
T
he

In
no

va
ti
on Report
Coupled deep-mantle carbon-water cycle: Evidence
from lower-mantle diamonds
Wenzhong Wang,1,6,7,* Oliver Tschauner,2 Shichun Huang,2 Zhongqing Wu,1,3 Yufei Meng,4 Hans Bechtel,5 and Ho-Kwang Mao4

*Correspondence: wz30304@mail.ustc.edu.cn

Received: December 1, 2020; Accepted: April 30, 2021; Published Online: May 4, 2021; https://doi.org/10.1016/j.xinn.2021.100117

ª 2021 The Author(s). This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Graphical abstract
Public summary

- Anovel approachwas developed to assess the pressure-temperature conditions of entrapment of inclusions in diamonds

- The viscoelastic relaxation of diamond has a significant effect on the evolution of pressure and temperature

- Ice-VII-bearing diamonds have formed in wet, cool environments at depths down to 800 km

- The coupled recycling of water and carbon is present in the deep mantle
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Diamonds form in a variety of environments between subducted
crust, lithospheric and deep mantle. Recently, deep source diamonds
with inclusions of the high-pressure H2O-phase ice-VII were discov-
ered. By correlating the pressures of ice-VII inclusions with those
of other high-pressure inclusions, we assess quantitatively the pres-
sures and temperatures of their entrapment. We show that the ice-
VII-bearing diamonds formed at depths down to 800 ± 60 km but at
temperatures 200–500 K below average mantle temperature that
match the pressure-temperature conditions of decomposing dense
hydrous mantle silicates. Our work presents strong evidence for
coupled recycling of water and carbon in the deep mantle based on
natural samples.

Keywords: diamond; deep mantle; water and carbon cycle; first-princi-
ples calculations
INTRODUCTION
Decades of effort in geodynamic modeling and seismic observations

have confirmed the presence of lateral heterogeneities in the transition
zone (TZ) and lower mantle (LM) of Earth.1–3 These heterogeneities are
distinguished through reduced seismic velocities and seismic wave reflec-
tions and can be generated by the presence of melt or fluid,3 or by thermal
and chemical variations in the mantle.4,5 In this context, diamonds provide
key information because some of them contain inclusions that were entrap-
ped in the TZ or LM,6–11 and, hence, are part of the global deep-carbon
cycle. Generally, diamond formation is not bound to subduction. The vast
majority of diamonds, including most of the diamonds that we have exam-
ined, have formed in the subcontinental lithosphere without direct relation
to subduction processes. However, the release of carbonaceous material
from subducted slabs can result in the formation of diamond in a reducing
mantle through a reaction of enstatite with magnesite12 or at greater depth
through comproportionation of carbon from carbonate and carbide.13,14

Iron carbide has been proposed to be an abundant accessory mineral in
the mantle at depths where the pressure-induced disproportionation of
Fe2+ into Fe0 plus Fe3+ dominates the redox conditions.13 This mechanism
finds support in the frequent occurrence of iron and iron carbide inclusions
in diamonds from deep mantle.10,15,16

Recently, the discovery of hydrous ringwoodite8 and ice-VII10 as inclu-
sions in diamonds has correlated the question of water storage in the
deep mantle with the carbon cycle. It was also shown that some inclusions
in diamonds sustain remnant pressures of several gigapascals (GPa),9,10

high enough to imply formation in the TZ or LM. Hence, these inclusions
provide direct mineralogical information about the TZ and LM, whereas
products of retrograde transformations of high-pressure minerals6,7

conserve composition but no fully quantifiable information about the pres-
ll
sure-temperature (P-T) conditions of their entrapment. Here, we show that
diamonds with inclusions of ice-VII and other minerals at high remnant
pressure not only represent entrapment in environments rich in carbona-
ceous aqueous fluid, which permit the formation of diamond13 and ice-
VII,10 but that they generally represent very cool environments within the
LM, above the solidus of wet carbonated peridotite but below the solidus
of wet peridotite, and are in apparent correlation with the decomposition
boundary of dense hydrous Mg silicate phase D.

Our approach is based on the in situ observation of mm- to sub-mm scale
mineral inclusions in diamonds which bear remnant pressures in the range
of 2–14 GPa (Table 1; Figure 1). These remnant pressures define foot
points of their P-T paths that these inclusions experienced between the
time of their entrapment in growing diamond and presence.9,10,17 Inclusions
that were entrapped at the same depth in the Earth have P-T paths inter-
secting at the same P-T point. Here, we use a new concept of correlating
P-T paths of different inclusions in one diamond for assessing the P-T of
entrapment (see the materials and methods). This approach is different
from earlier assessments which involve a priori assumption about the geo-
therm.9,18,19 At the same time, we take full account of the viscoelastic relax-
ation of the host diamond (see the supplemental methods). In our
approach, assessment of the P-T paths is in two steps: first through the
condition of the equal strain of host diamond and inclusions (isomeke,17

which we call here “elastic paths” to emphasize the abstraction from visco-
elastic relaxation) and, second, the role of viscoelastic relaxation of dia-
mond.20,21 Finally, we show that accounting for viscoelastic relaxation gives
temperatures that match the average mantle residence temperatures ob-
tained from nitrogen defects in diamond,22 which give estimates of average
residence temperatures as a function of residence time.22 In our approach,
P and T are strictly correlated. Thus, independent confirmation of T also
confirms that the assessment of P is correct.
RESULTS
The information about diamonds investigated in this work is described in

detail in the supplemental methods. We conducted X-ray diffraction mea-
surements on the inclusions. The diffraction and X-ray fluorescence data
of ilmenite (ilm>95) and taenite (Fe50Ni50) from Diamantina-1 gave the
following volumes: 307.9(5) and 44.9(3) Å3, respectively. The Fe/Mg ratio
of ilmenite was assessed through Rietveld refinement and the Fe/Ni ratio
of taenite through the integrated intensity ratio of the Fe andNi Ka lines using
the LARCH program.27 The diffraction data of the ice-VII bearing Orapa sam-
ples had been reported in Tschauner et al.10 Published composition, volumes,
and diffraction data of a garnet-ilmenite-TAP (10 Å phase)-liebermannite in-
clusion in diamondON-ZIZ-7425 are included in Table 1 because they provide
a cross-check of the present method with conventional garnet geobarome-
try.26,28,29 In addition, we measured the infrared spectra of the diamonds
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Table 1. Pressures and temperatures from the adiabatic approach compared with temperatures from nitrogen aggregation22 (second column from the right) using ages
from Chaves et al.23,24 and Timmerman et al.23,24

Specimen

Nitrogen aggregation Adiabatic P-T

A (ppm) B (ppm) Age (Ga) T (K) T (K) P (GPa)

Orapa GRr1507 94 ± 9 49 ± 7 0.9–1.6 1,430 ± 30 1,420 ± 20 28.6 ± 1.4

Orapa GRr1519 87 ± 9 53 ± 7 0.9–1.6 1,430 ± 20 1,490 ± 50 23.3 ± 2.0

Orapa M57666 96 ± 6 68 ± 7 0.9–1.6 1,460 ± 20 1,442 ± 40 29.0 ± 2.0

Diamantina 52 ± 12 134 ± 15 >1.7 1,460 ± 30 – 11.6 ± 0.6a

ON-ZIZ74 55 ± 8 13 ± 1 -b 1,450 ± 50 – 14.5 ± 0.5b

Further details are given in the supplemental methods.
aPressure from elastic P-T paths and temperature from N aggregation.
bUnknown age but a residence time of 0.1 Ga corresponds to 1,490 ± 10 K while 3 Ga give 1,400 ± 10 K.25 P and T were assessed through the intersection of isomeke of
ilmenite with the geobarometer pressure of coexisting garnet.25,26.
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and used the calibrations by Boyd et al.30,31 for estimating the amount of ni-
trogen in A- and B-type defects, respectively. The amount of D-type defects
was found to be less than 10 ppm in any specimen based on the calibration
by Clark and Davey32 and was neglected as being within uncertainties of the
amounts of A-type and B-type defects. The nitrogen contents from A- and B-
type defects range from 52 to 96 ppm and from 49 to 134 ppm, respectively.
The corresponding percentage of A-type defects and the approximate age of
the diamonds (Table 1) were used to estimate average mantle residence
temperatures.23,24 The fitted defect profiles and observed spectra are shown
in Figure S1. Nitrogen contents and estimated mantle residence tempera-
tures are presented in Table 1.

Remnant 300 K pressures of inclusions were assessed from their unit cell
volumes corrected for the elastic relaxation of diamond at 300 K.17 The cor-
rected pressures were used as foot points for calculations of P-T paths for
the inclusions based on the condition of the equilibrated strain of inclusion
and diamond (elastic path). In a second step, the paths were corrected for
viscoelastic relaxation of the hosting diamond.

DISCUSSION
We start with discussing the common case of annealed inclusion-dia-

mond systems. Temperatures near the average mantle adiabat33 are well
above the temperatures of viscoelastic relaxation of diamond.20,21 This
observation was already made by Anzolini et al.19 for assessing the entrap-
ment pressure of a periclase inclusion in a diamond. Thus, P-T of inclusions
and their hosting diamond equilibratewith the surroundingmantle and follow
a nearly adiabatic path upon ascent until the temperature drops below the
brittle-to-viscous transition in diamonds. This is illustrated in Figure 1A for in-
clusions in a type IaB diamond from the Diamantina alluvial deposits. The
remnant pressures of the inclusions are 1 and 4 GPa, respectively, at 300
K, which are remnant pressure values typically found for the super-deep dia-
monds from Juina, Brazil, that formed at least within the TZ or deeper.19 The
elastic P-T paths of ilmenite and taenite intersect right at the viscoelastic limit
of diamond of 1,200–1,300 K20,21 above 9.8 GPa (Figure 1A). Anymemory of
the P-T path above that limit is lost, although we can use the percentage of
remnant A-type defects in this diamond to estimate temperature22 and the
elastic P-T path to estimate aminimumP of entrapment (Figure 1A; Table 1),
which is consistent with the Ni content of the taenite inclusions of this dia-
mond.34 Another example is the inclusion of garnet, ilmenite, TAP, and lieber-
mannite in diamond ON-ZiZ74a (Table 1), which has been reported previ-
ously.25 The elastic path of ilmenite intersects the geobarometric pressure
of garnet based on its majorite component,28,29 leading to an estimated
P-T condition of 14.5 ± 0.5 GPa and 1,450 ± 50 K, which is only slightly above
the boundary of the elastic-to-viscoelastic transition of diamond.25 The as-
sessed entrapment P-T condition is consistent with the Ca and ferric Fe con-
tent of this garnet,26 the phase stability of liebermannite, and the average resi-
dence temperature of the hosting diamond obtained using nitrogen content.
We expect to find this convergence of the elastic P-T paths at the elastic-
viscoelastic transition of diamond for deep-mantle inclusions in general. In
2 The Innovation 2, 100117, May 28, 2021
fact, diamonds from Juina and Kankan, which originated in the deep mantle,
contain inclusions that formed retrogradely from higher pressureminerals,6,7

or high-pressure minerals relaxed to low remnant pressure,8 in accordance
with viscoelastic relaxation over extended geologic time at a depth shallower
than the depth of entrapment. This long relaxation time is also reflected in the
extended annealing of nitrogen defects to virtually only type B9 or N-free type
II diamonds.6,7

However, some diamonds contain inclusions whose elastic release P-T
paths do not intersect at the elastic-to-viscoelastic transition in diamond
but noticeably at higher pressure and temperature (Figure 1B). These sus-
tained pressure differences within the viscoelastic regime clearly show that
these inclusions did not experience full relaxation in viscoelastically deform-
ing diamond upon ascent and that they conserve an at least partial record of
their actual P-T conditions of entrapment in the deeper mantle. More pre-
cisely, these diamonds have ascended at rates higher than that which allows
complete viscoelastic relaxation of their host diamonds. One may argue that
such an intersection at high P-T could be incidental. However, the elastic P-T
paths of inclusions in diamonds are quite steep (Figure 1). Hence, their inter-
section at a pressure within mantle P-T mathematically implies that their en-
trapments have occurred within a limited pressure range in the mantle:
elastic P-T paths of inclusions of clearly different origins, such as lithospheric
inclusions in fibrous rims or along cracks compared with inclusions in the
kernel of these diamonds, do not intersect at a positive temperature or within
any plausible P-T bounds.

Wecan use the sustained pressure differences of high-pressure inclusions
to constrain the actual P-T conditions of entrapment. We examine two
limiting cases: (1) intersection of the elastic P-T paths and (2) convergence
along an adiabatic path based on the observed excess pressure at the dia-
mond viscoelastic limit (Figure 1B; for further details, see the supplemental
methods). As a check, we estimate T independently through the N aggrega-
tion state in the diamonds.22 We find that the adiabatic path gives the same
temperatures as the N aggregation in their host diamonds within uncer-
tainties (Table 1; Figure 2). Therefore, the adiabatic path provides plausible
temperature estimates for the inclusions. In contrast, the elastic paths mark-
edly overestimate T and underestimate P. Along an adiabatic path P and T
are correlated. Therefore, with T independently confirmed, our approach
also provides reliable estimates of P.

The results are summarized in Figure 2. All P-T points are above the soli-
dus of wet carbonated peridotite.35 All diamonds with ice-VII inclusions fall
within a P-T range between the solidi of wet and wet carbonated peridotite,35

but quite below the solidus of dry carbonated13 or even alkaline-rich perido-
tite.36 Notably, all P-T points are tied to wet cool environments at depths
down to 820 km, and temperatures of 200–500 K below a reference average
mantle adiabat.33 This finding is consistent with the formation of these dia-
monds in the surrounding of cold slabs (Figure 2). Below �800 km depth
the P-T points of entrapment are at the decomposition line of the dense hy-
drous magnesium silicate phase D,37 suggesting that the presence of H2O,
which is now conserved as ice-VII, and the formation of the hosting diamond
www.cell.com/the-innovation
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Figure 1. P-T paths of high-pressure inclusions in diamonds (A) Inclusions of
ilmenite (ilm>95, geik<5) and taenite (Fe50Ni50) observed in a diamond from the
Diamantina alluvial deposits (see the supplemental methods). The calculated
elastic release paths start to intersect at the diamond viscoelastic limit (hachured
area). This indicates that the inclusions were in elastic equilibrium with the host
diamond above this limit. Above this limit, P-T is expected to have evolved close to a
mantle adiabat (blue line). The ilmenite-liuite phase boundary is indicated. (B) In-
clusions of ilmenite (ilm92geik7) and iron (Fe>95) in a diamond from Orapa,
Botswana. The range of foot pressures and P-T paths reflect the uncertainties (see
the supplemental methods). Offsets of paths are the results of phase trans-
formations. The blue hachured region indicates the transition from elastic-to-
viscoelastic deformation of diamonds. We assess the corresponding T through the
intersection of a reference adiabat (blue) with P + DP (indicated through dashed
lines). This P + DP and T gives a lower limit of P-T of entrapment. However, the
temperature of this lower limit matches the temperature estimate from nitrogen
defect distribution in this diamond (Table 1). This shows that the lower limit rep-
resents the actual P-T path quite closely.

Figure 2. P-T points of entrapment of inclusions in diamonds Blue squares,
assessment based on adiabatic approach; hollow diamonds, temperature as-
sessed through nitrogen aggregation. Reference mantle adiabat is from Brown and
Shankland,33 carbonaceous, wet, and wet-carbonaceous solidus of peridotite are
from Tschauner et al.,10 Litasov et al.,35 and Ghosh et al.36 The decomposition
boundary of phases D to bridgmanite (bdm), stishovite (st), and fluid was taken
from37. All inclusions were entrapped in diamonds which grew in cool wet envi-
ronments down to 820 km depth. Consistent with experiments, these diamonds
grew above the solidus of C-H-O fluid-bearing peridotite.35 The formation of these
diamonds is tied to local wet areas in the TZ38 and dehydration of phases B and D37

above �800 km.
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are correlated with the decomposition of hydrated mantle silicate. Metallic
iron in the same diamonds may be a remnant of the redox-reaction mecha-
nism proposed by Rohrbach and Schmidt,13 which, therefore, may be active
within the LM. Preservation of high remnant pressure and an overall low-tem-
perature regime and short residence time in the mantle are correlated: the
sample with the longest mantle residence time (from Diamantina, Table 1)
has kept no record of a P-T path beyond the elastic deformation regime of
diamond. In many deep-source diamonds, long residence at temperatures
above the elastic-viscoelastic limit of diamond has removed the record of
their origins beyond the observation of transformation products of former
high-pressure phases. However, the observation of hydrous minerals,8,25,39

taenite, and iron as inclusions in ultradeep-source diamonds8,10,15 point to-
ward a common origin at 500–800 km depth but different paths and time-
scales of ascent (Figure 2). It cannot be excluded that diamonds form at
even greater depth. Equally well, remnant water may be kept in the mantle
to even greater depth,37 but we show that water present at the depth of
800 ± 60 km is still involved in the recycling of water and carbon (as wit-
nessed through the diamonds) (Figure 2). This concept is shown in a carton
ll
(Figure 3). This does not imply that all deep-mantle diamonds formed in simi-
larly wet environments or that certain deep layers in Earth are globally wet.
Nevertheless, we establish a conjunction between these conditions within
the LM, the deep-carbon, and the deep-water cycle.

Conclusion
We have developed a novel approach to assess the entrapment P-T con-

ditions of inclusions with high remnant pressure in diamonds. Similar to An-
zolini et al.,19 we find that the viscoelastic relaxation of diamond has a signif-
icant effect on the evolution of P and T of inclusions. The results show that
ice-VII-bearing diamonds have formed in wet, cool environments at depths
down to 820 km and temperatures of 200–500 K below the average mantle
geotherm. This is consistent with the formation of these diamonds in the sur-
rounding of cold slabs. Thiswork presents evidence for the recycling of water
and carbon in the deep mantle, even to the LM.

MATERIALS AND METHODS
X-ray diffraction and X-ray fluorescence analysis

X-ray diffraction data were collected at beamlines 13-IDB, -IDE, and 34-IDE at en-
ergies of 30, 19, and 22keV, respectively. The primary beamswere focused by elliptical
mirrors to micrometer scale (34-IDE: 0.5 mm) beam diameters. Diffraction data were
collected with area detectors, calibrated, and integrated with Dioptas. X-ray fluores-
cence was excited by the same primary beams and collected with a Vortex detector.
The diffraction data of theOrapa samples had been reported previously (see online de-
pository of Tschauner et al.10). The diffraction- andX-ray fluorescence data of ilmenite
(ilm>95) and taenite (Fe50Ni50) from Diamantinas-1 gave the following volumes:
307.9(5) and 44.9(3) Å3. The Fe-Ni ratio of taenite- and iron-inclusions was assessed
using the LARCH program.27

Infrared spectra of the examined diamonds
The spectra of all samples except GRR 1521 were collected in transmission at

beamline 1.4, ALS,with aNicoletMagna760 FTIR bench and aNic-Plan IRmicroscope
with a 323 magnification Schwarzschild objective, with 1 cm�1 resolution and a
HgCdTe detector with a KBr beam splitter. Apertures were set to 20 3 20 to 40 3

60 mm2 spatial resolution. The spectrum of the sample Diamantina-1 was obtained
from the uncut specimen. The spectrum of GRr1521 was taken from a crushed, clear
piece with a Thermo-Nicolet iS50 FTIR at the mineral spectroscopy laboratory at Cal-
tech in transmission with a glow bar source and 2 cm�1 resolution. All other spectra
The Innovation 2, 100117, May 28, 2021 3



Figure 3. Schematic diagram of the formation of ice-VII-
bearing diamonds in the deep mantle Ice-VII-bearing di-
amonds present in this study have formed at wet cool en-
vironments at depths down to 820 km and temperatures of
200–500 K below the average mantle geotherm. Below
�800 km depth the P-T points of entrapment are at the
decomposition line of the dense hydrous magnesium sili-
cate phase D,37 indicating that the presence of H2O, which is
now conserved as ice-VII, and the formation of the hosting
diamond may be related to the dehydration of hydrated
mantle silicate in subducted slab. The deep mantle formed
ice-VII-bearing diamonds may continue growing at litho-
sphere depth, as evidenced bymany low to ambient pressure
inclusions of chromite, pyroxenes, sellaite, or methane hy-
drate in their rims.
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were obtained from laser-cut, polished platelets. A synthetic type II diamondwas used
for assessing absorbance between 1,000 and 1,500 cm�1. Spectra were background
subtracted and scaled to an equal thickness of 10 mm. Contributions of A-, B-, and D-
type defect bands were assessed by using the pure defect-type spectra reported by
Taylor et al.22 We used the calibrations by Boyd et al.30,31 for estimating the amount
of nitrogen in A- and B-type defects, respectively. The amount of D-type defects was
found to be less than 10 ppm in any specimen based on the calibration by Clark
and Davey32 and was neglected as being within uncertainties of the amounts of
A- and B-type defects. The nitrogen contents from A- and B-type defects, the
corresponding percentage of A-type defects, and the approximate age of the dia-
monds (Table 1) were used to estimate average mantle residence temperatures.23,24

These temperatures are used as comparison with the temperatures obtained from
the modeled P-T paths. The N content in the hosting diamonds may be locally lower
and such variations cannot be clearly seen in transmission IR spectroscopy but we
found that the temperatures obtained from P-T paths are not systematically different
from the estimates based on N defects. The fitted defect profiles and observed
spectra are shown in Figure S1. These spectra and fits correspond to the results in
Table 1.

Ab initio calculations
Computational calculations were conducted using the Quantum Espresso pack-

age40 (ilmenite and liuite41), Vienna ab initio simulation package (VASP)42 plus finite
displacement approach43 for ice-VII, first-principles molecular dynamics simulations
(FPMD) on the cubic box containing 210 H2O molecules for fluid H2O, and equation
of state of iron phases from Dorogokupets et al.44

For ilmenite and liuite, the local density approximation (LDA) was used for assess-
ing the exchange-correlation. The energy cutoff for electronic wave functions was set
at 70 Ry. The oxygen pseudopotential was generated using the Troullier-Martins
method45 with a cutoff radius of 1.45 Bohr and a valence configuration of 2s22p4.
The pseudopotentials for iron (Fe) and titanium (Ti) were generated using the Vander-
bilt method46 with a valence configuration of 3s23p63d6.54s14p0 for iron and a valence
configuration 3s23p63d24s2 for titanium.The cutoff radii for both pseudopotentials are
1.8 Bohr. Due to the existence of large on-site Coulomb interactions among the local-
ized electrons (e.g., 3d electrons),47 we introduced a Hubbard U correction to the LDA
(LDA+U). HubbardU values for FeandTi atoms in ilmenitewere non-empirically deter-
mined using the linear response method.48 Crystal structures of ilmenite were well
optimized using the damped variable cell shape molecular dynamics at variable pres-
sures on a 63 63 6 k-pointmesh, and vibrational density of state (VDoS) values were
calculated using the finite displacement method.43 However, the vibrational phonon
calculations for liuite report some imaginary frequencies, which hampers the calcula-
tions of the high-temperature equation of state (EoS). Here, we obtained the 0 K
isotherm of liuite41 from LDA + U calculations and estimated the EoS at different tem-
peratures using the thermal expansion of bridgmanite.49 We assumed that tempera-
ture shows a similar effect on the volume changes of FeTiO3 andMgSiO3 perovskites.

Due to the failure of LDA in predicting the properties of the H2O system,50 we per-
formed first-principles calculations for ice-VII and H2O fluids by adopting the general-
ized gradient approximation51 for the exchange-correlation function. All calculations
for ice-VII were done using VASP code,42 and the PBE-type of pseudopotentials for
hydrogen and oxygen were used. The energy cutoff for plane waves was set as 700
eV. For solid ice-VII, relaxed crystal structures under different pressures were obtained
by optimizing cell parameters and atomic coordinates at an 8 3 8 3 8 k-point mesh
grid, and their VDoS values were derived from the finite displacement method.43 For
4 The Innovation 2, 100117, May 28, 2021
H2O fluids,we conducted FPMDsimulations on the cubic box containing 210H2Omol-
ecules to determine the EoS. FPMD simulations were propagated in the canonical
ensemble (NVT) with a Nosé thermostat and the Brillouin zone was sampled at
gamma point. All simulations on cubic boxes with variable volumes lasted at least
40,000 steps with a time step of 1.0 fs, and the temperature was set as 600, 900,
1,200, 1,500, 2,000, 2,300, 2,500, 2,700, and 3,000 K. Pressures at different tempera-
tures and volumes can be derived by calculating ensemble averages of the instanta-
neous pressure after reaching the equilibrium state.

Determination of P-T paths
Remnant 300 K pressures of inclusions were assessed by synchrotron micro-

diffraction of their unit cell volumes at beamlines 13-IDDIDE and 34-IDD. Experimental
parameters and data are provided in the supplemental information.We used empirical
equations of state of the mineral inclusions for the given composition. Subsequently,
the elastic relaxation of diamond at 300 K was corrected.17 The corrected pressures
were used as foot points for calculations of pressure-temperature (P-T) paths for the
inclusions and the paths were calculated based on the condition of the equilibrated
strain of inclusion and diamond (elastic path). We used the variance of pressures
for separate inclusions of the same phase as upper and lower bounds for the foot
points. Because of the low compressibility, low thermoelastic softening, and low ther-
mal expansivity of diamond, the elastic paths are close to but not identical with iso-
chores.9,10 First-order phase transitions were addressed by calculating separate paths
for low and high P-T phases, assessment of the pressure difference at the phase
boundaries (coexistence range), and subsequent correction for diamond relaxation un-
der isothermal conditions. The required thermoelastic parameterswere obtained from
ab initio calculations and literature data. Details of these calculations and the correc-
tion for minor chemical components are described above. By using empirical foot
pressures we largely circumnavigate the issue of possible overestimation or underes-
timation of computed volumes from insufficient correction of electron exchange cor-
relation. Consequently, deviations between computed and available empirical highP-T
volume data are within the uncertainties of the latter. Generally, we used these devia-
tions and the uncertainties of the foot point pressures in combination to estimate the
upper and lower bounds of P-T paths (Figure 1). Uncertainties of intersection points
are defined by the upper and lower intersection points of intersecting paths in P-
T space.

All data are given in Tables 1 andS1–S3, and are plotted in Figures 1 and S2. Partial
relaxation is a time-dependent, therefore, path-dependent process. Thus, changes in
pressure, volume, and temperature are path dependent as well. In addition, partial
relaxation is expected to differ for different inclusions, depending on their elastic
moduli, phase transformations, and their actual sizes and shapes. We constrain this
unknown time-dependent P-T path by two non-path-dependent limiting cases (Fig-
ure 1B). In case I, the intersection of the elasticP-T paths defines the upper limit of tem-
perature and the lower limit of pressure of their entrapment P-T point because it de-
fines the most rigid response of diamond to the stress exerted by the inclusions at
a given P-T of the surrounding rock. This is shown in Figure 1B. For all examined spec-
imens, these P-T intersection points are well above the viscoelastic limit of diamond
andwell above the presentmantle geotherm (Figure 1B). In case II we look at the pres-
sure differences between these inclusions at the elastic-viscoelastic transition temper-
ature and use an adiabatic path for assessing the P-T of entrapment as a lower T limit
(Figure 1B). It turns out that, within uncertainties, the adiabatic P-T paths give the same
temperature as the correlation of nitrogen content in the host diamonds with the per-
centage of A-type defects (Table 1; Figure 2). As a low-temperature limit, we assume
www.cell.com/the-innovation
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that an adiabatic path intersects the viscoelastic limit temperature of 1,200–1,300 K at
the lowest observed pressure of the inclusions (Figure 1B). In the case of complete
relaxation, the inclusions would have the same pressure at this temperature. The
observed DP at the diamond elastic-viscoelastic transition quantifies an excess pres-
sure anda corresponding adiabaticDT (Figure 1B). The transition frombrittle elastic to
visco-elastic behavior of diamond has been examined for single and poly-crystals, the
latter giving lower bounds.Without discussing the possible effect of N, and P-T on the
yield strength, we set the viscoelastic limit to the reported temperatures for single and
polycrystals. Then we define two reference adiabats from the upper and lower inter-
section of the elastic P-T paths with these two limits (Figure 1B) and bracket DP
and DT. The validity of the adiabatic approach is confirmed through the agreement
of the assessed temperatures with the temperatures obtained from N aggregation
states (Figure 2; Table 1). A similar finding was reported by Anzolini et al.19 for single
periclase inclusions from the TZ.
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