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Abstract: Systemic risk, in a complex system with several interrelated variables, such as a financial
market, is quantifiable from the multivariate probability distribution describing the reciprocal influ-
ence between the system’s variables. The effect of stress on the system is reflected by the change in
such a multivariate probability distribution, conditioned to some of the variables being at a given
stress’ amplitude. Therefore, the knowledge of the conditional probability distribution function can
provide a full quantification of risk and stress propagation in the system. However, multivariate
probabilities are hard to estimate from observations. In this paper, I investigate the vast family
of multivariate elliptical distributions, discussing their estimation from data and proposing novel
measures for stress impact and systemic risk in systems with many interrelated variables. Specific
examples are described for the multivariate Student-t and the multivariate normal distributions
applied to financial stress testing. An example of the US equity market illustrates the practical
potentials of this approach.

Keywords: stress testing; systemic risk; elliptical conditional probability

1. Introduction

In financial systems, stress testing consists in quantifying the ability of the system to
cope with a crisis. In particular, it is important to identify weaknesses that can affect a large
part of the system and are therefore sources of systemic risk. Such tests are important to
assess the robustness of the system and they are required by market regulators. Besides
finance, stress testing and systemic risk assessment are crucial tasks in many other domains
such as ecological, biological and socio-economic systems. These are complex systems
where many interdependent variables are defining the system state and its dynamics.
The most general approach for stress testing consists in setting some variables (the ‘stressing’
variables X) at extreme values and estimate the effect on the statistical properties of another
set of dependent variables (the ‘stressed’ variables Y). This requires the computation of
the conditional probability P(Y|X). The computation of such a conditional probability can
be challenging in multivariate systems comprising a large number of variables, such as
financial markets. However, for a vast set of probability distributions that belong to the
elliptical family, the challenge is mainly reduced to estimate, with accuracy, the covariance
matrix (Fang 2018). In this paper, I report how, for this probability distribution family,
one can introduce practical multivariate systemic risk measures, useful for stress testing
and quantification of risk (Feinstein et al. 2017).

There is a vast literature on systemic risk in financial systems (see for instance in
Acharya et al. (2017) for an overview); where, through different approaches, researchers
study the propagation and amplification of losses in markets caused by externalities that
can trigger shortfalls when the system is undercapitalized. Stress on an industry sector
can cause fire-sales and trigger externalities on other institutions and different industry
sectors. Spillover effects can propagate and they can be amplified through the system
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causing distortions and systemic effects that eventually can involve the whole system
compromising its stability. They are therefore called systemic. To ensure the stability of
the system, it is important to be able to quantify the propagation of stress through the
system from institution to institution across sectors. Several methodologies have been
proposed to quantify systemic risk with approaches ranging from general economic per-
spectives (Allen and Gale 2000) to network theoretical approaches (Birch and Aste 2014;
Caccioli et al. 2018; Tungsong et al. 2017), specific econometric tools (Biagini et al. 2019;
Billio et al. 2012), machine learning techniques (Kou et al. 2019) and game-theoretic rea-
soning (Tarashev et al. 2009). Overall, all these approaches are aiming at capturing the
propagation of stress and consequently losses through the system (Alexander and Sheedy
2008; Bensalah 2000; de Bandt et al. 2008; Longin 2000; Pritsker 2019; Rebonato 2010) and
assess the criticality of the system identifying specific fragilities. This task requires the
modeling of the complex set of variables and mechanisms characterizing the highly inter-
connected system of financial institutions, industries and banks at the basis of our economy.
This paper adds on to the existing literature by introducing measures for stress propagation
and systemic risk that are truly multidimensional quantifying directly effects between sets
of variables and not just couples of them. These measures are general for the vast family of
elliptical distributions and can be extended further, for instance including the multivariate
generalized hyperbolic class (Prause 1999).

Mathematically, this is a system comprised of many dependent variables that can
be statistically described by a joint probability distribution. The risk in the system is
measured by the probability of negative fluctuations (losses). The systemic risk is associated
with the interdependency between the variables in the system and therefore with the
probability of occurrence of several losses across different institutions. Propagation of
stress is instead associated with the conditional probability of a loss given that some other
variables are stressed at a certain amount of loss. This is the approach adopted in (Adrian
and Brunnermeier 2011 2016) where a conditional definition of value at risk, named CoVaR,
was introduced. Such a conditional value at risk is the value at risk (VaR) of the ‘stressed’
variable, Y, computed conditioned on the ‘stressing’ variable X being at its VaR value for a
certain level of risk. This is an instance of the use of conditional probability to compute a
measure of risk when two variables are involved. Two major limits of the CoVar approach
are that it applies to only two variables and it measures risk in terms of VaR. Conversely,
in these system collective phenomena play a very important role and VaR is only one of
many possible risk quantification measures.

Stress applied to a subset of variables does not only change the quantile (VaR) of the
other variables, rather it changes both location and shape of the multivariate distribution
of the stressed variables. In this paper I argue that the most important contribution to
risk in a system under stress is caused by the shift of the centroid of the conditional
probability distribution with respect to the centroid of the unconditioned probability
distribution. For markets, such a shift can be quantified in money value and interpreted as
propagation of stress.

The value of such a shift is the same for all elliptical distribution and it is therefore
rather general. For this family of probability distributions, the other important contri-
butions to systemic risk are the change in the shape of the distribution and the rotation
of the principal axis of the equi-probability ellipsoid. In this paper I present three mea-
sures of systemic risk for multivariate systems under stress which are associated to these
three contributions. These measures are general for the whole family of elliptical distri-
butions. I also introduce some other measures in the appendix and discuss their relations
with the previous.

This paper is organized as follows: in Section 2, to set the tone and introduce some im-
portant concepts, I briefly report about the CoVaR reasoning, adopting however a slightly
different perspective with respect to the original paper. Expressions for the conditional mul-
tivariate probabilities for the whole elliptical distribution family are obtained in Section 3
with a detailed discussions for the multivariate Normal and multivariate Student-t distri-
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butions. In Section 4 the effect of conditioning on the properties of elliptical distributions
is discussed and systemic risk measures and stress testing tools from these conditional
probabilities are introduced. In Section 5, I discuss an example concerning the study of
systemic impacts between industry sectors under stress from the analysis of equity returns
in the US market. Conclusions and perspectives are given in Section 6. Three sections in the
Appendix A, introduce other measures of stress testing and systemic risk and discuss their
relation with the ones introduced in Section 4 . Appendix B reports on the application of
these measures on the US returns dataset comparing the results with the ones in Section 5.

2. Univariate Measure of Risk in Terms of Value at Risk and Conditional Value at Risk
2.1. Value at Risk (VaR)

For continuous variables VaR(q) is the q-quantile of the loss distribution, meaning
that with probability q, losses will not exceed the value VaR(q). Specifically, for a random
variable X representing the losses, VaRX(q) is defined by

P(X ≤ VaRX(q)) = q. (1)

When the random variable X belongs to the location scale family, then it has the
property that the distribution function of the scaled, shifted variable a + bX also belongs
to the same family. Therefore, I can arbitrary scale the variable while preserving the
distribution and in particular I can always write the distribution with respect to the
standard form:

P(X ≤ VaRX(q)) = P
[

X− µX
σX

≤ VaRX(q)− µX
σX

]
= ΦX

[
VaRX(q)− µX

σX

]
= q, (2)

where µX is the location parameter, σX is the scale parameter and ΦX(·) is the standard form
of the cumulative distribution function associated with the statistics of the standardized
variable. If the inverse of such cumulative distribution exists, then

VaRX(q)− µX
σX

= Φ−1
X (q). (3)

and therefore I have a general expression for the VaR(q):

VaRX(q) = µX + Φ−1
X (q)σX . (4)

2.2. Conditional Value at Risk (CoVaR)

In Adrian and Brunnermeier (2011) and Adrian and Brunnermeier (2016) a conditional
version of the VaRX(q) was proposed as a measure of impact of a variable on the risk of
another. In analogy with the definition of VaR from Equation (1) the conditional VaR is

P(Y ≤ VaRY|X(q)|X) = q. (5)

which is identical to the definition of VaRX in Equation (1) except that the probability is
now a conditional probability. In analogy with Equation (4) the conditional VaR is

VaRY|X(q) = µY|X + Φ−1
Y|X(q)σY|X . (6)

where ΦY|X(·) is the standard form of the cumulative distribution function associated
with the statistics of the standardized variable, it can be different from ΦX(·) due to
conditioning that can change the parameters of the distribution (for instance, this is the
case for the Student-t, as we shall see). In Adrian and Brunnermeier (2011) and Adrian and
Brunnermeier (2016) the value of X is stressed at its VaR value X = VaRX(q).
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For the location scale family the conditional probability has the same form as the
unconditional probability but with shifted location parameter and modified scale parameter.
For the whole location scale family the location parameter under conditioning becomes:

µY|x = µY + ρX,Y
σY
σX

(x− µX) (7)

where ρX,Y is the Pearson correlation coefficient between variable X and variable Y. Note
that this shifted location parameter µY|x is the least squares linear regression of Y given
X = x.

The scale parameter change depends on the distribution. Let me here report explicitly
for the case of the Normal and Student-t distributions.

2.3. Normal Distribution

For the normal distribution the scale parameter becomes:

σ2
Y|X = (1− ρ2

X,Y)σ
2
Y, (8)

Equations (7) and (8) can be quite straightforwardly retrieved with elementary algebra
by completing the square in the expression of the joint distribution considering X = x
as a constant and shifting Y. Essentially, for the normal case the probability distribution

shifts its location by the factor in Equation (7) and changes the scale by a factor
√

1− ρ2
X,Y.

This also implies that any increase in the value at risk of the conditioned variable is
only driven by the linear shift because the variance of Y is reduced by the conditioning.
Some traditional risk measures and CoVaR applications for systemic risk can be found in
Kurosaki and Kim (2013).

2.4. Student-t

In the case of Student-t distribution we have the same shift in the location parameter as
in Equation (7). However, the degrees of freedom increase to ν + 1 and the scale parameter
changes to:

σ2
Y|x =

ν + d2
x

ν + 1
(1− ρ2

X,Y)σ
2
Y. (9)

with d2
x = (x − µx)2/σ2

X. Contrary to the normal case, in the Student-t case the scale
factor depends on the values of X = x. Therefore, the scale of the distribution of Y|X = x
around the shifted centre µY|x can be smaller or larger than the scale of the unconditional
Y. For instance, when the system is not stressed and x = µX, then the conditional scale
is smaller than the unconditional one. However, when the stress is deviating from the
mean more than one standard deviation, then the conditional scale becomes larger than
the unconditional. This has relevant consequences for any risk measure which can increase
substantially beyond the linear shift of the conditional mean. Note that, when defined
(ν > 2), the variance is proportional to the square scale parameter and, for the variance,

expression 9 has the factor ν+d2
x

ν−1 instead of ν+d2
x

ν+1 .
In this non-linear case, due to the dependence of σY|x from the values of X = x, the

residual Y − µY|X is not independent from X. However, its scaled counterpart
Y−µY|X

ν+d2
X

is

instead independent from X (note that I consistently used lower case x to indicate the
value of the random variable X. Consistently, d2

x is a number, whereas d2
X is instead a

random variable).

3. Conditional Probability for the Elliptical Family

Let us now extend the reasoning illustrated in the previous Section to a multivariate
case with X ∈ RpX×1 and Y ∈ RpY×1. I consider the case when the multivariate probability
distribution of the random variables Z = (X>, Y>)> ∈ RpZ×1 (with pZ = pX + pY) belongs
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to the elliptical family, which implies that the multivariate probability density function can
be written as

fZ(Z) = k|Ω|−1/2g(d2
Z) (10)

where g(·) is a scalar function which is the standardized form of the distribution, its
expression is independent from the location and scale parameters but dependent on
dimension pZ and eventually on other parameters (such as the degrees of freedom ν
in the Student-t case), k is a constant that also can depend on these parameters. The
multivariate normal has g(d2

Z) = exp(−d2
Z/2) and the multivariate Student-t has g(d2

Z) =

(1 + d2
Z/ν)−(ν+pZ)/2 with ν the degrees of freedom. The matrix Ω ∈ RpZ×pZ is a positive

definite matrix, which is equal or proportional to the shape matrix and equal or proportional
to the covariance matrix when it is defined. The quantity d2

Z is the scalar:

d2
Z = (Z− µZ)

>Ω−1(Z− µZ). (11)

which is the square Mahalanobis distance (Mahalanobis 1936) when Ω is the covariance
matrix, as in the case of the multivariate normal distributions, and it is its generalization
in all other cases. Here, µZ ∈ RpZ×1 is the position of the centroid of the equi-probability
elliptical surface and it is given by the vector of means or location parameters of the
marginals. The symbol | · | indicates the determinant.

When the probability density function is defined, the multivariate conditional proba-
bility of Y ∈ RpY×1 given X ∈ RpY×1 is defined through the Bayes formula

fY|X(Y) =
fXY(X, Y)

fX(X)
. (12)

When conditioning, one variable is fixed to some values, X = x, therefore fX(X = x)
in the previous formula is a constant and consequently

fY|x(Y)∝ fXY(X = x, Y)∝ g(d2
Y|x + d2

x). (13)

with
d2

Y|x = (Y− µY|x)
>Ω−1

YY|X(Y− µY|x) (14)

and
d2

x = (x− µX)
>Ω−1

XX(x− µX), (15)

with ΩXX assumed to be invertible. Note that for any given X = x, the term d2
x is a constant.

The other terms are:
µY|x = µY + ΩYXΩ−1

XX(x− µX), (16)

the vector of conditional centroids; and

ΩYY|X = ΩYY −ΩYXΩ−1
XXΩXY, (17)

which is the inverse of the Shur complement (Ω−1)YY. The terms ΩXX, ΩXY, ΩYY and
ΩYX are the block elements of the joint shape matrix Ω

Ω =

(
ΩXX ΩXY
ΩYX ΩYY

)
. (18)

Summarizing, the conditional probability density function (when is defined) for any
probability of the elliptical family with fZ = k|Ω|−1/2g(d2

Z) is in the form:

fY|x(Y)= k̄|ΩYY|X|−1/2g(d2
Y|x + d2

x). (19)

with k̄ a normalization constant that does not depend on Y. The functional form of the
conditional probability is therefore very similar to the form of the joint beside the additive
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constant d2
x in the argument. It is clear that g(d2

Y|x + d2
x) can always be written as g̃(d2

Y|x)

and therefore this conditional probability density function is still a member of the elliptical
family. For all these conditional distributions, the expected values are

E[Y|X = x] = µY|x, (20)

and the shape matrix is equal or proportional to ΩYY|X = ΩYY − ΩYXΩ−1
XXΩXY. The

coefficient of proportionality depends on the distribution and it can be affected by the
constraining. For what concerns risk, the relevant factor is the relation between ΩYY|X and
the covariance (when defined). Indeed, it is the covariance which quantifies the fluctuations
of the variables around the mean. Hereafter, I discuss in further details the cases for the
multivariate normal and the multivariate Student-t distributions.

3.1. Conditional Distribution for the Multivariate Normal

The multivariate normal case is particularly simple because the function

g(d2
Z) = exp(−d2

Z/2) (21)

is an exponential and therefore the additive constant term, d2
x introduces an irrelevant

multiplicative constant in front, yielding to

fY|x(Y)= k̃|ΩYY|X|−1/2 exp(−d2
Y|x/2) (22)

which is a multivariate normal with expectation values µY|x and conditional covariance

Σnor.
YY|x = ΩYY|X. (23)

Notably, the conditional covariance is different from the unconditional, it is shaped by
the correlations between the conditioning and conditioned variables but it does not depend
on the value of the conditioning variable X = x.

3.2. Conditional Distribution for the Multivariate Student-t

For the multivariate Student-t case we have

g(d2
Z) = (1 + d2

Z/ν)−
ν+pZ

2 . (24)

The additive constant term in the conditional probability (1 + (d2
Y + d2

x)/ν)−
ν+pZ

2 can
be handled so to keep the formula in the same form as Equation (24), obtaining through
simple algebra

fY|x(Y)= k̄|ΩYY|X|−1/2

1 +
(Y− µY|x)

>Ω−1
YY|X(Y− µY|x)

ν + d2
x

−
νY|X+pY

2

. (25)

where νY|X = ν + pX which depends on the dimension of X but not its values. This is
clearly still a multivariate Student-t with expectation values µY|x and shape matrix

ΩSt.t
YY|x =

ν + d2
x

ν + pX
ΩYY|X. (26)

When defined, the conditional covariance is

ΣSt.t
YY|x =

ν + d2
x

ν + pX − 2
ΩYY|X. (27)
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therefore the covariance in the Student-t case is proportional to the conditional covariance
of the multivariate normal distribution, however the extra coefficient in front is now
dependent on the values of the conditioning variable x.

There are two considerations that need to be made here. First, one can note that the
degrees of freedom becomes νY|X = ν + pX, which, from a systemic perspective, when pX
is large, means that the degrees of freedom becomes large and the conditional Student-
t becomes closer to a multivariate normal. This effect reduces the probability of large
deviations from the mean of the conditioned variable. Second, the term d2

x has expected
value E[d2

x] = pX and it can vary in the range [0, ∞); it can therefore have a very large
impact on the conditional probability distribution and it can increase the probability of
large deviations from the mean of the conditioned variable.

Finally, let me note that, analogously to the Student-t bivariate case, and differently
from normal modeling, the residuals Y− µY|x are not independent from X, however the

scaled quantity Ȳ = ν+pX
ν+d2

x
(Y− µY|x) is instead independent from X.

4. Risk and Stress Measures for the Multivariate Elliptical Family Distributions

Let me now discuss some specific effects of conditioning on the properties of mul-
tivariate elliptical family distributions focusing on the few that, in my opinion, have the
greatest relevance for the quantification of systemic risk and for stress testing. First, let me
provide an intuitive vision of a multivariate distribution from the elliptical family from a
geometrical perspective. The general expression fZ(Z) = k|Ω|−1/2g(d2

Z) in Equation (10)
indicates that for the whole family the value of the probability density at any given point in
space is determined by the generalized Mahalanobis distance: two observations at the same
Mahalanobis distance have the same probability density value. From Equation (11) one
observes that the equation for the equi-probability region at constant Mahalanobis distance
d2

Z = const. corresponds to an ellipsoidal surface in a pY-dimensional space. Finally, from
Equation (19) one observes that conditioning to X = x provokes a shift of the barycentre of
the ellipsoid d2

Y = const. by a vector ΛY|x, it rotates the most elongated axis by an angle
ΘX→Y and it changes the length of such axis from λ̂1/2

Y to λ̂1/2
Y|X. Figure 1 depicts such effect

in a schematic way.

Figure 1. A pictorial representation of the effect of conditioning on the qui-probability surface of a
multivariate elliptical distribution. Such surfaces are ellipsoids in a pY-dimensional space. They are
respectively described by the equations d2

Y = const. and d2
Y|x = const. Conditioning to X = x shifts

the barycentre of the ellipsoid d2
Y = const. by the vector ΛY|x, it rotates the most elongated axis by

ΘX→Y and it changes the length of such axis from λ̂1/2
Y to λ̂1/2

Y|X.
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Let me now associate these major changes in the conditional probability density
function with practical measures relevant for qualification of risk and stress testing.

4.1. Shift of the Centroid

For the whole elliptical distribution family, the conditioning of a set of variables Y to
another set of variables X produces as effect a shift in the position of the centroid of the
probability distribution of the Y variables by the vector (see Eqaution (16) and Figure 1)

ΛY|x = µY|x − µY = ΩYXΩ−1
XX(x− µX). (28)

It must be noted that, analogously to the uni-dimensional case, also in this case the
shift in the locations coincide with the multilinear regression of Y with respect to X = x.

As simple measure for stress test, I here propose to use the average extra losses on the
subset Y provoked by extreme losses on the subset X. This is in analogy with the reasoning
beyond the CoVaR approach (Adrian and Brunnermeier 2011), the idea is to stress the set of
variables X to some extent and then measure the average losses caused in the Y set. This is:

Lq
X→Y =

1
pY

1>Y ΩYXΩ−1
XXVaRX

q, (29)

where VaRX
q ∈ RpX×1 is the vector of losses in X at value at risk q and 1Y ∈ RpY×1 is a

column vectors of ones.
Let me argue that, from a risk perspective this shift is the important factor because

conditioning always reduces uncertainty. This is discussed in the next session.

4.2. Reduction of Uncertainty

Uncertainty associated with a set of variables Z can be quantified in terms of the
Shannon entropy:

H(Z) = −EZ[log fZ(Z)]. (30)

With analogous definitions for X and Y. The larger the entropy the greater is the
uncertainty on the variables. When the scale matrices are invertible, the explicit expressions
for the elliptical family are (Arellano-Valle et al. 2013):

H(Z) = 1
2 log(|ΩZZ|) + HZ0

H(X) = 1
2 log(|ΩXX|) + HX0

H(Y) = 1
2 log(|ΩYY|) + HY0 ,

(31)

where HZ0 , HX0 , HY0 are the entropies associated with the standardized random vector
with zero expected values and the identity as shape matrix. These quantities are therefore
independent from the location vectors and the shape matrices. The effect on uncertainty
of Y caused by the conditioning to X can be quantified from the difference between the
entropy of the unconditioned set of variables, H(Y) and the conditioned one H(Y|X).
It should be noted that H(Y|X) = H(X, Y)− H(X) and therefore the difference is

H(Y)− H(Y|X) = H(X) + H(Y)− H(X, Y) = I(X; Y) (32)

which is the mutual information (Arellano-Valle et al. 2013). The mutual information I(X; Y)
is a non-negative quantity which is equal to zero when the two variables are independent.
This tells us that conditioning always reduces uncertainty on the conditioned variable
except in the case when the two sets are independent. From the previous expressions in
Equation (31) the mutual information is

I(X; Y) =
1
2

log(
|ΩXX||ΩYY|
|ΩZZ|

). (33)
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In the present context, the mutual information is interpreted as a measure of reduction
of uncertainty on the variable Y deriving from constraining X at some stressing value. Such
a reduction is not dependent on the value of variable X.

This measure must be interpreted in combination with the previous. A larger mutual
information means a greater reduction in uncertainty deriving from constraining but
not necessarily a reduction in risk which is mainly carried by the shift of the centroid.
Furthermore, as we shall see shortly in the next subsection, even if uncertainty is always
reduced by constraining, variability might increase instead when non-normal models
are considered.

Let me note that the conditional entropy H(Y|X) is the entropy associated with the
shifted and scaled variable Ȳ = 1

ν+d2
x
(Y− µY|x). It is not dependent on the values of X = x

and it is not given by −EY|X[log fY|x(Y)] which is instead a function of x.
In terms of risk and stress testing, we have two opposite factors. The more two parts of

the system are dependent, the larger will be the effect of one part on the shift of the centroid
of the other part. This imply an increase in risk. However, the same large dependency
between the variables cause a large reduction in uncertainty under conditioning. Therefore,
one has two competing mechanisms: risk increases with dependency due to the shift of the
centroid but it decreases with dependency due to the reduction in uncertainty.

4.3. Rotation of the Principal Axis

The eigenvector ûY|X associated with the largest eigenvalue of the conditional covari-
ance is not the same as the eigenvector ûY associate with the largest eigenvalue of the to
the unconditional covariance. They are respectively the eigenvectors of ΩYY|X and ΩYY
They are both unitary in module and therefore the change is a rotation by the angle:

ΘX→Y = arccos(û>Y ûY|X). (34)

This rotation of the axis of largest elongation of the equi-probility elliptical surface
provides information on relative increase or decrease of risk associated with each variable.
Under stress, some variables might take larger weights than in normal unstressed situations
highlighting systemic fragility. The larger the rotation the larger is the disruptive effect
of conditioning on the variables. I therefore propose that this angle is a simple measure
of systemic effect of the stress. Such effect is not directly a measure of risk because this
will depend on the assets in the investors’ portfolios. However it implies a change in the
market conditions and must be taken into account for risk management purposes.

These eigenvectors are the same for the whole family of elliptical distributions. Indeed,
the whole family share the same shape matrices that might differ only by a scalar factor.
Therefore, this is also a general measure of risk independent from modeling details. Note
that they do not depend on the values of the stressing variables.

There are many other possible measures of the effect of conditioning on the statistical
properties of the system. Some of them are mentioned in Appendix A. Specifically, one can
look at the change in the size of the axis (Appendix A.1); at the change in the variance of
an arbitrary portfolio (Appendix A.2) and; at the change in total variance (Appendix A.3).
All these measures are not independent and indeed most of them align with the mutual
information measure. Differently from the measures just discussed in this section, the other
measures reported in the appendix are not universal for the entire elliptical family. I will
therefore discuss them for the two cases of the multivariate normal and Student-t.

5. Stress Testing Experiment with US Equity Market

To provide an example of stress testing I collected data for 623 equities continuously
traded on the US market between 1 February 1999 and 7 April 2020 for a total of 5329 trading
days. I computed the log-returns of daily prices and performed the analysis as described
in the previous sessions. In particular, I computed the centroid shift L0.95

X→Y, the reduction in
uncertainty quantified by I(X; Y) and the change in risk distribution associated with the
rotation ΘX→Y. The focus in this paper is on the validation of these three risk measures by
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uncovering some expected spillover mechanisms. Once validated, future works will be
instead focused in uncovering unexpected mechanisms. Another reason for this experiment
with real data is to compare these measures among themselves and assess if they are
conveying equivalent or complementary information.

Results for L0.95
X→Y are reported in Figure 2 where the columns report in color map the

average amount of losses in the relative sector caused by stressing the sectors reported
on rows. For instance, I measure 22% average losses on oil and gas caused by stressing
the basic materials industry sector. Whereas, in the other direction, stressing on oil and
gas causes only 7% losses on basic materials. Note that this is not the CoVaR, it is the
mean that is moved by this quantity. A shift of 22% of the mean indicates that without
any endogenous stress, the exogenous stress propagating from the basic materials sector
causes already considerable losses in the oil and gas sector from close to zero to 0.22. It is
evident from this example that the effects of a sector on another are not symmetrical. It is
also noticeable that telecommunications and utilities are little influenced by stress on other
sectors wheres oil and gas, healthcare and technology are much more influenced.
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Figure 2. L0.95
X→Y: average losses in a sector as consequence of conditioning another sector. The color

map corresponds to the average amount of losses (negative log-returns) on a the sector reported on
the columns (conditioned variables) caused by stressing at 95% VaR the sector reported on the rows
(conditioning variables).

I computed also the effect of each industry sector on the rest of the market and vice-
versa. The results are reported in Figure 3. One can note that, oil and gas, healthcare and
technology sectors are indeed the most impacted by stressing the rest of the market while
consumer (goods and services), financials and industrials are the sectors that impact most
the whole market. Note that the results in Figure 3 are similar to but not coincident with
what it would be obtained by plotting on the vertical axis the mean of the rows and on the
horizontal axis the mean of the columns of the matrix in Figure 2. Indeed, the quantity
reported in Figure 3 is a multivariate estimate of the effects of a group of sectors onto
another and it takes into account all the internal effects of attenuation and sometimes
amplification of the propagating stress.
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Figure 3. Average losses caused on the entire system by stressing a given sector to 95% of its VaR vs.
the losses on the sector when the rest of the system is stressed to 95% VaR. The line is the diagonal
separation and is reported for visual reference.

Let me note that, in some analogy with the CoVaR approach, I stressed the variables
set X at their 95% VaR. However, this is relatively arbitrary way to set stressed values.
I verified that other levels of VaR give similar results, for instance stressing the more
extreme 99% VaR produces very similar outcomes though with roughly doubled values
of average losses. Another possibility is to stress with a uniform stress of, for instance, all
equal to 1 (the number itself is irrelevant because the results scale linearly with it). Results
in this case are consistent with the previous but quantitatively quite different. It is beyond
the purpose of the present work to investigate which kind of stressing is the most adequate
and, most likely, this depends on the purpose of the stress testing exercise.

As discussed in the previous section, while losses are induced by the shift of the
centroid, uncertainty is instead always reduced by conditioning and endogenous losses
under conditioning are lower than expected in the unconstrained case. The effect of
uncertainty reduction and consequently of conditioning is illustrated in Figure 4 where the
values of the mutual informations, I(X; Y), are reported for the various industry sectors.
Note that, in this case, the matrix is symmetric and the results do not depend on the values
of X and its level of stress. Interestingly, the map is quite different from the one for the
stress propagation in Figure 2. Note, for instance, that telecommunications and utilities
have large levels of mutual information while had small induced losses. This is confirmed
by looking at correlations between the values of the two measures ΛY|x and I(X; Y) across
all the cross-sectors which does not reveal overall significant overlapping patterns.

The angle of rotation of the principal axis, ΘX→Y, is reported in Figure 5. I note
that the effect of conditioning a sector over the other sectors can be quite severe on the
change in direction of the principal axis. I observe, for instance, that the industrial sector is
highly affected by stressing and technology and consumer services tend to strongly affect a
number of other sectors. Telecommunications is the least influencing while, contrary to the
results for L0.95

X→Y, under this measure, oil and gas is the least influenced. These rotations
are not directly a measure of losses, they indicate systemic effects of a sector onto another
sector measuring the change in relevance of the contribution of some variables towards
the principal axis of variability. By looking at the relation with the previous measures
I observe that this measure has small overlaps with L0.95

X→Y with no significant correlation,
while instead it reflects well the mutual information with a strong negative correlation
around 70%.
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Figure 4. Intensity map for the mutual information, I(X; Y), between industry sectors.
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Figure 5. Angles of rotation, ΘX→Y, of the principal axes as consequence of conditioning (degrees).
The rows are the conditioning variables and the columns the conditioned ones.

6. Conclusions

The effects of stress testing a multivariate system of interacting variables are described
by the conditional probability distribution where all statistical properties of the stressed
variables can be expressed as function of the values of the stressing variables. In this
work I have shown that for the vast class of multivariate models described by elliptical
distributions, the conditional probability density function is strictly linked to the original
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unconditional probability. I pointed at three main effects of conditioning affecting the
elliptical equi-probability surface: (1) shift in the centroid; (2) reduction in uncertainty,
and; (3) rotation of the axis. I have introduced three measures that quantitatively captures
these three effects. I have argued that the shift in the centroid is the primary cause of
stress and loss propagation showing that in general the uncertainty on the conditioned
variables is reduced by conditioning. Specifically, for multivariate normal modeling the
shift is the centroid is the only possible source of extra losses induced by stressing part of
the system. Instead, for Student-t there could potentially be other amplification effects. The
centroid shift coincides with the multivariate linear regression factor and therefore strongly
dependent variables propagate stress more than weakly dependent ones. However, the
opposite is instead true for what concerns uncertainty and endogenous losses: the larger is
the dependency and the smaller is the residual uncertainty on the constrained variables.

An example of application for equity returns shows meaningful outcomes. The three
measures reveal consistent but different mutual effects between industry sectors.

The proposed risk measures are quite intuitive and easy to implement. The elliptical
distribution family includes the multivariate Student-t distributions that are quite realistic
models for risk in financial systems. The practical limitation of this approach is the
estimate of the parameters of the multivariate distribution and in particular the shape
matrix Ω which comprises p(p− 1)/2 parameters and therefore requires a large number
of consistent observations to be properly estimated. However, this limitation can be
dealt with by using recently developed techniques by Barfuss et al. (2016) that allow L0
topological regularization using network filtering techniques which overcome the curse of
dimensionality problem. Stress testing using specific market states can be performed by
using the clustering method presented in Procacci and Aste (2019) which also overcome
non-stationarity issues. All these measures introduced in this paper and a test dataset
are accessible for public use at https://github.com/financialcomputing/Systemic-Risk-
Measures (accessed on 1 May 2021).

Despite the elliptical family being rather vast, one of its shortcomings is that it is
symmetric with positive and negative fluctuations having the same statistics. It is instead
well established that the statistics of financial returns is not symmetric. An extension
to non-symmetric multivariate distribution is the multivariate generalized hyperbolic
(MGH) family that has been indeed indicated by Prause (1999) as particularly adequate
for the modeling of financial returns. The approach presented in this paper is focused
around the effect of conditioning on the vector of expected values and on the d2

Z = const.
ellipsoid. These aspects stay unchanged in the MGH modeling; however, other factors and
parameters come into play as well. Extending the present study to the MGH family is a
meaningful continuation of this work.
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Appendix A. Other Measures for Systemic Risk and Stress Testing

There are several possible measures that can be used to capture systemic risk and the
effects of stress in multivariate systems.

https://github.com/financialcomputing/Systemic-Risk-Measures
https://github.com/financialcomputing/Systemic-Risk-Measures
https://github.com/financialcomputing/Systemic-Risk-Measures
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Appendix A.1. Change in Principal Axis Size

Together with the rotation discussed in the Section 4.3, the principal axis also change
in size. The length of the largest axis is the square root of the largest eigenvalues of the
unconditional and conditional covariance matrices, which I denote λ̂Y , λ̂Y|X respectivelly.
A simple measure is the relative change in value for the constrained variables with respect
the unconstrained one:

∆X→Y =
λ̂Y − λ̂Y|X

λ̂Y
. (A1)

The largest eigenvalue is associated with the most elongated principal axis of the
shape matrix and it is proportional to the variance of the linear combination Ỹ = û>Y:
the portfolio of the ‘riskiest’ component.

These are the eigenvalues of the covariance matrix, they are directly proportional to
the eigenvalues of the shape matrix. The coefficients of proportionality depend on the kind
of elliptical distribution assumed in the model. For the multivariate normal distribution
the covariance and shape matrices coincide whereas for the Student-t the constant of

proportionality is ν+d2
x

ν+pX−2 (see Equation (27)).
We shall see later, with real data experiments, that the size of the principal axis shrinks

under conditioning. This is intuitive because, as pointed out in Section 4.2, uncertainty
decreases under conditioning.

Appendix A.2. Change in the Variance of an Arbitrary Portfolio

For risk and stress testing purposes the relevant measure is the likelihood of losses
for a given set of assets in a portfolio. Of course, this quantity depends on the portfolio
weights and indeed the main task in portfolio management is to optimize the choice of
such weights. The average losses are simply related to the shift in the centroid. For a given
portfolio Ỹ = w>Y, the average losses caused by a conditioning to X = x are: w>ΛY|x.
This is universal for the whole elliptical family distribution. Conversely, the changes
of the variance of the portfolio is not general and it depends on the kind of elliptical
distribution one considers. Indeed, generally speaking, for the elliptical family distribution
the likelihood of large variations is directly related to the covariance and the covariance
is proportional to the shape matrix with a proportionality constant that depends on the
kind of distribution.

The variance of any conditioned linear combination of variables Ỹ = w>Y is:

σ2
Ỹ|X = βx

(
σ2

Ỹ −w>ΩYXΩ−1
XXΩXYw

)
. (A2)

where w>ΩYXΩ−1
XXΩXYw ≥ 0 for any w and

βx =


1 Normal case;

ν + d2
x

ν + pX − 2
Student-t case.

(A3)

Therefore, for the multivariate normal case the variance of any arbitrary portfolio is
always reduced by conditioning. Conversely, this is not the case for the Student-t where
the multiplicative factor βx can increase variability. This factor multiplies the shape matrix
(see Equation (27)) and therefore it affects all risk measures associated with the covariance.
Let me note that, when the variables X are set at their expected values x = µX, then
d2

x = 0. This is a ‘zero stress’ condition and the factor is smaller than one. However,
E(d2

X) = pX and one expects d2
x > pX when the stress level is above the mean. In general,

the distance dx measures how distant a datapoint is from the equi-probability elliptical
surface which contains the body of the elliptical distribution. Any stressing variable is
likely to have values outside such an envelop. We can see from Equation (19) that d2

x
plays a very important role as an additive factor to the generalized Mahalanobis distance
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in the expression for the conditional probability density for the whole elliptical family.
We have seen that the effect of this term is different for each specific distribution and, in

the Student-t case, it lead to the multiplicative factor βx = ν+d2
x

ν+pX−2 . The multivariate nature
of the problem makes very hard to identify a simple scalar measure of stress impact in this
context. I argue that, in general the relative value of d2

x with respect to pX is a good measure
of extra risk factor in non-normal modeling. Therefore, I propose the following measure:

Bx =
d2

x∗q

pX
, (A4)

where, in some analogy with the CoVar approach I propose to assign to d2
x∗q

the value of the
top q-quantile of X. Values of Bx significantly larger than one are expected to significantly
increase the effect of conditioning on risk in the Student-t case and in general when the
system does not follow multivariate normal statistics. This factor depends only on the
stressing variables X and quantify the relative impact of subset of variables on the other. I
call this quantity the Mahalanobis impact factor.

Appendix A.3. Total Variance Change

The total variance is defined as the determinant of the covariance matrix and it is a
global measure of variability; it quantifies the overall occupied volume in the probability
phase space. The change in the total variance as consequence of conditioning is a measure
of change in global variability. Such a change depends on the modeling. Specifically:

|ΣYY|x| =


|ΩYY|X| Normal case;(

ν + d2
x

ν + pX − 2

)pY

|ΩYY|X| Student-t case.
(A5)

Constraining always reduces the determinant and therefore:

|ΩYY|X| ≤ |ΩYY|. (A6)

However, as a consequence of the factor in front, for Student-t multivariate modeling
the total variance of the conditioned variables, |ΣYY|x|, could in principle increase with
respect to the total variance in the unconditioned case, |ΣYY|. Indeed, when d2

x > pX − 2,
the total variance can increase, it will instead decrease when d2

x < pX − 2. The presence of
pY at the exponent in the Student-t case makes the effect of the multiplicative factor much
stronger for large pY.

Appendix B. Experiment Results on the Other Stress Measures

Appendix B.1. Change in the Eigenvectors’ Length

The change in the length of the principal axis, ∆X→Y (Equation (A1)), is reported
in Figure A1. This measure is significantly correlated with the mutual information with
about negative 60% correlation across sectors. The negative correlation indicates that larger
dependency has as a consequence smaller variability.
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Figure A1. Change in the length of the principal axis, ∆X→Y.

Appendix B.2. The Mahalanobis Impact Factor

The Mahalanobis impact factor Bx = dx∗q /pX (Equation (A4)) is reported in in Figure A2.
It results that dx∗q < pX for all sectors with the largest effect from the Telecommunication
sector. This means that for this example also for the Student-t case stressing a sector always
reduces the variability on the other sectors. This is quite remarkable, given that X are
stressed at their 95% VaR, but indeed it turns out that values of dx∗q > pX are recorded only
for stresses above the 99% quantile. Note that the values reported are computed using
the covariance and therefore are the coefficients for the multivariate normal case. For the
multivariate Student-t case they will be further reduced by a factor (ν− 2)/ν.
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