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Cavity optomechanics assisted by optical coherent feedback
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We consider a wide family of optical coherent feedback loops acting on an optomechanical system operating
in the linearized regime. We assess the efficacy of such loops in improving key operations, such as cooling,
steady-state squeezing and entanglement, as well as optical-to-mechanical state transfer. We find that mechanical
sideband cooling can be enhanced through passive, interferometric coherent feedback, achieving lower steady-
state occupancies and considerably speeding up the cooling process; we also quantify the detrimental effect of
nonzero delay times on the cooling performance. Steady-state entanglement generation in the blue sideband can
also be assisted by passive interferometric feedback, which allows one to stabilize otherwise unstable systems,
though active feedback (including squeezing elements) does not help to this aim. We show that active feedback
loops only allow for the generation of optical, but not mechanical, squeezing. Finally, we prove that passive
feedback can assist state transfer at transient times for red-sideband-driven systems in the strong-coupling
regime.
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I. INTRODUCTION

Optomechanical systems, where light modes are coupled to
massive mechanical oscillators, have applications in quantum
technologies and investigations of fundamental physics [1,2].
A goal common to both areas is to control coherent properties
of mechanical motion, e.g., by cooling to near the ground state
[3–7], generating squeezing [8,9] or entanglement between
optical and mechanical modes [10–12]. Since the control is
exerted via an optical cavity, a natural question is whether
coherent optomechanical effects can be enhanced by imple-
menting additional operations on the optical field, e.g., by
means of feedback loops. A unique possibility in this respect
is provided by coherent feedback (CF), where enhanced con-
trol is achieved via a measurement-free feedback loop [13,14].
In this work, we investigate the efficacy of CF as a way of
achieving the goals mentioned above, as well as exploring CF
protocols for generating mechanical squeezing and enhancing
the transfer of states from the optical to the mechanical mode.

Unlike measurement-based feedback (MF), which involves
measurements on the system and uses the results to inform
operations, a CF loop is one where quantum information is
extracted from a system, processed, and fed back into the
system without measurements being performed [14]. In this
study, we consider a CF setup where the light leaking out of
one interface of the cavity is allowed to interfere with ancil-
lary modes—the most general process being described by a
completely positive (CP) map—before being fed back into the
cavity through another interface (see Fig. 1). We note, though,
that other forms of CF loops are possible (see, e.g., Ref. [15]).
Quantum feedback through input-output interfaces is often
modeled using the SLH and linear quantum feedback network
formalisms [16–18]. However, here we use the framework for
Gaussian coherent feedback developed in Ref. [19].

Cooling the center-of-mass mechanical motion is a key
operation and a prerequisite for most quantum protocols [1].
Cooling can be implemented in a variety of ways, ranging
from parametric feedback cooling (a form of measurement-
based feedback) [20–24], to sympathetic cooling [25–28]
or sideband cooling [29,30]. The latter strategy, in partic-
ular, is compatible with the implementation of a CF loop.
A simple question, yet unaddressed so far, is whether CF
can be beneficial for mechanical sideband cooling. CF has
been investigated in Ref. [31] in relation to cooling, though
not specifically for optomechanical setups. The treatment in
Ref. [32] draws a connection between standard sideband cool-
ing and CF, but without considering the addition of CF loops.
In this paper we will use “coherent feedback” to refer to
explicit loops constructed using input-output interfaces, as
described in the second paragraph. Reference [33] considers
a setup similar to ours; our work generalizes this inquiry by
obtaining analytic results for a much wider class of feedback
loops. We show that, by its ability to tune the effective optical
loss rate, CF can considerably reduce both the steady-state
mean occupancy and the relaxation time.

Besides cooling, we also consider CF steady-state en-
hancement of quantum resources, e.g., squeezing and op-
tomechanical entanglement. In optomechanics, entanglement
between the mechanical and the optical modes can be gen-
erated through blue-detuned sideband drive, which enacts a
two-mode squeezing Hamiltonian. Our analysis shows that
interference alone, without involving active operations in the
feedback process, is superior for these goals. Active opera-
tions, which represent a resource per se, do not appear to be
useful in connection with CF. CF for the purpose of gener-
ating mechanical squeezing in conjunction with mechanical
parametric amplification has been investigated in Ref. [34]. In
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FIG. 1. A schematic diagram of the coherent feedback setup
considered. The optical and mechanical modes are labeled â and b̂,
respectively. The coherent feedback loop is shown in red, with the
output of interface 1 being subjected to a general operation Z , along
with ancilla mode âin,l3 before being fed back into the optical cavity
as âin,l2. Noise on the mechanical mode is indicated by an interaction
with an environment given by b̂in,m.

contrast, our study assumes no direct manipulation of the me-
chanical oscillator. We also mention that approaches related to
CF have been investigated for optomechanical arrays [35,36],
and recently delayed CF has been considered for enhancing
optomechanical nonlinearity [37].

In this paper, we start by introducing the general for-
malisms of Gaussian states and optomechanical systems in
Secs. II and III, respectively. In Sec. IV we introduce CF and
characterize three different kinds of feedback loops: passive
(interferometric) loops, loops involving squeezing and losses,
and loops involving two-mode squeezing. Then, in Sec. V,
we apply these loops to the task of cooling the mechanical
oscillator. In the weak-coupling regime, we analytically derive
the optimal passive CF loop for this purpose before providing
numerical evidence that such a setup cannot be outperformed
by the active loops considered. We show numerically that
passive loops also allow cooling to be enhanced in the strong-
coupling regime. In the final part of Sec. V, we demonstrate
that these protocols still perform well when moderate delays
are introduced in the loops. In Sec. VI we show that, in certain
circumstances, CF can be used to stabilize unstable systems in
the blue-sideband regime, as well as increase the steady-state
entanglement between the optical and the mechanical mode.
Again, the passive setups are found to outperform the active
loops. In Sec. VII, it is shown that active CF can be used to
stabilize optical squeezing, but does not lead to steady-state
mechanical squeezing. Finally, Sec. VIII looks at the transfer
of a state from the optical to mechanical mode. We find that
passive CF can be used to enhance the fidelity of this transfer.

II. GAUSSIAN DIFFUSIVE DYNAMICS

In what follows, we will use â to denote the annihilation
operator for the cavity mode of the optomechanical setup
and b̂ to denote the annihilation operator for the mechani-
cal mode. We will use r̂l = (x̂l , p̂l )T to refer to the cavity
quadrature operators x̂l = 1√

2
(â + â†) and p̂l = i√

2
(â† − â),

and r̂m = (x̂m, p̂m)T to refer to the similarly defined mechani-

cal operators. The notation r̂ = r̂l ⊕ r̂m will be used to denote
the total vector of system operators. The operators in r̂ must
obey the canonical commutation relations (CCRs) which are
captured by the antisymmetrized commutator

[r̂, r̂T] = r̂r̂T − (r̂r̂T )T = i�2, (1)

where �n indicates a 2n×2n matrix of the form

�n =
n⊕

j=1

(
0 1

−1 0

)
. (2)

In the rest of this paper, we will often omit the subscript from
�, letting the context specify the dimension. Since we will
be restricting our investigation to the Gaussian regime, the
state of the system will be entirely characterized by the first
and second statistical moments of these operators which are
respectively defined as

r̄ = Tr[ρ r̂] and σ = Tr[{(r̂ − r̄), (r̂ − r̄)T}ρ], (3)

where ρ is the density operator for the system [38]. The
covariance matrix σ is a real, symmetric matrix whose def-
inition involves the symmetrized anticommutator {v, vT} =
vvT + (vvT )T. In this paper we are not interested in properties
pertaining to the first statistical moments, so we assume r̄ = 0.

We model the optomechanical system as being subject to
two Hamiltonians, which we call ĤS and ĤC . The system
Hamiltonian ĤS involves only system operators and can be
written ĤS = 1

2 r̂THS r̂, where HS is a symmetric matrix. The
Hamiltonian ĤC couples the system to a white noise environ-
ment and is written ĤC = r̂TCr̂in(t ), where C is known as the
coupling matrix and r̂in(t ) is a quantum stochastic process.

The quantum stochastic process r̂in(t ) models the interac-
tion with the environmental continuum of modes as a series
of instantaneous interactions with a different mode at each
instant [39]. It obeys the white-noise relations

[r̂in(t ), r̂in(t ′)T] = i�δ(t − t ′), (4)

〈{r̂in(t ), r̂in(t ′)T}〉 = σ inδ(t − t ′), (5)

[r̂in(t ), r̂in(t )T](dt )2 = i� dt, (6)

〈{r̂in(t ), r̂in(t )T}〉(dt )2 = σ in dt, (7)

where σ in is the covariance matrix of the input states.
Under such conditions, the Heisenberg evolution of

the system modes is given by the stochastic differential
equation [38]

d r̂(t ) = Ar̂(t )dt + �Cr̂in(t )dt, (8)

where A = �HS + 1
2�C�CT is known as the drift matrix. In

combination with Eqs. (7) and (3), this equation can be used
to derive the evolution equation for the covariance matrix,

σ̇ = Aσ + σAT + D, (9)

where D = �Cσ inCT�T is known as the diffusion matrix. If
the system is stable, a steady state can be reached where σ̇ =
0. The condition for this to happen is that the drift matrix must
be “Hurwitz,” meaning that the real parts of all its eigenvalues
are less than zero.
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In this paper we consider a system of one optical and
one mechanical mode. The 4×4 covariance matrix will take
the form

σ =
(

σ l σ lm

σT
lm σm

)
, (10)

where σ l is the 2×2 optical covariance matrix, σm is the me-
chanical covariance matrix, and σ lm captures the correlations
between the two modes.

Using this formalism, the covariance matrices of thermal
states are proportional to the identity so that σth = N1, where
N = 2N̄ + 1 and N̄ is the mean environmental excitation
number. In this paper we assume that all environmental states
are thermal, with a covariance matrix σ in = Nl12 ⊕ Nm12,
where Nl is the noise on the optical mode and Nm is the noise
on the mechanical mode. In cases where the optical mode
interacts with two noise fields, we take them both to be the
same temperature, so that σ in = Nl14 ⊕ Nm12.

III. OPTOMECHANICAL INTERACTIONS

We consider an optomechanical system where the optical
mode, with frequency ωl and annihilation operator â, and
the mechanical mode, with frequency ωm and annihilation
operator b̂, are radiation-pressure coupled with single-photon
coupling strength g. The cavity is driven by a laser with
frequency ωL, which couples to the cavity port via a loss
rate κ . Applying a standard linearization technique [1,40] and
going into the interaction picture with respect to the free terms
Ĥ0 = ωl â†â + ωmb̂†b̂ results in the Hamiltonian

Ĥint (t ) = g(αe−i�t â† + α∗ei�t â)(e−iωmt b̂ + eiωmt b̂†), (11)

where we have defined the detuning between the laser and
the cavity frequencies as � = ωL − ωl and α the intracavity
mean-field amplitude. Without loss of generality, we assume
that α is real and define the linearized coupling strength as
G = αg. In the regime known as the red sideband, the detun-
ing is set to � = −ωm. In the “weak-coupling regime” the
condition ωm � G holds, and we can make the rotating wave
approximation which yields the Hamiltonian

Ĥred = G(â†b̂ + âb̂†). (12)

This Hamiltonian results in the exchange of excitations be-
tween the mechanical oscillator and the cavity. Since the
environmental noise is typically much lower for the cavity
than the mechanical oscillator and the cavity loss rate is typi-
cally much higher than the mechanical loss rate, the result of
red-sideband driving is to cool the mechanical oscillator.

In the blue-sideband regime, the detuning is set to � = ωm.
When the rotating wave approximation is made, the interac-
tion Hamiltonian (11) becomes

Ĥblue = G(âb̂ + â†b̂†). (13)

This is a two-mode squeezing Hamiltonian, which entangles
the mechanical and optical oscillators.

If we wish to operate in the strong-coupling regime (i.e.,
with larger G values), we cannot make the rotating wave
approximation [41–43]. In this case, we retain all terms
in Eq. (11).

Moving back to the laboratory frame and expressing the
Hamiltonian in terms of the quadrature operators, we have

Ĥ = −�

2

(
x̂2

l + p̂2
l

) + ωm

2

(
x̂2

m + p̂2
m

) + 2Gx̂l x̂m. (14)

The blue- and red-sideband Hamiltonians are then given by
changing the detunings to � = ωm and � = −ωm, respec-
tively. This Hamiltonian is harder to handle analytically than
the simplified versions given in Eqs. (12) and (13). We also
note that Eq. (14) does not give the fundamental Hamiltonian
of the system as, for large enough G, it has a spectrum which
is unbounded from below. However, since such values of G
are not normally found in experiments, this does not usually
pose a problem.

We model losses from both the cavity and the mechanical
oscillator using a Hamiltonian corresponding to an exchange
of excitations with the environment. This corresponds to a
coupling matrix

C =
(√

κ�T
1 0

0
√

	m�T
1

)
, (15)

where κ is the cavity loss rate and 	m is the mechanical
loss rate.

When dealing with Eqs. (12) and (13) we will be focusing
on the resolved sideband regime κ < ωm, in which the me-
chanical oscillations are faster than photon dissipation. This
is because we are concerned with continuous-wave driving,
which becomes less and less effective moving outside this
regime. On the other hand, Eq. (14) holds for any parameter
regime. Finally we note that from now on, all values are given
in units where ωm = 1.

IV. COHERENT FEEDBACK

We now look at the effect of adding a CF loop to the cavity
mode. A diagram depicting the kind of loop we consider is
shown in Fig. 1. First, we modify the setup so that the optical
cavity is now coupled to an environment through two input-
output interfaces, each with strength κ . This is captured by
an environment given by r̂in(t ) = r̂in,l1(t ) ⊕ r̂in,l2(t ) ⊕ r̂in,m(t )
and a coupling matrix

C =
(√

κ�T
1

√
κ�T

1 0
0 0

√
	m�T

1

)
, (16)

where r̂in,l1 and r̂in,l2 are the environmental modes at the two
cavity interfaces and r̂in,m is the mechanical input mode. A CF
loop is achieved by setting r̂in,l2 = E r̂out,l1 + F r̂in,l3, where
r̂out,l1 is the output mode at interface 1 and r̂in,l3 is an ancilla
environmental mode taken to be at the same temperature as
r̂in,l1. The real matrices E and F characterize the CP map per-
formed on r̂out,l1. For a coupling of this kind, the output mode
at interface 1 can be written in terms of the input and system
modes, using the input-output boundary condition [38,39]

r̂out,l1(t ) = √
κ r̂l (t ) − r̂in,l1(t ). (17)

In order for the CP map to be physical and preserve the CCR,
the matrices E and F must satisfy E�ET + F�F T = �.

The effect of such a CF setup is to couple the system to the
environment r̂in(t ) = r̂in,l1(t ) ⊕ r̂in,l3(t ) ⊕ r̂in,m(t ) through the
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modified coupling matrix [19]

Cc f =
(√

κ�T − √
κ�TE

√
κ�TF 0

0 0
√

	m�T

)
. (18)

As we will see, the modified cavity-environment interactions
featuring in the two upper blocks determine a modification of
the dissipation experienced by the system. CF also introduces
extra terms to the system Hamiltonian. In this case, since the
feedback loop occurs only on the optical mode, we only get
modifications to the optical Hamiltonian, which take the form

ĤS −→ ĤS + 1
2 r̂T

l Hc f r̂l , (19)

where Hc f = κ (�TE + ET�). These two changes, to the
system-environment coupling and the system Hamiltonian,
fully characterize the modifications to the system made by
Gaussian CF [19].

The choice of E and F matrices corresponds to the physical
process implemented in the loop. Here, we consider three
types of processes which can be implemented in loop: passive
(interferometric) processes, squeezing with losses, and two-
mode squeezing. We now look at the effect of each of these
loops, before looking at their applications.

A. Passive feedback loops

First, we consider passive feedback loops. In practice, such
loops correspond to interferometric processes involving losses
and beam splitters. These processes are referred to as passive
as they do not add energy to the mode. Mathematically, re-
stricting to passive loops means that the matrices E and F
satisfy EET + FF T = 1. It turns out that 2×2 real matrices
satisfying this property and the CCR take the form

E =
(

a b
−b a

)
, F =

(
c d

−d c

)
, (20)

where a2 + b2 + c2 + d2 = 1. We use Cp to denote the modi-
fied coupling matrix for passive CF which can be obtained by
plugging E and F into Eq. (18). Under this passive CF setup,
the diffusion matrix is given by

Dp = �Cpσ inCT
p �T =

(
κeffNl12 0

0 	mNm12

)
, (21)

where κeff = 2κ (1 − a). The drift matrix is given by Ap =
�HS + �Hp + 1

2�Cp�CT
p , where HS is the original Hamilto-

nian matrix, Hp is the Hamiltonian matrix of the modifications
due to CF, and 1

2�Cp�CT
p captures the diffusive dynamics.

While HS depends on the Hamiltonian being used to drive the
cavity, the other two matrices depend only on the specifica-
tions of the feedback loop and are given by

Hp =
(

2κb12 0
0 0

)
,

1

2
�Cp�CT

p =
(− κeff

2 12 0
0 −	m

2 12

)
.

(22)

From this, we can see that there are two effects of passive
CF: a modification of the optical cavity frequency, and a
change in the effective cavity loss rate. Regarding the first
feature, a peculiar feature of CF is that the detuning acquires a
dependence on the cavity loss rate. The second feature seems
especially appealing from an experimental point of view, since

cavity loss is usually regarded as a fixed parameter, set by
the geometry of the experimental configuration. On the other
hand, a CF loop provides a flexible handle to tune the cavity
decay rate. By tuning the feedback parameters a and b, we can
exert control over these aspects of the system. In particular,
setting a = 1 means that the output is fed completely back
into the cavity, resulting in an effective loss rate κeff = 0.
We note that since setting a = 1 requires a perfect channel
with no losses, this case is not feasible in practice. However,
since none of the results in this paper rely on the case where
a = 1 this is not a problem. Tuning the feedback loop so
that a = −1 means that the input at interface 2 interferes
constructively with the input at interface 1 and increases the
effective loss rate to κeff = 4κ .

B. Loops containing squeezing and losses

It is worthwhile to extend our treatment to encompass
feedback loops where squeezing operations are allowed. This
choice is certainly relevant in light of the numerous ap-
plications of squeezed light to improving the operation of
optomechanical systems [44–49]. The second type of loop
we consider is thus one where the feedback mode is subject
to losses followed by squeezing. Such feedback is no longer
passive as the action of squeezing adds energy. This setup is
modeled with E and F matrices given by

Ez =
(

ηz 0
0 η

z

)
and Fz =

(√
1 − η2z 0

0
√

1−η2

z

)
, (23)

where z > 0 is the squeezing parameter and 0 < η < 1
parametrizes the losses. When η = 0, the feedback mode is
entirely replaced by the noise mode before being squeezed,
and when η = 1, the feedback mode is not subject to any
losses before being squeezed.

By plugging these matrices into Eq. (18) we obtain the
effective coupling matrix for this setup, which we will
call Cz. The resulting diffusion matrix, Dz = �Czσ inCT

z �T,
is diagonal with entries κNl (1 − 2ηz + z2), κNl (1 − 2η

z +
1
z2 ), 	mNm, and 	mNm. The drift matrix for this setup in-
stead takes the form Az = �HS + �Hz + 1

2�Cz�CT
z where,

again, Hz captures modifications to the Hamiltonian from CF
and 1

2�Cz�CT
z captures the diffusive dynamics. These are

given by

Hz =
(

σxκη(z − 1
z ) 0

0 0

)
, (24)

1

2
�Cz�CT

z =
( 1

2κ
(

η

z + ηz − 2
)
12 0

0 −	m
2 12

)
, (25)

where σx is the Pauli x matrix. We can see that this kind of
feedback results in modifications to the diffusive dynamics,
as well as the addition of a squeezing Hamiltonian to the
light mode.

C. Loops containing two-mode squeezing

The third type of loop we consider is one where the feed-
back mode, along with the ancilla, is subject to a two-mode
squeezing operation before the ancilla is traced out. First we
consider loops of this kind. Then, we look at loops containing
phase shifters as well as two-mode squeezing.
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The setup without phase shifters is modeled using E and F
matrices given by

ET = cosh r12, FT = sinh rσz, (26)

where r is the two-mode squeezing parameter, and σz is the
Pauli z matrix. Again, we can obtain CT , the effective cou-
pling matrix for this system, by plugging these matrices into
Eq. (18). From this we can find the diffusion matrix

DT =
(

κNl (2 cosh2 r − 2 cosh r)12 0
0 	mNm12

)
. (27)

For this setup, there are no modifications to the system Hamil-
tonian as �TET + ET

T � = 0. This means that we can write the
drift matrix as AT = �HS + 1

2�CT �CT
T with

1

2
�CT �CT

T =
(

κ (cosh r − 1)12 0
0 −	m

2 12

)
. (28)

We note that, since cosh r � 1, this kind of CF will always
destabilize optomechanical setups by increasing the eigenval-
ues of the drift matrix.

Since we are often interested in steady states, which are not
achievable when the drift matrix has positive eigenvalues, we
might ask if there is a setup involving two-mode squeezing
which does not destabilize the system. Let us define new
E and F matrices ES = −ET , FS = −FT , which lead to a
diffusion matrix

DS =
(

κNl (2 cosh2 r + 2 cosh r)12 0
0 	mNm12

)
. (29)

As before, there are no modifications to the Hamiltonian ma-
trix, but the diffusive dynamics are characterized by the matrix

1

2
�CS�CT

S =
(−κ (1 + cosh r)12 0

0 	m
2 12

)
. (30)

Notice that if we define κS = 2κ (1 + cosh r) and
NS = Nl cosh r then we can write

DS =
(

κSNS12 0
0 	mNm12

)
, (31)

1

2
�CS�CT

S =
(− κS

2 12 0
0 −	m

2 12

)
. (32)

In other words, these loops can be characterized by
modifications to the cavity loss rate and the temperature
of the optical environment. This means that such loops may
allow systems to be stabilized (by increasing cosh r and
therefore κS) at the cost of increasing the noise on the optical
mode (due to the accompanying increase in NS).

V. COHERENT FEEDBACK-ENHANCED
SIDEBAND COOLING

Sideband cooling of the mechanical oscillator is achieved
by driving the cavity with a detuning � = −ωm [29,30]. In
this section we look at passive feedback loops and loops
containing squeezing as characterized by the E and F matrices
given in Eqs. (20) and (23), respectively. We do not investigate
loops involving two-mode squeezing. The reason for this is
that loops characterized by E and F matrices (26) lead to
non-Hurwitz drift matrices and therefore do not reach a steady
state. Loops generated by ES and FS do lead to a steady
state, but only allow modifications to the effective cavity
loss rate at the expense of higher noise on the optical mode.
Since passive feedback allows for these modifications without
the extra noise, we can state that, for a given effective loss rate,
passive feedback will outperform the two-mode squeezing
feedback. For this reason, we do not consider the stable CF
loops with two-mode squeezing.

The efficacy of a cooling protocol will be determined by
the steady-state entropy of the mechanical mode. To do this,
we use the fact that a covariance matrix for a single-mode
Gaussian state can always be written in the form σ = νSST,
where S is a symplectic matrix which satisfies S�ST = � and
ν is known as the symplectic eigenvalue of σ. Single-mode
Gaussian states have the convenient property that all entropies
of the state are increasing functions of ν [38]. We also note
that, since DetS = 1, we can write ν = √

Detσ = 1/Tr[2],
where  is the Gaussian quantum state under examination.
Note also that when the states involved are thermal states, with
σ ∝ 12, the symplectic eigenvalue and the regular eigenvalue
of the state coincide. In plots, we use the average mechanical
excitation number, which is given by N̄ = ν−1

2 .

A. Passive feedback

1. Weak coupling

Sideband cooling in the weak-coupling regime means that
the system is subject to Hamiltonian (12). Combining this
with the Hamiltonian modifications and diffusive dynamics
from Eq. (22) leads the system to evolve according to the drift
matrix given by

A =

⎛
⎜⎜⎝

− κeff
2 2κb 0 G

−2κb − κeff
2 −G 0

0 G −	m
2 0

−G 0 0 −	m
2

⎞
⎟⎟⎠, (33)

and a diffusion matrix given by Eq. (21). Under this setup, the
steady-state mechanical covariance matrix is a thermal state
σm = σm12 with eigenvalue

σm = 	mκeff (16b2κ2 + (	m + κeff )2)Nm + 4G2(	m + κeff )(κeffNl + 	mNm)

4G2(	m + κeff )2 + 	mκeff (16b2κ2 + (	m + κeff )2)
. (34)

This expression can be minimized with respect to the coherent
feedback parameters analytically. Doing this yields the opti-
mal values of b = 0 and κeff = 2G. Since κeff = 2κ (1 − a)

and the feedback parameter a satisfies a2 < 1, κeff can take
values in the range 0 < κeff < 4κ . This means that the optimal
cooling when κeff = 2G can be achieved for any G < 2κ by
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FIG. 2. (a) A plot of the average steady-state mechanical excitations against κeff (in units of mechanical frequency) for a system operating
in the weak-coupling, red-sideband regime. The parameters used are κ = 0.1, 	m = 10−5, G = 10−3, Nl = 1, and Nm = 200, in units where
the mechanical frequency is equal to 1. The mechanical temperature is minimized at κeff = 2G = 2×10−3, but any modification which moves
κeff towards this optimal value improves the steady-state cooling. (b) A plot of the steady-state mechanical excitations N against coupling
strength G (in units of mechanical frequency) for a system in the strong-coupling red-sideband regime with κ = 0.025, 	m = 10−3, Nl = 1,
and Nm = 100. The blue dashed line indicates the steady-state cooling when no feedback is used and the orange solid line indicates the
steady-state cooling achievable when passive coherent feedback is numerically optimized for the coupling strength. (c) A plot of the average
mechanical excitations against time for the setups where κeff = 0.1 (no feedback), κeff = 50G = 5×10−2, and κeff = 2×10−3 = 2G with
	m = 10−5, G = 10−3, Nl = 1, and Nm = 200.

setting a = 1 − G
κ

. The optimal cooling is achievable for all
weak couplings G < κ . If this optimal setup is used, we obtain
a steady-state mechanical covariance matrix with eigenvalue

σ opt
m = 4G2Nl + 	m(4G + 	m)Nm

(2G + 	m)2
. (35)

Recall that steady-state mechanical excitations are related
to the mechanical eigenvalue through the expression N̄ =
(σ opt

m − 1)/2. At this point we note that, though κeff = 2G
results in the optimal cooling, any feedback loop which brings
κeff closer to the optimal value of 2G will improve the per-
formance of the cooling. This can be seen by differentiating
Eq. (34) with respect to κeff and setting b = 0. This feature is
also demonstrated in Fig. 2(a), which shows a plot of mechan-
ical excitations against κeff with the minimum at κeff = 2G.

As well as decreasing the steady-state temperature of the
system, CF can be used decrease the time taken for the sys-
tem to relax. This is demonstrated in Fig. 2(c), where the
mechanical eigenvalue is plotted against time for systems
with different CF setups. We find that, as the effective cavity
loss rate is brought closer to the optimal value of κeff = 2G,
the rate of relaxation dramatically increases. This is because,
when the mechanical loss rate 	m is fixed, changing the
relative value of κeff and G results in large changes to the
timescale on which the system operates.

2. Strong coupling

Now, we look at cooling with passive feedback in the
strong-coupling regime. By combining the Hamiltonian ma-
trix of Eq. (14) with the CF modifications from Eq. (22) we
obtain the drift matrix

A =

⎛
⎜⎜⎝

− κeff
2 −� + 2κb 0 0

� − 2κb − κeff
2 −2G 0

0 0 −	m
2 ωm

−2G 0 −ωm −	m
2

⎞
⎟⎟⎠. (36)

The system will still have a diffusion matrix given by Eq. (21).
In the strong-coupling regime, it is no longer possible to find a

simple description of the optimal coherent feedback protocol
analytically, and we must investigate this setup numerically.
Nonetheless, there are some preliminary observations we
can make.

Recall that, in order for sideband driving to be effective, the
finesse of the cavity must be high enough that the sidebands
can be resolved. In practice, this means that the cavity loss
rate must be much smaller than the mechanical frequency. For
our purposes, we take this to mean that we require κeff < 0.1.
We note that coherent feedback allows a cavity with an oth-
erwise low finesse to be brought into the resolved sideband
regime through the lowering of κeff . Conversely, by increasing
κeff , we can stabilize setups with large G values that would
otherwise be unstable. This is useful as, for large values of G
and small values of κeff , the matrix (36) is not always Hurwitz
when the red sideband is driven.

It turns out that the optimal κeff for cooling using the
full linearized Hamiltonian lies in the range G � κeff � 2G,
depending on the coupling strength. Clearly, for couplings
G > 0.05, making κeff this high brings the system out of the
resolved sideband regime, so this protocol cannot be used.
Nonetheless, coherent feedback can be used to increase κeff as
high as it can go without leaving the resolved sideband regime
(i.e., κeff � 0.1). Doing this proves to be the optimal passive
feedback protocol.

As an example of the efficacy of passive coherent feed-
back in the strong-coupling regime, we investigate a setup
with κ = 0.025, 	m = 10−3, Nm = 200, Nl = 1, and a range
of G values. Figure 2(b) shows the minimum steady-state
mechanical excitations achievable by optimizing the coherent
feedback protocol for this setup in the strong-coupling regime,
with the extra condition that κeff < 0.1. We find that in the
strong-coupling regime, passive feedback can still improve
the performance of cooling.

B. Active feedback

Now we investigate cooling using feedback loops involv-
ing squeezing and losses, as described in Sec. IV B. In the
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weak-coupling regime, if the red sideband is driven, the sys-
tem evolves with a drift matrix given by

A=

⎛
⎜⎜⎝

κ
(

3
2ηz − 1

2
η

z − 1
)

0 0 G
0 κ

(
3
2

η

z − 1
2ηz − 1

) −G 0
0 G −	m

2 0
−G 0 0 −	m

2

⎞
⎟⎟⎠,

(37)

and a diffusion matrix given in Sec. IV B. The steady-state
mechanical covariance matrix of this setup can be optimized
numerically with respect to the feedback parameters η and z.
We find that, for any given setup in the weak-coupling regime,
the lowest entropy steady state is achieved when z = 1 and
η = 1 − G

κ
which corresponds to the optimal passive setup

described in the previous section. In other words, adding
squeezing in this way does not lead to better cooling of the
mechanical oscillator. We conclude that interference alone is
superior for CF-assisted cooling, without resorting to active
operations. Thus, the addition of active operations, which are
known to represent a resource in several contexts, does not
seem to be useful for CF in this setting.

C. Cooling with delayed feedback

Until this point, we have assumed that any feedback was
instantaneous. Here, we look at the effect of adding delays
into the feedback loop, so as to obtain some understanding
of the effect of delays on the optimal passive feedback loop
described earlier. In particular, we consider the case where
the output of interface 1 is mixed at a beam splitter with
an environmental mode r̂in,l3 after a delay of τ before being
immediately fed back into the cavity through interface 2. This
amounts to setting

r̂inl2(t ) = ar̂out,l1(t − τ ) + cr̂in,l3(t )

= a(
√

κ r̂c(t − τ ) − r̂in,l1(t − τ )) + cr̂in,l3(t ), (38)

which results in a delayed quantum Langevin equation for the
system,

˙̂r(t ) = Ar̂(t ) + aκ

(
r̂c(t − τ )

0

)

+
(√

κ (r̂in,l1(t ) − ar̂in,l1(t − τ ) + cr̂in,l3(t ))√
	mr̂in,m(t )

)
. (39)

Now, we define the Fourier transform of an operator as
F[ô(t )] = ô(ω) = 1√

2π

∫ +∞
−∞ ô(t )eiωt dt . We note that F[˙̂r] =

−iωr̂(ω) and F[ô(t − τ )] = eiωτ ô(ω). Fourier-transforming
Eq. (39) yields

−iωr̂(ω) = Ã(ω)r̂(ω) + B(ω)r̂in(ω), (40)

where

Ã(ω) = (A + (12 ⊕ 02)aκeiωτ ), (41)

B(ω) =
(√

κ (1 − aeiωτ )12
√

κc12 0
0 0

√
	m12

)
, (42)

r̂in(ω) =
⎛
⎝r̂in,l1(ω)

r̂in,l3(ω)
r̂in,m(ω)

⎞
⎠. (43)

We note that, as we have defined it, the Fourier transform of a
Hermitian operator is not Hermitian, so in order to investigate
physical observables, we must transform back into the time
domain. This is done by rearranging Eq. (40) to get

r̂(ω) = [−iω1 − Ã(ω)]−1Br̂in(ω) = R(ω)r̂in(ω), (44)

where R(ω) = [−iω1 − Ã(ω)]−1B is sometimes known as the
transfer function of the system. We then invert the Fourier
transform to obtain the time-domain covariance matrix:

σ(t ) = 1

2π

∫ +∞

−∞
dω dω′〈{r̂(ω), r̂(ω′)T}〉e−i(ω+ω′ )t . (45)

The resulting covariance matrix will turn out not to be depen-
dent on time and will in fact be the steady-state covariance
matrix for the system. The reason for this is that the only
solution to our delayed differential equation for which the
Fourier transform exists is the time-independent one. The
Fourier transform is not defined for any time-dependent
solutions to the differential equation. Therefore, when we
Fourier-transform the equation, we are implicitly discarding
all solutions except the steady state.

By Fourier-transforming the time domain input correlation
functions (5), we obtain the the corresponding frequency do-
main relations

[r̂in(ω), r̂in(ω′)T] = i�δ(ω + ω′), (46)

〈{r̂in(ω), r̂in(ω′)T}〉 = σ inδ(ω + ω′). (47)

Plugging these relations into Eq. (45) and integrating over the
resulting delta functions yields the following expression for
the steady-state covariance matrix of the system:

σ(t ) = 1

4π

∫ +∞

−∞
dω[R(ω)(σ in + i�)R(−ω)T

+ R(−ω)(σ in − i�)R(ω)T]. (48)

This can be numerically evaluated. As an example, we use the
setup described previously, where κ = 0.1, 	m = 10−5, G =
10−3, Nl = 1, and Nm = 200 and apply the optimal coherent
feedback protocol by setting a = 1 − G

κ
= 0.99. In the limit

where τ = 0 (no delays) the average steady-state mechanical
excitation number is N̄0 = 0.988. Delays of τ = 1, τ = 2, and
τ = 20 result in steady-state mechanical excitation numbers
of 1.036, 1.084, and 1.939, respectively. From this, we can
see that in-loop delays reduce the performance of the coherent
feedback loops, but only to a small degree when the delays are
on the order of the mechanical oscillation time period. In the
limit of infinite delay, τ −→ ∞, since any modes being output
from the cavity take an infinite amount of time to return, the
system behaves as if no feedback loop is present.

VI. OPTOMECHANICAL ENTANGLEMENT

Now, we look at the ability of CF to improve the entangle-
ment between the optical and mechanical oscillators. This is
achieved by driving the blue sideband, i.e., � = ωm. Here, we
confine our investigation to the weak-coupling regime.

Even in the weak-coupling regime, driving the blue side-
band often makes the system unstable, meaning that no steady
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FIG. 3. (a) The steady-state logarithmic negativity against κeff for three setups, each with 	m = 10−3, Nl = 1, and Nm = 100. The values
of κeff , G, and 	m are given in units where the mechanical frequency is equal to 1. The sudden vertical increases from EN seen for G = 4×10−3

and G = 4.5×10−3 occur as the effective cavity loss rate becomes large enough to stabilize the system. (b) A plot of the maximum achievable
logarithmic negativity EN against in-loop squeezing z for three setups with different coupling strengths G. The other parameters for each
system are the same and have values κ = 0.1, 	m = 10−3, Nl = 1, and Nm = 100.

state is reached. In this section, we consider two tasks: sta-
bilizing unstable setups and increasing the entanglement of
stable setups. We quantify entanglement between the light
and mechanics using the logarithmic negativity [50]. For a
bipartite Gaussian state with a covariance matrix of the form
given in Eq. (10), it has a simple expression in terms of the
matrix subblocks (see, e.g., Ref. [38]).

A. Passive coherent feedback

Recall that passive CF has the ability to tune the effective
cavity loss rate κeff and manipulate the optical cavity fre-
quency. Here, we focus on the tuning of κeff , as a preliminary
investigation suggested that tuning the cavity frequency was
not useful in this context.

A system subject to blue-sideband driving in the weak-
coupling regime with passive coherent feedback evolves
according to the drift matrix

Ablue =
(− κeff

2 12 −Gσx

−Gσx −	m
2 12

)
, (49)

where σx is the Pauli x matrix and a diffusion matrix given by
Eq. (21). For the system to be stable, the drift matrix must be
“Hurwitz,” meaning that the real parts of its eigenvalues must
all be negative. The eigenvalues of Eq. (49) are given by

λ = 1
4

(
−	m − κeff ±

√
16G2 + 	2

m − 2	mκeff + κ2
eff

)
. (50)

Thus, in order for the setup to be stable, we must have κeff >

4G2/	m. Through CF, the effective cavity loss rate can be
tuned, to a maximum of κeff = 4κ . Therefore, CF can stabilize
the blue sideband by increasing the effective cavity loss rate
so that it satisfies κeff > 4G2/	m, provided that the unmodi-
fied parameters satisfy κ > G2/	m. However, for some setups
with low initial κ , this might not be the case, so the system
cannot be stabilized this way. Recall that, as described in
Sec. IV C, we can use two-mode squeezers to make the effec-

tive cavity loss rate arbitrarily high, at the cost of increasing
the noise. We briefly investigate this in Sec. VI C.

Now, we look at the ability of CF to increase the entangle-
ment generated by a stable setup. As an example, we consider
a setup with G = 4.5×10−3, 	m = 10−3, and κ = 0.1. This
setup is stable and, at steady state, the system has a loga-
rithmic negativity of EN = 0.01166. Numerically, we find that
the stable logarithmic negativity is optimized by making κeff

as small as possible, without violating the stability criterion.
This amounts to setting κeff = 4G2/	m + ε ≈ 0.081, where
ε is a small positive number required to maintain stability.
Such a setup results in a stable logarithmic negativity of
EN = 0.0138. This increase is modest in relative terms but
small in absolute terms. Figure 3(a) shows a plot of the stable
logarithmic negativity against κeff for three setups, including
the one described above. If the system is not stable, the EN

is recorded as zero. Interestingly, for the weaker couplings
(G = 4×10−3 and G = 2.5×10−3), the optimal protocol does
not involve setting κeff to the minimum stable value and in-
stead requires κeff to be higher than 4G2/	m. Nonetheless, we
find that for all three setups, tuning κeff can have some small
but positive effect on EN .

B. Coherent feedback with squeezing and losses

Now we investigate the effect on entanglement generation
of adding in-loop squeezing, as described in Sec. IV B. Since
adding in-loop squeezing adds energy to the system, active CF
will not be any better at stabilizing unstable loops than passive
CF. However, we can still investigate the efficacy of active CF
for enhancing entanglement.

Figure 3(b) shows the maximum steady-state logarithmic
negativity against in-loop squeezing. At each value of z, the
logarithmic negativity has been optimized by tuning the beam-
splitter parameter η. We find that the logarithmic negativity
of the system peaks when z = 1, i.e., when there is no in-
loop squeezing and the feedback loop reduces to the optimal
passive loop considered in the previous section.
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FIG. 4. (a) The smallest steady-state optical eigenvalue against beam-splitter parameter η for two different in-loop squeezings. The
setup has κ = 0.1, G = 10−3, 	m = 10−5, Nl = 1, and Nm = 100. (b) The smallest steady-state mechanical eigenvalue against beam-splitter
parameter η for two different in-loop squeezings. The setup has κ = 0.1, G = 10−3, 	m = 10−5, Nl = 1, and Nm = 100. The values for z = 1.3
are only shown in the range 0 < η < 0.6388 where the setup is stable. (c) The smallest steady-state mechanical eigenvalue against beam-splitter
parameter η for two different in-loop squeezings in the strong-coupling regime. The setup has κ = 0.05, G = 0.2, 	m = 10−4, Nl = 1, and
Nm = 100. The setup with z = 1.5 is stable for η < 0.924.

C. Coherent feedback with two-mode squeezing

Here, we consider loops containing two-mode squeezing,
combined with phase shifters, whose evolution is described
by the matrices in Eq. (31). These loops have the property
that the effective cavity loss rate can be increased arbitrar-
ily by increasing the two-mode squeezing. When loops of
this kind are used in systems where the blue sideband is
driven in the weak-coupling regime, the drift and diffusion
matrices read

A =
(− κS

2 12 −Gσx

−Gσx −	m
2 12

)
, DS =

(
κSNS12 0

0 	mNm12

)
,

(51)

where κS = 2κ (1 + cosh r), NS = Nl cosh r, and r is the two-
mode squeezing parameter. Since increasing r decreases the
eigenvalues of the drift matrix, loops of this kind can be used
to stabilize systems. In particular, they are useful when κ is
too small for the system to be stabilized using passive CF.

As an example, we consider a system with κ = 0.01, 	m =
10−3, and G = 4.5×10−3. We find that the blue sideband can
be stabilized by increasing r so that κS > 4G2/	m, which cor-
responds to r > cosh−1( 2G2

κ	m
− 1) ≈ 1.78. However, though

the system is stable with r = 1.78, we find that the increase
in noise (in the form of NS) means that the logarithmic nega-
tivity of the steady state is zero. The ability of such loops to
stabilize drastically unstable systems is potentially useful in
other contexts, but shows fundamental limits in this context.

VII. OPTICAL AND MECHANICAL SQUEEZING

We have already seen that a red-sideband setup with pas-
sive feedback leads to thermal steady states. We now ask
whether adding squeezing in the CF loop can be used to gen-
erate mechanical squeezing, which would be especially useful
for sensing and metrology. We therefore consider a setup in
the red-sideband regime, subject to a coherent feedback loop
of the form described in Sec. IV B.

The first thing we note is that such a setup, with z �= 1,
leads to stabilized squeezing of the optical mode. This can
be seen in Fig. 4(a), which shows the smallest steady-state
optical eigenvalue against the beam-splitter parameter η for

two setups, one passive with z = 1 and one with an in-loop
squeezing of z = 1.3. The active feedback loop is stable as
long as η < 0.6388. Note that this active feedback loop allows
for stable squeezing of the optical mode below the vacuum
noise for all values of η, and allows for optical squeezing with
eigenvalue below 1/2 (the so-called 3 dB limit) for η > 0.59.

Figure 4(b) shows the smallest steady mechanical eigen-
values for both the squeezed and passive feedback loops in
the same setup. We can see that adding in-loop squeezing
can reduce the noise on a mechanical quadrature, but cannot
outperform the optimal passive loop for cooling, which is
achieved by setting η = 1 − G

κ
with z = 1.

We also investigate the same loop in the strong-coupling
regime using the full Hamiltonian (14) with � = −ωm and
find again that the passive loop outperforms the active loop.
This is demonstrated in Fig. 4(c).

Rather surprisingly, we could identify no CF loop that
would push the noise of a mechanical quadrature below the
vacuum level. Our investigation therefore indicates that CF
is not useful for the generation of mechanical squeezing.
This stands in contrast with measurement-based protocols,
which can be extremely effective for generating mechan-
ical squeezing (although conditionally, in the absence of
feedback) [51–55].

VIII. STATE TRANSFER

Another promising application of optomechanical systems
is as transducers converting between optical and mechanical
states. Therefore, in this section we look at CF as a method
for enabling and assisting the transfer of a state from the
optical mode to the mechanical mode. This is facilitated by
the red-sideband interaction. In particular, we aim to prepare
the mechanical mode in a state with a “target” covariance
matrix σT . For state transfer we consider a setup where
the light mode is initialized in the target state with covariance
matrix σ l (0) = σT , and the mechanical mode is initialized
in the thermal state with σm(0) = Nm12. If left alone for an
indefinite amount of time, the system will revert to a steady
state which has no relation to the initial state. Therefore,
to quantify state transfer, we will need to investigate the
transient dynamics of the system. The efficacy of the state
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FIG. 5. (a) The efficacy of state transfer from optics to mechanics for a range of κeff values. The setup considered had G = 0.1, Nl = 1,
Nm = 100, and 	m = 10−5. The values of κeff , 	m, and G are all given in units where the mechanical frequency is equal to 1. The state
considered for transfer was a squeezed state with z = 1/4 and data were averaged over the rotation angle θ of the squeezed state. (b) The
minimum mechanical eigenvalue reached during the first 25 mechanical oscillations, against the effective cavity loss rate κeff (in units where
the mechanical frequency is equal to 1). The setup uses G = 0.1, Nl = 1, Nm = 100, and 	m = 10−5.

transfer at time t will be quantified by the function V (t ) =
||σT − σm(t )||2, where || · ||2 indicates the Schatten 2-norm
given by ||M||2 =

√
Tr[M2]. Our figure of merit for this study

will be the minimum value of ||σT − σm(t )||2 reached during
a period of 25 mechanical oscillations for which the red side-
band is pulsed. In order to verify that the mechanical state is
indeed a result of state transfer, we compare our results to a
setup initialized with the optics in a thermal state σ l = Nl12.
If the minimum value of ||σT − σm(t )||2 is smaller when we
start the optics in state σT , we can argue that the improvement
must have come from state transfer.

The strong-coupling regime

Since preliminary results suggest that state transfer is poor
in the weak-coupling regime, we investigate state transfer
in the strong-coupling regime. In particular, we investigate
the effect of tuning the effective cavity loss rate through
passive coherent feedback. The covariance matrices of all
single-mode pure Gaussian states can be written σ = RθZRT

θ ,
where Z = diag(1/z, z) gives the squeezing of the state and
Rθ is a 2×2 rotation matrix with angle θ . Thus, all Gaussian
single-mode pure covariance matrices can be parametrized in
terms of the two values θ and z. Since the full red-sideband
Hamiltonian, given by Eq. (14) with � = −ωm, is phase de-
pendent, we expect the efficacy of state transfer to depend
on the rotation angle θ . As a result, when investigating state
transfer, we choose a state with fixed squeezing z = 1/4 and
average over the possible rotation angles θ .

Figure 5(a) shows the minimum value of V (t ) achieved
within the first 25 mechanical oscillations which occurs when
the red sideband is pulsed. Results shown in blue (with a
solid line) were generated by starting the optical mode in
the desired state σT and recording the closest approach to
this state achieved by the mechanical mode. The results in
orange (displayed with a dashed line) were collected in a
similar way, but the optics were initialized in a thermal state.
Therefore, when the blue (solid) line is lower than the orange

(dashed) line, we can say that preparing the optical mode in a
desired state and performing state transfer is more effective at
achieving a certain mechanical state than normal evolution.

We can now appreciate the effect of tuning the cavity loss
rate through coherent feedback on boosting the performance
of state transfer, illustrated in Fig. 5(a). Interestingly, perfor-
mance does not always increase with lower κeff , and is instead
optimized at κeff ≈ 0.035. We remind the reader that cavity
loss rate is normally a fixed parameter of the system and
the ability to tune it to optimize state transfer is provided by
coherent feedback.

We may ask whether the states transferred to the mechan-
ical mode share the salient features of the prepared state. In
particular, we can look at whether the state transfer protocol
described above is effective at transferring squeezing to the
mechanical oscillator. Figure 5(b) shows the minimum me-
chanical eigenvalue recorded during the first 25 mechanical
oscillations for a thermal initial state and prepared optical
initial states. As before, the mechanical oscillator is assumed
to be initialized in a thermal state, and the optical mode is
initialized in a squeezed state with z = 1/4. Again, the results
are averaged over the rotation angle of the prepared state θ .
The figure demonstrates that preparing the optical mode in a
squeezed state leads to greater transient mechanical squeezing
than a thermal state, and that the amount of the mechanical
squeezing can be altered by tuning the κeff through coherent
feedback. We note that the coherent feedback loops in Sec. VII
provide a possible method for preparing an initial optical
squeezed state.

IX. CONCLUSION

We have investigated the ability of coherent feedback to
improve the performance of several tasks in a linearized op-
tomechanical setting. For the tasks of optimizing steady-state
cooling and entanglement, as well as transient state transfer,
we have found that coherent feedback can improve perfor-
mance of the system when measured with an appropriate
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figure of merit. However, with the exception of cooling, the
improvements yielded are modest, and this study provides
insight into the limitations of coherent feedback. Though co-
herent feedback allows for a wide range of manipulations to
the system (as detailed in Sec. IV), in practice, most of the
benefits found in this study derive from the ability to tune the
effective cavity loss rate through passive coherent feedback.
Indeed, for most tasks, adding active elements to the feedback
loop is detrimental to the performance of the setup. A plausi-
ble explanation for this is that active elements, by definition,
add energy to the system, adding noise and destabilizing the
setup. As a result, the benefits of active feedback (in the exam-
ples we considered) are often outweighed by these drawbacks.

We should note that, aside from the investigation of state
transfer, we focused on steady-state features, and that co-
herent feedback techniques would not be constrained by the
same limitation if, instead, one were to consider transient
dynamics. This could be an interesting direction for future
work building up on the general formalism presented in this
study. Since coherent feedback allows features of the cavity
(such as the loss rate and the frequency) to be easily tuned
through passive elements in the feedback loop, one avenue for
further research would be to investigate the time-dependent

modulation, through coherent feedback, of these parameters
which are normally assumed to be fixed. Dynamical modula-
tion of the cavity dissipation rate has already been found to
be beneficial for cooling the mechanical oscillator in an op-
tomechanical setup [56]. Such modulation could be achieved
by tuning the free carrier plasma density [57–59] or using
light absorbers or scatterers in deformable optical cavities
[60]. We argue that the method presented here using coherent
feedback, being based entirely on optical elements in inter-
ferometric setups, may prove easier to implement than these
proposals.

Another limitation of the investigation presented here is
that all work takes place in the Gaussian regime, with linear
dynamics. Lifting this restriction would allow inquiry into a
much larger class of both physical phenomena and types of
coherent feedback loop.
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