which provided inspiration for our proposed

approach.

2.1 Multi-agent RL
In recent years, MARL has generated substantial interest due to successful applica-

tions of single-agent reinforcement learning, such as DeepMind’s deep Q-Learning

algorithm which successfully learned to play Atari games from scratch (Mnih et al.,

2013) and subsequent work on the long-standing challenge of the competitive board

game Go, for which a super-human standard was achieved (Silver et al., 2016).

More recently, DeepMind incorporated ideas from multi-agent learning to train a

population of agents which achieved super-human performance on the real-time

strategy game Starcraft (Vinyals et al., 2019)2. This approach ensured that each

agent was robust to a diversity of opponent strategies, a hallmark of elite play.

MARL has also been applied effectively in the mixed cooperative-competitive do-

main, with large-scale experiments involving collaborating teams against competi-

tors outperforming humans on various videogames (Jaderberg et al., 2019) and elic-

iting advanced behaviours such as tool use (Baker et al., 2019).

Despite these successes, MARL systems can be very difficult to train, due to

difficulties explained in the introduction. Here we review important concepts in

MARL relevant to our research, including the complexities of multi-agent inter-

action and approaches towards a solution. We focus in particular on cooperative

reinforcement learning (Panait and Luke, 2005), in which agents must collectively

work towards a single task objective.

2.1.1 Definitions

2.1.1.1 Partially Observable Markov Games

An appropriate formalism for MARL systems in which agents cannot directly

observe the full environmental state is known as a partially observable Markov

2constraints on AI reaction time were chosen to ensure an approximately level playing field

2.1. Multi-agent RL 47

game (POMG) (Littman, 1994; Hu et al., 1998)3. This extends the notion of a

POMDP (Section 1.4.3) to the case where there are multiple agents. A POMG for

N agents is defined by a set of states S , and sets of actions A1, . . . ,AN and ob-

servations O1, . . . ,ON for each agent. In general, the stochastic policy of agent i

may depend on the set of action-observation histories Hi ≡ (Oi×Ai)
∗ such that

πi : Hi ×Ai → [0,1]. In this work we restrict ourselves to history-independent

stochastic policies πi : Oi×Ai → [0,1] as these are sufficient to solve the tasks

we examine. We denote the set of possible policies for agent i as ∆(Oi,Ai). We

assume agents act synchronously in an environment with discrete time and that the

next state is generated according to P : S×A1× . . .×An×S → [0,1], which is the

state transition probability kernel.

Each agent i obtains deterministic rewards defined as ri : S ×A1× . . .×An×

S → R and (for our experiments) receives a deterministic private observation oi :

S →Oi. There is an initial state distribution ρ0 : S → [0,1] and each agent aims to

maximise its own discounted sum of future rewards. We denote the joint strategy of

all the agents as πππ and the joint strategy of all agents except agent i as πππ−i. We use

the notation 〈πi,πππ−i〉 to refer to the joint strategy where agent i follows πi while the

other agents follow their policy from πππ−i.

A key aspect of multi-agent RL is whether it is cooperative or competitive.

This is determined by reward: in a fully cooperative POMG all agents share the

same reward, whereas in a fully competitive two-player POMG the agents have

opposing rewards. All other games are known as mixed.

2.1.1.2 Nash equilibrium and Pareto-optimality

Multi-agent interactions have benefited from a wealth of research from the field of

game theory. We therefore briefly introduce key game theoretic concepts, assuming

for convenience a fully-observable Markov Game in which agents observe the true

state s. The value function for agent i is:

vπi(s) = Eπππ

[
∞

∑
t=0

γ
tri,t+1|s0 = s

]
(2.1)

3also known as a stochastic game

2.1. Multi-agent RL 48

where ri,t+1 is player i’s reward at time t +1.

A joint policy πππ∗ defines a Nash equilibrium in a Markov game iff, for each

agent i:

∀πi ∈ ∆(S,Ai),∀s ∈ S, v〈π∗i ,πππ∗−i〉(s)≥ v〈πi,πππ
∗
−i〉(s) (2.2)

such that no agent can improve its discounted cumulative reward by unilaterally de-

viating from a Nash equilibrium. A Markov game may have many Nash equilibria,

however, there may exist ‘better’ solutions which are not Nash yet are of greater

value for each agent than any of the Nash solutions. It is therefore useful to define

a separate notion of Pareto optimality. A joint policy π̂ππ Pareto-dominates another

joint policy πππ , written π̂ππ > πππ , iff in all states:

∀i,∀s ∈ S, vi,π̂ππ(s)≥ vi,πππ(s) and ∃ j,∃s ∈ S, v j,π̂ππ(s)> v j,πππ(s) (2.3)

If a joint policy π̂ππ
∗ is not Pareto-dominated by any other joint strategy, then π̂ππ

∗

is Pareto-optimal. This means that no agent’s expected gain can be improved upon

without decreasing the expected gain of any other agent. For games which are not

fully cooperative the Pareto-optimal solution will not necessarily correspond to a

Nash equilibrium and vice-versa (such as in the Prisoner’s dilemma). However, in

fully-cooperative games the Pareto-optimal solution will of course correspond to a

Nash equilibrium (as shared rewards means unilateral deviation must be no better

for the deviating agent).

2.1.2 Interaction concepts

2.1.2.1 Coordination

The challenge of coordinating multiple agents can be illustrated by considering

a fully cooperative Markov Game. Whilst we typically treat the actions of other

agents as unobservable, consider the case where all actions can in fact be observed

and there are no private observations such that only a single corresponding action-

value function Q(s,a1, . . . ,aN) need be learned. For multi-agent control, actions are

2.1. Multi-agent RL 49

selected separately by each agent and this results in a coordination problem even

when accurate action-values have been learned. This is because the simple strat-

egy of selecting an optimal action with the assumption that other agents also take

optimal actions relies on there only being a single optimal action for each agent.

In cases where there are multiple actions of equal value available to other agents,

a given agent cannot know the other actions which will be taken and so cannot

coordinate to the optimal joint action. From a game-theoretic perpsective, this is

known as the Pareto-selection problem and arises from the existence of multiple

Pareto-optimal Nash equilibria.

Another difficulty of coordination is caused by the exploration of many learn-

ing agents. This can interfere with MARL systems trying to solve tasks which

require precise coordination, as the chance of all agents exploiting at a given mo-

ment diminishes as the number of agents increases (Matignon et al., 2012). In such

situations it may be more likely for agents to converge towards a sub-optimal Nash

equilibrium less reliant on precise coordination, even whilst there exist jointly de-

terministic policies which would be better.

2.1.2.2 Communication

One approach which can alleviate issues of coordination is allowing agents to com-

municate with each other. One way to classify communication is whether it is ex-

plicit or implicit. In the explicit case, communication can be modeled as being

separate from the environment. For example, Lowe et al. (2019) divide the action

space of agent i into disjoint environment actions Ae
i and communication actions

Am
i , such that Ae

i ∪Am
i =Ai and Ae

i ∩Am
i = /0. Environment actions directly affect

the environment dynamics and the rewards of the agents whereas communication

actions do not, but are instead only observed by other agents. Communication may

be targeted to specific agents or broadcast to all agents and may be costly or incur

zero cost. The zero cost formulation is commonly used and referred to as ‘cheap

talk’, a term which originated from the game theory community.

Implicit communication corresponds to multi-agent problems which do not

have separate communication channels but nevertheless allow for communicative

2.1. Multi-agent RL 50

behaviours to other agents through changes of their environment. An example of

this kind of communication would be the leaving of ‘breadcrumbs’ in the environ-

ment by one agent, for another agent to follow, or teaching by imitation.

In this work, we focus on explicit communication with the expectation that

dedicated communication channels will be frequently integrated into artificial multi-

agent systems. Interestingly, communication has the potential to blur the boundaries

between cooperative MARL and single-agent RL as, in the unrestricted case, it al-

lows such systems simply to be treated as single-agent systems (Panait and Luke,

2005). To understand this, consider a multi-agent system of N + 1 agents, where

the extra agent is denoted special status. If the N regular agents instantaneously

communicate their observations to the special agent, which views them all and im-

mediately communicates back to each of the N agents the desired action it wishes

that agent to take, then the problem is equivalent to training with a single centralised

agent. This removes the complexities of coordination and non-stationarity common

in MARL and enables straightforward application of single-agent methods4.

Of course, in most MARL problems there are restrictions on communication,

even when a communicative action is not assumed to be costly in terms of reward.

Common limitations include bottlenecks, such as only allowing the communication

of a few discrete symbols, and unreliable messages due to noise or lag. The most

effective use of communication amongst multi-agent teams in such situations can

be difficult to directly prescribe but the hope is that multi-agent RL could learn

to effectively use such available channels. Indeed, recent work does suggest that

this is possible, with communication enabling better performance than when such

channels are removed (Lowe et al., 2019).

Recent work in multi-agent RL has leveraged differentiable communication

channels to improve performance on fully cooperative problems further. A dif-

ferentiable channel allows for gradients to be backpropagated such that agents are

able to assign credit for their communication to the downstream behaviour of other

agents (Sukhbaatar et al., 2016; Foerster et al., 2016; Peng et al., 2017; Mordatch

4in practice the exponential scaling of the action space with the number of agents may make such
an approach ineffective

2.1. Multi-agent RL 51

and Abbeel, 2018). If the ‘real’ communication channel is in fact discrete, the

differentiable channel may be discretized (Foerster et al., 2016). However, this dis-

cretisation can induce differences in training and test performance, and more effec-

tive learning has been observed when using instead the Straight-Through Gumbel-

softmax estimator (Havrylov and Titov, 2017).

Whilst learning communication via backpropagation is an interesting strategy,

we do not rely on the existence of a differentiable communication channel between

agents in this work. We instead learn communication using each agent’s individual

policy gradient, as in other recent work (Lowe et al., 2017; Iqbal and Sha, 2019).

2.1.3 Solution concepts

2.1.3.1 Decentralised model-free learning

A straightforward way to address multi-agent problems is to use single agent model-

free RL algorithms for each agent, such as Q-Learning (Watkins and Dayan, 1992)

or policy gradients (Williams, 1992; Sutton et al., 2000). In this ‘independent learn-

ers’ approach each agent receives only local observations (as defined by the envi-

ronment) which are used as input to the agent’s policy and to train its parameters

(Tan, 1993; Gupta et al., 2017). A potential benefit of such an approach are the

minimal assumptions used compared to more complex methods, and the simplicity

of use. It can therefore be applied in a variety of scenarios, both in simulation and

in the real world. The downside, however, is that the non-stationarity of multi-agent

RL removes convergence guarantees present in the single-agent case (assuming the

internal states of other agents cannot be observed).

2.1.3.2 Centralised learning with decentralised control

Independent learners only have access to local action and observation histories dur-

ing training. However, modern approaches to training and evaluating performance

often take place at least partially in simulation, which allows precise control over

the information available to the agents. Consequently, methods have been devel-

oped which exploit this potential by using the actions and observations of all agents

for training. Some approaches go further still by providing agents with access to the

2.1. Multi-agent RL 52

environmental state, rendering a partially-observable problem as fully observable.

Although it is restrictive for agents to require access to this full information,

this approach has generated recent interest due to the potential for centralised train-

ing of ultimately decentralised policies (Lowe et al., 2017; Foerster et al., 2018).

For example, in simulation one can train a critic for each agent which exploits the

action and observation histories of all agents to aid the training of local policies for

each one. These policies can then be deployed in multi-agent systems in the real

world, where decentralised execution is required.

Recent advances have demonstrated the potential for strong performance of

centralised methods when training in simulation is viable. In general multi-agent

learning causes the environment to be non-stationary from the perspective of each

agent. However, centralised learning allows for the critic(s) to depend on the en-

vironmental state and joint action of all agents and thus learn to account for this

non-stationarity. To see why this is the case, we consider the policy gradient the-

orem (Equation 1.37) in the multi-agent setting when a single critic is used (as in

Foerster et al. (2018)). We denote the vector of joint actions for all agents as aaa, of

all agent policy parameters as θ , and individual agent observations and actions as oi

and ai respectively. Assuming the centralised critic has access to the state s which

renders transitions Markov, the multi-agent policy gradient can be expressed as:

∇θ J(θ) = Eπππ

[
∑

i
qπππ(s,aaa)∇θ logπ(oi,ai)

]
= Eπππ

[
qπππ(s,aaa)∇θ log∏

i
π(oi,ai)

] (2.4)

Writing the joint policy as a product of independent actors:

πππ(s,aaa) = ∏
i

π(oi,ai) (2.5)

we therefore recover the standard single-agent actor-critic policy gradient:

∇θ J(θ) = Eπππ

[
qπππ(s,aaa)∇θ logπππ(s,aaa)

]
(2.6)

Following Konda and Tsitsiklis (2000) this will converge to a local maximum

2.1. Multi-agent RL 53

of Jπππ under strict conditions; the policy must be differentiable, the update timescales

for qπππ and πππ must be sufficiently slow, with πππ being updated sufficiently slower than

qπππ , and qπππ must use a compatible representation with πππ5.

The convergence proof used relies on the critic being centralised. However,

this may not be possible if learning outside of simulation or if the multi-agent sys-

tem requires further training after deployment due to changes in the environment.

In addition, such methods may struggle to scale as the number of agents increases,

due to the curse of dimensionality.

2.1.3.3 MADDPG

Multi-agent deep deterministic policy gradients (MADDPG) (Lowe et al., 2017) is

an algorithm for centralised training and decentralised control of multi-agent sys-

tems. It uses deterministic polices, as in DDPG (Section 1.3.3), which condition

only on each agent’s local observations and actions.

MADDPG handles the non-stationarity associated with the simultaneous adap-

tation of all the agents by introducing a separate centralised critic Qµµµ

i (ooo,aaa) for each

agent where µµµ corresponds to the set of deterministic policies µi : O → A of all

agents. Here we have denoted the vector of joint observations for all agents as ooo.

In addition inputs to the centralised critic could be further augmented by aspects

of the environmental state not observed by any of the agents, although this was not

explored in the original wrok.

The multi-agent policy gradient for policy parameters θ of agent i is:

∇θiJ(θi) = Eooo,aaa∼D[∇θi µi(oi)∇aiQ
µµµ

i (ooo,aaa)|ai=µi(oi)]. (2.7)

where D is the experience replay buffer which contains the tuples (ooo,aaa,rrr,ooo′′′)

and rrr = (r1, . . . ,rN). Like DDPG, each Qµµµ

i is approximated by a critic Qw
i which is

updated to minimise the error with the target.

L(wi) = Eooo,aaa,ooo′′′,aaa′′′∼D[(Q
w
i (ooo,aaa)− y)2] (2.8)

5of course, amongst practitioners such conditions are rarely observed

2.2. Hierarchical RL 54

where y = ri + γQw
i (ooo
′′′,aaa′′′) is evaluated for the next state and action (as stored

in the replay buffer, and in practice using the critic target network).

MADDPG allows for each agent to have differing rewards and therefore Lowe

et al., trained agents on a variety of mixed cooperative-competitive environments in

the MPE, significantly improving upon agents trained independently with DDPG.

They utilised history-independent feedforward networks for critics and policies, and

the output of the latter was transformed into a sample from the categorical distri-

bution using the Gumbel Softmax (Section 1.3.4), as discrete actions are used for

control in the MPE.

2.2 Hierarchical RL
The field of hierarchical RL (HRL) (Barto and Mahadevan, 2003) originally arose

to address the difficulties faced by single-agent RL. In our work, we attempt to

marry these ideas with the field of MARL, but first we outline the relevant single-

agent work. The introduction of HRL was first conceived to address the curse of

dimensionality which, even with the use of parameteric function approximators, still

looms large in a variety of problems. Furthermore, it seeks to address the problems

of sparse reward, in which obtaining even a single reward on a novel task may

require complex sequences of actions, exacerbating the problems of exploration

and temporal credit-assignment.

HRL attempts to address these challenges by noting that the world (and in-

deed agents themselves) are highly structured such that the temporally-extended

behaviours needed to obtain reward in one problem often share substantial sim-

ilarities with required behaviours in other problems. Thus if ‘good’ behavioural

sub-policies can be learned for a given task, a higher-level policy need only learn to

combine these on subsequent tasks rather than learning again from scratch.6 This

temporal abstraction would therefore lead to more effective exploration, and credit-

assignment, and so more efficient learning. There are a plethora of approaches to

HRL, for which we only outline a few. Our choice is determined by their relation-

6Of course, similar reasoning may be used to motivate sub-sub-policies and so on.

2.2. Hierarchical RL 55

ship to our own method as well as their historical signficance.

2.2.1 Feudal RL

One of the earliest approaches to HRL is Feudal RL (FRL) (Dayan and Hinton,

1993; Watkins, 1989; Dayan, 1994)7, which establishes a managerial hierarchy of

agents ‘inside the head’ of a single agent. In this approach, high-level managers

learn to set goals to their sub-managers who, in turn, learn how to satisfy them

by setting their own goals to sub-sub-managers and so on. Only the lowest level

(currently-active) agent, which we call the ‘worker’, takes regular (primitive) ac-

tions in the world, with the actions of higher levels in the hierarchy corresponding

to goals for the agent one level-down. Agents are rewarded according to the extent

to which they satisfy the goals they receive, except for the highest-level manager

which receives no explicit goal but instead receives the reward defined by the task.

The motivation for introducing this substantial multi-agent complexity to a

single agent problem is the hope that explicit managerial goal-setting will allow

lower level agents to learn useful component behaviours. In turn the manager can

learn to sequentially select goals (and thus behaviours) to solve a variety of tasks.

In the original implementation, FRL decomposed a 2D gridworld into squares

of increasing size, such that higher-level managers view a state-space which is

smaller but has coarser resolution. The goals available to managers are to request

the transition of sub-managers to adjacent states (from its coarser perspective) or to

search for reward in the existing state. If this goal is satisfied, the manager provides

reward to its sub-manager, otherwise the goal eventally reaches a timeout and no

reward is provided.

FRL utilises the principles of ‘information-hiding’ and ‘reward-hiding’.

Information-hiding corresponds to the fact that higher level managers do not know

the actions that workers take to achieve the goals which are set and furthermore

have a coarser view of the state. This latter approach is used to address the curse

of dimensionality but does so at the expense of making the task non-Markovian

7The name refers to the ‘feudal’ system, common in medieval kingdoms such as England and
Japan, as well as various academic institutions.

2.2. Hierarchical RL 56

at higher levels, which can render problems insoluble.8 Nevertheless, it raises

the interesting idea that different levels of a hierarchy might have different state

representations. The second principle of reward-hiding is that sub-managers only

report to managers one level above them, such that any other rewards, including

task rewards, are irrelevant to them. The sub-manager therefore focuses only on

achieving the smaller-scale task it has been set rather than having to contend with

the larger problem (for which learning might be very slow). The experiments used

for FRL showed that whilst initial learning on problems was slower than ordi-

nary Q-learning, learning on subsequent problems was greatly sped up due to the

effective reuse of subpolicies.

2.2.2 Options

This framework addresses the problem of HRL by introducing the notion of

temporally-extended actions, known as options (Sutton et al., 1999). The initial

work sought to find a minimal extension to the RL framework which would allow

for a general treatment of temporally abstract knowledge and action. It achieved this

by building on the theory of semi-Markov decision processes (SMDPs) (Bradtke

and Duff, 1995) and considering their interplay with MDPs. SMDPs are a special

kind of MDP in which actions are temporally-extended and variable in duration,

which makes them a natural fit for modelling hierarchies of policies.

Options consist of three components: a policy π : S×A→ [0,1], a termination

condition β : S+ → [0,1] (where + denotes the additional inclusion of terminal

states) and an initiation set I ⊆ S . An option 〈I,π,β 〉 is available in state st if and

only if st ∈ I. If the option is taken, the actions are selected according to π until the

option terminates stochastically according to β .

According to this definition, primitive actions are simply options which termi-

nate with certainty after one step. As options are composed of primitive actions,

any MDP which can be solved using options (selected by a policy-over-options)

may also be solved simply with primitive actions. However, a potential advantage

of options is that they can be reused to rapidly solve related problems. A classic

8an issue further exacerbated by the somewhat arbitrary division of the state space

2.2. Hierarchical RL 57

example of this is the ‘four rooms’ gridworld problem, in which four rooms are

connected by narrow hallways. If, in addition to primitive actions, options are in-

cluded to move between hallways according to a shortest path, the agent can more

rapidly learn to navigate between specific cells in the grid.

The initial focus of research into options focused on learning to choose be-

tween options appropriately, as well as how learn about multiple options simultane-

ously even when following the action choice of just one of them (intra-option learn-

ing) (Sutton et al., 1998), and to terminate options when advantageous (interrupting-

options) (Sutton et al., 1999). Later work, began to investigate how options might

be learned, such as looking for bottleneck states (Stolle and Precup, 2002) or using

separate ‘problem-space’ and ‘agent-space’ representations (Konidaris and Barto,

2007). Recent research also showed how options policies and termination condi-

tions could be simultaneously learned in a policy gradient framwork (Bacon et al.,

2017). However, this work relied on regularisers to prevent agents either learning a

single option for each task or switching between options at every step.

2.2.3 Feudal networks

Feudal Networks (FuNs) (Vezhnevets et al., 2017) takes the general inspiration pro-

vided by FRL and translates this into a more general deep RL algorithm which can

be used to solve a variety of problems. As with FRL, FuN introduces a managerial

hierarchy, although experiments were limited to two-level hierarchies of manager

and worker.

FuNs was used for problems where the input was high dimensional images, and

so the first stage of processing involved using a ‘perceptual’ convolutional neural

network to generate a representation zt ∈ Rd which was supplied as input to both

manager and worker. The manager would then transform this into its own internal

representation st ∈ Rd and, using recurrent networks, output a goal gt ∈ Rd .

Meanwhile, the recurrent worker takes the same input zt and produces an em-

bedding vector for every action, represented by rows of the matrix Ut ∈ R|a|×k,

where k� d. In the next step, the managerial goals over the last c timesteps are

summed by the worker and transformed into a goal-embedding by linearly project-

2.2. Hierarchical RL 58

ing them to generate wt ∈ Rk. The worker’s policy π is then decided by:

πt = SoftMax(Utwt) (2.9)

which corresponds to the vector of probabilities over primitive actions.

The linear projection used to generate the goal-embedding wt is learned by

the worker (using gradients coming from its own actions) and so, to ensure that it

cannot simply learn to ignore the manager, Vezhnevets et al. (2017) did not allow

for any biases which might be used to produce a constant non-zero vector.

The managerial goal gt not only influences worker behaviour directly but is

also used to determine the worker’s reward. To compute the intrinsic reward, rI
t ,

provided to the worker at time t, the cosine similarity between the d-dimensional

goal vector and the change-in-state vector of the agent over a horizon is computed:

rI
t = 1/c

c

∑
i=1

dcos(st− st−i,gt−i) (2.10)

where dcos(α,β) = αT β/(|α||β |). The use of directional rather than absolute goals

is a substantial shift from FRL, and allows for the worker to consistently recieve

reward rather than having to wait until the goal has been perfectly achieved or until

the time out. The fixed termination condition corresponding to c time steps was

treated as a hyperparameter to be optimised.

Crucial to FuNs is the separation between manager and worker. Conventional

deep RL approaches typically train in an end-to-end fashion. For the architecture

used, this would mean that gradients would backpropagate through the goal output

of the manager. However, Vezhnevets et al. (2017) argue that this would deprive

managerial goals of any semantic meaning and so they do not allow gradients to

propagate from worker to manager, instead treating managerial goals as the actions

of an RL agent optimising the task reward.

Whilst FRL followed the principle of reward hiding strictly, FuNs relaxes this,

allowing the worker to optimise a weighted sum of the managerially-defined instrin-

sic reward and the task reward. The weighting is treated as a hyperparameter, α , to

2.2. Hierarchical RL 59

be optimised. Learning for the worker is on-policy and uses advantage actor critic

(Mnih et al., 2016):

θ ← θ +
[
Rt +αRI

t − vw
t (ot ;θ)

]
∇θ logπ(at | ot ;θ) (2.11)

where Rt and RI
t correspond to the real and intrinsic return, ot corresponds to the

input image and the worker’s value function vw
t is determined by an internal critic

which estimates the value functions for the summed rewards.

The manager in FuN learns according to a form of policy gradient with respect

to a model of the worker’s behaviour. This assumes that worker state transitions

conditioned on the managerial goal will follow a von Mises-Fisher distribution cen-

tred on that goal, the satisfaction of which with sufficient training is encouraged by

the worker’s intrinsic reward. This gives rise to the transition policy gradient for the

manager:

θ ← θ +
[
Rt− vm

t (ot ;θ)
]
∇θ dcos(st+c− st ,gt(θ)) (2.12)

where vm
t is estimated by the internal critic. The effect of this update is for the

manager to move its goals towards directions in which the worker achieves a greater

return than expected and away from those in which the worker achieves less return

than expected. A final consituent of the FuN architecture includes a ‘dilated LSTM’

for the manager which operates at a lower temporal resolution, and enables better

preservation of memories for long periods than a regular LSTM whilst still learning

from every input experience.

Taken together, the FuN architecture allows the application of key ideas from

FRL to be more generally applied, albeit in a complex architecture which benefits

from substantial hyperparameter tuning (Jaderberg et al., 2017). The experiments

also showed strong performance, including on the challenging task of Montezuma’s

revenge for which an agent must first reach a key to unlock a door before obtaining

reward. Pleasingly, the experimenters found that subgoals set by the manager on

this task corresponded to reaching the key, as well as other semantically meaningful

targets.

2.2. Hierarchical RL 60

2.2.4 Off-policy HRL

Whilst FuNs provided an on-policy policy gradient approach inspired by FRL, sub-

sequent work also developed off-policy methods. In ‘HIerarchical Reinforcement

learning with Off-policy correction’ (HIRO) (Nachum et al., 2018a), as with FuNs,

a lower-level controller is supervised with goals that are learned and proposed au-

tomatically by a higher-level controller. HIRO uses the off-policy algorithm TD3

(Fujimoto et al., 2018), an improved variant of DDPG, for each controller. Unlike

FuNs, goals set by the high-level controller use state observations in their raw forms

rather than a learned hidden representation, which the authors found to achieve

better performance, albeit on relatively low-dimensional continuous control tasks

which formed the basis of their experiments.

Goal-setting in HIRO proceeds as follows: at each time step t, the environment

provides an observation state st to the higher-level controller which then generates

a goal gt ∈ Rds , where ds is the dimensionality of the observation state. The goal is

either sampled from the high-level policy, gt ∼ µhi, if t ≡ 0 (mod c) or otherwise

according to a fixed goal transition function gt ∼ h(st−1,gt−1,st). This transition

function ensures that a selected goal-vector will continue to point towards a fixed

‘target’ in the state-space even as the agent moves (for the c−1 steps after the goal

is initially sampled from µhi). The goal transition is thus defined as:

h(st ,gt ,st+1) = st +gt− st+1 (2.13)

The intrinsic reward received at each timestep is determined by the distance of

the current observation from the target state:

r(st ,gt ,st+1) =−||st +gt− st+1||2 (2.14)

To increase reliability and effectiveness, HIRO attempts to address the issue of

learning in lower levels altering the effect of actions (goals) in the higher level. To

achieve this, an off-policy correction is used which re-labels experiences in the past

(stored in the replay buffer) with a high-level action chosen to maximise the prob-

2.2. Hierarchical RL 61

ability of the past lower-level actions. Rather than add a tuple (st , gt , ∑c Rt:t+c−1,

st+c) to the replay buffer of the higher level controller, which includes the actual

goal used at the time, HIRO replaces this goal with g̃t which maximises the prob-

ability µ lo(at:t+c−1 | st:t+c−1, g̃t:t+c−1), where the intermediate goals are computed

using the fixed goal transition function h. This optimisation is done approximately

by computing this quantity for a number of sampled goals g̃t near to the observed

state transition and choosing the argmax.

Another approach which used off-policy learning for HRL is ‘Hierarchical Ac-

tor Critic’ (HAC) (Levy et al., 2018). This method shares many similarities to

HIRO but does not introduce goal relabelling to adjust for learning in the lower-

level policy. It does however introduce a mechanism for Hindsight Experience

Replay (Andrychowicz et al., 2017), which enables the lower level controller to

learn even when it reaches states far from the goal state. This works by sampling

a set of additional goals, substituting them for the true goal state and adding the

additional tuples to the replay buffer for further training. Additional goals sampled

are generally related to the actual observed trajectory on that episode (e.g. states

subsequently visited), providing a useful reward signal for learning when ordinarily

goal achievement is rare. This idea is closely linked to general or universal value

functions (Sutton et al., 2011; Schaul et al., 2015), which seek to treat all states as

potential goals for which the agent would like to accurately predict values. Schaul

et al. (2015) used one neural network to represent knowledge about all subgoals,

such that values could be predicted for any input start and goal state.

Both HIRO and HAC increase the efficiency of off-policy training by asking

the question: what goal could the manager have set to best reflect the actually

achieved state change? In the case of HIRO, the surrogate goal which (approxi-

mately) answers this question is used to adjust the manager’s update whereas in the

case of HAC it is used to augment the worker’s update.

2.2. Hierarchical RL 62

2.2.5 Multi-agent connections

2.2.5.1 Layered learning

Layered learning (Stone and Veloso, 2000) is a hierarchical multi-agent paradigm

which takes a sequential approach to multi-agent training. It aims to address prob-

lems where learning a direct mapping from inputs to outputs is intractable, and so

involves an overall task being broken down into layers of subtasks. This learning is

bottom up, with simplest tasks being learned first and then used as components for

learning in the next subtask layer. A learned subtask could contribute to learning in

the next layer by constructing a set of training examples, providing input features

to the next layer or pruning the output set. For example, in the simulated robotic

soccer domain, agents were first trained to intercept the ball. With this skill having

been acquired, they then learned to evaluate whether to pass the ball whilst training

against other agents with the learned interception skills. In a final stage the robots

learned pass selection, using as input their previously learned ability to evaluate

passes. Pass evaluation was further used to prune the action space for pass selec-

tion. In this way, layered learning achieved much better performance than could be

achieved by end-to-end training on simulated robotic soccer. However, the approach

in general requires a system designer to specify this task decomposition, which may

place unrealistic demands on domain knowledge.

2.2.5.2 Principal-agent problems

Our approach to multi-agent learning involves a manager agent that assign goals to

worker agents. In economics, a related problem is known as the ‘principal-agent

problem’ (Jensen and Meckling, 1976) which involves an entity, called the ‘princi-

pal’, which hires another entity, called the ‘agent’, to perform a task on its behalf.

The agent, however, does not have the same objective function as the principal and

also has access to different information, such that the principal cannot directly en-

sure that the agent is acting in its best interest.

Three types of information problems commonly arise; moral hazard, adverse

selection and non-verifiability (Laffont and Martimort, 2009). Moral hazard may

2.2. Hierarchical RL 63

occur when the agent takes actions which affect performance but which cannot be

easily verified by the principal. Adverse selection can arise when the agent has

access to private information relevant to the task which is hidden from the principal.

Non-verifiability can occur if there is a disagreement between principal and agent

about the state of the world which cannot be easily or cheaply resolved by a third

party.

In our work, we introduce manager-worker hierarchies analogous to principal-

agent models and so a variety of issues which can arise from this setting, including

those involving many agents (Sappington, 1991; Laffont and Martimort, 2009), are

relevant. However, as we will see, one advantage of multi-agent RL systems is the

possibility to ‘program in’ incentives to encourage cooperative behaviours. Such

manipulation is of course not possible for systems comprised of non-programmable

entities, such as humans.

Chapter 3

Feudal multi-agent hierarchies

Many of the results of this chapter were presented in:

Workshop on Structure & Priors for Reinforcement Learning at ICLR 2019

(Ahilan and Dayan, 2019)

3.1 Introduction
We have reviewed two general approaches for addressing multi-agent problems:

the decentralised approach can be applied more generally, but may struggle to deal

with non-stationarity, whereas the centralised approach addresses this issue but re-

lies on training in simulation and can be difficult to scale. In this chapter, we hope

to address the challenges of scalability, non-stationarity and coordination we have

described by introducing our new framework of FMH and combining it with decen-

tralised learning.

FMH combines ideas from multi-agent and hierarchical RL, and draws inspi-

ration from real-life managerial hierarchies. In such structures, responsibilities are

often divided across members of the team, who agree to be assigned different objec-

tives for the benefit of the collective. For example, members of a company typically

have different roles and responsibilities. They will likely report to managers who

define their objectives, and they may in turn be able to set objectives to more junior

members. At the highest level, the CEO is responsible for the company’s overall

performance.

In FMH we likewise organise many, simultaneously acting agents into a man-

3.1. Introduction 65

agerial hierarchy. Instead of each agent optimising a shared reward, we only expose

the highest-level manager to this ‘task’ reward. The manager must therefore learn

to optimise this by communicating subgoals, which define a reward function, to the

worker agents under its control. Workers learn to satisfy these subgoals by taking

actions in the world and/or by setting their own subgoals for workers immediately

below them in the hierarchy.

We envisage a benefit from FMH arising from transforming a shared reward

problem into one where agents have different goals and can thus more easily assign

credit towards their achievement of those goals. If useful behaviours can be learned,

a manager agent can then coordinate agents under its control to achieve the overall

goal. This has the potential to address the issue of non-stationarity as managerial

reward renders the behaviour of workers more predictable.

The diversity of rewards experienced by agents can provide a rich learning

signal, but necessarily implies that interactions between agents will not in general

be fully cooperative. Nevertheless, through managerial incentives and appropriate

managerial behaviour, we hope for agents to achieve collective behaviours which

are apparently cooperative, from the perspective of an outside observer viewing

performance on the task objective.

Our work builds on FRL and feudal networks, but differs in its inclusion of

many agents which act simultaneously. This multipli city enables tasks not only to

be divided across time but also across worker agents. Whilst such a division could

in theory be applied to single-agent systems, such as the many arms of an octupus,

we embrace the explicit multi-agent setting in which observations are not in general

shared and communication between agents may be limited.

3.1.1 Hierarchies

We start by defining the types of hierarchical structures allowable in FMH. A critical

consideration is ensuring that potentially disastrous feedback cycles for the reward

are not possible. This may be achieved by enforcing a directed acyclic graph (DAG)

structure. A DAG is a graph in which each edge has an orientation from one vertex

to another and for which there are no cycles along any of the defined paths.

3.1. Introduction 66

We find structures involving only a single manager to be applicable to a range

of interesting problems. Whilst we do not investigate automated methods for assign-

ing a particular agent as manager, we note that appropriate assignment of agents to

positions in a hierarchy should depend on the varied observation and action capa-

bilities of the agents. Agents exposed to key information associated with global

task performance are likely to be suited to the role of manager, whereas agents with

more narrow information, but which can act to achieve subgoals are more naturally

suited to being workers.

3.1.2 Communication as goals

We outlined an explicit approach to multi-agent communication in Section 2.1.2.2.

This divided the action space of agent i into disjoint environment actions Ae
i and

communication actions Am
i , such that Ae

i ∪Am
i = Ai and Ae

i ∩Am
i = /0. Commu-

nication actions did not impact the environmental dynamics or rewards but were

directly observed by other agents. In FMH, we also use explicit communication but

now allow this communication to alter rewards1.

The idea of a manager rewarding worker agent(s) spans a wide array of possi-

ble approaches. A particularly simple approach would be to allow the manager to

directly specify the reward received by workers. In this ‘direct reward’ approach we

might hope that the manager would learn to reward workers when they act in a way

useful towards solving the overall task, reinforcing those behaviours in the worker.

However, such a free form approach may be difficult to learn; the manager cannot

be expected to initially reward the worker in a consistent or useful way and so it

may be difficult for the worker to ever learn to reach useful states.

Instead we consider an alternative approach, more similar to methods in hi-

erarchical reinforcement learning, which involves managers specifying goals rather

than rewards. The goal is communicated to the worker and defines a reward function

for the worker in a fixed way. This approach has the major benefit of making the

problem of achieving reward less non-stationary from the perspective of the worker

as its rewards are now grounded in its own state space rather than being subject to

1the framework of course also allows for ordinary communication which does not alter rewards.

3.1. Introduction 67

the whims of a managerial administrator. This does however require the designer of

the system to specify a mechanism for goal-setting.

Two general approaches can be useful for formalising goal-setting in FMH.

In a centralised ‘environmental’ formalism the reward for agent i, defined as

ri : S ×A1× . . .×An×S → R, depends on the true state of the environment, the

environmental actions of all other agents and the communicated goals of the agent’s

manager. However, for systems deployed in the real world, agents may not have ac-

cess to the true environmental state or other agents’ actions. We therefore consider

a ‘worker-computed’ formalism where each worker agent computes its own reward

locally ri :Oi×Gi×Ai×Oi→ R, where Oi corresponds to the set of all non-goal

based local observations, and Gi corresponds to the set of all possible locally ob-

served goals gi
2. We illustrate this ‘worker-computed’ interpretation in Fig. 3.1.

3.1.3 Communication as control

Specifying a particular agent as manager to control other agents bears an interesting

relationship to an approach to cooperative RL mentioned in Section 2.1.2.2, which

uses communication to sidestep some of the difficult challenges of multi-agent RL.

The idea is that if communication is instantaneous and unrestricted, then each of

N agents can communicate their observations to a special agent, and this agent

can then communicate back the desired action to each of them. Training with this

mechanism is equivalent to single-agent RL, enabling multi-agent issues of non-

stationarity and coordination to be addressed. This in turn supports convergence

guarantees for decentralised multi-agent training of communicating agents.

Connecting this idea to FMH, we can denote the special agent as a ‘manager’,

responsible for control of other agents in the multi-agent system3. However, in real

multi-agent systems, communication is not instantaneous and unrestricted, moti-

vating managerial control which is temporally extended and not reliant on micro-

management. As we will see, the use of longer-term, reward based goals which

2in our implementation communication actions are received on the next time step, so the worker’s
observed goal in fact corresponds to the manager’s selected goal at the previous time step

3in this chapter we address problems in which the manager already receives relevant observations
and so does not rely on workers to communicate them

3.1. Introduction 68

Manager

Worker 1 Worker 2

Environment

Figure 3.1: The structure of FMH. An example of a worker-computed Feudal Multi-
agent Hierarchy with one manager agent and two worker agents. Worker re-
wards are goal-dependent and computed locally, the manager’s reward is pro-
vided by the environment.

indirectly control agents, as in hierarchical RL, can be effective, with the resulting

temporal abstraction providing additional benefits for scaling to larger numbers of

decentralised agents.

3.1.4 Coordination

We can illustrate the ability of a feudal approach to coordinate by considering coor-

dination games, popular in microeconomics, in which there are multiple good and

bad Nash equilibria, and it is necessary to find the former. It is intuitively obvi-

ous that appointing one of the agents as a manager might resolve the symmetries

inherent in a cooperative coordination game in which agents need to take different

actions to receive reward.

We consider a game which has two pure strategy Nash equilibria and one mixed

3.1. Introduction 69

Figure 3.2: Feudal rewards can be used to achieve coordination. (A) A coordination
game. (B) The manager (Player X) communicates goal gA to the worker (Player
Y) such that the worker is only rewarded for taking action A. (C) The reduced
matrix game allows both agents to coordinate to the Pareto-optimal Nash equi-
librium (B,A).

strategy Nash equilibrium which is Pareto dominated by the pure strategies (Figure

3.2A). The challenge of this game is for both agents to choose a single Pareto opti-

mal Nash equilibrium, either (A,B) or (B,A).

For a matrix game, we define the feudal approach as allowing Player X , the

manager, to specify the reward player Y will receive for its actions. This is a simpli-

fication when compared to the more general setting of a Markov game in which the

feudal manager can reward not only actions but also achievement of certain states.

In order to specify the reward, we assume that Player X communicates a goal, either

gA or gB, prior to both players taking their actions. If Player X sends gA it means

that action A is now rewarded for Player Y and action B is not4. Player X’s rewards

are unchanged, and so together this induces the matrix game shown in Figure 3.2B.

Action A for player Y is now strictly dominant and so a rational Player Y will

always choose it. By elimination of strictly dominated strategies we therefore find

the reduced matrix game of Figure 3.2C.

And so a rational Player X will always choose B, resulting in an overall strat-

egy of (B,A) conditioned on an initial communication of gA. By symmetry, we

can see that conditioned on gB, rational players X and Y will play (A,B). The feu-

dal approach therefore allows the manager to flexibly coordinate the pair of agents

to either Nash equilibrium. For games involving N players, coordination can be

achieved by the manager sending out N-1 goals.

4we assume the manager can reward the worker even in the case where it itself does not receive
reward; there is no conservation of reward.

3.2. Methods 70

3.2 Methods
We propose FMH, a framework for multi-agent RL which addresses the three major

issues outlined in the introduction: non-stationarity, scalability and coordination.

3.2.1 Discrete actions with Gumbel-Softmax and DDPG

As a framework, FMH can work with many different RL algorithms. For our ex-

periments, we choose to apply it with the single-agent algorithm DDPG, trained

in a fully decentralised fashion. We utilise the Gumbel Softmax estimator (Section

1.3.4) for discrete communication actions. Our approach is identical to that of Lowe

et al. (2017) who found that DDPG with Gumbel-Softmax (perhaps surprisingly)

performed more strongly than other decentralised single-agent RL algorithms such

as DQN (Mnih et al., 2015) and Trust-Region Policy Optimisation (Schulman et al.,

2015). As we do not experiment with combining FMH with any other algorithms in

this chapter, we frequently refer to FMH-DDPG simply as FMH. We provide fur-

ther details on varieties of algorithms, including those introduced in later chapters,

in Section A.2.4.

3.2.2 Goal-setting

In FMH, managers communicate a special kind of message to workers that defines

the workers’ reward functions according to a specified mapping. As we do not

wish the manager to micromanage all aspects of worker behaviour for temporally-

extended problems, we explore a scheme in which a manager is able to select be-

tween discrete targets which define distance based reward functions. For example,

if there are three objects in a room, we might allow the manager to select from

three different messages, each defining a worker reward function proportional to

the negative distance from a corresponding object. In this context and task, mes-

sages therefore correspond to ‘goals’ requiring approach to different objects. The

manager must learn to communicate these goals judiciously in order to solve com-

plex tasks. In turn, the workers must learn how to act in the light of the resulting

managerial reward, in addition to immediate rewards (or costs) they might also ex-

perience.

3.2. Methods 71

Our approach to defining rewards generally uses the ‘worker-computed’ per-

spective in which workers are able to compute rewards locally based on their im-

mediate observations. Our choice of reward scheme imposes structure on the goal

space making it amenable to discrete goals.

3.2.3 Pretraining and temporally-extended subgoals

We next consider the issue of non-stationarity. This frequently arises in multi-agent

RL because the policies of other agents may change in unpredictable ways as they

learn. For a Listener agent, this introduces non-stationarity in the relationship be-

tween the messages it receives and the reward it obtains. By contrast, in FMH we

allow manager agents to determine the reward functions of workers, compelling

the workers towards more predictable behaviour from the perspective of the man-

ager. However, the same issue applies at the starting point of learning for workers:

they will not yet have learned how to satisfy the goals. We would therefore expect

a manager to underestimate the value of the subgoals it selects early in training,

potentially leading it sub-optimally to discard subgoals which are harder for the

worker to learn.

Thus, it would be beneficial for worker agents already to have learned to fulfill

managerial subgoals. We address this issue practically in two steps. First, we in-

troduce a bottom-up ‘pretraining’ procedure, in which we initially train the workers

before training the manager. Although the manager is not trained during this period,

it still acts in the multi-agent environment and sets subgoals for the worker agents.

As subgoals are initially of (approximately) equal value, the manager will explore

them uniformly. If the set of possible subgoals is sufficiently compact, this will

enable workers to gain experience of each potential subgoal.

This pretraining does not completely solve the non-stationarity problem. This

is because the untrained manager will, with high probability, vacillate between sub-

goals, preventing the workers under its command from having any reasonable hope

of extracting reward. Ideally, we would want worker agents to optimise managerial

goals over the longer term, but if the manager continually changes its mind such

that the current task has a high probability of terminating soon, this disincentivises

3.3. Experimental results 72

the worker from doing so. One interpretation of vacillation is therefore that it effec-

tively decreases the worker’s γ parameter such that it only concerns itself with the

immediate reward.

To alleviate this problem, we therefore want managers not only to try out a

variety of subgoals but also to commit to them long enough that they have any hope

of being at least partially achieved. Thus, the second component of the solution is a

communication-repeat heuristic for the manager such that goal-setting is temporally

extended. Action repeats are commonly used in Atari environments (Mnih et al.,

2015; Vezhnevets et al., 2017) but we do not do this for regular actions in the MPE,

restricting repeats only to communication; we demonstrate the effectiveness of this

in our experiments.

3.2.4 Parameter sharing

We apply our method to scenarios in which a large number of agents have iden-

tical properties. For convenience, when training using a decentralised algorithm

(FMH-DDPG or vanilla DDPG) we implement parameter sharing among identical

agents, in order to train them efficiently. We only add experience from a single

agent (among those sharing parameters) into the shared replay buffer, and carry out

a single set of updates. We find this gives very similar results to training without

parameter sharing, in which each agent is updated using its own experiences stored

in its own replay buffer (see Appendix A.1.2), but requires fewer samples.

3.3 Experimental results
We used the multi-agent particle environment (MPE) described in the introduction

to Part I. We train RL agents which have both an actor and a critic, each correspond-

ing to a feedforward neural network. We give a detailed summary of all hyperpa-

rameters used in Appendix A.1.1.

3.3.1 Cooperative communication

We first experiment with an environment implemented in Lowe et al. (2017)

called ‘Cooperative Communication’ (Figure 3.3), involving a Speaker and Lis-

tener, which we described in the introduction to Part I. In the original problem the

3.3. Experimental results 73

Figure 3.3: Cooperative Communication. The Speaker (grey circle) sees the colour of
the Listener’s target, which indicates that the green square is the target on this
episode. It communicates a message to the listener at every time step. For
illustration we colour the Listener according to the colour of its target (although
it cannot see this colour). Here there are 12 landmarks and the agent trained
using FMH has successfully navigated to the correct landmark.

Listener must navigate to a randomly selected landmark and is rewarded propor-

tional to the negative square distance from the target landmark. By convention we

instead use the negative distance for all experiments, as we found this performed

better for all algorithms. We also note that, although reward is provided during the

episode, it is used only for training agents and not as an observation that could be

used for servoing.

Although this task might seem simple, it is actually challenging for many

RL methods. Lowe et al. (2017) trained, in a decentralised fashion, a variety of

single-agent algorithms, including DDPG, DQN and trust-region policy optimisa-

tion Schulman et al. (2015) on a version of this problem with three landmarks and

demonstrated that they all perform poorly on this task. Of these methods, DDPG

reached the highest level of performance and so we use DDPG as the strongest com-

monly used baseline for the decentralised approach. We also compare our results

3.3. Experimental results 74

Figure 3.4: Training on Cooperative Communication. FMH substantially outperforms
MADDPG and DDPG in a task with 12 possible landmarks. The dashed green
line indicates the end of pretraining for FMH.

to MADDPG, which combines DDPG with centralised training. MADDPG was

found to perform strongly on Cooperative Communication with three landmarks,

far exceeding the performance of DDPG.

For FMH, we also utilised DDPG, but reverted to the more generalizable de-

centralized training that was previously ineffective5. Crucially, we assigned the

speaker the role of manager and the listener the role of worker. The speaker can

therefore communicate messages which correspond to the subgoals of the different

coloured landmarks. The listener is not therefore rewarded for going to the cor-

rect target but is instead rewarded proportional to the negative distance from the

speaker-assigned target. The speaker itself is rewarded according to the original

problem definition, the negative distance of the listener from the true target.

We investigated in detail a version of Cooperative Communication with 12

possible landmarks (Figure 3.3). FMH performed significantly better than both

MADDPG and DDPG (Figure 3.4) over a training period of 100 epochs (each epoch

corresponds to 1000 episodes). For FMH, we pretrained the worker for 10 epochs

and enforced extended communication over 8 time steps (each episode is 25 time

steps).

5we consider a centralised approach to FMH in the next chapter

3.3. Experimental results 75

Figure 3.5: Analysing Cooperative Communication. FMH worker reward and the prob-
ability of the manager correctly assigning the correct target to the worker. The
manager learns to assign the target correctly with probability 1.

In Figure 3.5, the left axis shows the reward received by the FMH worker (lis-

tener) over training. This increased during pretraining and again immediately after

pretraining concludes. Managerial learning after pretraining resulted in decreased

entropy of communication over the duration of an episode (Figure 3.6), which is

desired due to the fixed nature of the target. This decrease occured from a relatively

low entropy starting point due to our communication repeat heuristic for FMH.

The further reduction in entropy after pretraining allowed the worker to opti-

mise the managerial objective more effectively. This in turn enabled the manager to

assign goals correctly, with the rise in the probability of correct assignment occur-

ring shortly thereafter (Figure 3.5; right axis), then reaching perfection.

Our results show how FMH resolves the issue of non-stationarity. Initially,

workers are able to achieve reward by learning to optimise managerial objectives,

even whilst the manager itself is not competent. This learning elicits robust be-

haviour from the worker, conditioned on managerial communication, which makes

workers more predictable from the perspective of the manager. This then enables

the manager to achieve competency – learning to assign goals so as to solve the

overall task.

Our implementation of FMH used both pretraining and extended goal-setting

3.3. Experimental results 76

Figure 3.6: Entropy (base 2) of managerial communication. Entropy over the duration
of an episode at different stages in training.

with a communication repeat heuristic. Pretraining the worker improved perfor-

mance on this task (Figure 3.7, with extended communication (goal-setting) for

8 time steps), although even without pretraining FMH still performed better than

MADDPG and DDPG.

Figure 3.7: Pretraining in FMH. Pretraining, although not essential, supports faster learn-
ing

The introduction of extended communication is a more critical addition than

3.3. Experimental results 77

Number of Final Reward Epochs until Convergence
Listeners Landmarks FMH MADDPG DDPG CoM FMH MADDPG DDPG

1 3 −6.63±0.05 −6.58±0.03 −14.26±0.07 −17.28 56 24 55
1 6 −6.91±0.07 −6.69±0.06 −18.10±0.07 −18.95 57 66 42
1 12 −7.79±0.06 −15.96±0.09 −19.32±0.11 −19.56 − − 36
3 6 −7.10±0.04 −11.13±0.03 −18.90±0.05 −18.95 77 − 50
5 6 −7.17±0.03 −18.47±0.04 −19.73±0.06 −18.95 79 75 53
10 6 −8.96±0.03 −19.80±0.06 −21.19±0.03 −18.95 − 59 32

Table 3.1: Cooperative Communication with varying conditions. Performance of FMH,
MADDPG and DDPG with different numbers of Listeners and landmarks. Final
reward is determined by training for 100 epochs and evaluating the mean reward
per episode in the final epoch. We indicate no convergence with a − symbol.
For further details see Suppl. Mat. A.1.3.

pretraining. In Figure 3.8 we show the performance of FMH with goal-setting over

various number of time steps (and fixed pretraining period of 10 epochs). When

there was no communication repeat (Comm 1), performance was similar to MAD-

DPG, but introducing even a single repeat greatly improved performance. By con-

trast, introducing communication repeats to MADDPG, which does not treat com-

munication as goals, did not improve performance (Figure 3.9).

Figure 3.8: Extended communication in FMH. Extended communication and thus goal-
setting improves performance for FMH.

3.3. Experimental results 78

Figure 3.9: Extended communication in MADDPG. Extended communication does not
significantly improve the performance of MADDPG.

3.3.2 Scaling to many agents

We next scaled Cooperative Communication to include many listener agents. At

the beginning of an episode each listener is randomly assigned a target out of all

the possible landmarks and the colour of each listener’s target is observed by the

speaker. The speaker communicates a single message to each listener at every time

step. To allow for easy comparison with versions of Cooperative Communication

with only one listener, we normalised the reward by the number of listeners. As dis-

cussed in the methods, we shared parameters across listeners for FMH and DDPG.

In Table 3.1 we show the performance of FMH, MADDPG and DDPG for vari-

ants of Cooperative Communication with different numbers of listener agents and

landmarks. Consider the version with 6 landmarks, which we found that MADDPG

could solve with a single listener within 100 epochs (unlike for 12 landmarks). On

increasing the number of listeners up to a maximum of 10, we found that FMH

scales much better than MADDPG; FMH was able to learn an effective policy with

5 listener agents whereas MADDPG could not. Further, FMH even scaled to 10

listeners, although it did not converge over the 100 epochs.

To aid interpretation of the reward values in Table 3.1 we also compare per-

3.3. Experimental results 79

formance to a policy which simply moves to the centroid of the landmarks. This

‘Centre of Mass’ (CoM) agent was trained using MADDPG until convergence on a

synthetic task in which reaching the centroid is maximally rewarded, and then eval-

uated on the true version of the task. We find that both MADDPG and DDPG do

not perform better than the CoM agent when there are 10 listeners and 6 landmarks.

In Figure 3.10 we show the final state achieved on example episodes of this

version of the task, for agents trained using MADDPG and FMH. After training for

100 epochs, MADDPG listeners do not find the correct targets by the end of the

episode whereas FMH listeners manage to do so.

3.3.3 Cooperative coordination

We then designed a task to test coordination called ‘Cooperative Coordination’ (Fig-

ure 3.11). In this task, there are 6 landmarks. At the beginning of each episode, three

landmarks are randomly selected to be green targets and 3 blue decoys. A team of

3 agents must navigate to cover the green targets whilst ignoring the blue decoys,

but they are unable to see the colours of the landmarks. A fourth agent, the speaker,

can see the colours of the landmarks and can send messages to the other agents (but

cannot move). All agents can see each others’ positions and velocities, are large

MADDPG FMH

Figure 3.10: Scaling Cooperative Communication. 10 listeners with 6 landmarks - final
time step on example episodes for MADDPG and FMH. For FMH the Listener
agents navigate to their correct targets whereas for MADDPG they do not.

3.3. Experimental results 80

in size and face penalties if they collide with each other. The task shares aspects

with ‘Cooperative Navigation’ from Lowe et al. (2017) but is considerably more

complex due to the greater number of potential targets and the hidden information.

We apply FMH to this problem, assigning the speaker agent the role of man-

ager. One consideration is whether the manager, the worker, or both should receive

the negative penalties due to worker collisions. Here we focus on the case in which

the manager only concerns itself with the ‘task’ reward function. Penalties asso-

ciated with collisions are therefore experienced only by the workers themselves,

which seek to avoid these whilst still optimising the managerial objective.

In Figure 3.12 we compare the performance of FMH to MADDPG and DDPG.

As with Cooperative Communication, FMH does considerably better than both after

training for 150 epochs. This is further demonstrated when we evaluate the trained

policies over a period of 10 epochs: the left side of Figure 3.13 shows the mean

Figure 3.11: Cooperative Coordination. Three listeners (light grey agents) must move to
cover the green landmarks whilst ignoring the blue landmarks. However, only
the speaker (dark grey agent) can see the landmarks’ colours; it communi-
cates with the listeners at every time step. In this example, FMH agents have
successfully coordinated to cover the three correct targets.

3.3. Experimental results 81

Figure 3.12: Training on Cooperative Coordination. FMH performs significantly better
than MADDPG and DDPG. The dotted green line indicates the end of pre-
training for FMH

Figure 3.13: Evaluating Cooperative Coordination. Left: Agents trained using FMH
cover on average more targets, by the end of the episode, than MADDPG and
DDPG. Right: Agents trained using FMH avoid collisions more effectively
than MADDPG and DDPG over the duration of an episode.

number of targets covered by the final time step of the episode, for which FMH more

than doubles MADDPG. The right side of Figure 3.13 shows the mean number of

collisions (which are negatively rewarded) during an episode. FMH collides very

rarely whereas MADDPG and DDPG collide over 4 times more frequently.

We also implement a version of Cooperative Coordination in which the man-

ager is responsible not only for coordinating its workers but must also navigate to

targets itself. This involved 2 listeners and 1 speaker which together need to cover

3.3. Experimental results 82

the 3 green targets. We find that the manager learns to do this, outperforming both

MADDPG and DDPG (Figure 3.14). Whilst this result is not surprising given our

previous findings, it illustrates the point that in FMH managers are simply agents,

and so may take primitive actions in a multi-agent environment, whereas in the

original feudal RL they do not take primitive actions and are responsible only for

goal-setting.

3.3.4 Exploiting diversity

One role of a manager is to use the diversity it has available in its workers to solve

tasks more effectively. We tested this in a version of Cooperative Coordination in

which one of the listener agents was half the mass of the other two and so could

reach farther targets more quickly.

We trained FMH (without parameter sharing due to worker diversity) on Coop-

erative Coordination and then evaluated the trained policies on a ‘Two-Near, One-

Far’ (TNOF) version of the task in which one target is far away and the remaining

two are close. In this task, the agents start at the bottom of the environment. Two

green targets are located nearby (in bottom 40 percent of screen) whereas one target

is far away (in top 30 percent of screen). The x-coordinates are randomly sampled

Figure 3.14: Mobile Manager. FMH performs well, even when the manager is required to
move to cover targets whilst also setting goals for workers

3.3. Experimental results 83

		 		

Figure 3.15: Two-Near, One-Far task. FMH solves the TNOF task (example episode).
Left: Agents are initialised at the bottom of the environment, two targets are
close by, and one far away. Right: By the end of the episode, the faster (red)
agent covers the farther target on the right, despite starting on the left.

at the beginning of each episode and blue decoys are also added (one nearby, two

far).

Our choice of this evaluation task was to investigate whether the manager,

which was trained on the general problem, had learned the specific strategy of as-

signing the farthest target to the fastest agent. We found this to be true 100 percent

of the time (evaluating over 10 epochs); we illustrate this behaviour in Figure 3.15.

3.3.5 Conclusion

We have introduced our general framework of FMH and applied it in the decen-

tralised case to a range of cooperative multi-agent problems. We found that, given

an adequate set of subgoals from which to choose, our approach performs, and

particularly scales, substantially better than alternative approaches that use shared

rewards. We discuss these results and future work in Chapter 5 but next turn to

centralised training and its combination with FMH.

Chapter 4

Centralised policy actor-critic

4.1 Introduction

The FMH method that we discussed in the previous chapter solves cooperative com-

munication problems in a completely decentralized manner, applying the DDPG

algorithm to each RL agent. This allows it to work in the various situations in

which one agent does not require direct access to the observations of other agents,

a frequent fate for real RL agents whose training happens in the real world.

However, it is also very common in the RL community to start (and sometimes

end) with simulated environments. Not only can this help reduce the potential for

possibly catastrophic errors, such as the collision of a driverless car, but it can also

make learning vastly cheaper and faster. Making learning faster can help com-

pensate for the poor sample efficiency of model-free approaches, allowing them to

achieve unprecedented performance on complex simulated tasks.

Access to a simulator has been exploited in an additional manner in a multi-

agent setting - enabling the centralized training of ultimately decentralized policies

(Section 2.1.3.2). Ultimately, to be deployed, agents need to work within their own

informational limitations; however, during training it is possible to provide them

with extra information, such as the observations and actions of all other agents.

This can enable the convergence of decentralized policies to a local optimum to

be guaranteed under strict conditions (Konda and Tsitsiklis, 2000; Foerster et al.,

2018).

4.1. Introduction 85

In this chapter we explore ideas which exploit the extra observations available

in simulation for centralised training. We begin our exploration by examining how

centralised value functions may be combined with FMH, and consider a hybrid ap-

proach in which the manager is centralised but the workers are decentralised. In

general, we expect each worker to concern itself primarily with the task it has been

assigned, perhaps with a few local interactions, whereas we expect the manager

to have a broader view of the aggregate behaviour of its workers. An interesting

hypothesis is therefore that such a hybrid system would learn more effectively on

multi-agent problems by striking an effective balance between the potential scala-

bility of decentralised approaches and the ability of centralised training to alleviate

non-stationarities in each agents perceived environment.

We next consider extending centralisation beyond critics to also include poli-

cies, and introduce a Centralised Policy Actor-Critic (CPAC), an actor-critic with

both a centralised policy and a centralised critic. We define a centralised policy

as one which conditions its actions on the observations of all agents, unlike a de-

centralised policy which only receives the agent’s immediate observations. For the

fully-cooperative case, we introduce a Single-agent CPAC, responsible for learn-

ing to control the joint actions of all agents in the multi-agent system. As it does

not need to learn to communicate between agents, we find that it can solve tasks

in which information is distributed across agents, which ordinary multi-agent meth-

ods find difficult. As we still desire decentralised multi-agent policies, we then train

these in a second phase, using the CPAC’s critic to guide learning by introducing an

alteration to the conventional multi-agent policy gradient.

We can also apply this general idea to FMH. For instance, consider the case

in which workers must be assigned to gather information on behalf of the manager

and must learn to communicate this. This is problematic for our worker-computed

formulation of FMH because the feudal reward structure provides no incentive for

workers to communicate relevant state information to the manager. This is because

the workers’ rewards are grounded entirely in their observation space. Whilst ap-

proaches which mix managerial and worker reward may be effective (Vezhnevets

4.1. Introduction 86

et al., 2017), it is perhaps unclear how a manager would learn to assign workers

information-gathering tasks if this relies on workers also communicating this infor-

mation in a useful way.

As with the single-agent CPAC, we can introduce a problem decomposition

and two phases of training to address the problem of learning. Our two phases are

are motivated by the Communication as Control algorithm (Section 3.1.3) in which-

workers communicate their observations to the manager, and then the manager uses

the aggregated information to control the workers. We tackle this in reverse by first

training our hierarchy whilst (by exploiting centralization) providing the manager

with the observations of its workers, enabling it to learn to assign goals correctly.

We then train the multi-agent system to recover this behaviour when these observa-

tions are no longer directly available to the manager and so the relevant information

must be communicated by the workers. We assume a bottleneck in communication

such that workers observations cannot simply be relayed.

Our first phase uses a CPAC for the manager, such that it can see the state of its

workers. Unlike the cooperative case, the feudal CPAC controls only the manager’s

actions, with workers themselves using ordinary MACs. By providing the manager

with the CPAC, we allow it to directly set goals for workers using their observa-

tions without relying on them communicating the relevant aspects. However, as a

centralised policy for the manager requires information that is not available outside

simulation, a second phase of training is required. In this phase we incentivise the

manager and workers to recapitulate their behaviours from the previous phase, but

with the workers additionally learning to communicate the relevant information to

the manager, which now learns a decentralised policy. To achieve this we train using

the cooperative task objective, but use the critics trained in the first stage to guide

learning of the new policy. We use a modified multi-agent policy gradient, similar

to the one used for the single-agent CPAC. We find that our two phases finesse the

complexities of training in FMH, enabling workers to obey the commands of the

manager whilst also communicating effectively.

4.2. Methods 87

4.2 Methods

4.2.1 Feudal MADDPG

FMH can be applied to centralised as well as decentralised methods. To explore the

effectiveness of centralisation we begin by combining it with MADDPG, using a

differing implementation from that of Lowe et al. (2017) introduced by Iqbal and

Sha (2019). We detail these differences in the Appendix A.1.5. Our initial experi-

ments with MADDPG find it effective at learning even without extended communi-

cation and pretraining (Appendix A.1.4), and so for simplicity we no longer enforce

these. As before we also utilise parameter sharing when possible amongst worker

agents, which greatly reduces training time.

Feudal MADDPG provides each agent with a centralised value function, but it

is plausible that not all agents would benefit from this. In our first experiment we

test a hybrid approach in which the manager has a centralised value function but the

workers do not. The manager is therefore a MADDPG agent whereas the workers

are DDPG agents.

4.2.2 Single-agent CPAC

We can train a CPAC to optimise the task objective by outputting the actions of

all agents (Figure 4.1). This is is equivalent to direct application of single agent

RL with a centralised controller to the MARL problem. Single-agent learning may

be more effective at solving these problems than equivalent multi-agent approaches

because coordination between agents may be easier and communication between

agents need not be learned.

We denote policies trained in the first stage as π and policies trained in the

second stage as µ . In Phase I of training, the Single-agent CPAC is treated as a

DDPG agent (Section 1.2.7) with determinstic policy π(ooo;θ), but in general policies

may be either deterministic or stochastic. The policy and critic receive as input the

observation of all agents ooo, and the critic additionally receives the actions of all

agents aaa. The policy gradient is therefore:

4.2. Methods 88

Figure 4.1: Single-agent Centralised Policy Actor-Critic. A single-agent CPAC (left) can
be used to train a MAC (right). The CPAC policy π takes in the observations
of all agents and outputs the actions for all agents (without communication
actions). Its critic receives the observations and actions of all agents. The
MAC policy is updated using a convex combination of the value of its own
centralised critic and the CPAC critic, with a weighting of βi which can depend
on the agent.

∇θ J(θ) = Eooo∼D,aaa∼πππ [∇θ π(ooo)∇aQπππ(ooo,aaa)|a=π(ooo)]. (4.1)

As communication is irrelevant in this phase, we remove communication ac-

tions, which sets the corresponding communication observations uniformly to zero.

In Phase II we use the learned single-agent critic to update the multi-agent MAD-

DPG policies by introducing a new policy gradient objective:

∇φiJ(φi) =Eooo∼D,aaa∼µµµ [∇φi µi(oi)∇ai(βiQπππ(ooo,aaa)+(1−βi)Q
µµµ

i (ooo,aaa))|ai=µi(oi)] (4.2)

for each agent. Here βi is a parameter between 0 and 1 and φi are the param-

eters of the i’th decentralised actor µi. We set the communication observations to

4.2. Methods 89

zero before inputting them to Qπππ to ensure consistency with the previous stage. We

do not further train Qπππ , which we have learned in Phase I, but do train Qµµµ

i (approx-

imated by Qv
i) according to:

L(vi) = Eooo,ooo′′′∼D,aaa,aaa′′′∼µµµ [(Q
v
i (ooo,aaa)− y)2] (4.3)

where the target y = r+ γQv
i (ooo
′′′,aaa′′′) uses the shared task reward.

The parameters βi for the multi-agent policy gradient are interesting to exam-

ine. In the special case where βi are all zero we recover the conventional multi-agent

policy gradient, which does not take guidance from the first stage, including the

managerial CPAC, at all. This is therefore equivalent to simply training MADDPG

on the task reward. In the case where all βi = 1 each decentralised policy µi is sim-

ply concerned with optimising the single-agent critic from the first stage Qπ . When

βi are between zero and one each agent seeks to optimise a mixture of both. As

we would like agents to both learn to mimic single-agent behaviours learned in the

first stage and additionally learn communication, we choose a balance of these two

incentives, keeping βi fixed at 0.5 for all agents. If we were particularly concerned

about the ability of our approach to converge to a local optimum, we could also try

an annealing approach where beta is gradually decayed from 1 to 0 for each agent.

This recovers the convergence guarantees of conventional MAC training, whilst po-

tentially finding better local optima. However, we do not find this necessary for our

experiment to succeed.

4.2.3 Feudal CPAC

We wish to train FMH on problems in which the manager does not have direct ac-

cess to the information it needs for correct target assignment but for which workers

can acquire such information. We use MADDPG as an example, but our approach

is general for any multi-agent actor-critic (MAC) which allows for each agent to

have a separate critic.

For convenience we label the manager as agent 0 of n agents, with the rest

being workers. In Phase I of training, the manager’s CPAC is trained with conven-

4.2. Methods 90

tional MADDPG updates, but with deterministic policy π0(ooo;θ0) conditioned on

the observations of all agents:

∇θ0J(θ0) = Eooo∼D,aaa∼πππ [∇θ0π0(ooo)∇a0Qπππ
0 (ooo,aaa)|a0=π0(ooo)]. (4.4)

In addition to training the manager we also train workers using the policy gradi-

ent, but with decentralised policies and centralised critics, as in conventional MAD-

DPG. The centralised critics for each agent Qπππ
i (approximated by Qw

i), including

the manager, minimise the objective:

L(wi) = Eooo,ooo′′′∼D,aaa,aaa′′′∼πππ [(Q
w
i (ooo,aaa)− y)2] (4.5)

where y = rF
i +γQw

i (ooo
′′′,aaa′′′). Here rF

i corresponds to FMH rewards, with work-

ers receiving feudal rewards and the manager receiving the task reward rF
0 = r.

Having trained our critics for each agent in Phase I, we wish to use them to

guide learning of a MAC with decentralised policies µµµ for each agent in Phase II.

Similar to Equation 4.2 we use the following policy gradient objective:

∇φiJ(φi) =Eooo∼D,aaa∼µµµ [∇φi µi(oi)∇ai(βiQπππ
i (ooo,aaa)+(1−βi)Q

µµµ

i (ooo,aaa))|ai=µi(oi)] (4.6)

for each agent. Here βi is a parameter between 0 and 1 and φi are the parameters

of the i’th decentralised actor µi.

We do not further train Qπππ
i , which we have learned in Phase I, but do train Qµµµ

i

(approximated by Qv
i) according to:

L(vi) = Eooo,ooo′′′∼D,aaa,aaa′′′∼µµµ [(Q
v
i (ooo,aaa)− y)2] (4.7)

where the target y = r+ γQv
i (ooo
′′′,aaa′′′) uses the shared task reward.

As before, the βi parameters are interesting to examine. As we have described

in the introduction, in the feudal case the critics from the first stage encode a piece

of the solution to the entire problem – those aspects of the problem which do not

4.3. Results 91

involve communication from worker to manager. This enables workers to quickly

learn to follow the managerial commands learned in the first stage and for the man-

ager to assign commands which do not rely on workers observations (such as infor-

mation gathering commands). For commands which previously relied on access to

workers’ state, the managerial control will be inaccurate at first. However, as work-

ers also optimise the overall task reward they are incentivised to communicate in

such a way that they are assigned goals correctly by the manager. For the workers

we set an intermediate value of βi = 0.5. However, as we expect the managerial

actions from the first stage to be (close to) ideal, given its access to the observations

of all workers, we set βM = 1.

4.3 Results

We conduct experiments in the MPE using the same hyperparameter settings as

in Chapter 3, except a smaller network size for the feedforward networks for both

policy and value functions (Appendix A.1.1). We show results first for the feudal

case, and conclude with results for the Single-agent CPAC.

Figure 4.2: Feudal MADDPG for Cooperative Communication. We find that FMH
MADDPG outperforms FMH DDPG on this problem (n=5). FMH MADDPG-
DDPG appears to learn faster initially but does not reach the same asymptotic
performance as FMH MADDPG.

4.3. Results 92

Figure 4.3: Search and Cooperative Communication. On this episode the target is the
green Landmark and the green Listener must navigate towards it. The purple
agent is the Speaker, which communicates with the other two agents. The grey
agent is the Information Gatherer, which communicates with the Speaker. The
communication space is more complex than illustrated (see Appendix A.2.3),
here we overlay discrete communication messages. Left: The Speaker assigns
the Information Gatherer to the black landmark. Middle: The Information
Gatherer reaches the black landmark, observes the green colour of the Listener
and communicates a message. Right: The Speaker uses this information to
send the Listener to the correct green target (whilst keeping the Information
Gatherer at the black landmark).

4.3.1 Feudal MADDPG

We test a version of FMH with MADDPG for each agent, as well as a mixed ver-

sion with MADDPG for the manager and the remaining agents using DDPG which

we refer to as FMH MADDPG-DDPG. Our task is Cooperative Communication

with 6 landmarks and 5 Listeners, which had been solved by FMH DDPG with

pretraining and extended communication in the previous chapter. Figure 4.2 sum-

marises our new results; whilst FMH DDPG fails to perform well without pretrain-

ing or extended communication, FMH MADDPG is able to learn effectively. FMH

MADDPG-DDPG appears to learn faster initially than FMH-MADDPG, but does

not reach the same asymptotic performance. It does substantially outperform FMH-

DDPG however.

4.3.2 Feudal CPAC

We wish to apply Feudal CPAC to a task in which the manager must assign a worker

to gather information on its behalf and then uses the communicated information to

assign another worker the correct task. To do this, we extend the ‘Cooperative Com-

munication’ problem outlined in the introduction to Part I. Our new problem, called

4.3. Results 93

‘Search and Cooperative Communication’ (Figure 4.3), also has red, blue and green

landmarks, one of which is randomly selected as the target for one Listener agent at

the beginning of each episode. An immobile Speaker communicates to the Listener,

but now cannot see the target landmark colour, instead it receives communication

from another agent called the ‘Information Gatherer’. The Information Gatherer

does not see the target colour either, however, there is a black landmark in the envi-

ronment which will provide it with this information if it is sufficiently close to it (the

large green penumbra). Solving Search and Cooperative Communication therefore

requires the Information Gatherer to move to the black landmark, communicate its

findings to the Speaker such that it can guide the Listener to the correct target. The

overall task reward at each timestep is equal to the negative distance of the Listener

from the correct target.

For FMH, we assign the Speaker the role of manager, and it therefore commu-

nicates goals to both agents simultaneously, selecting from the four possible land-

marks for each. The results of our experiment can be seen in Figure 4.4. Training

conventional MADDPG on this problem results in very slow learning, and per-

formance of FMH-MADDPG does even worse, because there is no incentive for

Figure 4.4: FMH CPAC on Search and Cooperative Communication. Phase I FMH
CPAC training followed by Phase II elicits much better performance than alter-
natives (n=10).

4.3. Results 94

Figure 4.5: Single-agent CPAC on Search and Cooperative Communication v2. MAD-
DPG struggles to perform well on this task whereas our two-phase approach
greatly improves performance (n=5)

the information gathering worker to communicate this to the manager. By allowing

workers to receive an even mix of managerial and feudal reward, we find that perfor-

mance of FMH can be improved, however, it is still far from effective. By contast,

when we train the CPAC with FMH in Phase I we find that it rapidly learns to solve

this task, as the manager can immediately see the gathered information. In Phase II

of training, we took each model from the first phase and used it to advise training

of a new model (matching each with a different random seed). We found that Phase

I performance was rapidly recovered for the fully decentralised Phase II, indicating

that workers additionally learned to communicate the relevant information.

4.3.3 Single-agent CPAC

The Search and Cooperative Communication problem, whilst well suited to our

exploration of FMH, involves a wiring of communication which is complex, not

allowing the Information Gatherer to communicate directly with the Listener. We

therefore designed a new task, called Search and Cooperative Communication v2,

which simplifies the communication, whilst also making the Information Gathering

problem itself more difficult.

In the new task, there are 2 agents and 5 landmarks: white, black, red, blue

4.3. Results 95

and green. Whereas before the black landmark always provided information when

approached, now the information may be either at the white or black landmark.

The Information Gatherer is provided with the colour of the target landmark and so

can learn to navigate to the correct target. It now communicates directly with the

Listener in order to guide it to the correct landmark (red, blue or green).

Our results for this task are presented in Figure 4.5. In Phase I we find that

the single-agent CPAC is able to perform well on the task, and this performance is

fully recovered in Phase II by incorporating the advice from the critic. By contrast

MADDPG struggles to learn, appearing to plateau well below the performance in

Phase I.

4.3.4 Conclusion

We combined MADDPG with FMH and demonstrated its effectiveness. We then

extended the idea of centralisation by introducing a CPAC, which was able to ef-

fectively train agents in both the fully-cooperative and feudal settings to solve chal-

lenging information gathering tasks. This involved a two-stage training procedure

and a modification to the conventional multi-agent policy gradient.

Chapter 5

Discussion and future work

We have shown how cooperative multi-agent problems can be solved efficiently by

defining a hierarchy of agents. Our hierarchy was reward-based, with a manager

agent which optimises the overall task objective setting goals for workers which de-

fined their rewards. We focused initially on training using a decentralised approach

but later explored centralised methods, and introduced the CPAC which helped to

train information seeking behaviours in both feudal and fully cooperative systems.

In this section we describe how our approach relates to other work and outline

areas for future research. We start by discussing ideas in HRL, including a pre-

liminary experiment with continuous goals. We then review related areas in MARL

and methods which combine HRL and MARL. We end by discussing centralisation,

managerial shaping and the learning of hierarchies.

5.1 Hierarchical reinforcement learning
Our work drew inspiration from HRL, in particular the feudal RL architecture (FRL)

of Dayan and Hinton (1993), also developed in the context of deep RL by Vezhn-

evets et al. (2017) in the form of Feudal Networks (FuNs). Goal-setting in FMH

was achieved by specifying a relationship between the chosen managerial commu-

nication and the resulting reward function. Rather than set goals directly in the ob-

servation space of each worker, the manager utilised a ‘goal space’ corresponding

to the possible target landmarks in the environment. Our target-based approach can

be compared to multi-task formulations of single-agent RL, where it is common for

5.1. Hierarchical reinforcement learning 97

a separate goal space to be defined in addition to the immediate observation space of

the agent. For example, a mechanical hand might be rewarded for rotating a cube to

different orientations irrespective of the angle of each joint in the hand, with differ-

ent goal orientations being selected at the beginning of each trial (this formulation

is used by algorithms such as Hindsight Experience Replay (Andrychowicz et al.,

2017)). In the spirit of this work, we used FMH to set goals in a subset of the full

state-space, rather than micromanaging all aspects of behaviour (such as immediate

velocity) present in the full observational space.

Alternative approaches from the HRL literature instead aim to generalise the

setting in which goals can be set, which can be useful when a task space cannot be

easily defined. For example, HIRO (Nachum et al., 2018a) sets continuous goals

in the observation space of the worker, imposing structure in the form of distance

from a target state. Such approaches have been effective on low dimensional tasks

but typically struggle as dimensionality is scaled (Nachum et al., 2018b). Alterna-

tively Vezhnevets et al. (2017) set directional goals in a learned hidden representa-

tion, perhaps allowing for the setting of more abstract task-relevant goals in a lower

dimensional space. This is similar to the idea of ‘feature control’ (Jaderberg et al.,

2016), which can improve performance of deep RL agents by generating auxiliary

tasks which are useful for representation learning1.

Although we did not investigate such approaches for FMH, we have conducted

preliminary experiments which utilise a continuous rather than discrete communi-

cation space in which to set goals (whilst keeping movement actions in the MPE

discrete). We use the Cooperative Communication problem with 6 landmarks and

allow the Speaker (manager) to see the observations of its Listener (worker). The

Speaker sets goals in the 14-dimensional space corresponding to the worker’s full

observation space (2 dimensions for velocity and 12 dimensions for relative posi-

tions of landmarks).

We try three approaches inspired by the literature:

1. The goal vector corresponds to a direction in the state space and the worker
1‘Pixel control’, in which auxiliary subgoals are selected from the raw visual input, was also

shown to be effective

5.1. Hierarchical reinforcement learning 98

is rewarded according to the cosine distance.

2. The goal vector corresponds to a target state and the worker is rewarded ac-

cording to the distance from that state

3. The goal vector corresponds to a target state change for the worker which is

rewarded according to its distance from the target state

Figure 5.1: Different HRL rewards. Cooperative Communication with 6 landmarks. The
manager learns to guide the worker to the correct target by specifying either the
target state directly, a change in the target state relative to the worker’s current
state, or a cosine similarity.

We find that the manager is able to learn to control the worker using all of these

methods, although approach 1 has some issues of instability such that its average

performance was slightly worse (Figure 5.1). We found in practice that scaling the

output of the manager by a factor of 5 improved performance substantially2, and so

we use this for all methods.

Our initial result shows promise for approaches in which the manager sets

goals directly in the observational space of the worker. However, a more care-

ful delineation between HRL methods may only be possible by applying FMH to

2the reason for this is unclear but is perhaps related to the saturation of the managerial output to
be between -1 and 1 by a tanh function

5.1. Hierarchical reinforcement learning 99

more complex domains than the MPE. The problems we considered were gener-

ally much simpler than those in Atari from the perspective of the individual agent,

and so placed less pressure on dimensionality reduction for inputs and temporal

abstraction for behaviour. It would therefore be interesting to integrate the com-

plexity of multi-agent interaction with that of single-agent RL, perhaps using re-

cently developed MARL environments such as the Starcraft Multi-Agent Challenge

(Samvelyan et al., 2019). Our multi-agent system may also benefit from being

trained across multiple environments; the multi-task setting provides a powerful set-

ting for demonstrating the benefits of hierarchical learning, as the beneficial reuse

of learned skills may be more clearly demonstrated.

Our experiment in Figure 5.1 also highlights a methodological difficulty rel-

evant to all our experiments. Whilst we optimised hyperparameters on a simpler

task for the methods we considered, and generally found a single setting of these

to be effective for all methods (Appendix A.1.1), it is quite possible that on more

complex tasks, different settings of hyperparameters such as the learning rate or

discount factor would be more suitable. Given our computational budget, extensive

hyperparameter studies were not feasible, but would be important to consider in

future.

We also did not investigate popular methods in HRL to increase efficiency,

such as the use of hindsight and off-policy correction, and these would be expected

to similarly improve learning in FMH. Interestingly, relabelling could also be at-

tempted for generic communication which is not goal-based, an area which has

hitherto seen little investigation. In a similar vein to Nachum et al. (2018a), we

could ask the question; ‘what message could the agent have sent to achieve the

observed transition?’ and relabel the message accordingly. However, unlike the

goal-based case, there may be no message which satisfies this, even approximately,

and so relabelling in this way may be ineffective. Instead, we have found in recent

work (Ahilan and Dayan, 2020), that answering a different question is particularly

beneficial; ‘according to the current policies of other agents, what communication

would the agent have received?’. Centralised training allows us to answer this ques-

5.2. Multi-agent interactions 100

tion and therefore to relabel messages received in the past to account for changes in

the communication policies of other agents induced by learning. We find that this

results in an effective ‘off-environment’ (Ciosek and Whiteson, 2017) correction

and substantial improvements to multi-agents systems learning to communicate.

Returning to multi-agent HRL, further investigations could involve methods

from unsupervised learning, such as a trajectory variational autoencoder (VAE)

(Kingma and Welling, 2013; Co-Reyes et al., 2018), which can encode and decode

desired state trajectories (which have been previously learned). A desired trajectory

could be communicated by the manager as a setting of a latent variable, which the

receiving worker seeks to replicate using its policy. Once this communication strat-

egy has been learned, it may then be substantially easier for the multi-agent system

to scale to problems involving larger numbers of agents, as we found in Chapter 3.

However, one limitation of this might be the capacity to encode sophisticated

behaviour when only a single variable is communicated. An appealing idea is there-

fore for agents to learn to communicate sequences of variables which correspond

to an agreed upon language for goal-setting. Compositional languages are highly

expressive, enabling complex and abstract relationships between states and rewards

to be defined. Recent work has applied this idea to address goal specification in

HRL problems (Jiang et al., 2019), albeit using a language supervisor which had

access to the instructions that described the scenes of the problem domain.

5.2 Multi-agent interactions

We introduced FMH to address the ‘too many chiefs’ inefficiency inherent to FRL,

namely that each manager only has a single worker under its control. A much

wider range of management possibilities and benefits arises when multiple agents

operate at the same time to achieve one or more tasks (Busoniu et al., 2008). We

focused on the cooperative setting (Panait and Luke, 2005); however, unlike the

fully-cooperative setting, in which all agents optimise a shared reward function

(Boutilier, 1996) our approach introduces a diversity of rewards, which can help

with credit-assignment (Wolpert and Tumer, 2002; Chang et al., 2004) but also al-

5.2. Multi-agent interactions 101

lows for elements of competition. This competition need not always be deleterious;

for example, in some cases, an effective way of optimising the task objective might

be to induce competition amongst workers, as in generative adversarial networks

(Goodfellow et al., 2014).

In our experiments, we introduced cases in which worker reward depended on

internalised costs from collisions that workers experienced directly. A more com-

plete range of possibilities for creating and decomposing rewards between managers

and workers when the objectives of the two are not perfectly aligned, could usefully

be studied under the aegis of principal-agent problems (Jensen and Meckling, 1976;

Laffont and Martimort, 2009).

Our work also has connections to mechanism design (Vickrey, 1961; Hurwicz,

1973). In particular the question as to how incentives might be designed to achieve

a desired objective, such as to avoid the tragedy of the commons (Seabright, 1993),

in which selfish agents collectively spoil a shared resource. This idea has recently

been explored in MARL (Baumann et al., 2018; Mguni et al., 2019) as a means to

mitigate sequential social dilemmas (Leibo et al., 2017), and involves a manager

(the ‘principal’) modifying the rewards received by other agents to achieve better

equilibria. In contrast, we focused on explicit goal-setting by the manager to di-

rectly modulate worker behaviour.

The use of incentives other than the task incentive has also been explored

from the perspective of intrinsic motivation (Chentanez et al., 2005; Baldassarre

and Mirolli, 2013; Kulkarni et al., 2016). One interesting multi-agent approach is

to incentivise agents to maximise their causal influence over other agents (Jaques

et al., 2019). This could be added as an additional objective for a manager in FMH

to learn to control its workers even whilst task performance is poor, and could po-

tentially be used to support learning of subgoals, an approach which has achieved

some success in HRL (Mohamed and Rezende, 2015; Gregor et al., 2016).

Our use of multi-agent communication also differs from a few other ap-

proaches which attempt to backpropagate through the communication channel

(Sukhbaatar et al., 2016; Foerster et al., 2016; Peng et al., 2017; Mordatch and

5.3. Combined approaches 102

Abbeel, 2018). This has generally improved the performance of communicating

multi-agent systems and so integrating this with a feudal reward structure would

be worth exploring. Finally, it would be interesting to consider how a manager

might learn to allocate resources, such as money, computation or communication

bandwidth to enable efficient group behaviour.

5.3 Combined approaches

Other work has also sought to combine HRL with MARL. We did not directly

compare these methods to our own, generally due to their lack of an open-source

implementation and due to their specificity to a particular domain. Nevertheless, we

describe them here.

Zhang et al. (2009) considered a multi-level organisational structure with su-

pervisors responsible for managing workers. They assumed that each supervisor

made rational decisions and imbued them with three commands: report, suggestion

and rule. A report commanded a worker to communicate its state to the manager,

a rule forbade actions in certain states and a suggestion expressed preferences for

worker actions in certain states. Suggestions were used to directly bias worker’s ex-

ploration policies (rather than their rewards), which they found resulted in improved

performance on a network routing problem. This provided an interesting example

of hierarchy, although it relied on hard-coded heuristics for managerial behaviour,

only using reinforcement learning for the workers.

The idea of communicating ones own subgoals was explored by Makar et al.

(2001) who used the MAXQ HRL algorithm (Dietterich, 2000) to train homoge-

nous agents which coordinated by communicating subtasks rather than primitive

actions. Using hierarchy to structure communication was also explored by Kumar

et al. (2017) who used a meta-controller to organise communication between agent

pairs.

Application of FMH has recently been explored for multi-agent traffic man-

agement problems by Ma and Wu (2020). In this work, traffic networks were split

into several regions; each region had many agents controlling the traffic signals,

5.4. Centralisation 103

which were themselves controlled by a manager agent. Each manager communi-

cated directional goals in the form of cosine similarity, and workers were rewarded

according to their achievement of these goals, as well as intrinsic reward. One dif-

ference between our approach and theirs was that both manager and workers utilised

recurrent networks, whereas we only investigated feedforward policies. This was

sufficient for the problems we investigated but for many partially-observed prob-

lems recurrent networks are likely to be beneficial. Overall, Ma and Wu (2020)

showed that the feudal multi-agent system was able to outperform state-of-the-art

alternatives according to almost all evaluation metrics used for traffic signal control.

A feudal approach has also been applied to joint order dispatching and fleet

management for multi-scale ride-hailing platforms (Jin et al., 2019). Each geo-

graphical region was modeled as an agent and many such neighbouring regions

were aggregated and placed under the control of a single manager. Similar to FuNs,

they utilise a dilated RNN architecture and define goals using the cosine similar-

ity. As with our approach, they use a one-to-many manager worker control scheme

rather than the one-to-one approach typically found in the HRL setting.

5.4 Centralisation

In Chapter 4 we considered issues of centralisation. We began by applying MAD-

DPG to FMH and found it to achieve better asymptotic performance than either

DDPG or a MADDPG manager with DDPG workers. That FMH MADDPG learns

without pretraining or extended communication suggests that centralisation can

compensate for these mechanisms, which were originally introduced to address is-

sues of non-stationarity for both manager and worker. FMH-MADDPG did, how-

ever, learn slower than the mixed FMH MADDPG-DDPG approach, perhaps due

to the better scaling properties of decentralised learning. In future work we could

therefore test this more carefully by experimenting with larger numbers of agents.

After applying existing methods of centralisation we then developed our own

in the form of a CPAC and a two-phase training procedure. This involved training

either a single-agent or multi-agent actor-critic system in a first phase of learning

5.4. Centralisation 104

on a related but simplified problem and then using the learned critic(s) to guide a

multi-agent system towards solving the full problem.

Our general approach is analagous to that of a supervisor shaping the learning

of a student in the all-too-familiar situation of the supervisor only having partial

answers to the student’s questions. Given this advice, the student is tasked with de-

vising an optimal solution, which may be at odds with the supervisor. For example,

if communication actions are costly then the first stage critics for the workers will

advise against them, even whilst the optimal solution for the full problem requires

the judicious use of communication. In our experiments we focused on problems

where communication was not costly or limited in range, which limits this kind of

interference. However, even in cases where such interference exists, the hope is

that the supervisor provides advice which is useful for initial learning, and that as

the student gains experience this advice can be gradually diminished. This allows

the conventional convergence properties of multi-agent learning to be recovered if

necessary, with the hope of finding better local optima.

When applying CPAC in the feudal case, we built on the idea that the manager

in particular may benefit from centralisation. We motivated our approach as being

a reverse decomposition of the ‘Communication as Control’ algorithm, in which

the feudal system first learns control in the case where the manager can see the

workers’ state, followed by training the system such that workers communicate

the important aspects of their observation. Whilst we found this to be effective,

it is interesting to consider if this algorithm could be more directly approximated.

For example, workers could benefit from an unsupervised objective to autoencode

their observations, communicating the compressed representation to the manager,

which is simultaneously trained to control the worker. One issue however is that

workers may not learn to communicate useful aspects of their observation relevant

for managerial decision making.

We also used a single-agent CPAC for the fully cooperative case, where we

demonstrated its advantages in more rapidly training a MADDPG policy. One dis-

advantage of our approach is that it requires two stages, making direct comparison

5.4. Centralisation 105

to multi-agent training methods tricky3. Our approach could also be implemented in

a single-stage with CPAC and MAC learning simultaneously. However, this would

still not match the simplicity of conventional MAC training, as environmental roll-

outs would need to be divided amongst the MAC and CPAC policies.

The idea of using a centralised policy expert to guide the learning of a multi-

agent system has been explored recently by Lin et al. (2019) who begin by treating

it as a supervised learning problem in which each agent seeks to imitate expert

behaviour. However, they also acknowledge the problem of learning communica-

tion in this scenario and therefore they introduce a separate communication loss,

which they optimise using backpropagation. Using centralised expertise has also

been explored by Chen (2019), who aim to distil the single-agent expert policy

into multi-agent network policies, and Lee and Lee (2019) who mix demonstrations

from a centralised policy to aid multi-agent training. It would therefore be benefi-

cial to compare these ideas to our own approach of altering the multi-agent policy

gradient, to discover what the relative advantages and disadvantages are.

It would also be worth seeing if our method can be used to address more com-

plex problems. In particular, the single-agent CPAC may struggle to scale to large

action spaces, and it may be possible to resolve these issues by using attention-based

mechanisms (Vaswani et al., 2017; Iqbal and Sha, 2019) or imposing structure on

the outputs of the neural network policy tailored to the natural divisions of the multi-

agent action-space.

We also only applied our method to fully cooperative problems and it may be

possible to apply these ideas in the competitive setting by equipping each agent with

a CPAC. If an agent can see its opponent state, it may aid it in learning effective re-

sponse strategies, albeit care must be taken to avoid forms of cheating. A related

idea has in fact been studied by Vezhnevets et al. (2019), who were interested in op-

ponent interactions of competing agents with concealed information. One problem

they considered was a spatialised version of rock/paper/scissors, where opposing

agents navigate an environment to pick up their weapon of choice and then can

3for example, whilst many episodes may be used for single-agent CPAC training, wall time may
be considerably shorter as only a single agent need be updated

5.5. Shaping 106

encounter each other, recieving rewards according to the match-up of their chosen

weapons. Vezhnevets et al. (2019) general approach involved exploiting centralised

learning by factorising the value function using the concealed information of the

opponent (this might include, for example, that the opponent was carrying a rock).

This latent space was then reused to train a factorised decentralised policy for the

agent. This mixture policy approximated inference of the latent solely from its his-

tory of local observations and used this to weight a behavioural response.

Finally, when training the centralised critics in all cases we simply used the ag-

gregated observations and actions of all agents. For Search and Cooperative Com-

munication this is insufficient to make the environment Markov, and so it would be

worth considering if it would be useful to augment the critic with the hidden envi-

ronment information. In fact, this idea is not specific to multi-agent learning, being

applicable even in the single-agent partially-observable case. Perhaps surprisingly,

we are not aware of explicit investigations into the application of this idea, and so

evaluating its effectiveness may be worthwhile.

5.5 Shaping

The question of how we might help RL agents to learn has been richly studied in the

literature and is relevant to our work. Reward shaping involves altering the rewards

in the environment to facilitate the learning of agents solving a particular task (Ng

et al., 1999). It is therefore interesting to consider if the manager could learn to do

so for its workers, for example by determining the shape of the reward function.

We only considered rewards propotional to the negative distance from the tar-

get state, which likely aided learning far more than simply specifying a narrow

region around the target in which the worker receives reward. However, a more

detailed investigation of different shaping functions would be interesting, includ-

ing whether a manager might be able to specify a metric along with a target state

which would weight the distance of the worker from the goal state according to each

dimension’s importance, as determined by the manager.

The manager may also guide learning by ordering the tasks presented by the

5.6. Learning hierarchies 107

manager to the worker. This idea of starting with easy problems and gradually

increasing their difficulty is known as curriculum learning (Skinner, 1990; Krueger

and Dayan, 2009; Bengio et al., 2009). An example of such an approach for RL

was explored by Florensa et al. (2017) who trained a robot in reverse to gradually

reach a goal state from a set of target states increasingly far from the goal. These

start states were generated adaptively according to the performance of the agent.

5.6 Learning hierarchies

The hierarchies used in FMH were simple in structure and specified in advance,

based on our knowledge of the various information and action capabilities of the

agents. It would be interesting to develop mechanisms for the formation of complex

hierarchical structures.

We may represent the managerial hierarchy as an adjacency matrix with non-

zero entries indicating that the agent in row i manages worker in column j. For

example, if agent 1 manages agent 2, and agent 2 manages agent 3, then the repre-

sentation would be:

D =


0 1 0

0 0 1

0 0 0

 (5.1)

We would like hierarchies to correspond to directed acyclic graphs (DAGs),

and this correspondence may be verified by checking that D is nilpotent; there exists

some positive integer n such that Dm = 0,∀m ≥ n (in this particular three-layer

hierarchy D3 = 0). If the column j is empty it indicates that agent j is unmanaged

and so optimises the task reward. Similarly, if row i is empty it indicates that that

agent is the lowest agent in the hierarchy without any management responsibility.

In this thesis we employed hierarchies with one manager and all other agents

as workers. This would therefore be represented as:

5.6. Learning hierarchies 108

D =


0 1 . . . 1
... 0 . . . 0

0 0 . . . 0

 (5.2)

where agent 1 is the manager. An extension to this representation would allow

values in the matrix to range between 0 and 1, expressing the degree of control the

manager has over rewards, with the remainder corresponding to task or intrinsic

rewards.

In general, more complex hierarchies may enable more effective learning and

performance and so we would like a method to find them. One approach might be

to start simple and steadily increment the complexity of the managerial hierarchy

over time. A 0 matrix could be intialised, which defines a shared reward flat multi-

agent system, and then modified as an outer loop of hyperparameter optimisation.

Modifications could correspond to randomly changing individual elements of the

matrix from 0 to 1 (whilst ensuring the DAG structure is maintained) and continuing

training to see if performance improves.

Ideally many models would be trained simultaneously, with more promising

hierarchies being replicated, as in population based training (Jaderberg et al., 2017).

Population based training allows for hyperparameters to continuously be adapted

throughout the training process, potentially enabling the complexity of the hierarchy

to be gradually grown by building off previous complexity. As an approach to

learning hierarchies, this is reminiscent of Neurath’s ship, who opined that ‘we are

like sailors who on the open sea must reconstruct their ship but are never able to

start afresh from the bottom’.

It would also be interesting to see if more complex methods for modifying the

hierarchy might be useful. For example, a useful prior might be to bias against

assigning any worker more than one manager such that there is no conflict of

control. Additionally, a preponderence towards assigning existing managers new

worker agents, rather than creating more managers might be useful. This ‘rich-

get-richer’ property is reminiscent of the Chinese Restaurant Process in Bayesian

5.6. Learning hierarchies 109

non-parameterics (Griffiths et al., 2004), as well as society at large.

Finally, it is worth considering if we can say anything about the optimality of

hierarchies for a given problem (as was done by Solway et al. (2014) in the single-

agent case). According to our ‘Communication as control’ algorithm, we might be

tempted to argue that the hierarchy we have primarily examined with only a single

manager and many workers is ideal because we can treat it as a direct approximation

to single-agent reinforcement learning. However, as we have noted, decentralisa-

tion has the potential to scale much better than centralised approaches. It would

seem therefore that for a given problem it may be the case that some agents would

benefit from hierarchical control whereas others might benefit from being left to

their own devices. This intermediate approach might best trade-off the advantages

and disadvantages of single-agent and multi-agent learning. For agents which do

end up managing, a further question arises as to who manages the managers4. An

intuition for adding layers to the hierarchy would be increasing benefits of tempo-

ral abstraction, as with HRL, as well as allowing for better global decision making

from managers receiving communication from a larger number of workers. How-

ever, we are not currently able to provide a precise presciption of when managers

should exist and what exactly they should be doing. Fortunately, this does not stop

us from promoting them.

4we can say that top-level managers are in effect managed by the task

Part II

World Models

110

111

It was just a story about people and rats. And the difficult part of it

was deciding who the people were, and who were the rats.

— Terry Pratchett

Chapter 6

Introduction

6.1 Adapting to a structured world

Humans and other animals inhabit a world replete with statistical structure and reg-

ularities over many spatial and temporal scales. Such structures may arise for a

multitude of reasons. One source is the simplicity and generality of physical laws,

which give rise to regular phenomena such as the daily rising and setting of the sun,

or the formation of stalagmites and stalactites within the confines of caves. Another

more complex source of structure is that which is imposed by other humans or ani-

mals, such as the regular timetables of workers in a company or the complex maze

in which a laboratory rat is placed.

In cases where structure influences an animal’s ability to achieve reward, ani-

mals are often able to make decisions which exploit these regularities, for instance

by reacting faster to more probable events (Niemi and Näätänen, 1981). The mech-

anisms which enable animals to make effective decisions is a key question in cog-

nitive computational neuroscience (Dayan and Daw, 2008). It has long been estab-

lished that there are multiple such mechanisms in the brain. This multiplicity not

only provides redundancy, but also provides various computational and statistical

advantages.

Perhaps the simplest way which enables animals to respond effectively to struc-

tures in their environment is through evolutionary ‘hard-wiring’ or non-adaptive

instinctive behaviours (Breland and Breland, 1961). These can gradually emerge

6.1. Adapting to a structured world 113

through evolution if regularities are consistently experienced across many genera-

tions of a species. For example, the consistent rising and setting of the sun has lead

to the development of sleep cycles according to circadian rhythms. Similarly, in the

case of food, Pavlovian approach behaviours are almost always beneficial and so

are hard-wired into some animals as an unconditioned response. This was elegantly

demonstrated by Hershberger, who designed an experiment in which hungry chicks

approaching a chicken-feeder (which had previously learned this was a source of

food) would find the chicken-feeder moving away twice as fast, whereas moving

away from the chicken-feeder would lead to it moving towards the chick twice as

fast (Hershberger, 1986). Hershberger showed that the chicks, even with training,

could not learn the correct behaviour of moving away from the chicken-feeder in

order to receive food. This ‘Pavlovian controller’ (Dayan et al., 2006), is particu-

larly illuminating as it highlights systems in the brain which are highly inflexible yet

nevertheless give rise to appropriate behaviours in the vast majority of situations,

due to the consistency of certain aspects of the environment across many genera-

tions. Furthermore, these methods are both statistically and computationally cheap,

neither having to be learned during an animal’s lifespan nor constantly recalculated

each time relevant situations occur.

When the structures which influence an animal’s experience are different from

those experienced during its evolutionary history, inflexible control mechanisms are

insufficient. Nevertheless, in many cases animals often learn to adapt effectively,

indicating the existence of further mechanisms for prediction and control which

learn directly from experience, as in reinforcement learning. One such prediction

mechanism shares close connections to the theory of model-free RL, with evidence

for its instantiation in the dopamine system of the brain (Schultz et al., 1997). The

release of dopamine, according to this model, corresponds to the reward prediction

error signal of temporal difference learning, and enables state and action-values to

be learned even when transitions between states are not learned. This process is

in practice often statistically inefficient, as values typically require a large amount

of experience to be learned, but computationally efficient, as cached values can be

6.1. Adapting to a structured world 114

used directly to select actions. Control using the model-free system is therefore

quick to use and provides a natural model for habitual behaviours.

An alternative system, connected to the theory of model-based reinforcement

learning, uses learned transitions between states to plan outcomes and take actions

accordingly. In contrast to the model-free system, this is often statistically efficient

(if the underlying transition structure is easy to learn) but computationally ineffi-

cient, as when used for planning the number of possible outcomes grows exponen-

tially with depth. The model-based system is typically flexible, and can be used to

rapidly devise new stategies upon changes to the world (such as the blocking of a

passage in a maze) or changes in the reward structure.

Both model-free and model-based systems occupy different sweet spots in the

trade-off between statistical and computational efficiency. Animals may arbitrate

between them optimally (Daw et al., 2005), which often results in a transfer from

more model-based strategies early in training to model-free strategies when greater

experience has been gained1.

Model-based learning involves the animal understanding the transition struc-

ture between states of the world to enable effective planning. The critical question

of what consititutes ‘state’ however, rapidly emerges; planning in the ‘raw’ obser-

vational space is unlikely to be useful, whereas planning in a more abstract rep-

resentational space which reflects the structure of the task is potentially far more

useful. The notion that animals build such ‘world models’ (Daw et al., 2005, 2006;

Gläscher et al., 2010) has its roots in the idea of cognitive maps (Tolman, 1948;

Behrens et al., 2018) as first introduced by Tolman. A cognitive map is in general

defined as an internal, mental model of the world which an animal uses to guide

its behaviour (through inference or planning). An important piece of evidence in

favour of cognitive maps was Tolman’s discovery of latent learning, in which rats

learn the structure of a maze even in the absence of reward, and can adaptively use

this information when rewards are later introduced. For example, rats could learn to

take shortcuts to reach rewards and find new routes when old routes were blocked

1it is also worth noting the possibility of an episodic controller which may be particularly impor-
tant in the regime where experience is extremely limited (Lengyel and Dayan, 2008)

6.1. Adapting to a structured world 115

(Tolman et al., 1946). This behaviour could not be straightforwardly accounted for

by models which describe behaviour in terms of simple stimulus-response mappings

in pursuit of reward.

The neuroscientific evidence for a cognitive map was further supported in the

spatial domain by the discovery of place cells in the hippocampus, which provide

a population code for representing space (O’keefe and Nadel, 1978). Later studies

uncovered a plethora of cell types, including grid-cells in the medial entorhinal

cortex which fire at multiple place fields on a triangular grid as well as cell types

which encode head direction, relationships to borders and even to the locations of

other agents. Such abstract representations are highly divorced from the immediate

sensory perception of the animal, yet are of enormous functional relevance to a

variety of spatial tasks which the animal might face.

The exciting discovery of abstract neural representations in the spatial domain

spurred the natural question as to whether such neural machinery is also used in

non-spatial domains to code for structural knowledge. Recent research has provided

strong support for this hypothesis; for example, in a task in which rats must use a

joytstick to manipulate sound along a continuous frequency axis, cells types known

to be place or grid cells in the spatial domain will instead represent frequency in an

analagous way (Aronov et al., 2017). Similarly, humans navigating conceptual two-

dimensional knowledge showed a grid-like signal in regions also activated during

spatial navigation (Constantinescu et al., 2016).

Evidence for representations of abstract structures also extends beyond the hip-

pocampus and entorhinal cortex. In his work on ‘learning sets’, Harlow trained

monkeys to discriminate between pairs of objects in order to receive reward (Har-

low, 1949). However, these pairs would only appear for a small number of trials

(typically 6), known as a ‘set’, before a new pair of items was chosen for the next

set. The task followed a simple rule; the rewarded item on a particular set would

remain the rewarded item for the rest of the set. Thus, whilst on its first choice

the monkey only had 50 percent chance of picking the correct item, perfect perfor-

mance was possible on subsequent trials by following a win → stay, lose → shift

6.2. World models and partial observability 116

strategy. Harlow found that monkeys were able to learn to do this effectively, even

in cases where stimuli which were rewarding on a previous set became unrewarding

on the current set (or vice versa). This showed the ability of monkeys to go beyond

discrimination learning and form a basic understanding of the task. Interestingly, le-

sions to ventral prefrontal cortex (vPFC) (orbitofrontal and ventrolateral prefrontal

cortex) in macaque monkeys abolishes this ability (Walton et al., 2010; Rudebeck

and Murray, 2011). The behaviour of animals with such lesions are predicted by

a reinforcement learning agent which only learns from immediate sensory obser-

vations rather than assigning credit to abstract states (Wilson et al., 2014). Taken

together, these various streams of research have shown the ability of humans and

animals to form task-relevant world models, with connections to a number of brain

regions.

6.2 World models and partial observability

We investigate the capability of rats to use a world model in a reward-based task.

For such world models to be useful they must not only be accurate but also easy to

use. A critical aspect of this is being able to infer the appropriate hidden states (or

latent variables) given imperfect sensory observations. In general, and for the task

we investigate in this work, the sensory evidence at a given moment often provides

insufficient evidence as to the hidden state, a problem known as partial observability.

To achieve accurate inference, an animal must remember and correctly integrate

evidence provided by past observations, which demands the effective and adaptive

use of forms of working memory (Zilli and Hasselmo, 2008; O’Reilly and Frank,

2006; Todd et al., 2009).

An appropriate formalism for decision making in the partially observable case,

known as the POMDP, was introduced in Section 1.4.3. This formalism, when

combined with a correct world model of the underlying hidden process and with

the forward-backward message passing algorithm, enables computation of a belief

state over likely values of the hidden state which incorporates all relevant history

(Kaelbling et al., 1998). Whilst the POMDP formalism allows for actions taken by

6.2. World models and partial observability 117

the agent to affect future states, we focus here on a prediction task in which actions

do not affect state, and for which an HMM (Section 1.4.2) provides a more natural

model.

The latent variables relevant to a task may persist over a variety of timescales.

For short timescales of a few seconds, research has often focused on accumulate-

to-bound decision making (Ratcliff and Rouder, 1998; Gold and Shadlen, 2002) or

persistent activity states (Miyashita, 1988; Fuster, 1997; Frank et al., 2001). Very

long times, perhaps even across days, are associated with macro-states or contexts

(Haruno et al., 2001; Gershman et al., 2010). By contrast we consider a task in

which the critical structure (which supervenes over shorter-time task requirements)

typically concerns an intermediate scale of tens of seconds.

In the following chapter we investigate aspects of the behavioural data of rats

engaged in a task with hidden structure. As we will see, rats learn to use this

medium-term structure to predict oncoming states and adjust their actions accord-

ingly. However, their behaviour reveals errors which, when they arise, result from

chance recent observations that are misleading as to the identity of the hidden state.

We show how to account for their performance by building an HMM which char-

acterises the environment, and in which evidence from past observations is imper-

fectly integrated with recent observations. We find that as training progressed for

the subjects, they better learned to predict oncoming states. This reveals to us a

process by which subjects learn to use past evidence more effectively to infer their

state in the world.

Chapter 7

Experiments and model

The results of this chapter were presented in:

PLoS computational biology (Ahilan et al., 2019)

7.1 Task and experiment
We consider a cumulative handling time task (Breton et al., 2009; Solomon et al.,

2017) in which rats hold down a lever for an experimenter-defined time period,

called the price (P), in return for rewarding electrical stimulation of the medial fore-

brain bundle (Olds and Milner, 1954) at a fixed current and a given pulse frequency

(f). In this paradigm, subjects experience many trials, each of which consists of

an epoch during which price and frequency are fixed. Subjects may achieve the

price cumulatively, over multiple presses during the trial. The duration of a trial (D)

is 25 times the price (except for a minority of trials with price less than 1 second

which last 25 seconds) allowing for many rewards to be obtained. This duration

excludes a short, typically two second period following each reward termed the

‘black-out delay’ which allows for reward consumption and during which the lever

is first retracted and then re-extended. Together frequency, price and duration define

the experimentally-set parameters of a given trial. As these parameters vary, sub-

jects face trials with different costs and benefits; previous studies have used their

resulting responses to understand the subjective tradeoff between labour and leisure

(Breton et al., 2013; Niyogi et al., 2014a; Solomon et al., 2017). Along with those

authors, we focus only on variations in frequency and price and not duration, as the

7.1. Task and experiment 119

Figure 7.1: The structure of the experiment. (A) Trials come in a predictable cyclic
triad. Each trial corresponds to a period of time where price and frequency
are fixed. The intertrial interval is 10s. (B) Frequencies and prices associated
with each trial type (subject 1). Lead trials are highly rewarding with a fixed
high pulse frequency and a short price (blue cross). Trail trials are negligibly
rewarding with a fixed low pulse frequency and a short price (red cross). Test
trails vary in frequency and price from trial to trial and so are variably rewarding
(purple crosses). In addition to the crosses we also define regions α, β and λ
(dashed grey rectangles) which are relevant for Fig 7.4. Note that in regions
α and β, test trials are similar to lead and trail trials respectively, whereas in
region λ test trials are dissimilar to both. (C) Responses from five example
triads of trials from a trained subject (subject 1). Grey bars correspond to the
lever being depressed, with initial responses highlighted in green. Pressing is
almost continuous on lead trials, varies on test trials from trial to trial (only the
first 25s is shown) and is rare on trail trials. We label the IRT, which reflects
subjects’ beliefs about the rewarding nature of the current trial before they have
experienced any within-trial evidence.

latter depends directly on price, being (almost always) directly proportional to it.

At the beginning of each trial, a high frequency stimulation train, called a

prime, is delivered. The subjects are then free to choose whether and when to

engage with the lever. We analyse two major dependent variables. The first is the

engagement probability (EP), which is the probability that subjects engage with the

lever at all. The second, if subjects do indeed engage, is the initial response time

(IRT), which is the time it takes them to first press the lever following the prime; we

define these in more detail in Appendices B.1.

7.1. Task and experiment 120

Trials come in a predictable cyclic triad consisting of ‘lead’, ‘test’ and ‘trail’

trial types (Fig 7.1 A) separated by a fixed intertrial interval of 10s. Each trial type

is associated with different frequencies, prices and durations (Fig 7.1B; shown with

log base 10 here and subsequently), but are otherwise identical. When subjects

know the frequency and price associated with a trial, and hence the worth of work,

they typically choose an appropriate level of engagement with the lever. This is

illustrated by the ethograms in Fig 7.1C in which the lever presses of a trained

subject are plotted for different trial types (we ignore the post-reward ‘black-out

delay’).

For lead trials, which correspond to fixed, high-frequency stimulation with a

short price of 1 second, subjects typically work the entire duration of the trial, as the

high-frequency stimulation is highly rewarding. By contrast for trail trials, which

have fixed, low-frequency stimulation at the same short price of 1 second, subjects

barely work. Test trials, which involve a range of frequencies and prices which

change from trial to trial (but are fixed across a particular trial) give rise to variable

amounts of work, depending on the particular values of the frequency and price.

The data in the present paper are drawn from Solomon et al. (2017) which

describes in detail all aspects of the experiment, including training prior to the full

task. Training involved a shaping protocol which eventually introduced lead, test

and trail trials, enabling subjects to learn the cyclic triad structure. It used a more

limited range of test frequencies and prices than was ultimately employed in the

main experiment (Figure 7.2).

We studied a total of six subjects, each of which had experienced approxi-

mately 1500 triads of trials over a period of weeks. To allow adjustment from train-

ing to the full task we excluded the first 126 triads from our analysis, corresponding

to one complete survey of the test trial frequencies and prices as defined in Solomon

et al. (2017). The number of surveys analysed for subjects 1-6 was 12, 10, 11, 8, 12,

and 13 respectively, with each survey being acquired over 2 daily sessions, lasting

approximately 6 to 7 hours each. Subjects 1-6 in this paper correspond to subjects

F03, F09, F12, F16, F17 and F18 respectively in Solomon et al. (2017). Whilst

7.2. Results and model 121

Figure 7.2: Frequency-price. Training with the triad structure involved a more limited
range of frequencies and prices (subject 1)

in general, the results we describe apply to all six subjects, for simplicity we often

display results in full for only subject 1, describing the remaining subjects using

summary statistics. We report significance for individual subjects at the P < 0.05

level, with further details on exact p-values and of our methodology being provided

in Appendices B.2 and B.3.

7.2 Results and model

7.2.1 Subjects learn the task transition structure

Previous analysis of these data has primarily focused on behaviour during test tri-

als, and in particular on responses occurring after the initial responses (Niyogi et al.,

2014a,b; Solomon et al., 2015, 2017). Following Breton (2013), we instead consid-

ered all trial types, and primarily focused on initial responses, since they reflect the

subjects’ beliefs about the likely worth of a trial before they encounter any within-

trial information. They are thus the best source of information about the subjects’

understanding of the cyclic triad structure. We characterised the initial responses by

EPs and IRTs.

Fig 7.3 contrasts the performance of subjects when they have just begun train-

ing in the triad structure with the performance of the same subjects after they have

been trained. For this analysis we exclude the first 5 triads during training as sub-

jects were not always engaged in the new task when it first began but quickly learned

7.2. Results and model 122

Figure 7.3: Subjects learn to predict oncoming trials. (A) We compare the responses
of subject 1 when it has just begun training with the triad structure to its re-
sponses once trained. Early in training (left) the subject responds with short
IRTs for all three trial types and EPs of 1, reflecting engagement in the task
but an inability to predict the oncoming trial type. After training (right), IRTs
reflect accurate prediction of oncoming lead and test trials, with certain engage-
ment and rapid but generally distinguishable responses on the two trial types.
For negligibly rewarding trail trials, the subject responds appropriately in the
majority of cases, as indicated by both a low EP and a number of responses
with long IRTs. However, in a minority of cases subjects also responded with
short IRTs, which indicates inaccurate prediction of the trail trial. (B) For lead
and test trials, EPs remained close to 1 (subject 1’s response in dark blue). On
trail trials, EPs were found to decrease consistently for all 6 subjects (binomial
proportion test; h3). (C) For lead trials, median IRTs remained short, and for
4/6 subjects became even shorter once trained (permutation test; h4), as sub-
jects learned to predict the highly rewarding lead trial. For test trials, with their
lower expected rewards, median IRTs remained relatively constant and were
longer in trained subjects than lead trial IRTs for all subjects (permutation test;
h2). For the poorly rewarding trail trials, median IRTs appeared not to change
consistently, but we examine the properties of the trail trial distribution in more
detail in Fig 7.4.

to be. Analysis of the subsequent 20 triads for each subject revealed this, with EPs

close to 1 and short IRTs for all trial types. These rapid and reliable responses

likely reflected the subjects’ lack of understanding of the task structure, as if they

predicted engagement with the lever to be valuable, or at least worth exploring, on

all trial types. This was further supported by the finding that 5/6 subjects did not

respond with a median trail trial IRT which was significantly longer than the median

IRT of a combined distribution of lead and test trials (permutation test; h1). For the

significant subject, the median trail trial IRT was not large (3.15s) and the EP was

1, and so this likely reflected initial stages of learning.

7.2. Results and model 123

After the training period, the same subjects emitted very different initial re-

sponses for the different trial types. To a first approximation, the difference in these

initial responses for trained subjects reflected the expected worth of the trial: the

larger this worth, the greater the EP (up to a maximum of 1) and the shorter the IRT.

For lead and test trials, the EP was generally very close to 1, with test trial IRTs

being slightly longer for all subjects than those for (the on average more valuable)

lead trials (permutation test; h2). That test trial IRTs were longer than lead trial IRTs

is interesting as this behaviour is seemingly suboptimal – subjects need to explore

to find out the test trial’s value before they can determine the appropriate response,

and waiting at the beginning of a trial reduces their potential to exploit the test trial

if it is indeed of high value. We therefore interpret the longer latency on test trials as

indicating a sub-optimal Pavlovian response to an accurate prediction of relatively

lower expected future reward, an effect which has been observed elsewhere (Liu

et al., 2000; Dayan et al., 2006). This type of response is convenient for our purposes

as it indicates that subjects learned to accurately and differentially predict lead and

test trials, even before they engaged with the lever.

Subjects responded very differently on the negligibly rewarding trail trials. EPs

were typically small, and when subjects did engage, the resulting IRTs were often

long. However, on a substantial fraction of occasions, the IRT s were instead short,

which is surprising because trail trials were designed to be effectively worthless to

the subject. We explore the possibility that the pattern of long and short IRTs is a

signature of subjects’ inability to predict trail trials perfectly, and are thus a result of

erroneous inference. They therefore provide a window into the subjects’ inferential

processes.

7.2.2 Misleading evidence leads to mistaken state inference

Trail trials are preceded by test trials, which involve a range of different frequen-

cies and prices. Some of these conditions resemble either lead (region α, Fig 7.1B)

or trail (region β , Fig 7.1B) trials. According to the task transition structure, lead

or trail trials are followed by test or lead trials respectively, both of which are as-

sociated with high EPs and low IRTs in subjects’ initial responses. We therefore

7.2. Results and model 124

Figure 7.4: Short IRTs on comparatively worthless trail trials as mistaken inferences.
(A) When a test trial had a frequency and price similar to that of either a lead
trial or a trail trial (regions α and β respectively; Fig 7.1B), the subject’s belief
about the trial type may have been mistaken. If this incorrect belief was com-
bined with a correct understanding of the transition structure of the task, the
subject would have expected the next trial to be a test or lead trial respectively,
rather than a trail trial, and so would have chosen a short IRT rather than no re-
sponse or a long IRT. By contrast, if the frequency and price were dissimilar to
both lead and test trials (region λ; Fig 7.1B), the test trial would be unambigu-
ous and the subject would either not respond at all, or would elect a long IRT
on the predicted trail trial. These effects are probabilistic, which we indicate by
lighter shading. (B) We tested this hypothesis by examining trail trial responses
given that the preceding test trial’s frequency and price were in regions α, β or λ.
Mirror plot histograms, subject 1. Left: When test trials had similar frequency
and price to lead trials (region α), the resulting distribution of short trail trial
IRTs (upper) was test-like (the lower left plot shows the actual distribution of
IRTs on test trials). Middle: when test trials were similar to trail trials (region
β) the resulting distribution of short trail trial IRTs (upper) was lead-like (lower
plot). Right: when test trials were dissimilar to both lead and test trials (region
λ), short IRTs were no longer observed (upper) despite these responses being
common in the trail trial distribution over all preceding frequencies and prices
(lower) . (C) This confusion effect is trial type specific. Short IRTs on trail
trials following test trials in region α are more similar to test trial IRTs than to
lead trial IRTs for all 6 subjects (permutation test; h5). Similarly, short IRTs
on trail trials following test trials in region β are more similar to lead trial IRTs
than to test trial IRTs for 3/6 subjects with the difference not being significant
for the remaining subjects (permutation test; h6).

7.2. Results and model 125

Figure 7.5: Filtering reduces EP for trail trials. When trail trial responses are filtered
such that only those with preceding test trials in region λ are included, a de-
crease in the EP is observed

considered the possibility that short IRTs on trail trials arose when the subjects had

been confused by the preceding test trial, but had applied their good knowledge of

the transition structure (Fig 7.4A; see also (Breton, 2013)).

To test this hypothesis, we sorted the trail trial IRTs by the frequency and price

of the previous test trial (Fig 7.4B). Indeed, when the test trial had similar frequency

and price to a lead trial (region α), the resulting distribution of short trail trial IRTs

resembled that of a test trial. This is consistent with the subject inferring the test

trial to be a lead trial and hence the subsequent trail trial to be a test trial. Likewise,

we found that when the test trial was similar to a trail trial (region β) the resulting

distribution of trail trial IRTs was similar to that of a lead trial, again consistent

with expectations. For test trial frequency-price combinations dissimilar to those of

either lead or trail trials (region λ, Fig 7.1B), subjects were rarely confused, and so

short IRTs occurred much more rarely and EPs were much lower (Figure 7.5).

To quantify whether the short IRTs sorted in this way are more lead-like or

test-like respectively we calculated the earth mover’s similarity between these dis-

tributions and lead and test distributions (Fig 7.4C). We define the earth mover’s

7.2. Results and model 126

similarity to be 1 minus the earth mover’s distance (or equivalently 1 minus the

Wasserstein distance). To select only short IRTs, we eliminated IRTs greater than

the 95th percentile of the test trial distribution. We found that for all 6 subjects,

responses on a trail trial following a lead-like test trial were significantly more test-

like than lead like (permutation test; h5). Similarly, responses on a trail trial fol-

lowing a trail-like test trial were significantly more lead-like than test-like for 3/6

subjects (permutation test; h6).

Having discovered this confusion effect, we investigated it in more detail by

considering the separate influences of frequency, price and duration. We found that

frequency strongly influenced subjects’ inferences (Fig 7.6 A): for intermediate, and

therefore not misleading, frequencies, subjects were much less likely to respond

rapidly on a trail trial, even when price and duration were misleading. Similarly,

we found subjects were sensitive to price and/or duration (Fig 7.6B), as when these

were long, and therefore not misleading (since lead and trail trials ubiquitously

had price of 1s), subjects were much less likely to respond rapidly even when the

frequency was misleading. Finally, we also examined the minority of cases when

price was not misleading but duration was (Fig 7.6C). These arose when price was

less than 1 second, as the duration was fixed at 25 seconds rather than being 25

times the price, as otherwise. We show that subjects were sensitive to the price on

the preceding test trial when its frequency was high but not when it was low. We

speculate about the reason for this in the discussion, but do not seek to model it as

its effect is subtle, only influencing a fraction of the data.

Whilst the description of confusion outlined in Fig 7.4 provides a clear, model-

agnostic, account of the varied responses on trail trials, it only provides a simpli-

fied, deterministic picture of this process. We therefore built a probabilistic model,

incorporating our understanding from Fig 7.6A;B, in order to describe this more

precisely.

7.2. Results and model 127

Figure 7.6: Subjects use multiple sources of evidence from the preceding test trial to
determine a response on the trail trial. (A) Intermediate test trial frequencies
only very rarely lead to short trail trial IRTs, even when price and duration
are misleading. This indicates that subjects can use frequency to determine
the appropriate response when this frequency is different from that of lead or
trail trials; see materials and methods for a definition of these regions. This
difference is significant for all subjects when comparing intermediate to both
‘Low f’ (binomial proportion test; h7) and ‘High f’ (binomial proportion test;
h8) categories. (B) High test trial prices also only rarely lead to short trail
trial IRTs even when frequency is misleading (here we show for high, lead-
like frequency) . As duration is perfectly correlated with price for prices of 1
second or greater, this indicates that subjects can use price and/or duration to
determine the appropriate response. The difference between the two categories
is significant for all subjects (binomial proportion test; h9). (C) When test trial
price is short, test trial duration remains at 25 seconds, thus we consider cases
in which price is not misleading (< 0.3s) but duration and frequency are. Short
trail trial IRTs depend on the frequency of the preceding test trial. When the
frequency is low, subjects respond with a similar fraction of short responses as
for a price of 1s (Figure 4A; left), indicating price insensitivity. However, when
the frequency is high, subjects are price sensitive, with a decreased fraction
of short responses. This difference was significant for 4/6 subjects (binomial
proportion test; h10).

7.2.3 Modelling the inference process

The task itself can be described in the form of an HMM, with hidden states rep-

resenting the trial type, and a binary transition matrix reflecting the deterministic

cyclic triad structure. Given the predominant regularities in responses, highlighted

earlier, we assume that subjects have learned this essential structure, associated with

a task transition matrix (A), which acts on the subject’s belief state when transition-

ing between trials.

Fig 7.7 captures the key steps of correct and approximate inference. First, we

assume that at the end of a lead trial, the subject is correctly certain that this is its

7.2. Results and model 128

Figure 7.7: Modelling the inference process. (A) We characterise subjects as building an
HMM generative model of the task and performing recognition to produce pos-
terior subjective beliefs over the trial types. In our model, at the end of a lead
trial the subject is certain it is on a lead trial (s1). As it has learned the transition
structure, described by matrix A, it is therefore certain it is on a test trial at the
beginning of a test trial (s2). If recognition was perfect, this knowledge would
persist through the test trial; we model subjects’ imperfection as arising from
uncertainty in past evidence, which we describe using a parameter γ , which pa-
rameterises the matrix B. By the end of the test trial, past evidence is integrated
with the within-trial evidence provided by observations (o3) of frequency and
price. This leads to a posterior belief (s3), which then leads to the subjective
belief about the trial type at the beginning of what is actually the trail trial (s4).
This can then be used to generate a response: either no engagement or engage-
ment with an associated IRT. (B) We describe the association between points
in frequency-price space and trial type using a mixture of Gaussians centered at
the experimentally utilised points for lead (top), test (middle) and trail (bottom)
trials. We introduce a standard deviation parameter (σ) which is shared across
all points.

current state. This is well justified as trained subjects always responded rapidly

and continually on lead trials, and always observed unambiguous evidence over its

duration.

In our model, matrix A then operates on this belief such that the subject’s

certainty propagates into certainty that a test trial will come next. This is again

supported by the fact that trained subjects responded reliably on test trials and with a

distribution of IRTs different from those of lead and trail trials, indicating negligible

confusion at this point.

If the subjects’ inference was perfect relative to the actual Markov chain, they

would continue to believe that they were in a test trial throughout its entirety. How-

7.2. Results and model 129

ever, unlike other trials, during a test trial subjects may be presented with observa-

tions that are misleading as to the trial type. Continued belief therefore depends on

subjects being able to correctly rely on past information in the face of competing

and more recent evidence.

We model imperfections in the subjects’ ability to do this as arising from an

incorrect generative model involving an intermediate matrix (B). This allows for

the possibility that subjects could switch their beliefs as to the trial type. Matrix B

is parameterized by a scalar γ , which characterises the uncertainty in past evidence.

If γ = 1, all trial types are a priori equally likely, and past evidence is completely

ignored. If γ = 0, then there is no uncertainty, past evidence fully determines the

inferred state and the test trial remains unambiguously known.

If the value of γ is intermediate, observations of frequency and price that re-

semble leading or trailing trials will license the potential for incorrect inference.

There remains a question of how close the resemblance needs to be, i.e., the struc-

ture of the likelihood of observations given the underlying trial type. We introduce

a further, standard deviation parameter (σ) that governs a kernel density likelihood

estimate (mixture of Gaussians) in log frequency-price space. To specify the cen-

tre of each kernel or Gaussian, we use the real points in log frequency-price space

experienced by each subject during the experiment, scaling the mixture weights in

proportion to the number of times they were observed.

For a given triad of trials, probabilistic integration according to the HMM can

be described using Bayes rule as:

P(s3|o3,s2,b(s2)) ∝ P(o3|s3) ∑
s2∈{lead,test,trail}

P(s3|s2)b(s2) (7.1)

where s3 is the inferred trial type at the end of a test trial, o3 is the observed fre-

quency and price (f,P) on the test trial and b(s2) is the belief state at the beginning

of the test trial. This inference is equivalent to the ‘forward’ part of the forward-

backward algorithm, where P(s3|o3,s2,b(s2)) is the updated belief state. This is

equivalent to the POMDP belief update (Section 1.4.3) when actions are unavail-

7.2. Results and model 130

Figure 7.8: Determining the likelihood of responses given a posterior state.. We eval-
uated the probability of the observed responses given certainty about the trial
type by constructing kernel density estimates of the observed responses. For
lead and test trials, which do not lead to confusion, the density estimate was
based directly on the observed distributions. For trail trials, to account for con-
fusion, we first filtered the trials such that only those with preceding test trials
in region λ were included.

able or irrelevant.

As, according to our model, the subject is certain it is on a test trial at the

beginning of the test trial, our belief update simplifies to:

P(s3|o3,s2) ∝ P(o3|s3)P(s3|s2 = test) (7.2)

This makes clear the influence of both recent observations, P(o3|s3), and evi-

dence from the past, P(s3|s2 = test), on the posterior belief at the end of a test trial.

Having determined this belief we find the belief at the beginning of a trail trial,

P(s4|o3,s2), simply by applying the task transition matrix A (marginalising out s3).

We then calculate the probability of a particular response according to:

P(r4|o3,s2) ∝ ∑s4∈{lead,test,trail}P(r4|s4)P(s4|o3,s2) (7.3)

where r4 is the response at the beginning of a trail trial (including no responses) and

the summation is over the three possible trial types.

To calculate the probability of IRTs given a known trial type we used non-

parametric fitting of lead, test and non-confusing trail trial IRTs (Fig 7.8).

The latter distribution was found by only selecting trail trials which followed

7.2. Results and model 131

test trials in region λ, which thus largely eliminated short IRTs. In order to fit param-

eters γ and σ we used the real responses generated by the subjects and maximized

the sum of the log likelihoods of those responses with respect to the parameters.

Having built the HMM we then split the data into three tertiles (details out-

lined in the following subsection), and determined the maximum likelihood estimate

(MLE) of the parameters independently for each tertile. We were then able to sim-

ulate response distributions by sampling from P(rn
4|on

3,s
n
2 = test) where n indexes a

particular triad of trials. We found that we were able to recover the pattern of short

and long IRTs present in the real data, closely matching the observed distribution of

EPs and IRTs for 5/6 subjects (Fig 7.9A;B;C). When sorting the simulated data by

the previous test frequency and price in the same manner as before, the simulated

data was found to match the real data well (Fig 7.9D), indicating that the model is

able to account for the observed confusion.

To investigate simpler versions of the model that could provide a more par-

simonious explanation for the observed responses we also tested models in which

subjects only used evidence from one of frequency or price but not both, as well

as models which either used past information perfectly (γ = 0) or not at all (γ = 1)

(whilst using both frequency and price) (Table 7.1). These gave much poorer fits

however as reflected by higher BIC scores, justifying the full version of the model

over these alternatives. We also tested a more complex model, with an asymmetric

matrix B due to parameters γ f and γb which allow forward and backward transitions

to be fit separately. This model was intended to test the hypothesis that subjects were

more likely to prematurely transition their beliefs ‘forwards’ from test to trail rather

than ‘backwards’ to lead. Interestingly, we found this asymmetry to be present, ac-

cording to BIC, for two subjects. However, on average this model performed worse

(by a score of 5.8) and so we do not use it for further analysis.

7.2.4 Inference improves with experience

Subjects typically encountered well over a thousand triads of trials. We therefore

analysed improvements on the task with experience by dividing the data by triads

7.2. Results and model 132

Figure 7.9: Simulated responses capture the process of mistaken inference. (A) By fit-
ting model parameters and simulating responses (upper), we are able to recover
the distribution of short and long IRTs observed in the data (lower)(subject 1).
(B) Simulated EPs are similar to real EPs except for subject 5 (green). (C)
The simulated distributions of IRTs have earth mover’s similarities to the real
distribution above 0.8 except for subject 5. (D) By sorting responses into re-
gions as in Fig 7.4B. we find that simulated distributions are similar to the real
distributions indicating that our model is able to capture the confusion effect.

Table 7.1: Relative increase in BIC score for alternative models

Subject γγγ = 0 γγγ = 1 No f No P γγγ fff ,γγγbbb
1 1331.5 261.9 15.2 30.4 14.4
2 173.8 33.7 26.8 33.1 11.4
3 115.5 37.7 9.6 6.1 -7.4
4 833.3 125.9 30.0 20.9 -4.1
5 400.7 63.1 28.6 76.3 2.8
6 822.0 70.6 47.8 70.0 17.7

into three sequential tertiles. When comparing the final tertile to the first tertile for

subject 1 we observe a marked decrease both in the EP and in the probability of short

IRTs on trail trials (Fig 7.10A). To analyse this across all subjects we calculated the

7.2. Results and model 133

Figure 7.10: Mistaken inference becomes less likely with experience, as subjects learn
to use past evidence. (A) Upper: simulated; lower: real. We divided the data
into three tertiles, fit parameters independently for each tertile and simulated
responses. We illustrate the first and last tertile in which subject 1 both lowers
its EP and also decreases the probability of short IRTs in cases when it does
respond. (B) By plotting the fraction of short IRTs in each tertile we find a
significant decrease from first to last tertile for 4/6 subjects (permutation test;
h11) indicating that these subjects improve in their ability to identify the trail
trial. The remaining two subjects show no significant change. (C) By calcu-
lating γ for each tertile we find that 4/6 subjects show a significant decrease
in the MLE estimate of γ from the first to last tertiles, with the remaining
two subjects showing no significant change (permutation test; h12). Although
significance was tested using a permutation test, we illustrate errorbars using
the mean square error in the MLE of the parameters. The decrease in γ over
time for the majority of subjects suggests a process by which subjects learn to
use past evidence. (D) There is no significant change in the MLE of σ for 3/6
subjects with two subjects showing a significant decrease and one a significant
increase (permutation test; h13). We therefore do not find strong evidence to
suggest that improvements in performance in the majority of subjects was due
to a more accurate association of frequency and price with the trial type.

7.2. Results and model 134

fraction of short IRTs for each tertile and found it to be significantly decreased for

4/6 subjects, with the remaining subjects showing no significant change (Fig 7.10B;

permutation test; h11). Taken together, this indicates that by the final tertile most

subjects had improved their ability to track their progress through the task, as even

on misleading trials they were rarely confused.

In order to understand these changes in the context of our model, we fit model

parameters independently to each tertile. MLEs of the parameters identified signif-

icantly lower values of γ in the last tertile relative to the first tertile for 4/6 subjects,

with the remaining subjects not showing a significant change (Fig 7.10C; permu-

tation test; h12). The subjects for which this parameter changed significantly cor-

responded to those which had shown a significant decrease in the fraction of short

IRTs. This suggests that over time, the majority of the subjects learned to use evi-

dence from the past more effectively and so improved their identification of the test

and subsequent trail trials.

We also examined changes in the MLEs of the parameter σ across tertiles

and found no significant change for 3/6 subjects, a significant decrease for two

subjects and a significant increase for one subject (Fig 7.10D; permutation test;

h13). This indicates that for most subjects there is no evidence that improvements in

performance can be attributed to a more accurate association of frequency and price

with the appropriate trial type.

Finally, to assess the linear correlation between estimates of the parameters γ

and σ we calculated the Pearson correlation coefficient from the negative inverse

Hessian evaluated at the MLE (Fig 7.11; see Appendices B.5 for further details).

We determined this coefficient separately for each subject and for each tertile, and

typically found a negative value between -0.3 and -0.7, indicating moderate anticor-

relation in the estimated parameters.

7.2. Results and model 135

Figure 7.11: Estimates of the parameters γ and σ are moderately anticorrelated. We
determined the linear correlation between estimates of the parameters γ and
σ by calculating the Pearson correlation coefficient. We calculated this co-
efficient separately for each subject and for each tertile and typically found a
negative value between -0.3 and -0.7, indicating moderate anticorrelation.

Chapter 8

Discussion

8.1 Findings and Limitations

We have shown that subjects learned a model of the world which reflected an exper-

imentally defined transition structure. However, we also identified a small fraction

of trials where behaviour seemingly went awry, as evidenced by subjects respond-

ing rapidly in advance of unrewarding trials. We demonstrated that these responses

could be attributed to mistaken inference of the trial type, and described this pro-

cess using an HMM. This involved introducing two parameters: σ , which influ-

enced the mapping from observations during the trial to the inferred trial type; and

γ , which represented the uncertainty associated with past evidence. We observed

that γ decreased significantly over the course of hundreds of triads for the majority

of subjects.

An important part of the work we have described is not only demonstrating

subjects’ abilities to learn structure in their environment but also in building a

statistical model which describes inference in this context. The model developed

was clearly defined and involved parameters which were interpretable, allowing for

greater insight into the changing role of past and present evidence.

The representation used in our model proposed that subjects maintain belief

states in an HMM. It is also conceivable that they might instead have adopted a

less compressed, history-based representation of state, by storing the frequency and

price of previous trials (either explicitly or implicitly). It is hard to distinguish these

8.1. Findings and Limitations 137

based only on behaviour (particularly given the relative paucity of errors); but this

would, of course, still constitute a functional form of world model.

In our preferred representation, observed ‘mistakes’, corresponding to short

IRTs on worthless trail trials, are due to mistaken inference of the hidden state. To

support this claim we demonstrated that when the inference problem was easy, such

as following lead, trail or non-confusing test trials, subjects’ responses reflected

clear understanding of the structure. By contrast, when inference was hard, subjects

more frequently responded inappropriately in a way which we were able to predict.

This imperfection arose in our model from uncertainty in past evidence, such

that subjects failed to maintain their initial beliefs during a test trial. However, it

is difficult to pin down the precise interpretation for this uncertainty. One interpre-

tation is forgetting, or a lack of certainty in memory, which allows for a potential

switching of beliefs when presented with observations which are more likely to have

been generated by a lead or trail trial. Alternatively, this uncertainty could arise from

imperfections in subjects’ generative model, such that transitions could occur at any

point during a trial as a result of misleading observations. One issue with this latter

view is that subjects always experienced each trial as being deterministically stable

across time, with no change in either price or frequency. Nevertheless, further work

is necessary to distinguish between these two interpretations.

In our analysis we primarily focused on responses immediately after test trials,

as only test trials varied across triads and thus posed substantial possibilities for

confusion. By contrast, both lead and trail trials were unchanged in frequency, price

and duration across triads, and empirically resulted in consistent response properties

on subsequent trials after only a small amount of training. Whilst there may also

have been confusion present early in training for these trials too, this learning may

have progressed too rapidly to enable detailed analysis of its progress.

Our model is starkly simple, using only two parameters to predict behaviour

without reference to the detailed microstructure of a given trial, such as the number

of reward encounters or the average reward rate. Fig 7.6C provides a hint that

the former factor can be influential, as increased sensitivity to price following high

8.1. Findings and Limitations 138

frequency test trials may have resulted from an increased number of lever presses

on these trials and thus a more accurate perception of price.

Nevertheless, we made this choice to capture and highlight the predominant

effects observed across subjects whilst also maintaining interpretability. In turn,

this allowed us to identify a significant change in the γ parameter in the majority of

subjects, a finding supported both by calculating the standard error in the mean of

these parameters and by permutation testing. In addition to identifying parameters

we also determined linear correlations between them at the MLE, and found that

estimates of γ and σ were moderately anticorrelated. This finding can be understood

intuitively by considering a variation in the parameters such that γ is increased but

σ is decreased. In this case, the uncertainty in past evidence increases but frequency

and price are now more accurately perceived, resulting in a ‘trade-off’ between the

two parameters when predicting behavioural performance. However, this trade-off

is only partial, ultimately allowing for separate estimation of γ and σ with sufficient

data.

Another related aspect of fitting our model was the choice not to use trial du-

ration in addition to price to predict responses. As alluded to earlier, this was due

to the strong correlation between duration and price, which implied that using ei-

ther would produce similar results. On the other hand, we were able to show that

subjects do use both frequency and price/duration, indicating that they successfully

combined multiple sources of evidence in the inferential process.

Finally, it is interesting to consider the limits of rat intelligence. Whilst the task

itself provided subjects with unsatiating reward which was clearly highly desirable,

we found that they nevertheless remained somewhat absent-minded in their pursuit,

even by the end of training. Furthermore, we found for all subjects that their IRTs

on test trials were clearly distinguishable from that of lead trials, which would not

be expected if they optimally balanced exploration with exploitation. Our results

therefore highlight how models which assume optimal animal behaviour, may often

fail to account for real world data.

8.2. Future work 139

8.2 Future work

8.2.1 Model learning

One avenue for future research would be to better understand how the subjects

learned the overall model of the world over early training – particularly given their

initially imperfect memories and their ignorance of the number of potential states.

One promising approach is to consider a non-parametric statistical structure such

as an infinite hidden Markov model (iHMM) (Beal et al., 2002). This formulation

allows for countably infinite number of hidden states, in contrast to HMMs in which

the number of hidden states is finite and specified in advance.

The iHMM uses the theory of Dirichlet processes to implicitly integrate out

the infinitely many parameters, leaving just three hyperparameters which define

the prior over transition dyanmics. These parameters are: an α parameter which

controls the probability of self transitions and thus the time scale over which the

dynamics of the hidden state evolves, a β parameter which controls the tendency of

the model to populate previously untransitioned to states, and a γ parameter which

controls the expected number of represented hidden states. The posterior over the

hidden state sequence in an iHMM may be inferred using an approximate Gibbs

sampling procedure.

Using an iHMM to model subjects’ experiences early in training might there-

fore allow the growth in number of hidden states to be accurately inferred, as well

as progress in subjects’ understanding of the transition structure to be uncovered.

It would be interesting to see if model building occurs during a series of ‘Eureka!’

moments or instead progresses more gradually. Likely there would be a degree of

variability amongs subjects and this too would be interesting to explore.

8.2.2 Adaptive integration of past evidence

The task demands in excess of 50 seconds of memory in order for subjects to utilise

information from two trials back. However, limits on the subjects’ capacities, and

the relationship between their willingness to deploy this expensive resource and

the resulting distribution of rewards (Kurzban et al., 2013; Botvinick and Braver,

8.2. Future work 140

2015) are unclear. Unfortunately, the structure of the task made assessing the dy-

namics of memory within a trial difficult to uncover; whilst longer trials might be

expected to result in more forgetting and decreased accuracy in our task, this effect

is confounded by the ability of subjects to use an extended price/duration to infer

trial type more accurately. It would therefore be worthwhile designing a task which

decorrelates these variables, giving us a greater insight into the influence of time.

8.2.3 Neural underpinnings

Understanding the neural basis of the diverse processes involved in this task pro-

vides an exciting challenge for future research. In the case of working memory,

its functioning is thought to be supported by persistent activity in a number of

brain regions, including medial prefrontal cortex (Wang and Cai, 2006; Yoon et al.,

2008; Horst and Laubach, 2009; Yang et al., 2014), entorinhal cortex (Hölscher and

Schmidt, 1994; Egorov et al., 2002) and the hippocampus (Wang and Cai, 2006;

Yoon et al., 2008). For evidence of neural representations of task structure, the hip-

pocampus provides a natural candidate (Constantinescu et al., 2016; Garvert et al.,

2017), and orbitofrontal cortex might similarly be suitable, given implications that

it can encode a probability distribution over hidden causes (Wilson et al., 2014;

Gershman et al., 2015; Schuck et al., 2016; Chan et al., 2016).

Epilogue

We explored two diverse topics involving both artificial and animal intelligence.

Our findings in Part I demonstrated that a hierarchical organisation for interactions

can enable reinforcement learning agents to cooperate more effectively to solve

tasks, and can support scaling to larger problems. The choice of agent as manager

was reflected in its ability to set goals for worker agents, an asymmetry which we

found effective even in cases where communication of relevant information to the

manager needed to be learned.

Our findings in Part II considered structure in a reward based task, and how this

might be represented in the behaviour of rats. We constructed a model of each sub-

ject’s predictions which involved it inferring the hidden task state and using this to

respond accordingly. Our model was able to account for behavioural data, exploit-

ing cases in which inference was mistaken to provide insight into the underlying

algorithm and representation. By examining the slow change in behaviour over the

course of extended training, we also gained a window onto improvements in the

inference of subjects as they learned to integrate past evidence more accurately.

Although it is not a direction we were able to pursue directly, it is tempting to

opine on the relationship between the two parts of the thesis. A perhaps superficial

connection is the exploitation of different sorts of structure in the rather diverse tasks

and architectures considered. In both parts we introduced externally imposed tasks

with various demands and constraints, whether this be the differentiation between

agents with information and agents who perform the task, or the rigid sequence

of trial types for the rats. We then considered the internal mechanisms which could

address them, whether this involved submission to feudal superiors or the allocation

8.2. Future work 142

of working memory.

A potentially deeper connection comes from considering the brain itself as a

cooperating, multi-agent system. This organ is, after all, highly compartmentalised,

with different regions performing different functions such as vision, memory and

cognitive control. These systems must learn to communicate effectively to integrate

their knowledge and must also jointly influence behaviour to increase an organism’s

chance for survival. It may therefore be possible for systems which learn according

to Hebbian and affect-based principles to similarly provide each other with both

instruction and reinforcement.

Appendix A

Appendix for Part I

A.1 Experimental results

A.1.1 Parameter settings for FMH

In all of our experiments in Chapters 3 and 4 we used the Adam optimizer (Kingma

and Ba, 2014) with a learning rate of 0.001 and τ = 0.01 for updating the target

networks. γ was 0.75. The size of the replay buffer was 107 and we updated the

network parameters after every 100 samples added to the replay buffer. We used a

batch size of 1024 episodes before making an update. For our feedforward networks

we used two hidden layers with 256 neurons per layer in Chapter 3 but 64 neurons

per hidden layer in Chapter 4. We trained with 10 random seeds (except otherwise

stated). Error bars were plotted using the standard error in the mean in Chapter 3

and using the interquartile range in Chapter 4.

Hyperparameters were optimised using a line search centred on the experimen-

tal parameters used in Lowe et al. (2017). Our optimised parameters were found to

be identical except for a lower value of γ (0.75) and of the learning rate (0.001),

and a larger replay buffer (107). We found these values gave the best performance

for both MADDPG and FMH on a version of Cooperative Communication with 6

landmarks evaluated after 50 epochs (an epoch is defined to be 1000 episodes).

A.1.2 Parameter sharing

We implemented parameter sharing for the decentralised algorithms DDPG and

FMH. To make training results approximately similar to implementations which

A.1. Experimental results 144

do not use parameter sharing we restrict updates to a single agent and add experi-

ence only from a single agent to the shared replay buffer (amongst those sharing

parameters). We find in practice that both approaches give very similar results for

FMH, whereas parameter sharing slightly improves the performance of DDPG – we

show this for a version of Cooperative Communication with 3 listeners and 6 tar-

gets (Figure A.1). In general sharing parameters reduces training time considerably,

particularly as the number of agents scales.

Figure A.1: Parameter sharing. Parameter sharing does not affect performance for FMH
but slightly improves DDPG (Tensorflow).

A.1.3 Further details on Table 1

Values in the table were determined using 10 random seeds in all cases, except for

the one exception of MADDPG with 10 listeners and 6 landmarks, which used 3

random seeds (training time is substantially longer as we do not share parameters).

The CoM agent was trained on the synthetic task with different numbers of land-

marks. Performance of the trained CoM policies was then evaluated over a period

of 10 epochs on the corresponding true tasks.

Convergence was determined by comparing the mean performance in the final

5 epochs with the mean performance of a sliding window 5 epochs in width (we also

take the mean across random seeds). If the mean performance within the window

was within 2 percent of the final performance, and remained so for all subsequent

A.1. Experimental results 145

epochs, we defined this as convergence, unless the first time this happened was

within the final 10 epochs. In such a case, we define the algorithm as not having

converged. For assessing the exact time of convergence in the case of FMH we

report values which include the 10 epochs of pretraining.

A.1.4 Cooperative communication with 3 landmarks

For reference we show performance of the various algorithms on Cooperative Com-

munication with 3 landmarks in both Tensorflow and Pytorch. Both MADDPG

and FMH perform well on this task, although MADDPG reaches convergence more

rapidly (Figure A.2).

Figure A.2: Cooperative Communication with Tensorflow. 1 listener and 3 landmarks
in Tensorflow implementation (n=10).

Our Tensorflow and Pytorch implementations achieve broadly similar results.

Our Pytorch version also shows results for feudal MADDPG without communica-

tion repeats, which learns the fastest.

A.1.5 Differences in DDPG and MADDPG implementations

We use the implementation of DDPG in Chapter 3 provided by Lowe et al. (2017) 1.

In Chapter 4 we use DDPG and MADDPG as implemented by Iqbal and Sha (2019)
2. One difference between the two is that Iqbal and Sha (2019) use the Straight-

1https://github.com/openai/maddpg
2https://github.com/shariqiqbal2810/maddpg-pytorch

A.1. Experimental results 146

Figure A.3: Cooperative Communication with Pytorch. 1 listener and 3 landmarks in
Pytorch implementation (n=4)

Through Gumbel-Softmax estimator which forces communication to be discrete on

the forward pass. Another is that rather than sampling past actions from the replay

buffer, they use the sampled observations to determine new actions using the current

version of the policy. The updates for MADDPG are therefore:

∇θiJ(θi) = Eooo∼D,aaa∼µµµ [∇θi µi(oi)∇aiQ
µµµ

i (ooo,aaa)|ai=µi(oi)]. (A.1)

L(wi) = Eooo,ooo′′′∼D,aaa,aaa′′′∼µµµ [(Q
w
i (ooo,aaa)− y)2] (A.2)

where y = ri + γQi(ooo′′′,aaa′′′). They also implement DDPG similarly.

Strictly speaking, this notation (also used by Iqbal and Sha (2019)) is not quite

precise as the action is further transformed by a one-hot operation to mimic a sam-

ple from the replay buffer. Interestingly, we find that replacing this onehot operation

instead with a soft Gumbel sample (temperature of 1) further improves the perfor-

mance of DDPG, perhaps because it better reflects the current policy. We therefore

use this in our experiments for both DDPG and MADDPG.

A.2. Environments 147

A.2 Environments

A.2.1 Cooperative communication

We provide further details on our version of Cooperative Communication (see main

text for original description). In general, we keep environment details the same

as Lowe et al., including the fact that the manager only has access to the target

colour. However, we also scale up the number of coloured landmarks, which we

do by taking the RGB values provided in the multi-agent particle environment,

(0.65,0.15,0.15),(0.15,0.65,0.15),(0.15,0.15,0.65), and adding 9 more by plac-

ing them on the remaining vertices of the corresponding cube and at the centre-point

of four of the faces (in RGB space).

The particular colour values used for the landmarks influences the performance

of RL algorithms as landmarks which have similar colours are harder for the speaker

to learn to distinguish.

A.2.2 Cooperative coordination

We provide further details on our version of Cooperative Coordination (see main

text for original description). The task provides a negative reward of -1 to each

agent involved in a collision. For DDPG and MADDPG this penalty is shared

across agents, whereas in FMH only the agents involved in the collision experience

this penalty.

We also evaluated performance of trained policies in Figures 3.11c and 3.11d

with slight modifications to the overall task. In the case of Figure 3.11c, to ensure

that targets were never impossible to achieve by overlapping with the immobile

manager, we moved the manager off-screen. For Figure 3.11d we ensured that

agent positions were never initialised in a way such that they would automatically

collide (such cases are rare).

A.2.3 Search and cooperative communication

We provide further details on our version of Search and Cooperative Communica-

tion (including v2, see main text for original description). In general, we keep the

environment the same as in Cooperative Communication with 3 landmarks, but ad-

A.2. Environments 148

ditionally add an extra black landmark and allow each episode to run for 50 rather

than 25 timesteps. In the original version of this task with 3 agents, the Informa-

tion Gatherer may communicate to the Speaker two separate messages, each with 4

possible discrete values. The Speaker can communicate one discrete message to the

Information Gatherer and one to the Listener (again 4 possible values for each). The

Listener does not communicate at all. In v2 of the task there are only two agents and

the Information Gatherer communicates a discrete message with 4 possible values

directly to the Listener. The Listener is again silent.

A.2.4 Algorithm Specifics

We provide tables which summarise aspects of the different centralisation methods

and feudal algorithms. In all cases communicated messages are received on the next

time step (whether these be goals sent by the manager or regular messages sent by

the workers).

Table A.1: Centralisation of all algorithms. Here P1 and P2 stand for Phases I and II.

Algorithm Centralised
Critics

Centralised
Policies

No. actor-critics
for N agents Feudal

DDPG No No N No
MADDPG Yes No N No

FMH-DDPG No No N Yes
FMH-MADDPG Yes No N Yes

FMH-MADDPG-DDPG Manager only No N Yes

Single-agent CPAC
P1: Yes
P2: Yes

P1: Yes
P2: No

P1: 1
P2: N

P1: No
P2: No

FMH-CPAC
P1: Yes
P2: Yes

P1: Manager only
P2: No

P1: N
P2: N

P1: Yes
P2: No

Table A.2: Feudal algorithms. Note, only FMH-DDPG uses pretraining and extended com-
munication.

Algorithm Message type Goal set Reward Chapter
FMH-DDPG Discrete Target landmark Negative dist. 3

FMH-MADDPG Discrete Target landmark Negative dist. 4
FMH-MADDPG-DDPG Discrete Target landmark Negative dist. 4

FMH Target State Continuous Target state Negative dist. 5
FMH Target state change Continuous Target state change Negative dist. 5

FMH Cosine Continuous Target direction Cosine similarity 5

Appendix B

Appendix for Part II

This work was done in collaboration with the Shizgal lab, Concordia University. All

procedures involving animals were carried out by the Shizgal lab, further details can

be found in Solomon et al. (2017) and Ahilan et al. (2019).

Ethics Statement

Animal-care and experimental procedures were carried out in accordance with the

principles in the Canadian Council on Animal Cares (CCAC) Guide to the Care

and Use of Experimental Animals, with the approval of the Concordia University

Animal Research Ethics Committee (certificate #: 30000302).

B.1 Analysis
We outline here elements of the modelling methodology. For a full description of

the experimental methodology see Solomon et al. (2017).

Since all trial types terminate after set intervals (25s for lead and trail; a vari-

able duration for the test), some care is necessary with the resulting censoring of

the time during which the subjects could engage. Furthermore, we occasionally ob-

served cases towards the end of the trail trial in which the subject briefly pressed the

lever for such a short time that there was no possibility of obtaining reward. This

might have been a Pavlovian reaction to the expectation of the upcoming lead trial.

To avoid problems from these cases, we counted a trial as having been engaged

in for the purposes of the EP if at least one reward was obtained, and we only

considered IRTs (defined as the time taken from the beginning of a trial to press

B.2. Statistical tests 150

the lever for the first time) on those same trials. This constraint implies that initial

responses after 24s on lead and trail trials would be impossible as there remains

insufficient time to obtain a reward; so we only examine the properties of the IRT

below this value. For test trials, which have variable trial duration, this ignored

potential IRTs much larger than 24 seconds. However, in practice such cases were

extremely rare (Fig 7.3A).

One facet of the experimental design is that the subjects received idiosyncratic

calibrated frequencies of brain stimulation reward. We duly defined lower (l) and

upper (u) boundaries of the regions α , β and λ separately for each animal; these also

defined the boundaries dividing low, intermediate and high frequencies in Figure 4.

Table B.1 summarises these values. All frequencies are in Hertz and all prices are

in seconds.

Table B.1: Frequencies and prices used for lead and trail trials and for boundaries of regions
α , β and λ

Subject flead Plead ftrail Ptrail fβββ
u fl

ααα Pl
βββ///ααα Pu

βββ///ααα fl
λλλ fu

λλλ Pl
λλλ

1 217.4 1.0 10.0 1.0 20.0 125.9 0.4 3.9 31.6 79.4 8.1
2 196.1 1.0 10.0 1.0 35.5 100.0 0.4 3.9 63.1 125.9 4.1
3 250.0 1.0 10.0 1.0 44.7 158.5 0.4 3.9 79.4 158.5 4.1
4 200.0 1.0 10.0 1.0 31.6 100.0 0.4 3.9 50.1 79.4 4.1
5 250.0 1.0 10.0 1.0 28.2 125.9 0.4 3.9 39.8 100.0 4.1
6 163.9 1.0 10.0 1.0 25.1 79.4 0.4 3.9 39.8 100.0 4.1

B.2 Statistical tests
We tested for statistical significance using two-tailed permutation and binomial pro-

portion tests. Permutation tests were used to determine the probability that the ob-

served difference in the test statistics between classes would occur for class labels

which were randomly permuted. In all cases we used 1000 simulations.

One non-trivial usage of the permutation test was to see if changes in the MLE

of model parameters was significant. For this we determined the MLE of the model

parameters in the first and last tertiles for data in which the time labels were per-

muted randomly and calculated the absolute difference between these parameter

values. This was repeated 1000 times in order to generate a distribution of differ-

ences. We then tested if the absolute difference in the MLE of the parameters for

B.3. Null hypotheses and p-values 151

the non-permuted data was significant (greater than the 95th percentile).

The binomial proportion tests were used to determine the probability of the

equality of two binomial proportions for two observed distributions. To compute

this we evaluated the test statistic:

Z =
p̂1− p̂2√

p̂(1− p̂)(1
n1
+ 1

n2
)

(B.1)

where p̂1 and p̂2 are the empirical probabilities, n1 and n2 the corresponding

number of observations and:

p̂ =
n1 p̂1 +n2 p̂2

n1 +n2
(B.2)

We then calculated p-values from Z using the normal approximation.

B.3 Null hypotheses and p-values
Our null hypotheses referenced in the Results section were as follows:

h1: Trail trial IRTs have the same median as a combined grouping of lead and test

IRTs for untrained subjects (permutation test)

h2: Test trial IRTs have the same median as lead trial IRTs for trained subjects (per-

mutation test)

h3: EPs on trail trials are the same for trained subjects as they are for untrained

subjects (binomial proportion test)

h4: Lead trial IRTs have the same median for trained subjects and untrained subjects

(permutation test)

h5: Test trial IRTs are equally similar to trail trial IRTs with preceding test trials in

region α as lead trial IRTs (permutation test)

h6: Lead trial IRTs are equally similar to trail trial IRTs with preceding test trials in

region β as test trial IRTs (permutation test)

h7: The fraction of short trail trial IRTs is the same for the ‘Intermediate’ category

as for the ‘Low f’ category, with P = 1s (binomial proportion test)

B.4. Model comparison 152

h8: The fraction of short trail trial IRTs is the same for the ‘Intermediate’ category

as for the ‘High f’ category, with P = 1s (binomial proportion test)

h9: The fraction of short trail trial IRTs is the same for the ‘P = 1s’ category as for

the ‘P > 7s’ category, with high f (binomial proportion test)

h10: The fraction of short trail trial IRTs is the same for the ‘Low f’ category as for

the ‘High f’ category, with P < 0.3s (binomial proportion test)

h11: The fraction of short trail trial IRTs is the same in the final tertile as it is in the

first tertile (binomial proportion test)

h12: The MLE of γ is the same in the final tertile as it is in the first tertile (permuta-

tion test)

h13: The MLE of σ is the same in the final tertile as it is in the first tertile (permu-

tation test)

The P-values for these hypotheses for all subjects are listed in Table B.2.

Table B.2: P-values for null hypotheses

Null hypothesis Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6
h1 0.506 0.001 0.472 0.200 0.488 0.543
h2 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
h3 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
h4 0.024 < 0.001 0.532 0.025 < 0.001 0.723
h5 < 0.001 < 0.001 < 0.001 0.003 0.003 0.001
h6 0.023 0.181 < 0.001 0.003 0.414 0.177
h7 0.004 < 0.001 < 0.001 0.014 < 0.001 < 0.001
h8 0.002 < 0.001 < 0.001 0.002 < 0.001 < 0.001
h9 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
h10 0.007 0.058 < 0.001 < 0.001 0.014 0.108
h11 < 0.001 < 0.001 < 0.001 0.165 0.210 < 0.001
h12 < 0.001 < 0.001 0.049 0.204 0.232 < 0.001
h13 0.355 0.044 0.065 0.743 < 0.001 0.022

B.4 Model comparison
We calculate the Bayesian Information Criterion (BIC) for a given model M accord-

ing to:

BIC =−2logP(D|θ ML,M)+NMlogND (B.3)

B.5. Comparison of model parameters across tertiles 153

Where D is observed data, θ ML are the maximum likelihood parameters of the

model, NM is the number of model parameters and ND is the number of data points.

As we split the data into tertiles, we calculate the BIC for each tertile first and

sum these to form an overall BIC for each subject.

B.5 Comparison of model parameters across tertiles
When comparing model parameters across tertiles, for illustration in Fig 7.10C;D,

we determined the standard error in the MLE of the parameters θ =(γ,σ) according

to:

SE(θ ML
i) =

√
Tii(θ ML) (B.4)

where θ ML
i is the MLE of the parameter in question, Tii is the ith diagonal

element of the matrix T =−H−1, the negative inverse of the Hessian H, defined as:

Hi j(θ
ML) =

∂ 2

∂θiθ j
l(θ)

∣∣∣∣
θ ML

(B.5)

where l(θ) is the log likelihood.

As the matrix T is an estimator of the asymptotic covariance matrix we use it

to determine the Pearson correlation coefficient:

ρi j =
Ti j(θ

ML)√
Tii(θ ML)

√
Tj j(θ ML)

(B.6)

(B.7)

Bibliography

S Ahilan and P Dayan. Feudal multi-agent hierarchies for cooperative reinforce-

ment learning. In Workshop on Structure & Priors in Reinforcement Learning

(SPiRL 2019) at ICLR 2019, pages 1–11, 2019.

Sanjeevan Ahilan and Peter Dayan. Correcting experience replay for multi-agent

communication. arXiv preprint arXiv:2010.01192, 2020.

Sanjeevan Ahilan, Rebecca B Solomon, Yannick-André Breton, Kent Conover,

Ritwik K Niyogi, Peter Shizgal, and Peter Dayan. Learning to use past evidence

in a sophisticated world model. PLoS computational biology, 15(6):e1007093,

2019.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Pe-

ter Welinder, Bob McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech

Zaremba. Hindsight experience replay. In Advances in Neural Information Pro-

cessing Systems, pages 5048–5058, 2017.

Dmitriy Aronov, Rhino Nevers, and David W Tank. Mapping of a non-spatial

dimension by the hippocampal–entorhinal circuit. Nature, 543(7647):719–722,

2017.

Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. In

Thirty-First AAAI Conference on Artificial Intelligence, 2017.

Bowen Baker, Ingmar Kanitscheider, Todor Markov, Yi Wu, Glenn Powell, Bob

McGrew, and Igor Mordatch. Emergent tool use from multi-agent autocurricula.

arXiv preprint arXiv:1909.07528, 2019.

BIBLIOGRAPHY 155

Gianluca Baldassarre and Marco Mirolli. Intrinsically motivated learning in natural

and artificial systems. Springer, 2013.

Stefan Banach. Sur les opérations dans les ensembles abstraits et leur application

aux équations intégrales. Fund. math, 3(1):133–181, 1922.

Andrew G Barto and Sridhar Mahadevan. Recent advances in hierarchical rein-

forcement learning. Discrete event dynamic systems, 13(1-2):41–77, 2003.

Tobias Baumann, Thore Graepel, and John Shawe-Taylor. Adaptive mechanism de-

sign: Learning to promote cooperation. arXiv preprint arXiv:1806.04067, 2018.

Matthew J Beal, Zoubin Ghahramani, and Carl Edward Rasmussen. The infinite

hidden markov model. Advances in neural information processing systems, 1:

577–584, 2002.

Timothy EJ Behrens, Timothy H Muller, James CR Whittington, Shirley Mark,

Alon B Baram, Kimberly L Stachenfeld, and Zeb Kurth-Nelson. What is a cogni-

tive map? organizing knowledge for flexible behavior. Neuron, 100(2):490–509,

2018.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curricu-

lum learning. In Proceedings of the 26th annual international conference on

machine learning, pages 41–48. ACM, 2009.

Dimitri P Bertsekas, Dimitri P Bertsekas, Dimitri P Bertsekas, and Dimitri P Bert-

sekas. Dynamic programming and optimal control, volume 1. Athena scientific

Belmont, MA, 1995.

Matthew Botvinick and Todd Braver. Motivation and cognitive control: from be-

havior to neural mechanism. Annual Review of Psychology, 66, 2015.

Craig Boutilier. Planning, learning and coordination in multiagent decision pro-

cesses. In Proceedings of the 6th conference on Theoretical aspects of rationality

and knowledge, pages 195–210. Morgan Kaufmann Publishers Inc., 1996.

BIBLIOGRAPHY 156

Steven J Bradtke and Michael O Duff. Reinforcement learning methods for

continuous-time markov decision problems. In Advances in neural information

processing systems, pages 393–400, 1995.

Keller Breland and Marian Breland. The misbehavior of organisms. American

psychologist, 16(11):681, 1961.

Yannick-André Breton. Molar and molecular models of performance for rewarding

brain stimulation. PhD thesis, Concordia University, 2013.

Yannick-André Breton, James C Marcus, and Peter Shizgal. Rattus psychologicus:

construction of preferences by self-stimulating rats. Behavioural brain research,

202(1):77–91, 2009.

Yannick-André Breton, Ada Mullett, Kent Conover, and Peter Shizgal. Validation

and extension of the reward-mountain model. Frontiers in behavioral neuro-

science, 7, 2013.

Lucian Busoniu, Robert Babuska, and Bart De Schutter. A comprehensive survey

of multiagent reinforcement learning. IEEE Transactions on Systems, Man, And

Cybernetics-Part C: Applications and Reviews, 38 (2), 2008, 2008.

Stephanie CY Chan, Yael Niv, and Kenneth A Norman. A probability distribution

over latent causes, in the orbitofrontal cortex. Journal of Neuroscience, 36(30):

7817–7828, 2016.

Yu-Han Chang, Tracey Ho, and Leslie P Kaelbling. All learning is local: Multi-

agent learning in global reward games. In Advances in neural information pro-

cessing systems, pages 807–814, 2004.

Gang Chen. A new framework for multi-agent reinforcement learning–centralized

training and exploration with decentralized execution via policy distillation.

arXiv preprint arXiv:1910.09152, 2019.

BIBLIOGRAPHY 157

Nuttapong Chentanez, Andrew G Barto, and Satinder P Singh. Intrinsically mo-

tivated reinforcement learning. In Advances in neural information processing

systems, pages 1281–1288, 2005.

Kamil Ciosek and Shimon Whiteson. Offer: Off-environment reinforcement learn-

ing. 2017.

John D Co-Reyes, YuXuan Liu, Abhishek Gupta, Benjamin Eysenbach, Pieter

Abbeel, and Sergey Levine. Self-consistent trajectory autoencoder: Hier-

archical reinforcement learning with trajectory embeddings. arXiv preprint

arXiv:1806.02813, 2018.

Alexandra O Constantinescu, Jill X O’Reilly, and Timothy EJ Behrens. Organizing

conceptual knowledge in humans with a gridlike code. Science, 352(6292):1464–

1468, 2016.

Nathaniel D Daw, Yael Niv, and Peter Dayan. Uncertainty-based competition be-

tween prefrontal and dorsolateral striatal systems for behavioral control. Nature

neuroscience, 8(12):1704, 2005.

Nathaniel D Daw, Aaron C Courville, and David S Touretzky. Representation and

timing in theories of the dopamine system. Neural computation, 18(7):1637–

1677, 2006.

Peter Dayan. Feudal q-learning. 1995, 1994.

Peter Dayan and Nathaniel D Daw. Decision theory, reinforcement learning, and

the brain. Cognitive, Affective, & Behavioral Neuroscience, 8(4):429–453, 2008.

Peter Dayan and Geoffrey E Hinton. Feudal reinforcement learning. In Advances

in neural information processing systems, pages 271–278, 1993.

Peter Dayan, Yael Niv, Ben Seymour, and Nathaniel D Daw. The misbehavior of

value and the discipline of the will. Neural networks, 19(8):1153–1160, 2006.

BIBLIOGRAPHY 158

Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from

incomplete data via the em algorithm. Journal of the Royal Statistical Society:

Series B (Methodological), 39(1):1–22, 1977.

Thomas G Dietterich. Hierarchical reinforcement learning with the maxq value

function decomposition. Journal of Artificial Intelligence Research, 13:227–303,

2000.

Alexei V Egorov, Bassam N Hamam, Erik Fransén, Michael E Hasselmo, and An-

gel A Alonso. Graded persistent activity in entorhinal cortex neurons. Nature,

420(6912):173–179, 2002.

Carlos Florensa, David Held, Markus Wulfmeier, Michael Zhang, and Pieter

Abbeel. Reverse curriculum generation for reinforcement learning. arXiv

preprint arXiv:1707.05300, 2017.

Jakob Foerster, Ioannis Alexandros Assael, Nando de Freitas, and Shimon White-

son. Learning to communicate with deep multi-agent reinforcement learning. In

Advances in Neural Information Processing Systems, pages 2137–2145, 2016.

Jakob N Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and

Shimon Whiteson. Counterfactual multi-agent policy gradients. In Thirty-Second

AAAI Conference on Artificial Intelligence, 2018.

Michael J Frank, Bryan Loughry, and Randall C O’Reilly. Interactions between

frontal cortex and basal ganglia in working memory: a computational model.

Cognitive, Affective, & Behavioral Neuroscience, 1(2):137–160, 2001.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approxi-

mation error in actor-critic methods. arXiv preprint arXiv:1802.09477, 2018.

Joaquin M Fuster. Network memory. Trends in neurosciences, 20(10):451–459,

1997.

BIBLIOGRAPHY 159

Mona M Garvert, Raymond J Dolan, and Timothy EJ Behrens. A map of ab-

stract relational knowledge in the human hippocampal–entorhinal cortex. eLife,

6:e17086, 2017.

Samuel J Gershman, David M Blei, and Yael Niv. Context, learning, and extinction.

Psychological review, 117(1):197, 2010.

Samuel J Gershman, Kenneth A Norman, and Yael Niv. Discovering latent causes in

reinforcement learning. Current Opinion in Behavioral Sciences, 5:43–50, 2015.

Jan Gläscher, Nathaniel Daw, Peter Dayan, and John P O’Doherty. States versus

rewards: dissociable neural prediction error signals underlying model-based and

model-free reinforcement learning. Neuron, 66(4):585–595, 2010.

Paul Glasserman and Yu-Chi Ho. Gradient estimation via perturbation analysis,

volume 116. Springer Science & Business Media, 1991.

Joshua I Gold and Michael N Shadlen. Banburismus and the brain: decoding the

relationship between sensory stimuli, decisions, and reward. Neuron, 36(2):299–

308, 2002.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets.

In Advances in neural information processing systems, pages 2672–2680, 2014.

Karol Gregor, Danilo Jimenez Rezende, and Daan Wierstra. Variational intrinsic

control. arXiv preprint arXiv:1611.07507, 2016.

Thomas L Griffiths, Michael I Jordan, Joshua B Tenenbaum, and David M Blei.

Hierarchical topic models and the nested chinese restaurant process. In Advances

in neural information processing systems, pages 17–24, 2004.

Emil Julius Gumbel. Statistical theory of extreme values and some practical appli-

cations. NBS Applied Mathematics Series, 33, 1954.

BIBLIOGRAPHY 160

Jayesh K Gupta, Maxim Egorov, and Mykel Kochenderfer. Cooperative multi-

agent control using deep reinforcement learning. In International Conference

on Autonomous Agents and Multiagent Systems, pages 66–83. Springer, 2017.

Harry F Harlow. The formation of learning sets. Psychological review, 56(1):51,

1949.

Masahiko Haruno, Daniel M Wolpert, and Mitsuo Kawato. Mosaic model for sen-

sorimotor learning and control. Neural computation, 13(10):2201–2220, 2001.

Serhii Havrylov and Ivan Titov. Emergence of language with multi-agent games:

Learning to communicate with sequences of symbols. In Advances in neural

information processing systems, pages 2149–2159, 2017.

Wayne A Hershberger. An approach through the looking-glass. Animal Learning

& Behavior, 14(4):443–451, 1986.

Christian Hölscher and Werner J Schmidt. Quinolinic acid lesion of the rat en-

torhinal cortex pars medialis produces selective amnesia in allocentric working

memory (wm), but not in egocentric wm. Behavioural brain research, 63(2):

187–194, 1994.

Nicole K Horst and Mark Laubach. The role of rat dorsomedial prefrontal cortex in

spatial working memory. Neuroscience, 164(2):444–456, 2009.

Junling Hu, Michael P Wellman, et al. Multiagent reinforcement learning: theoret-

ical framework and an algorithm. In ICML, volume 98, pages 242–250. Citeseer,

1998.

Leonid Hurwicz. The design of mechanisms for resource allocation. The American

Economic Review, 63(2):1–30, 1973.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift. arXiv preprint

arXiv:1502.03167, 2015.

BIBLIOGRAPHY 161

Shariq Iqbal and Fei Sha. Actor-attention-critic for multi-agent reinforcement learn-

ing. In International Conference on Machine Learning, pages 2961–2970, 2019.

Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z

Leibo, David Silver, and Koray Kavukcuoglu. Reinforcement learning with un-

supervised auxiliary tasks. arXiv preprint arXiv:1611.05397, 2016.

Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M Czarnecki, Jeff

Donahue, Ali Razavi, Oriol Vinyals, Tim Green, Iain Dunning, Karen Si-

monyan, et al. Population based training of neural networks. arXiv preprint

arXiv:1711.09846, 2017.

Max Jaderberg, Wojciech M Czarnecki, Iain Dunning, Luke Marris, Guy Lever, An-

tonio Garcia Castaneda, Charles Beattie, Neil C Rabinowitz, Ari S Morcos, Avra-

ham Ruderman, et al. Human-level performance in 3d multiplayer games with

population-based reinforcement learning. Science, 364(6443):859–865, 2019.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with

gumbel-softmax. arXiv preprint arXiv:1611.01144, 2016.

Natasha Jaques, Angeliki Lazaridou, Edward Hughes, Caglar Gulcehre, Pedro Or-

tega, Dj Strouse, Joel Z Leibo, and Nando De Freitas. Social influence as intrinsic

motivation for multi-agent deep reinforcement learning. In International Confer-

ence on Machine Learning, pages 3040–3049, 2019.

Michael C Jensen and William H Meckling. Theory of the firm: Managerial behav-

ior, agency costs and ownership structure. Journal of financial economics, 3(4):

305–360, 1976.

Yiding Jiang, Shixiang Gu, Kevin Murphy, and Chelsea Finn. Language as

an abstraction for hierarchical deep reinforcement learning. arXiv preprint

arXiv:1906.07343, 2019.

Jiarui Jin, Ming Zhou, Weinan Zhang, Minne Li, Zilong Guo, Zhiwei Qin, Yan Jiao,

Xiaocheng Tang, Chenxi Wang, Jun Wang, et al. Coride: Joint order dispatch-

BIBLIOGRAPHY 162

ing and fleet management for multi-scale ride-hailing platforms. arXiv preprint

arXiv:1905.11353, 2019.

Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassandra. Planning

and acting in partially observable stochastic domains. Artificial intelligence, 101

(1):99–134, 1998.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980, 2014.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv

preprint arXiv:1312.6114, 2013.

Jens Kober, J Andrew Bagnell, and Jan Peters. Reinforcement learning in robotics:

A survey. The International Journal of Robotics Research, 32(11):1238–1274,

2013.

Vijay R Konda and John N Tsitsiklis. Actor-critic algorithms. In Advances in neural

information processing systems, pages 1008–1014, 2000.

George Konidaris and Andrew G Barto. Building portable options: Skill transfer in

reinforcement learning. In IJCAI, volume 7, pages 895–900, 2007.

Kai A Krueger and Peter Dayan. Flexible shaping: How learning in small steps

helps. Cognition, 110(3):380–394, 2009.

Tejas D Kulkarni, Karthik Narasimhan, Ardavan Saeedi, and Josh Tenenbaum. Hi-

erarchical deep reinforcement learning: Integrating temporal abstraction and in-

trinsic motivation. In Advances in neural information processing systems, pages

3675–3683, 2016.

Saurabh Kumar, Pararth Shah, Dilek Hakkani-Tur, and Larry Heck. Federated con-

trol with hierarchical multi-agent deep reinforcement learning. arXiv preprint

arXiv:1712.08266, 2017.

BIBLIOGRAPHY 163

Robert Kurzban, Angela Duckworth, Joseph W Kable, and Justus Myers. An op-

portunity cost model of subjective effort and task performance. Behavioral and

Brain Sciences, 36(6):661–679, 2013.

Jean-Jacques Laffont and David Martimort. The theory of incentives: the principal-

agent model. Princeton university press, 2009.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based

learning applied to document recognition. Proceedings of the IEEE, 86(11):

2278–2324, 1998.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521

(7553):436–444, 2015.

Hyun-Rok Lee and Taesik Lee. Improved cooperative multi-agent reinforcement

learning algorithm augmented by mixing demonstrations from centralized pol-

icy. In Proceedings of the 18th International Conference on Autonomous Agents

and MultiAgent Systems, pages 1089–1098. International Foundation for Au-

tonomous Agents and Multiagent Systems, 2019.

Joel Z Leibo, Vinicius Zambaldi, Marc Lanctot, Janusz Marecki, and Thore Grae-

pel. Multi-agent reinforcement learning in sequential social dilemmas. In Pro-

ceedings of the 16th Conference on Autonomous Agents and MultiAgent Systems,

pages 464–473. International Foundation for Autonomous Agents and Multiagent

Systems, 2017.

Máté Lengyel and Peter Dayan. Hippocampal contributions to control: the third

way. In Advances in neural information processing systems, pages 889–896,

2008.

Andrew Levy, Robert Platt, and Kate Saenko. Hierarchical reinforcement learning

with hindsight. arXiv preprint arXiv:1805.08180, 2018.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,

BIBLIOGRAPHY 164

Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep

reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.

Alex Tong Lin, Mark J Debord, Katia Estabridis, Gary Hewer, and Stanley

Osher. Cesma: Centralized expert supervises multi-agents. arXiv preprint

arXiv:1902.02311, 2019.

Michael L Littman. Markov games as a framework for multi-agent reinforcement

learning. In Machine Learning Proceedings 1994, pages 157–163. Elsevier,

1994.

Zheng Liu, Elisabeth A Murray, and Barry J Richmond. Learning motivational

significance of visual cues for reward schedules requires rhinal cortex. Nature

neuroscience, 3(12):1307, 2000.

Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mor-

datch. Multi-agent actor-critic for mixed cooperative-competitive environments.

In Advances in Neural Information Processing Systems, pages 6379–6390, 2017.

Ryan Lowe, Jakob Foerster, Y-Lan Boureau, Joelle Pineau, and Yann Dauphin.

On the pitfalls of measuring emergent communication. arXiv preprint

arXiv:1903.05168, 2019.

Jinming Ma and Feng Wu. Feudal multi-agent deep reinforcement learning for

traffic signal control. In Proceedings of the 19th International Conference on

Autonomous Agents and Multiagent Systems (AAMAS), 2020.

Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribu-

tion: A continuous relaxation of discrete random variables. arXiv preprint

arXiv:1611.00712, 2016.

Rajbala Makar, Sridhar Mahadevan, and Mohammad Ghavamzadeh. Hierarchical

multi-agent reinforcement learning. In Proceedings of the fifth international con-

ference on Autonomous agents, pages 246–253. ACM, 2001.

BIBLIOGRAPHY 165

Hongzi Mao, Mohammad Alizadeh, Ishai Menache, and Srikanth Kandula. Re-

source management with deep reinforcement learning. In Proceedings of the

15th ACM Workshop on Hot Topics in Networks, pages 50–56, 2016.

Laetitia Matignon, Guillaume J Laurent, and Nadine Le Fort-Piat. Independent

reinforcement learners in cooperative markov games: a survey regarding coordi-

nation problems. The Knowledge Engineering Review, 27(1):1–31, 2012.

David Mguni, Joel Jennings, Sergio Valcarcel Macua, Emilio Sison, Sofia Ceppi,

and Enrique Munoz de Cote. Coordinating the crowd: Inducing desirable equi-

libria in non-cooperative systems. arXiv preprint arXiv:1901.10923, 2019.

Yasushi Miyashita. Neuronal correlate of visual associative long-term memory in

the primate temporal cortex. Nature, 335(6193):817–820, 1988.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis

Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep rein-

forcement learning. arXiv preprint arXiv:1312.5602, 2013.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,

Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg

Ostrovski, et al. Human-level control through deep reinforcement learning. Na-

ture, 518(7540):529, 2015.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy

Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous

methods for deep reinforcement learning. In International conference on machine

learning, pages 1928–1937, 2016.

Shakir Mohamed and Danilo Jimenez Rezende. Variational information maximi-

sation for intrinsically motivated reinforcement learning. In Advances in neural

information processing systems, pages 2125–2133, 2015.

John Moody and Matthew Saffell. Learning to trade via direct reinforcement. IEEE

transactions on neural Networks, 12(4):875–889, 2001.

BIBLIOGRAPHY 166

Igor Mordatch and Pieter Abbeel. Emergence of grounded compositional language

in multi-agent populations. In Thirty-Second AAAI Conference on Artificial In-

telligence, 2018.

Ofir Nachum, Shane Gu, Honglak Lee, and Sergey Levine. Data-efficient hierar-

chical reinforcement learning. arXiv preprint arXiv:1805.08296, 2018a.

Ofir Nachum, Shixiang Gu, Honglak Lee, and Sergey Levine. Near-optimal

representation learning for hierarchical reinforcement learning. arXiv preprint

arXiv:1810.01257, 2018b.

Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward

transformations: Theory and application to reward shaping. In ICML, volume 99,

pages 278–287, 1999.

Pekka Niemi and Risto Näätänen. Foreperiod and simple reaction time. Psycholog-

ical Bulletin, 89(1):133, 1981.

Ritwik K Niyogi, Yannick-Andre Breton, Rebecca B Solomon, Kent Conover, Peter

Shizgal, and Peter Dayan. Optimal indolence: a normative microscopic approach

to work and leisure. Journal of The Royal Society Interface, 11(91):20130969,

2014a.

Ritwik K Niyogi, Peter Shizgal, and Peter Dayan. Some work and some play:

Microscopic and macroscopic approaches to labor and leisure. PLOS Comput

Biol, 10(12):e1003894, 2014b.

John O’keefe and Lynn Nadel. The hippocampus as a cognitive map. Oxford:

Clarendon Press, 1978.

James Olds and Peter Milner. Positive reinforcement produced by electrical stim-

ulation of septal area and other regions of rat brain. Journal of comparative and

physiological psychology, 47(6):419, 1954.

BIBLIOGRAPHY 167

Randall C O’Reilly and Michael J Frank. Making working memory work: a com-

putational model of learning in the prefrontal cortex and basal ganglia. Neural

computation, 18(2):283–328, 2006.

Liviu Panait and Sean Luke. Cooperative multi-agent learning: The state of the art.

Autonomous agents and multi-agent systems, 11(3):387–434, 2005.

Peng Peng, Ying Wen, Yaodong Yang, Quan Yuan, Zhenkun Tang, Haitao Long,

and Jun Wang. Multiagent bidirectionally-coordinated nets: Emergence of

human-level coordination in learning to play starcraft combat games. arXiv

preprint arXiv:1703.10069, 2017.

Roger Ratcliff and Jeffrey N Rouder. Modeling response times for two-choice de-

cisions. Psychological Science, 9(5):347–356, 1998.

Peter H Rudebeck and Elisabeth A Murray. Dissociable effects of subtotal lesions

within the macaque orbital prefrontal cortex on reward-guided behavior. Journal

of Neuroscience, 31(29):10569–10578, 2011.

Ahmad EL Sallab, Mohammed Abdou, Etienne Perot, and Senthil Yogamani. Deep

reinforcement learning framework for autonomous driving. Electronic Imaging,

2017(19):70–76, 2017.

Mikayel Samvelyan, Tabish Rashid, Christian Schroeder de Witt, Gregory Far-

quhar, Nantas Nardelli, Tim GJ Rudner, Chia-Man Hung, Philip HS Torr, Jakob

Foerster, and Shimon Whiteson. The starcraft multi-agent challenge. arXiv

preprint arXiv:1902.04043, 2019.

David EM Sappington. Incentives in principal-agent relationships. Journal of eco-

nomic Perspectives, 5(2):45–66, 1991.

Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value func-

tion approximators. In International Conference on Machine Learning, pages

1312–1320, 2015.

BIBLIOGRAPHY 168

Nicolas W Schuck, Ming Bo Cai, Robert C Wilson, and Yael Niv. Human or-

bitofrontal cortex represents a cognitive map of state space. Neuron, 91(6):1402–

1412, 2016.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz.

Trust region policy optimization. In International Conference on Machine Learn-

ing, pages 1889–1897, 2015.

Wolfram Schultz, Peter Dayan, and P Read Montague. A neural substrate of pre-

diction and reward. Science, 275(5306):1593–1599, 1997.

Paul Seabright. Managing local commons: theoretical issues in incentive design.

Journal of economic perspectives, 7(4):113–134, 1993.

David Silver. Lecture 3: Planning by dynamic programming. Google DeepMind,

2015.

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin

Riedmiller. Deterministic policy gradient algorithms. In ICML, 2014.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George

Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-

vam, Marc Lanctot, et al. Mastering the game of go with deep neural networks

and tree search. nature, 529(7587):484–489, 2016.

Burrhus Frederic Skinner. The behavior of organisms: An experimental analysis.

BF Skinner Foundation, 1990.

RB Solomon, I Trujillo-Pisanty, K Conover, and P Shizgal. Psychophysical infer-

ence of frequency-following fidelity in the neural substrate for brain stimulation

reward. Behavioural brain research, 292:327–341, 2015.

Rebecca Brana Solomon, Kent Conover, and Peter Shizgal. Valuation of opportu-

nity costs by rats working for rewarding electrical brain stimulation. PloS one,

12(8):e0182120, 2017.

BIBLIOGRAPHY 169

Alec Solway, Carlos Diuk, Natalia Córdova, Debbie Yee, Andrew G Barto, Yael

Niv, and Matthew M Botvinick. Optimal behavioral hierarchy. PLOS Comput

Biol, 10(8):e1003779, 2014.

Martin Stolle and Doina Precup. Learning options in reinforcement learning. In In-

ternational Symposium on abstraction, reformulation, and approximation, pages

212–223. Springer, 2002.

Peter Stone and Manuela Veloso. Layered learning. In European Conference on

Machine Learning, pages 369–381. Springer, 2000.

Sainbayar Sukhbaatar, Rob Fergus, et al. Learning multiagent communication with

backpropagation. In Advances in Neural Information Processing Systems, pages

2244–2252, 2016.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.

2018.

Richard S Sutton, Doina Precup, and Satinder P Singh. Intra-option learning about

temporally abstract actions. In ICML, volume 98, pages 556–564, 1998.

Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-

mdps: A framework for temporal abstraction in reinforcement learning. Artificial

intelligence, 112(1-2):181–211, 1999.

Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour.

Policy gradient methods for reinforcement learning with function approximation.

In Advances in neural information processing systems, pages 1057–1063, 2000.

Richard S Sutton, Joseph Modayil, Michael Delp, Thomas Degris, Patrick M Pi-

larski, Adam White, and Doina Precup. Horde: A scalable real-time architecture

for learning knowledge from unsupervised sensorimotor interaction. In The 10th

International Conference on Autonomous Agents and Multiagent Systems-Volume

2, pages 761–768. International Foundation for Autonomous Agents and Multia-

gent Systems, 2011.

BIBLIOGRAPHY 170

Ming Tan. Multi-agent reinforcement learning: Independent vs. cooperative agents.

In Proceedings of the tenth international conference on machine learning, pages

330–337, 1993.

Michael T Todd, Yael Niv, and Jonathan D Cohen. Learning to use working memory

in partially observable environments through dopaminergic reinforcement. In

Advances in neural information processing systems, pages 1689–1696, 2009.

Edward C Tolman. Cognitive maps in rats and men. Psychological review, 55(4):

189, 1948.

Edward C Tolman, Benbow F Ritchie, and Donald Kalish. Studies in spatial learn-

ing. i. orientation and the short-cut. Journal of experimental psychology, 36(1):

13, 1946.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need.

In Advances in neural information processing systems, pages 5998–6008, 2017.

Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max

Jaderberg, David Silver, and Koray Kavukcuoglu. Feudal networks for hierarchi-

cal reinforcement learning. In International Conference on Machine Learning,

pages 3540–3549, 2017.

Alexander Sasha Vezhnevets, Yuhuai Wu, Remi Leblond, and Joel Leibo. Options

as responses: Grounding behavioural hierarchies in multi-agent rl. arXiv preprint

arXiv:1906.01470, 2019.

William Vickrey. Counterspeculation, auctions, and competitive sealed tenders. The

Journal of finance, 16(1):8–37, 1961.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew

Dudzik, Junyoung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko

Georgiev, et al. Grandmaster level in starcraft ii using multi-agent reinforcement

learning. Nature, 575(7782):350–354, 2019.

BIBLIOGRAPHY 171

Mark E Walton, Timothy EJ Behrens, Mark J Buckley, Peter H Rudebeck, and

Matthew FS Rushworth. Separable learning systems in the macaque brain and

the role of orbitofrontal cortex in contingent learning. Neuron, 65(6):927–939,

2010.

Gong-Wu Wang and Jing-Xia Cai. Disconnection of the hippocampal–prefrontal

cortical circuits impairs spatial working memory performance in rats. Be-

havioural brain research, 175(2):329–336, 2006.

Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-4):

279–292, 1992.

Christopher John Cornish Hellaby Watkins. Learning from delayed rewards. 1989.

Ronald J Williams. Simple statistical gradient-following algorithms for connection-

ist reinforcement learning. Machine learning, 8(3-4):229–256, 1992.

Robert C Wilson, Yuji K Takahashi, Geoffrey Schoenbaum, and Yael Niv. Or-

bitofrontal cortex as a cognitive map of task space. Neuron, 81(2):267–279, 2014.

David H Wolpert and Kagan Tumer. Optimal payoff functions for members of

collectives. In Modeling complexity in economic and social systems, pages 355–

369. World Scientific, 2002.

Sheng-Tao Yang, Yi Shi, Qi Wang, Ji-Yun Peng, and Bao-Ming Li. Neuronal repre-

sentation of working memory in the medial prefrontal cortex of rats. Molecular

brain, 7(1):61, 2014.

Taejib Yoon, Jeffrey Okada, Min W Jung, and Jeansok J Kim. Prefrontal cortex and

hippocampus subserve different components of working memory in rats. Learn-

ing & memory, 15(3):97–105, 2008.

Chongjie Zhang, Sherief Abdallah, and Victor Lesser. Integrating organizational

control into multi-agent learning. In Proceedings of The 8th International Con-

ference on Autonomous Agents and Multiagent Systems-Volume 2, pages 757–

BIBLIOGRAPHY 172

764. International Foundation for Autonomous Agents and Multiagent Systems,

2009.

Eric A Zilli and Michael E Hasselmo. The influence of markov decision process

structure on the possible strategic use of working memory and episodic memory.

PloS one, 3(7):e2756, 2008.

	Prologue
	Background
	Fundamentals
	The RL paradigm
	Agent and environment
	Observability
	Markov processes and Markov reward processes
	Markov decision processes
	Policies, values and models
	Dynamic programming

	Model-free approaches
	Prediction
	Control with action-value functions
	Value function approximation
	Policy gradient methods
	Baselines
	Compatible function approximation
	Deterministic policy gradients

	Deep reinforcement learning
	Experience replay
	Target networks
	Deep deterministic policy gradients
	Re-parameterisation with Gumbel softmax

	Latent variables and partial observability
	Latent variable models
	Hidden Markov models
	Partially observable Markov decision processes

	I Feudal Hierarchies
	Introduction
	Multi-agent RL
	Definitions
	Interaction concepts
	Solution concepts

	Hierarchical RL
	Feudal RL
	Options
	Feudal networks
	Off-policy HRL
	Multi-agent connections

	Feudal multi-agent hierarchies
	Introduction
	Hierarchies
	Communication as goals
	Communication as control
	Coordination

	Methods
	Discrete actions with Gumbel-Softmax and DDPG
	Goal-setting
	Pretraining and temporally-extended subgoals
	Parameter sharing

	Experimental results
	Cooperative communication
	Scaling to many agents
	Cooperative coordination
	Exploiting diversity
	Conclusion

	Centralised policy actor-critic
	Introduction
	Methods
	Feudal MADDPG
	Single-agent CPAC
	Feudal CPAC

	Results
	Feudal MADDPG
	Feudal CPAC
	Single-agent CPAC
	Conclusion

	Discussion and future work
	Hierarchical reinforcement learning
	Multi-agent interactions
	Combined approaches
	Centralisation
	Shaping
	Learning hierarchies

	II World Models
	Introduction
	Adapting to a structured world
	World models and partial observability

	Experiments and model
	Task and experiment
	Results and model
	Subjects learn the task transition structure
	Misleading evidence leads to mistaken state inference
	Modelling the inference process
	Inference improves with experience

	Discussion
	Findings and Limitations
	Future work
	Model learning
	Adaptive integration of past evidence
	Neural underpinnings

	Epilogue
	Appendices
	Appendix for Part I
	Experimental results
	Parameter settings for FMH
	Parameter sharing
	Further details on Table 1
	Cooperative communication with 3 landmarks
	Differences in DDPG and MADDPG implementations

	Environments
	Cooperative communication
	Cooperative coordination
	Search and cooperative communication
	Algorithm Specifics

	Appendix for Part II
	Analysis
	Statistical tests
	Null hypotheses and p-values
	Model comparison
	Comparison of model parameters across tertiles

	Bibliography

